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Abstract

This paper investigates �rst-price and Dutch auctions when bidders have preferences

exhibiting the Allais paradox. We characterize an equilibrium for both auctions, paying

particular attention to the dynamic inconsistency problems which can arise with such

preferences. We show that the Dutch auction systematically yields a higher revenue

than the �rst-price auction. This stands in sharp contrast with the presumption that

these auctions are strategically equivalent, which is indeed valid in the expected utility

case. We also show that introducing a "buy-it-now-price" to the �rst-price auction

increases seller�s expected revenue when bidders have Allais paradox preference while

it does not for expected-utility maximizers.
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1 Introduction

A Dutch auction is a descending auction in which an auctioneer �rst announces a very high

price and gradually lowers it until it is accepted by one of the bidders. The winning bidder

obtains the object and pays the prevailing price at that time. The Dutch auction has been

considered as strategically equivalent to the �rst-price auction. Since the Dutch auction

immediately ends once somebody accepts the price, a bidder cannot make his stopping price

contingent on other bidders�behaviors. All he can do is to internally determine the price

at which he will stop and the bidder with the highest stopping price wins the auction and

pays his stopping price. It is clearly equivalent to the �rst-price sealed-bid auction, in which

everybody writes down a price on paper simultaneously and the bidder who submits the

highest price wins and pays his price.

Strategic equivalence is the strongest possible equivalence notion and implies revenue

equivalence without need for particular assumptions. In contrast, revenue equivalence re-

sults between the �rst-price (or Dutch) and the second-price (or English) auctions (such as

Myerson [1981] and Riley and Samuelson [1981]) fail once we drop any of the assumptions

such of private-values, risk neutrality, and identical and independent distributions of bid-

ders�types. Even the revenue equivalence between the second-price and the English auctions

depends on the assumption of private values. In contrast, the equivalence between the �rst-

price auction and the Dutch auction does not depend upon the various assumptions listed

above.

The equivalence does, however, depend on the assumption that bidders have expected-

utility preferences. Indeed, expected-utility preferences guarantee that bidders�incentives do

not change as the price goes down in the Dutch auction. Absent this dynamic consistency,

the two auctions may result in di¤erent outcomes.

To see this, suppose that a bidder (a) prefers �winning at price $400 with probability

40%�to �winning at price $500 with probability 50%, �but (b) prefers �winning at price

$500 for sure� to �winning at price $400 with probability 80%.� This preference clearly

violates the independence axiom, and indeed is a simpli�ed version of the Allais paradox

named after Allais [1953].
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Let us assume that the probabilities that nobody other than him writes down or stops

at a price above either $500 or $400 are 50% and 40%, respectively. How does he behave in

the �rst-price auction and the Dutch auction, respectively?

In the �rst-price auction, by (a), he prefers a gamble and bids $400 to win with probability

40%. On the other hand, in the Dutch auction, he initially prefers to take a risk by waiting

until $400. However, once the price drops to $500, by updating his winning probability, his

choice becomes either winning at $500 for sure (by stopping immediately) or winning at

$400 with probability 80% (by waiting until $400), so he is tempted to stop at $500 by (b).

Therefore, when the bidders�preferences exhibit the Allais paradox, we can expect that the

Dutch auction yields a higher revenue to the seller than the First-price auction.

Notice that this is not the case when bidders are expected-utility maximizers. For these

bidders, (a) and (b) could never both hold. Thus, their incentives at the beginning of the

Dutch auction remain unaltered as the price declines. Hence, the two auction formats are

indeed strategically equivalent when bidders have expected-utility preferences.

There are several experimental studies of these two auction formats. Earlier laboratory

experimental results consistently reject our theoretical predictions based on Allais paradox

bidders. Coppin, Smith and Titus [1980], Cox, Robertson, and Smith [1982] and Chew and

Nishimura [2001] reported that the �rst-price auction yields a higher revenue than the Dutch

auction in laboratories.

On the other hand, the results of recent experiments are consistent with our theoretical

predictions. Lucking-Reiley [1999] conducted a �eld experiment by actually selling Magic

cards in an Internet auction, and reported that the Dutch auction resulted in a higher

revenue than the �rst-price auction. Also, Katok and Kwasnica [2008] obtained the same

result in a laboratory experiment by making price drops in the Dutch auction slower. These

two experiments suggest that the Dutch auction tends to result in a higher revenue than

the �rst-price auction when the speed at which the price falls is relatively slow. Katok and

Kwasnica [2008] and Carare and Rothkopf [2004] explain this observation by hypothesizing

bidders incur the cost of monitoring the Dutch auction or the opportunity cost of time spent

in the auction. We will discuss how to distinguish their explanations from the one based on

the Allais paradox in Section 5.
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There are several previous theoretical papers on this topic1. Karni [1988] �rst points out

that these two auctions are equivalent if and only if bidders are expected-utility maximizer.

Weber [1982] showed that the �rst-price auction yields a higher revenue than the Dutch

auction when bidders�preference exhibits the counter Allais Paradox. Nevertheless, none of

them characterized the equilibrium of the Dutch auction when bidders�preferences exhibit

the Allais paradox. This paper is the �rst paper to characterize the equilibrium of the Dutch

auction with Allais paradox preferences.

Another closely related theoretical paper is Bose and Daripa [2008], which shows that the

seller can extract an entire surplus if bidders have a special class of an ambiguity aversion

preference (the epsilon-contamination model), on which their clearest result depends. In this

paper, we assume bidders have a preference over risks which exhibits the Allais paradox, but

do not impose any other parametric restriction to characterize the equilibria of auctions.

A robust principle which emerges from our analysis is that, since bidders with Allais

preferences become more risk averse when they expect to win the auction with a higher

probability, they can be exploited by institutional arrangements which raise the �ex-post�

probability of making a winning bid. That is, seller�s revenues are enhanced by making

bidders optimistic at the time of their decisions. From this viewpoint, we demonstrate that

adding a buy-it-now-price to the �rst-price auction, which normally hurts the seller because

it causes a distortion at the top, turns out to be enhancing seller�s expected revenue against

the Allais paradox bidders.

The organization of the paper is as follows. In section 2, we discuss conditions on bidders�

preferences and derive several properties. Section 3 characterizes an equilibrium in the

�rst-price auction. Section 4 characterizes an equilibrium in the Dutch auction. Section

5 compares the seller�s revenues between the two auctions. In Section 6, we apply our

framework to a buy-it-now-price attached to the �rst-price auction and the Dutch auction

respectively. Section 7 concludes the paper.

1There are studies using non-expected utilities to study the English (ascending) auctions and the second-
price auction, such as Karni and Safra [1986, 1989a,b].
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2 Preference over Lotteries

There is a single object to be sold. There are n bidders and each bidder i has a type, denoted

by xi, which represents his monetary value of the object and is only known to bidder i. Each

xi is identically and independently distributed over [0; 1] with a distribution function F which

admits a positive and continuous densify f . De�ne G(x) = (F (x))n�1 and g = G0. G(x) is

the probability that a bidder is the highest type conditional on his type being x.

For b � 0 and q 2 [0; 1], let (b; q) be a lottery such that a bidder is awarded the object
and pays b with probability q and no transaction occurs with probability 1 � q. Let L be
the set of all such lotteries. Denote type x�s preference over lotteries in L by �x. We will
not need to consider bidder�s preferences over lotteries not included in L. Notice that any

lottery yielded by a pure strategy in the �rst-price auction or Dutch auction is included

in L.2 Therefore, we can restrict our attention to lotteries in L , which makes the model

general and highly tractable. Let �x and vx be the strict preference and the indi¤erence
relationship derived from �x, as usual.

Throughout the paper, we always assume the following conditions, which are standard

in most of the literature.

� �x can be represented by a utility function u(b; q;x), which is continuously di¤eren-
tiable in all arguments including x, and is normalized to u(0; 0;x) = 0.

� (x; 1) vx (b; 0) for any x and b.

� If q > 0, then (b; q) �x (b0; q) for any b < b0

� If b <[>]x, then (b; q) �x[�x](b; q0) for any q > q0 .

In addition, we impose two conditions on �x as follows:

Condition 1 If x > b > b0 and (b; q) �x (b0; q0) then (b; q) �x0 (b0; q0) for any x0 > x.
2One may wonder if a bidder might be strictly better o¤ by playing a mixed strategy, which yields a

lottery which is not included in L. However, unless he has a commitment to implement his randomization,
he will be tempted to play any pure strategy which is strictly better than all other pure strategies, and
indeed, such a strategy exists for almost all types. Therefore, we can always ignore mixed strategies.
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Condition 2 If x > b > b0 and (b; q) �x (b0; q0), then (b; q=�) �x (b0; q0=�) for any � 2 [q; 1).

Condition 1 requires that if a lower type prefers a safer lottery (i.e. more likely to win but

pays more upon winning), then a higher type must also prefer the safer one. This condition

is virtually universal in the literature. Indeed, it is satis�ed if �x can be represented by a
type-homogeneous expected utility function exhibiting risk-neutrality or risk-aversion.

Condition 2 can be interpreted as follows: if a bidder considers that the di¤erence between

two winning probabilities q and q0 is big enough to cause him to accept a higher price b rather

than b0, then he regards the di¤erence of the two scaled-up probabilities between q=� and

q0=� as also big enough to cause him to accept the higher price. Therefore, the subjective

di¤erence between 100% and 80% is perceived as greater than or equal to that between

50% and 40%, for example. It is easy to see that an expected-utility satis�es Condition 2

but the example discussed in the introduction also meets it. It basically accommodates the

common ratio e¤ect reported by many experiments such as Kahneman and Tversky [1979]

and MacCrimmon and Larsson [1979].

For convenience, we name some classes of preferences as follows:

De�nition 1 Suppose f�xgx2[0;1] satis�es the Condition 1 and 2.
(i) It is called an expected-utility (EU) preference if, for every x 2 [0; 1], (b; q) sx (b0; q0) with
q > q0 implies (b; q=�) sx (b0; q=�) for any � 2 [q;1).
(ii) It is called an Allais paradox (AP) preference if it is not an EU preference. Furthermore,

it is called a strict Allais paradox (SAP) preference if, for every x 2 [0; 1], (b; q) sx (b0; q0)
with q > q0 implies (b; q=�) �x (b0; q=�) for any � 2 [q; 1).

Finally, we de�ne a function � to express bidder�s attitude toward risks:

�(b; q;x) = �uq(b; q;x)
ub(b; q;x)

� q

This is the reduction of the winning price required to keep a bidder indi¤erent with respect to

a 1% decrease in his winning probability (proportional to the current winning probability).

Therefore, if a preference has a higher � than another preference, it exhibits more risk-

aversion.
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Let us examine important properties of � implied by Conditions 1 and 2.

Lemma 1 Under Condition 1, �(b; q;x) is nondecreasing in x.

Proof. Suppose for some x < x0 and (b; q), �(b; q;x) > �(b; q;x0). Then, we can �nd

m 2 (�(b; q;x0); �(b; q;x)) and " > 0 such that

(b; q) �x (b�m"; (1� ")q) and (b; q) �x0 (b�m"; (1� ")q)

which contradicts Condition 1.

Lemma 1 is simple. Condition 1 requires that a higher type prefers a safer lottery than

a lower type, so higher type�s � must be no less than lower type�s �.

Lemma 2 Under Condition 2, �(b; q;x) is nondecreasing in q. Furthermore, (i) it is con-

stant in q if the preference is EU, and (ii) for almost all (b; q), it is strictly increasing in q

if the preference is SAP.

Proof. Suppose �(b; q0;x) < �(b; q;x) for some q < q0. Then we can �nd some m 2
(�(b; q0;x); �(b; q;x)) and " > 0 such that

(b�m"; (1� ")q0;x) �x (b; q0;x) and (b�m"; (1� ")q;x) �x (b; q;x)

The second preference, coupled with Condition 2 implies

(b�m"; (1� ")q0;x) �x (b; q0;x)

which contradicts the �rst preference.

If (i) is not true, we can �nd four lotteries (b; q) �x (b0; q0) but (b; q) �x (b0; q0) where
q=q0 = q=q0 in similar way, so it cannot be an EU preference. If (ii) is not true, we can �nd,

(b; q) �x (b0; q0) and (b; q=�) �x (b0; q0=�) , which violates a de�nition of the SAP preference.

Lemma 2 characterizes an important property of an individual EU preference: his attitude

toward risks (captured by �) is independent of the current winning probability, which means
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that for a �xed price level b, he demands the same amount of price reduction when the

winning probability is reduced from 50% to 40 % and from 100% to 80%. It is easy to see

that if his preference is EU with utility function q � v(b;x), we have

�(b; q;x) =
v(b;x)

qv0(b;x)
� q = v(b;x)

v0(b;x)

which shows that � is indeed independent of q (Conversely, if � is independent of q, it is

indeed an EU preference. We can construct an EU-form representation of a preference with

�).

On the other hand, AP preference�s � can be increasing in q, which means that he is more

risk-averse when q is high (so he is more optimistic about his chance of winning). Therefore,

he may demand a greater price drop when the winning probability is lowered from 100 % to

80% but demand less when it is from 50 % to 40%.

3 The First-Price Auction

In the �rst-price auction with a reserve price r > 0, each bidder, if he participates in the

auction, submits a bid b 2 [r; 1] simultaneously and the bidder with the highest bid wins the
object and pays his bid. If no bidder participates, the seller keeps the object. Assume that

ties are broken with equal probabilities.

A strategy in the �rst-price auction is a bidding function b : [r; 1]! [r; 1], where b(x) is a

bid made by a bidder with type x. We can ignore bidders whose types are below r, as they

do not participate in the auction.

We focus on a symmetric equilibrium, where all the bidders use the same bidding function

b�. Suppose all other bidders follow b�, then by bidding b, a bidder wins the auction with

probability

W b�(b) =

�Z
b�(x)<b or x<r

dF (x)

�n�1
(1)

+

n�1X
i=1

�
n�1
i

�
i+ 1

�Z
b�(x)=b

dF (x)

�i�Z
b�(x)<b or x<r

dF (x)

�n�i�1
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so bidding b yields a lottery (b;W b�(b)). We drop the superscript of W when this does

not lead to confusion. Naturally, we can de�ne an equilibrium of the �rst-price auction as

follows.

De�nition 2 A bidding function b� : [r; 1] ! [r; 1] is a symmetric equilibrium of the �rst-

price auction with reserve price r if and only if

(b�(x);W b�(b�(x))) �x (b;W b�(b))

for all x 2 [r; 1] and b 2 [r; 1]

We now characterize b�. First, it is pretty straightforward that Condition 1 implies that

b� must be strictly increasing and continuous. Therefore, in the equilibrium, type x gets the

payo¤ u(b�(x0); G(x0);x) by making the same bid as type x0 does, so this function should be

maximized at x0 = x . Taking a �rst-order condition, we have

ub(b
�(x); G(x);x)b�0(x) + uq(b

�(x); G(x);x)g(x) = 0

Rearranging the above condition, we get a di¤erential equation characterizing an equi-

librium.

b�0(x) = �uq(b
�(x); G(x);x)

ub(b�(x); G(x);x)
� g(x) � �(b�(x); G(x);x) � g(x)

G(x)

This is a unique equilibrium as is shown in the appendix.

Proposition 3 Under Condition 1, the �rst-price auction with reserve price r > 0 has a

unique equilibrium b�, which is characterized by the following di¤erential equation:

b�(r) = r and b�0(x) = �(b�(x); G(x);x) � g(x)
G(x)

(2)

Equation (2) is easy to interpret. If type x pretends to be a slightly lower type x � ",
the percentage drop of his winning probability is g(x)"=G(x). To keep him indi¤erent, his

payment upon winning must drop by � �g"=G. Equation (2) guarantees that the actual price
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drop b�0(x)" is indeed equal to this amount, so he has no incentive to increase or decrease

his bid from b�(x).

4 The Dutch Auction

We now analyze the Dutch auction. We consider bidders behaving in a sophisticated way in

the sense that (i) he fully understands his incentive may change later and rationally predicts

what he will do if he does not stop the auction right now and (ii) he compares what he gets

from stopping immediately and waiting now and makes a decision optimally at every price3.

The second requirement causes a problem if the price drops continuously. In order to

evaluate what he gets from waiting, he must know which price he will actually stop at. It

may not be well de�ned if prices are continuous.

To avoid this problem, we �rst analyze a discrete-price model in which the seller lowers

the price discretely. Formally, we de�ne a price grid as B = fb0; b1; : : : ; bmg with r = b0 <
b1 < � � � < bm = 1, and the grid size of B as maxi=1;:::;m(bi� bi�1). In the Dutch auction with
price grid B, the auctioneer �rst announces bm. The bidders choose between stopping and

waiting simultaneously. If only one bidder stops, he wins the object and pays bm and the

auction ends at this point. If more than one bidder stops, each bidder who stops is chosen

as the winner with equal probabilities. If no bidder stops, then the auctioneer announces

bm�1, and the same process is continued until b0 is reached. The auctioneer keeps the object

if no bidder stops at price b0.

With price grid B, the bidder�s strategy is a mapping from B � [r; 1] to fs; wg, denoted
by fDB

b (x)gb2B;x2[r;1] where DB
b (x) = s (w) indicates that if price b 2 B is announced, a

bidder with type x stops (waits). From a strategy DB
b , we can derive the actual stopping

price of each type: dB(x) = maxb2Bfb 2 B j DB
b (x) = sg, which we call the bidding function

induced by DB.

Given this, we now de�ne an equilibrium. To do so, imagine a bidder who believes the

3This formulation is in the same spirit as the multi-selves approach to such problems suggested by Strotz
[1956] in his seminal paper on time inconsistent preference. This approach has been widely adopted (see for
instance, Goldman [1979], Laibson [1997] and O�Donoghue and Rabin [1999].

10



bidding function of other bidders is ~d. At every price, he understands that he cannot control

his future behaviors if he waits now. Therefore, he is playing a game with jBj selves for
�xed strategies of other bidders. Let us see how he actually behaves when price bi is actually

reached. This happens with probability4

S
~d(b) =

�Z
~d(x)<b or x<r

dF (x)

�n�1

By Bayes rule, he gets (bi;W d(bi)=Sd(bi)) from stopping immediately. Then, he correctly

predicts what he will do if he does not stop now. Suppose the next highest price at which he

will stop is bi
0
if he waits now. Then what he will obtain from waiting is (bi

0
;W

~d(bi
0
)=S

~d(bi)).

He will stop if he prefers the former lottery and wait otherwise. Actually, we can derive his

behavior by backward induction starting from price b0(= r), at which he should stop as long

as the valuation exceeds r.

Let DB be the strategy derived as above and dB the induced bidding function from it.

Then, we call dB a response to ~d. If a bidding function is a response to itself, it is an

equilbirium. Formally:

De�nition 3 For the Dutch auction with reserve price r and price grid B, a bidding function

dB is a response to another bidding function ~d if and only if there exists strategy DB such

that

(i) DB
r (x) = s if and only if x � r.

(ii)For any i = 1; : : : ;m, if DB
bi(x) = s[w], then

(bi;W
~d(bi)=S

~d(bi)) �x [ �x ](bi0;W
~d(bi0)=S

~d(bi))

where bi0 = maxfb 2 BjDB
b (x) = s and b < b

ig.
(iii) dB is derived from DB, (i.e. dB(x) = maxb2Bfb 2 B j DB

b (x) = sg).

We say dB� is a symmetric equilibrium of the Dutch auction with price grid B if and only

if it is a response to itself.

4We may drop the superscript of S if it does not cause confusion.
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We shall now establish the existence of an equilibrium with any price grid. To do so, we

utilize the technique developed by Athey [2001], which shows the existence of a pure-strategy

equilibrium for an incomplete information game when (i) there is a continuous type space

(ii) there is a �nite action space , and (iii) a response to any strategy is non-decreasing, that

is, a higher type selects a greater action than a lower type.

Thus, we need to prove that whenever dB is a response to some other bidding function,

it must be nondecreasing. However, Condition 1 alone does not guarantee that dB is nonde-

creasing, because the next price at which he stops if he waits at some price b depends on his

type in general. Consider the following example.

Example 1 Suppose B = f$1; $2; $3g and the initial probabilities of winning by stopping
at $1, $2, and $3 are :1, :2, and :4, respectively and assume that the probability of ties is

negligible. Type x�s preference includes ($1; :5) �x ($2; 1) and ($1; :25) �x ($3; 1) while type
x0(> x)�s preference includes ($2; 1) �x0 ($1; :5) and ($2; :5) �x0 ($3; 1).

In this example, type x will stop at $1 and $3 and wait at $2 while type x0 should stop

at $1 and $2 and wait at $3. Hence lower type x actually stops earlier than higher type x0.

Notice that the above preference does not violate Condition 1. However, it is excluded by

Condition 2. To see this, apply Condition 2 to ($1; :5) �x ($2; 1), we have ($1; :25) �x ($2; :5)
so ($3; 1) �x ($2; :5). Therefore, ($3; 1) �x0 ($2; :5) by Condition 1. This is a contradiction.

Lemma 4 Under Condition 1 and 2, if dB is a response to another bidding function ~dB,

then dB must be nondecreasing.

The formal proofs of Lemma 4 is provided in Appendix. Given this, we will get the

existence result by Athey [2001]�s technique with some extra works in the Appendix.

Proposition 5 Under Condition 1 and 2, the Dutch auction with reserve price b and price

grid B has a symmetric equilibrium dB� and it is nondecreasing.

Now, we let the grid size converge to zero and investigate the limit of the equilibrium

bidding function. Consider a sequence of price grids fBkg, where the grid size of Bk con-
verges to zero. Let dBk� be an equilibrium bidding function with price grid Bk. Since dBk� is
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uniformly bounded and nondecreasing, the sequence of dBk� must have a convergent subse-

quence. We show that any convergent sequence must converge to the particular function d�,

which is characterized in Proposition 6. Therefore, any sequence converges to the unique d�.

Proposition 6 Suppose Condition 1 and 2 are satis�ed. Let d�Bn be a symmetric equilibrium

of the Dutch auction with price grid Bn and reserve price r. If the grid size of Bn converges

to zero as n goes to in�nity, then d�Bn converges to d�, which is characterized by the following

di¤erential equation

d�(r) = r and d�0(x) = �(d�(x); 1;x) � g(x)
G(x)

(3)

Proof. Here, we only provide the outline of the proof. Showing that d� is continu-

ous and strictly increasing is similar to the standard �rst-price auction case, with several

complications because of time inconsistent preferences. Therefore, in the limit, S(d�(x)) =

W (d�(x)) = G(x). We now show equation (3).

Finding the lowerbound of d�0 is relatively easy. Notice that at any price greater than

d�Bk(x), type x prefers waiting until d�Bk(x) to stopping immediately. Therefore, it must

also be true in the limit and we obtain

u (d�(x+ "); 1;x) � u
�
d�(x);

G(x)

G(x+ ")
;x

�
for any x 2 [r; 1] and " > 0, which implies

d�0(x) � �(d�(x); 1;x) � g(x)
G(x)

On the other hand, �nding the upperbound of d�0 is not straightforward because

u

�
d�(x� "); G(x� ")

G(x))
;x

�
� u (d�(x); 1;x) for small " > 0

may not be true. This is because, the equilibrium condition requires that type x prefer

stopping at d�Bk(x) to waiting until only his next stopping price, which depends on k.

Concretely, �x any " > 0. Since d�Bk converges to the continuous and strictly increasing
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function d�, there exists "0 2 (0; ") such that d�Bk(x) > d�Bk(x � "0) > d�Bk(x � ") when k
is large. Since by Lemma 4, type x stops at d�Bk(x � "0) if it is reached, his next stopping
price after d�Bk(x) is greater than d�(x � "). Therefore, we can never compare his payo¤s
from stopping at d�Bk(x) and from waiting until d�Bk(x � ") when k is large. This is why
the above inequality may not hold even for small " > 0.

However, by Lemma 4, for any " > 0 and k, type x must stop at d�Bk(x�") because lower
type x � " stops at this price. Therefore, we can �nd prices d�Bk(x � ") = d0 < d1 < � � � <
dmk < d�Bk(x) such that when price dl (l � 1) is reached, he prefers stopping immediately
to waiting until dl�1.

The upperbound of d�
0
(x) will be reached when there is the greatest di¤erence between

d�Bk(x) and d�Bk(x � "). This will occur when a bidder is very risk averse (having greater
�) in this region. Since � is nondecreasing in q, the value of � in this region is at most

��
k
= max

~x2[x;x�"]
�(d�Bk(~x); 1;x)

Therefore,

dl � dl�1 � ��
k � W (d

l)�W (dl�1)
S(dl)

� ��
k � W (d

l)�W (dl�1)
S(d�Bk(x� "))

for all l = 0; : : : ;mk. Summing up the above inequalities for l = 0; : : : ;mk, we obtain

d�Bk(x)� d�Bk(x� ") � ��k �
W
�
d�Bk(x)

�
�W

�
d�Bk(x� ")

�
S(d�Bk(x� "))

Taking the limit of both sides with respect to k, we obtain

d�Bk(x)� d�Bk(x� ") � max
~x2[x�";x]

�(d�(~x); 1;x) � G(x)�G(x� ")
G(x� ")

which implies

d�0(x) � �(d�(x); 1;x) � g(x)
G(x)
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Remark: Although we derive an equilibrium of the �rst-price auction with a continuous

price space, it can be also obtained as the limit of equilibria with discrete price grids.

It is easy to see that Equation (3) can be obtained by taking the following �rst-order

condition:
du(d�(x̂); G(x̂)=G(x);x)

dx̂

����
x̂=x

= 0 (4)

Equation (4) can be interpreted as follows: Imagine that the price drops continuously

and every bidder follows a bidding function d�, which is continuous and strictly increasing.

Suppose that the price reaches d�(x), then the probability of winning if type x waits until

d�(x̂) is G(x̂)=G(x), so if the left-hand side of (4) is negative, he has an incentive to wait at

d�(x). On the other hand, if it is positive, then by continuity it is true at a slightly higher

price level so he would have been tempted to stop at some higher price. Therefore, d� must

satisfy the �rst-order condition as given in (4).

Before ending this section, let us discuss several previous works that study the Dutch

auction with non-expected utilities. Karni [1988] shows the �rst-price and the Dutch auctions

are equivalent if and only if bidders are expected-utility maximizers. Weber [1982] considers

a particular class of counter Allais paradox preferences (i.e. Condition 2 is reversed) and

shows that the �rst-price auction dominates the Dutch auctions in terms of the revenue

in the equilibria. Chew and Nishimura [2001] extends Weber�s result when bidders have

heterogeneous preferences.

Unlike this paper, these works implicitly assume that bidders are naive in the sense that

they do not realize that their future incentives may be di¤erent from their current one so

always (wrongly) believes that he will wait and stop according to the current incentive.

However, there is no work that characterizes an equilibrium of the Dutch auction with the

Allais paradox and naive bidders. Indeed, it is extremely di¢ cult.

To illustrate how di¤erently the sophisticated and the naive behave, consider the following

example:

Example 2 Consider the same setting as in Example 1 but type x�s preference is now

($2; 1) �x ($1; :5) and ($1; :25) �x ($3; 1) �x ($2; :5)
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Suppose the current price is $3. If he is naive, he waits because ($1; :25) �x ($3; 1),
wrong believing that he will wait at $2, although he will actually stop at $2 because of

($2; 1) �x ($1; :5). A sophisticated bidder understands this and he will stop at $3 since

($3; 1) �x ($2; :5).

This suggests that for a �xed strategy of all others, a sophisticated bidder�s actual bid is

higher than a naive bidder�s one because he has another incentive to stop earlier: to prevent

his future selves from behaving against his current intention5. Indeed, it can happen in the

equilibrium. To see this, consider the equilibrium with sophisticated bidders and type x

�nds that price d�(x) is actually reached. At this point, what he will get from waiting till

d�(x̂) (x̂ � x) is (d�(x̂); G(x̂)=G(x)). Let us look for the marginal gain/loss of waiting:

du(d�(x̂); G(x̂)=G(x);x)

dx̂
= u1 �

�
(d�0(x̂) +

u2
u1
� g(x̂)
G(x)

�
= u1 �

�
�(d�(x̂); 1; x̂)� �

�
d�(x̂);

G(x̂)

G(x)
;x

��
� g(x̂)
G(x̂)

The sign of this expression is not clear because � is increasing both in x and q. It will

be negative if the e¤ect of the Allais Paradox is large (� is rapidly increasing in q), in which

case u(d�(x̂); G(x̂)=G(x);x) may not be maximized at x̂ = x6,7.

Therefore, the equilibrium with naive AP bidders cannot be characterized simply by

taking the �rst-order condition. This is because a naive bidder does not stop unless doing

so generates a higher revenue than waiting till any lower price. At this point, all we can

say is that the sophisticated bidders stop at a weakly higher price than the naive, but both

types will stop at (weakly) higher prices than the ex-ante optimal stopping price for a �xed

strategy of other bidders.

5A similar phenomenon appears in O�Donoghue and Rabin [1999]�s "immediate reward model."
6In extreme cases, x̂ = x locally minimizes u(d�(x̂); G(x̂)=G(x);x). This happens when �x(d

�(x); 1;x) <
�q(d

�(x); 1;x) so the du=dx̂ < 0 in when x̂ is close to x.
7The characterization of the Dutch auction equilibrium by Weber and Chew-Nishimura is based on the

�rst-order condition. This is possible because � is decreasing in q with counter Allais preferences so the
above derivative is positive for all x̂ < x.
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5 The Revenue Comparison

In this section, we compare the revenues of the �rst-price auction and the Dutch auction

(when the price grid size converges to zero) with the same reserve price r. Propositions 3

and 6 showed that the equilibrium bidding functions b� of the �rst-price auction and d� of

the Dutch auction are characterized by Equations (2) and (3).

By Lemma 2, �(b; q;x) � �(b; 1;x), so we have b�0(x) � d�0(x) whenever b�(x) = d�(x).
Hence, b� can never be above d�. Also, if �(b�(x); G(x);x) < �(b�(x); 1;x), d�(x) cannot be

equal to b�(x) because, if so, d�(x� ") < b�(x� ") for any small " > 0. Furthermore, if the
preference is SAP, then �(b; q;x) is strictly increasing in q for almost all (b; q) so unless the

preference is degenerate b�(x) < d�(x) for all x > r.

Proposition 7 Under Condition 1 and 2, The Dutch auction yields no smaller revenue that

the �rst-price auction for any realization of bidders� types. Furthermore, if the preference

is SAP, the Dutch auction yields a strictly higher revenue than the �rst-price auction for

almost all realizations of bidders�types unless the preference is degenerate in the sense that

�(b�(x); G(x);x) = �(b�(x); 1;x) for all x 2 [r; 1].

Proposition 7 shows that the Dutch auction dominates the �rst-price auction in terms of

the revenue. If bidder�s preference is risk-averse and SAP, then the Dutch auction outper-

forms also the English (Ascending) auction, which is known to be expected-revenue inferior

to the �rst-price auction with risk-averse bidders (Maskin and Riley [1984]). Therefore, the

Dutch auction is the best among all of popular auction mechanisms.

Finally, let us discuss another possible explanation why the Dutch auction dominates the

�rst-price auction by Katok and Kwasnica [2008] and Carare and Rothkopf [2004]. Their

explanations are based on the cost of waiting in the Dutch auction (the opportunity cost of

time or the cognitive cost), which is in line with Katok and Kwasnica [2008]�s experiments

where the Dutch auction generates a higher revenue when the price goes down slowly and

provide an explanation based on the opportunity cost of time spent in the auction8.

8Another possible reason why a slow Dutch auction generates a higher revenue than a quicker one is as
follows: Bidders have AP preferences but may not have enough time to update the beliefs and reconsider
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In order to distinguish the opportunity cost model from our model based on the Allais

paradox, one can vary the stake of the Dutch auction to see how the di¤erence between the

�rst-price and the Dutch auction changes. As the stake gets larger, the opportunity cost

model predicts that the di¤erence will vanish while our model predicts a persistent di¤erence

as long as the Allais e¤ects persist at higher stake levels.9

6 Buy-It-Now-Price

In some auctions, a seller sets a buy-it-now-price (BP). Any bidder, by accepting the BP,

can obtain the object at that price immediately while the object is sold via the �rst-price

auction if nobody accepts the BP. As an example, consider a governmental procurement

auction in which the company o¤ering the lowest price wins the project and receives that

price, which is equivalent to the �rst-price auction. Occasionally, the government decides

the winner prior to the auction when that company accepts some reasonable price. Such a

price can be interpreted as a BP. Another example of the use of a BP is in some internet

auctions. A seller may set a BP waiting for someone to accept it. When bidders believe that

she will hold the �rst-price auction later if nobody accepts the BP, this is the same situation

as the previous example.

However, attaching the BP to the �rst-price auction seems unwise for the seller because

it causes �a distortion at the top.�When two bidders with relatively high valuations are

willing to accept the BP, the object is awarded to the one who accepts the BP earlier and

the highest type may lose, unlike in the �rst-price auction without a BP. Such a distortion

typically reduces the seller�s expected revenue.

their actions during the quick Dutch auction. If so, a quick Dutch auction is almost the same as the �rst-price
auctions as bidders behave according to their initial plan. (The speeds of price drops in these experiments
are, about .75 to 2% of its initial price per second in Cox, Robertson, and Smith [1982], 5% of its initial price
per �ve minutes in Katok and Kwasnica [2008], and about 5% of the current price per day in Lucking-Reiley
[1999].)
To seriously study this, one needs to explicitly provide a model involving the bounded rationality of

bidders.

9The opportunity cost model is not a good explanation for Lucking-Reiley [1999]�s �eld experiment on
the internet. Although the auctions in this experiment are very slow, the costs of waiting for cheaper prices
are not very large, because the prices dropped only once a day and interested bidders can receive the updates
of the Dutch auction automatically via daily e-mails.
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Nevertheless, when bidders�preferences are AP, attaching a BP to the �rst-price auction

has another e¤ect. Suppose nobody accepts the BP and now the object is sold via the �rst-

price auction. Then a bidder can infer that types of his opponents are not so high, which

raises the probabilities of winning. Thus he becomes more risk-averse at the time he places

a bid, which forces him to make a higher bid than the initially optimal one. We will show

that this positive e¤ect dominates the negative e¤ect when the BP is set appropriately.

To focus on the e¤ect of the Allais paradox, we model a BP in a way which keeps bidders

strongly symmetric, as follows.

1. The seller sets a BP (�b) and a reserve price (r) where �b 2 (r; b�(1)).

2. n bidders arrive sequentially without knowing the order of arrivals.

3. The �rst bidder can either accept or reject the BP. If he accepts, he obtains the object

at price �b and the game ends at this point. If he rejects, the second bidder has the

same choice. This process continues until someone accepts the BP or all bidders reject

the BP. If nobody accepts the BP, the object is sold by the �rst-price auction with

reserve price r.

Thus, a bidders�strategy is a pair of (A; b) where A � [r; 1] is a set of types accepting

the BP and b : [r; 1]! [r; 1] is a bidding function in the (post-BP) �rst-price auction.

First, we consider equilibrium bidding in the �rst-price auction after the BP is rejected

by all bidders. Notice that conditional on the �rst-price auction taking place (i.e. all bidders

have declined the BP), the probability of winning when bidding b is

Ŵ (b) =

�R
x=2A;b(x)<b dF (x)

�n�1
�R
x=2A dF (x)

�n�1 (5)

Thus, in the �rst-price auction, a bidder makes the optimal bids by referring to Ŵ as the

winning probability of bidding b.

Next, we consider the decision about the BP. By accepting the BP, a bidder wins the

object at �b for sure. On the other hand, suppose he rejects the BP and bids b in the post-

BP auction. Conditional on being o¤ered the BP (i.e. all bidders arriving before him have
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declined the BP), the probability that the post-BP auction takes place (i.e. all subsequent

bidders decline the BP) is given by

�̂ =

�R
x=2A dF (x)

�n�1
1
n
�
n�1P
j=0

�R
x=2A dF (x)

�j (6)

Thus, he obtains the object at price b with probability �̂Ŵ (b)10. Therefore, we can de�ne a

symmetric equilibrium of the BP as follows:

De�nition 4 (Â; b̂) is a symmetric equilibrium of the BP if and only if

u
�
b̂(x); Ŵ (b̂(x));x

�
� u

�
b0; Ŵ (b0);x

�
for all x and b0

and

u
�
�b; 1;x

�
� u

�
b̂(x); �̂Ŵ (b(x));x

�
if and only if x 2 Â

where Ŵ and �̂ are de�ned by (5) and (6).

By applying the same argument as in Lemma 4, we can establish the monotonicity of a

BP equilibrium. That is, b̂ is strictly increasing and the BP is accepted only by types above

some cuto¤ type x̂ 2 (r; 1), who is indi¤erent between accepting and rejecting the BP. Thus,
in the equilibrium, Ŵ (b(x)) and �̂ become:

Ŵ (b(x)) =
G(x)

G(x̂)
for x � x̂ (7)

�̂ =
G(x̂)

1
n

n�1P
j=0

(F (x̂))j
(8)

Particularly for cuto¤ type x̂, Ŵ (b(x̂)) = 1, that is the cuto¤ type wins for sure when

everybody declines the BP. Hence, when he has the BP choice but declines it, his wins

the object with probability �̂. Therefore, we obtain Proposition 8, which characterizes an

equilibrium of the BP.

10We ignore the possibilities of ties in the �rst-price auction.
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Proposition 8 Under Conditions 1 and 2, a symmetric equilibrium (Â; b̂) of the BP exists11

and it is characterized by the following conditions:

1. Â = [x̂; 1] for some x̂ 2 (r; 1). That is, a bidder accepts the BP if and only if his type
is no less than x̂.

2. b̂ is given by

b̂0(x) = �

�
b̂(x);

G(x)

G(x̂)
;x

�
� g(x)
G(x)

for x 2 [r; x̂] (9)

with b̂(r) = r and b̂(x) = b̂(x̂) for x > x̂.

3. Type x̂ is indi¤erent between accepting and rejecting the BP. That is,

u(�b; 1; x̂) = u
�
b̂(x̂); �̂; x̂

�

where �̂ is given by (8).

Proof. The existence of an equilibrium and the cuto¤ type is shown in the appendix.

Given the latter conclusion, the rest of the proposition is straightforward.

Now we compare the expected revenue to the seller between the BP and the �rst-price

auction without a BP. To illustrate the e¤ect of the Allais paradox, �rst investigate the case

with EU bidders.

Since � is independent of q for EU preferences, equation (9) is equivalent to the one which

characterizes the equilibrium of the �rst-price auction (without the BP) in Proposition 3.

Therefore, if no one has a type greater than x̂, both the �rst-price auction (without the BP)

and the BP result in the same outcome, in which the highest bidder wins and pays his bid

b�. On the other hand when there is a bidder with a type greater than x̂, the �rst-price

auction allocates the object to the highest type while the BP chooses the winner randomly

among bidders who types are greater than x̂.

Thus the allocation is ex-post e¢ cient in the �rst-price auction but not in the BP. Maskin

and Riley [1984] showed that if the payment upon winning depends only on the winner�s

11Since �̂ increases as x̂ goes up, there may exist multiple equilibria. However, all of the following propo-
sitions hold for any equilibrium of the BP
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type, the object should be awarded to the bidder with the highest valuation as long as a

virtual value is increasing in an actual type12. Therefore, attaching a BP to the �rst-price

auction against EU bidders reduces seller�s expected revenue.

Now, we consider SAP bidders. Contrary to the case of EU bidders, the equilibrium

bidding function after the BP is rejected by all bidders is higher than that of the �rst-price

auction without a BP, because bidders�winning probabilities get higher at the time of making

a bid so they are more risk-averse. We can con�rm this by looking at equation (9). Now

�

�
b̂(x);

G(x)

G(x̂)
;x

�
> �

�
b̂(x); G(x);x

�
so it must be that

b̂(x) > b�(x) for x 2 (r; x̂]

Thus, attaching a BP to the �rst-price auction has another e¤ect on seller�s revenue.

When the BP is declined by all bidders, the seller obtains a higher revenue than he would

get without the BP.

Suppose a seller sets a BP slightly lower than b�(1), say �b = b�(1) � ". Then, the

BP is accepted by types close to 1, and the probability of acceptance is proportional to

". The expected revenue from these types might increase or decrease, but such a change

is proportional to ". Therefore, it is just a second-order e¤ect. On the other hand, when

the BP is set, any type rejecting the BP increases his bid in proportion to ", compared to

the �rst-price auction without a BP. Since the probability that the BP is declined by all

bidders is close to 1, this is a �rst-order positive e¤ect. Therefore, if " is small, the gain

outweighs a possible loss, so seller�s expected revenue is increased. The formal proof is given

in Appendix.

Proposition 9 (i) If bidders�preferences are EU satisfying Condition 1. In addition, as-

sume x � (1 � F (x))=f(x) is increasing in x. Then attaching a BP with �b(< b�(1) to the

�rst-price auction reduces seller�s expected revenue.
12Maskin and Riley [1984] characterized the optimal auction for risk-averse bidders, which involves transfers

to losers. When we restrict our attention to mechanisms without payments from (or transfers to) losers,
the optimal auction will be the �rst price auction if x � (1 � F )=f is monotone. This can be derived by
restricting a(�) = 0 in their papers.
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(ii) Suppose bidders� preferences are SAP. Then, there exists " > 0 such that if �b 2
(b�(1)� "; b�(1)), attaching a BP to the �rst-price auction strictly increases seller�s expected
revenue.

Before ending the discussion, let us consider an alternative form of the BP, in which each

bidder submits his bid right away when he declines the BP.

This alternative format is strategically equivalent to the standard BP when bidders have

EU preferences, but are no longer equivalent when they are Allais paradox bidders. In the

original form of the BP, if a bidder has a chance to place a bid, he knows that everybody has

declined the BP, so his bid is guaranteed to be considered at the time he places a bid. On the

other hand, in the alternative form of the BP, he only knows that all bidders arriving before

him have rejected the BP, so his bid is considered only if all subsequent bidders reject the

BP. Therefore, at the time of placing his bid, his chance of winning is lower in the alternative

format, which makes him more risk-taking when he places a bid. Therefore, this alternative

format is strictly worse for the seller.

Nevertheless, Proposition 9 still holds with a slight modi�cation of the proof. This

is because, even in this alternative format, each bidder knows that all other bidders who

arrived before have declined the BP, which makes him more risk-averse compared to the

beginning of the game. Therefore, if the BP is appropriately chosen, the expected revenue of

a seller is strictly higher than the �rst-price auction without a BP when bidders�preferences

are AP.

7 Conclusion

We showed that the Dutch auction yields a higher revenue than the �rst-price auction,

provided a complete characterization of symmetric equilibria with sophisticated bidders,

and gave an explicit treatment of the dynamic inconsistency issues which Allais preferences

cause. These results are consistent with the recent �eld and laboratory experimental results

reported by Lucking-Reiley [1999] and Katok and Kwasnica [2008].

Also, we observed several interesting e¤ects of Allais preferences. Attaching a BP to the
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�rst-price auction, if the BP is chosen appropriately, yields a strictly higher expected revenue

to the seller, contrary to the case when bidder�s preferences are EU.

These results re�ect a general principle: when bidders have Allais preferences, the seller

should make bidders more optimistic at the time they make a decision. Applying this prin-

ciple to other economic environments is one possible direction for future research.

There are a few recent papers which examine the impact of Allais preferences in strategic

models. Nakajima [2005] shows that the hypothesis that bidder�s preferences are EU sys-

tematically underestimates seller�s expected revenue when the seller raises the reserve price

of the �rst-price auction. Chew and Nishimura [2003] showed that even in the private value

case , if the object sold is a risky one, the second-price and the English auctions do not result

in the same outcome with AP bidders. Eliaz, Ray, and Razin [2004] used Allais preferences

to explain �choice shift,�in group decision making, where each member of the group tends

to move from one extreme to the other more than when each member makes a decision on

their own.

The very interesting open question is the structure of optimal auctions when bidders have

Allais preferences. Unfortunately, this is also a very di¢ cult question because (among other

issues) we cannot rely on the revelation principal anymore. For instance, the equilibrium of

the Dutch auction cannot be replicated by any simultaneous-move game.

Maskin and Riley [1984] characterized the optimal auction when the bidders are risk-

averse (and expected-utility maximizers). Their mechanism involves transfers to losers so

that the highest possible type is perfectly insured and all other types are partially insured.

Given this result, we can immediately conclude that the Dutch auction is not optimal in

general. For instance, if bidders are signi�cantly risk-averse and have a very weak Allais

paradox preferences, then the expected revenues between the �rst-price auction and the

Dutch auction are very close while Maskin and Riley�s mechanism yields a signi�cantly higher

expected revenue than the �rst-price auction. Since their mechanism needs information from

all bidders, it cannot be implemented in a descending manner like the Dutch auction. At

this point, we have little idea of what the optimal auction looks like.

Finally, we note that this research suggests a range of interesting experiments. Recent
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experiments suggest that the slow Dutch auction yields a higher revenue than the �rst-price

auction. As we discussed in Section 5, a good test of our theoretical result would be an

experiment with a slow Dutch auction where the e¤ect of the opportunity costs of time is

carefully mitigated.

We also present several results about setting a buy-it-now-price. It should be relatively

easy to experimentally test the non-equivalence between buy-prices prior to and during the

�rst-price auctions, as the equilibrium bidding functions are clearly di¤erent between the

two games.

Appendix A: Proof for Proposition 3

First, we shall prove that b� is strictly increasing and continuous in x. Suppose there ex-

ists x < x0 such that b�(x) > b�(x0). Then by type x�s incentive, (b�(x);W (b�(x))) �x
(b�(x0);W (b�(x0))),

so (b�(x);W (b�(x))) �x0 (b�(x0);W (b�(x0))) by the Condition 1, so b� cannot be an equilib-
rium. Hence, b� must be nondecreasing. The proofs that b� is strict increasing and continuous

are the same as those in standard models and are omitted.

Given this, for any " > 0,

u(b�(x); G(x);x) � u(b�(x+ "); G(x+ ");x)

Since u is continuously di¤erentiable and b� and G are continuous, there exists "0 2 [0; "]
such that

ub(b
�(x+ "0); G(x+ ");x)(b�(x+ ")� b�(x))

+uq(b
�(x+ "0); G(x+ "0);x)(G(x+ ")�G(x))

� 0
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Therefore,

b�(x+ ")� b�(x)
"

� �uq(b
�(x+ "0); G(x+ "0);x)

ub(b�(x+ "0); G(x+ ");x)
� G(x+ ")�G(x)

"

We can apply the same arguments using type x+"�s incentive and obtain the right derivative.

Exactly the same steps for " < 0 gives the left derivative, and it is easy to show all of them

converge to �g(x)=G(x).

On the other hand, suppose b� satis�es equation (2). Then,

du(b�(x̂); G(x̂);x)

dx̂
= ub(b

�(x̂); G(x̂);x)

�
b�0(x̂)� �(b�(x̂); G(x̂);x) � g(x̂)

G(x̂)

�
R ub(b

�(x̂); G(x̂);x)

�
b�0(x̂)� �(b�(x̂); G(x̂); x̂) � g(x̂)

G(x̂)

�
for x̂ Q x

= 0

where the second inequality comes from Lemma 1 ; ub < 0 while the last equality is from

equation (2). Therefore, type x is maximizing his utility by bidding b�(x), so b� is indeed an

equilibrium.

Appendix B: Proof for Lemma 4

Suppose dB is a response to another bidding function and let DB be a strategy inducing dB.

We show whenever DB
bi(x) = s, DB

bi(x
0) = s for any x0 > x by induction. This is true for

i = 0 so assume that it is true for any i � k � 1. Let i0 = maxjfj < k j DB
bj(x) = sg and

i00 = maxjfj < k j DB
bj(x

0) = sg. By the induction hypothesis, i0 � i00.

If i0 = i00, we can apply the same argument for the �rst-price auction so the state-

ment is true for i = k. Suppose i0 < i00 and DB
bk
(x) = s. Then by type x�s incentives

at bk and bi
00
, we have (bk;W (bk)=S(bk)) �x (bi

0
;W (bi

0
)=S(bi

0
)) and (bi

0
;W (bi

0
)=S(bi

00
)) �x

(bi
00
;W (bi

00
)=S(bi

00
)). By Condition 2, the second relationship implies (bi

0
;W (bi

0
)=S(bk)) �x

(bi
00
;W (bi

00
)=S(bk)) becauseW (bi

0
) � W (bi00)=S(bi00) � S(bk). Thus, we have (bk;W (bk)=S(bk)) �x

(bi
00
;W (bi

00
)=S(bk)). Therefore, by Condition 1, we have (bk;W (bk)=S(bk)) �x0 (bi

00
;W (bi

00
)=S(bk))

so type x0 must stop at bk.
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Appendix C: Proof for Proposition 5

Fix price grid B = fb0; : : : ; bmg. For any nondecreasing function d : [r; 1] ! B (we drop a

superscript of d to simplify the notations), De�ne a(d) = (ad1; : : : ; a
d
m) as a

d
i = supfxjd(x) �

bi�1g. Then, set � � fa(d)jd : [r; 1] ! B, nondecreasingg is a compact subset of Rm. Now,
de�ne the following correspondence from � to itself,

BR(a(d)) = fa( ~d)j ~d is a response to d in the Dutch auction with price grid Bg

This correspondence is well de�ned because a response to d is always nondecreasing by

Lemma 4. and BR(a(d)) cannot be empty because price grid B is a �nite set.

Indeed, BR(a(d)) is a single-valued function. To see this, suppose both ~d and d̂ are

response to d but a( ~d) 6= a(d̂). Then, there exists j such that aj( ~d) < aj(d̂). Therefore,

there exists x and x0 such that aj( ~d) < x0 < x00 < aj(d̂). By construction, ~d(x) > bj�1 and

d̂(x) � bj�1 for x = x0; x00. Therefore, the following function

d�(x) =

8<: ~d(x) for x 6= x00

d̂(x) for x = x00

is a response to d, but d�(x00) < d�(x0), which contradicts Lemma 4. Hence, BR(a(d)) is a

single-valued function.

We now prove that BR(a(d)) is continuous. Take any sequence fa(dn)g converging to
a(d). For each n, de�ne a( ~dn) = BR(a(dn)). Suppose sequence fa( ~dn)g converges to a( ~d).
We show that a( ~d) = BR(a(d)).

Suppose x 2 (ai( ~d); ai+1( ~d)). Then x 2 (ai( ~dn); ai+1( ~dn)) for su¢ ciently large n. There-
fore, ~d(x) = ~dn(x) = bi. We will show that type x�s response to d must involve waiting until

bi and stopping at bi.

For each n, consider Bn = fb̂ 2 BjDb(x) = s and D is a best responding strategy to dng.
By construction, maxBn = bi. Since price grid B is a �nite set, there exists B0 such that

B0 = Bn for in�nitely many n. Without loss of generality, assume B0 = Bn for all n. (If not,

take such a subsequence of fa(dn)g ).
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Then, a strategy which stops if and only if b 2 B0 is best responding to each dn. Therefore,
for all bk 2 B with k > 0,

(bk;W
dn(bk)=S

dn(bk)) �x (�x)(b0k;W dn(b0k)=S
dn(b)) if b 2 B0 (b =2 B0)

where b0k = maxfb̂ 2 B0 and b̂ � bkg. Since Sdn(bj) = G(aj+1(dn)); S
dn is continuous in

a(dn). It can be also checked that W dn is also continuous in a(dn). Therefore, we have

(b;W d(b)=Sd(b)) �x (�x)(b0;W d(b0)=Sd(b)) if b 2 B0 (b =2 B0)

which implies that stopping if and only if b 2 B0 is also a best responding strategy to d, so
type x actually stops at bi. We can make the same arguments for all x (except when x = ai( ~d)

for some i) and verify that ~d(x) is indeed a response to d. Therefore, a( ~d(x)) = BR(a(d(x))).

Hence, by Brower�s �xed point theorem, BR has a �xed point a(d�B), and such d
�
B is an

equilibrium of the Dutch auction with price grid B.

Appendix D: Proof for Proposition 6

First, we show d� is a strictly increasing function. Suppose not. Then there exist x and

x0(> x) such that for any " > 0, d�Bk(x0)� d�Bk(x) < " holds for su¢ ciently large k and we
can �nd b0 2 Bk satisfying b0 2 (d�Bk(x0); d�Bk(x0)+2"). Then, if type x stops at b0, compared
to waiting until d�Bk(x) he can increase his winning probability at least (G(x0)�G(x)) =2,
while the payment upon winning increases by less than ". Therefore, he is tempted to stop

at b0 so d�Bk cannot be an equilibrium. Consequently, d� must be strictly increasing.

Next, we prove d� is a continuous function. Suppose not. Then there exists x� such that

limx0"x� d
�(x0) < limx0#x� d

�(x0). Since d� is strictly increasing, for any x, all ofW dBk�(d�Bk(x)),

W dBk�(d�Bk(x)), Sd
Bk�(d�Bk(x)), and Sd

Bk�(d�Bk(x)) converge to G(x).

Suppose d�(x�) > limx0"x� d
�(x0). Then for su¢ ciently large k, the next stopping price of

type x� after d�Bk(x�) is either bk0 = limx0"x� d
�Bk(x0) or the price just above bk

0
(let this price

be bk00). This is because, type x has no incentive to stop strictly between bk00 and d�Bk(x�)
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because, (i) type x has no incentive to stop strictly between bk00 and d�Bk(x�) since if the price

becomes below d�Bk(x�), the probability that some other bidder stops the auction before bk0

is zero and (ii) type x must stop at bk00 since bk00 is accepted by a type slightly lower than x,

by Lemma 4.

As k goes to in�nity, the di¤erence of the winning probabilities between stopping at

d�Bk(x�) and waiting until bk0 or bk00 converges to zero, because d�Bk converges to a strictly

increasing function. However, d�Bk(x�)�bk00 is bounded away from zero, so type x is tempted
to wait at d�Bk(x�), because his next stopping price is either bk0 or bk00. Therefore d�(x�) =

limx0"x� d
�(x0)

Suppose now that d�(x�) < limx0#x� d
�(x0). Then for each k, de�ne bk

0
= minfd�Bk(x)jx >

x�g. Then, lim bk0 = limx0#x� d
�(x0). Again, as k goes to in�nity, the di¤erence of the winning

probabilities between stopping bk
0
and waiting until dBk�(x�) converges to zero, so types

stopping at bk
0
are tempted to wait until dBk�(x�). because bk

0 � dBk�(x�) is bounded away
from zero. Hence, d�Bk cannot be an equilibrium so d�(x�) = limx0#x� d

�(x0). Therefore, d� is

continuous.

Now, we show that d� satis�es di¤erential equation (3)

Consider any x and x0 such that x > x0. Then,

u(d�Bk(x0);
W (d�Bk(x0))

S(d�Bk(x))
;x0) � u(d�Bk(x); W (d

�Bk(x))

S(d�Bk(x))
;x0)

for all k, otherwise type x0 would be tempted to stop at d�Bk(x). As, u is continuous, the

inequality is true at the limit, so we obtain

u(d�(x0);
G(x0)

G(x)
;x0) � u(d�(x); 1;x0)

so for any x > x0, we have

d�(x)� d�(x0)
x� x0 � �uq(b; q;x)

ub(b; q;x)
� G(x)�G(x

0)

G(x)
� 1

x� x0

= �(b; q;x) � 1
q
� 1

G(x)
� G(x)�G(x

0)

x� x0 (10)
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for some b 2 [d�(x); d�(x0)] and q 2 [G(x0)=G(x); 1].

Next we �nd the upper bound of the above value. let

~Bk = f~b 2 BkjD�Bk
x (~b) = s and ~b 2 [d�Bk(x0); d�Bk(x)]g

which is a set of prices between dBk(x0) and dBk(x) at which type x stops if they are reached

with price grid Bk. Clearly, d�Bk(x) 2 ~Bk and Lemma 4 implies d
�Bk(x0) 2 ~Bk. Let us

order the elements of ~Bk as d�Bk(x0) = ~b0 < ~b1 < ~b2 < � � � < ~bmk = d�Bk(x). Then type x�s

incentive at each price in ~Bk implies

u(~bl;
W l

Sl+1
;x) � u(~bl+1; W

l+1

Sl+1
;x)

for all l 2 f0; : : : ;mk � 1g, where Sl = Sd
�Bk (~bl) and W l = W d�Bk (~bl). The above inequality

implies that for any l 2 f0; : : : ;mk � 1g, there exist b̂l 2 [~bl;~bl+1] and ql 2 [W l;W l+1];and

~bl+1 � ~bl � �uq(b̂
l; ql=Sl+1;x)

ub(b̂l; ql=Sl+1;x)
� W

l+1 �W l

Sl+1

= �(b̂l; ql;x) � W
l+1 �W l

ql

� �(b̂l; 1;x) � W
l+1 �W l

ql

� max
b2[~b0;~bmk ]

�(b; 1;x) � W
l+1 �W l

W 0

where the equality comes from the de�nition of �, the second inequality follows from Lemma

2, and the last inequality is because b̂l 2 [~b0;~bmk ] and ql � W l � W 0. Summing up both

sides of the above inequality for l = 0; : : : ;mk � 1, gives

d�Bk(x)� d�Bk(x0) � max
b2[~b0;~bmk ]

�(b; 1;x)
Wmk+1 �W 0

W 0
.

Taking the limits of the both sides, we obtain

d�(x)� d�(x0)
x� x0 � max

b2[d�(x0);d�(x)]
�(b; 1;x) � 1

G(x0)
� G(x)�G(x

0)

x� x0 (11)
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Hence (10) and (11) imply

lim
x0"x

d�(x)� d�(x0)
x� x0 = �(d�(x); 1;x) � g(x)

G(x)

Exactly the same argument shows the right derivative of d� coincide with the left derivative,

and so we obtain (3).

Appendix E: Proof for Proposition 8

First we show 1. Take any x 2 A. then it must be

u(�b; 1;x) � u(b̂(x); �̂Ŵ (b̂(x));x)

Take any x0 > x. Since type x bids b̂(x) rather than b̂(x0) in the auction after the BP is

declined, it must be

u(b̂(x); Ŵ (b̂(x));x) � u(b̂(x0); Ŵ (b̂(x0));x)

Condition 1 implies Ŵ (b̂(x)) � Ŵ (b̂(x0)) so applying the contraposition of Condition 2, we
obtain

u(b̂(x); �̂Ŵ (b̂(x));x) � u(b̂(x0); �̂Ŵ (b̂(x0));x)

Thus we get

u(�b; 1;x) � u(b̂(x0); �̂Ŵ (b̂(x0));x)

Therefore by Condition 1, the above inequality holds strictly for type x0, so x0 2 A. Therefore
A = [x̂; 1] for some x̂ 2 [r; 1].

Given that result, in the auction after the BP bidders know that all of them have types

less than x̂. It is immediate that b̂ is strictly increasing and continuous, so if the post-BP

auction takes place then bid b̂(x) wins with probability G(x)=G(x̂). Hence, b̂ is given by the

di¤erential equation given in the proposition. Obviously b̂(r) = r and b̂(x) = b̂(x̂) for all

x > x̂ (if type x > x̂ had declined the BP, he would win for sure by bidding b̂(x̂) once the

auction takes place.) Thus 2 is proven.
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Now we show x̂ 2 (r; 1). Since �b > r, type r strictly prefers to reject the BP so it must
be x̂ > r. On the other hand, if no type accepts the BP (so x̂ = 1), then the di¤erential

equation in 2 is exactly the same as the one characterizing the �rst-price auction equilibrium.

so we have b̂(1) = b�(1). Since �b < b�(1), the highest type x = 1 strictly prefers to accept the

BP so it must be x̂ < 1. Hence we obtain x̂ 2 (r; 1) and the cuto¤ type must be indi¤erent,
which proves 3.

Finally, we establish the existence. Suppose any type above ~x accepts the BP and any

type below ~x rejects the BP. Let �̂(~x) be the probability that the BP is rejected by all other

bidders conditional on that a particular bidder has a choice to accept or reject the BP. For

x � ~x, de�ne ~b(x; ~x) by

@~b

@x
= �

�
x� ~b(x; ~x); G(x)

G(~x)
;x

�
g(x)

G(x)

with ~b(r; ~x) = r. Then, x̂ 2 (r; 1) is an equilibrium cuto¤ type if and only if it is a solution

to:

u
�
�b; 1; x̂

�
= u

�
~b(x̂; x̂); �̂(x̂); x̂

�
(12)

Notice that in equation (12), the RHS is strictly greater than the LHS when x̂ = r because

�b > r, and the LHS is strictly greater than the RHS when x̂ = 1 because �̂(1) = 1,

~b(1; 1) = b�(1) and �b < b�(1). Therefore, there exists x̂ 2 (r; 1) satisfying (12) because of the
continuity of all functions in (12). This establishes the existence of an equilibrium and 3.

Appendix F: Proof for Proposition 9

Let b1 = b�(1) and �b = b1 � ". Suppose b̂" is the equilibrium bidding function after the BP

is declined and x̂" is the equilibrium cuto¤ type. Then, the di¤erence between the expected
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revenues of the BP and of the �rst-price auction is given by

R(") �
Z 1

x̂"

(b1 � "� b�(t)) dG(t) +
Z x̂"

r

(b̂"(t)� b�(t))dG(t)

�
Z 1

b��1(b1�")
(b1 � "� b�(t)) dG(t) +

Z b��1(b1�")

r

(b̂"(t)� b�(t))dG(t)

� ~R(")

The inequality holds because type x 2 [x̂"; b��1(b1 � ")] accepts the BP, which is greater
than b̂"(x) = b̂"(x̂"). Now we show ~R0(0) > 0. Since b��1(b1) = 1, b̂0(1) = b�(1), we have

~R0(0) =

Z 1

r

@b̂0(t)

@"
dG(t)

Notice that
@b̂0(x)

@"
� 0 for any x � r

so ~R0(0) � 0. Suppose ~R0(0) = 0. Then it must be

@b̂0(x)

@"
= 0 for any x � r

Since

b̂"(x) =

Z x

r

�

�
b̂"(t);

G(t)

G(b��1(b1 � "))
; t

�
g(t)

G(t)
dt

we obtain

db̂0(x)

d"
=

Z x

r

 
��b

@b̂0(t)

@"
+ �q

G(t)g(1)

b�0(1)

!
g(t)

G(t)
dt

=

Z x

r

�q
g(1)g(t)

b�0(1)
dt

= 0

which is impossible because �q > 0 as bidders have SAP preferences. Hence it must be

@b̂0(x)

@"
� 0 for any x � r
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because any type rejecting the BP bids higher in the auction after the BP is rejected than

in the �rst-price auction. Thus, inside the integral must be positive. ~R0(0) > 0. Hence for

small " > 0, R(") > ~R0(") > 0 so the expected revenue when the seller sets the BP is greater

than the �rst-price auction without a BP, when " is small.
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