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Abstract

In Tversky’s [33] model of a lexicographic semiorder, a preference is generated

by the sequential application of numerical criteria, by declaring an alternative x

better than an alternative y if the first criterion that distinguishes between x and

y ranks x higher than y by an amount exceeding a fixed threshold. We generalise

this idea to a fully-fledged model of boundedly rational choice. We explore the

connection with sequential rationalisability of choice ([1], [21]), and we provide

axiomatic characterisations of both models in terms of observable choice data.
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1 Introduction

Lexicographic heuristics have gained much attention in the study of decision making, in

several fields: in psychology (e.g. Tversky [33], [34]; Gigerenzer and Todd [9]); in positive

economics (e.g. Rubinstein [28]; Leland [14]; Manzini and Mariotti [21]; Apesteguia and

Ballester [1]); in normative economics (e.g. Tadenuma [31], [32]; Houy and Tadenuma

[11]); in marketing science (e.g. Yee, Dahan, Hauser and Orlin [36]; Kohli and Jedidi

[13]). Medina, Naeh and Segal [26] note that the Talmud contains arguments in favour of

a lexicographic ranking of the rationales used to adjudicate between pairs of alternatives.

The explanation for this success is obvious: lexicographic procedures look appealingly

simple and realistic since they eschew the complex trade-offs between several criteria of

classical decision makers. On the other hand, the lack of trade-offs may also seem to

constitute a disadvantage (especially among economists). Price may be the most impor-

tant criterion in the purchase of a house from a set of suitable ones. Yet who would be

prevented by a difference of a few bucks from selecting a house in a much more desirable

neighbourhood? Arguably, very few people would be so uncompromising as to ignore any

significant improvement in one dimension because of an arbitrarily small loss in the most

important dimension. When modelling boundedly rational behaviour, the rigid applica-

tion of simple ‘rules of thumb’(such as ‘buy the cheapest house among the acceptable

ones’) may look even less realistic than the trade-offs of textbook utility maximisation.

In other words, it is reasonable that, even in a boundedly rational heuristic, criteria

that detect significant differences between the alternatives under consideration should

over-ride criteria that do not. In this paper we study a model of choice that formalises

this intuition. Note that a number of ‘basic criteria’could be aggregated into a single, more

complex criterion, to which our observations on the house buyer above would nevertheless

still apply: if the agent constructs an index which trades offprice and location, that index

constitutes a new criterion, for which it may be unwise not to ignore small differences in

favour, say, of house size, and so on.1 Only a fully rational decision maker would be able

1As another example, in Manzini and Mariotti [20] we have proposed a multi-criterion model of choice

over time in which the first criterion is the exponentially discounted value, which trades off the time and

size of a monetary reward.
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to pack together all possible trade-offs in a single criterion. However, in a more realistic

model of decision making, there is a limit to the number of simultaneous trade-offs the

decision maker is able to carry out. Thus, it seems plausible to expect the decision maker

to rely on a lexicographic list of ‘slack’criteria. The choice procedure we propose can

explain observed ‘anomalies’, while at the same time preserving a convincing flexibility.

Considerations of this kind have already led some of the researchers mentioned above2

to build models of preference or binary choice based on the application of numerical

criteria where small differences in the values of criteria are ignored.3 However, such

models leave unanswered the issue of choice from more complex sets (e.g., budget sets).

They do not study choice functions. If binary preferences are derived from a boundedly

rational procedure, the issue of associating such preferences with higher order choices is

far from trivial: on the one hand it may be impossible to maximise the preference (when it

is cyclical); and on the other hand it may be inappropriate to even consider maximisation

when the issue is one of bounded rationality.

We focus on Tversky’s [33] fruitful notion of lexicographic semiorder, in which a pref-

erence is generated by the sequential application of numerical criteria, by declaring an

alternative x better than an alternative y if the first criterion that distinguishes between

x and y ranks x higher than y by an amount exceeding a fixed threshold. Our first

contribution is to define a choice procedure (choice by lexicographic semiorder) based on

Tversky’s idea.

Tversky himself considered lexicographic semiorders appealing but restrictive as a

model of preference.4 In fact, this judgement is shown to be somewhat pessimistic. Even

when the agent is endowed with very rudimental discriminatory abilities (being only able

to classify criteria values in ‘good’, ‘neutral’and ‘bad’, where just ‘good’and ‘bad’are

rankable), the model can account for a very rich variety of behaviours. In particular, when

only binary choices are involved (as for example in several voting models5) the model is

2Tversky [33], Rubinstein [28], Leland [14]
3A difference being small is often interpreted as ‘similarity’.
4See Section 3.
5See e.g. Kalandrakis [12] and the references therein for a recent example. We discuss Kalandrakis’

work more fully in section 3.1.
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shown to be completely unrestrictive, provided that the set of alternatives is not too large

(proposition 1). More in general, the model can explain any set of choice data satisfying

WARP (proposition 2) - since such choices may not satisfy SARP, they may be highly

‘irrational’in that they exhibit strict revealed preference cycles.

The model turns out to be connected with another, much more general-looking, no-

tion of boundedly rational choice, namely ‘sequentially rationalisable choice’ (Manzini

and Mariotti [21]): an arbitrary number of arbitrary asymmetric binary relations (‘ratio-

nales’) is applied sequentially to single out an alternative. On any finite domain,6 the

lexicographic semiorder model restricts choice data the same way as the sequential ratio-

nalisability model under the additional assumption that the rationales used in the latter

are acyclic (proposition 3).

We note, however, that the clause ‘on any finite domain’is key. When this clause is

relaxed even marginally, by allowing a countably infinite number of finite choice sets, the

equivalence breaks down in a major way: even the use of only two rationales may produce

behaviours that cannot be generated by any number of semiorders and any number of

discriminations (proposition 4). So, the two models are in general clearly distinct.

Next, we characterise choice by lexicographic semiorders in terms of a new contraction

consistency condition (Reducibility), at the same time providing an algorithm to construct

the semiorders (theorem 1).

Our technique leads straightforwardly to a relaxation of Reducibility which charac-

terises sequential rationalisability (theorem 2). This result, while quite tangential to the

main line of enquiry of this paper, is of independent interest, since the characterisation

of sequential rationalisability has proved to be a hard problem which we left open in [21].

Our results in this respect build on and complement those by Apesteguia and Ballester

[1], who were the first to draw attention to the restriction of sequential rationalisability to

acyclic rationales and to provide a characterisation for it on finite domains. In the Appen-

dix we work out one of their examples of sequentially rationalisable choices to construct

the rationales with our algorithm. Our work can also be fruitfully seen as an extension

of the approach in Mandler, Manzini and Mariotti [19]: we discuss this relation in the

6That is a domain including a finite number of finite sets.
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concluding section.

2 Lexicographic semiorders: preferences and choice

Fix a nonempty set X. A semiorder (Luce [16]) is an irreflexive7 binary relation P on X

which satisfies two additional properties:

1. (x, y) , (w, z) ∈ P imply (x, z) ∈ P or (w, y) ∈ P ;

2. (x, y) ∈ P and (y, z) ∈ P imply (x,w) ∈ P or (w, z) ∈ P .

Given the irreflexivity of P , each of (1) or (2) imply that P is also transitive.8 So a

semiorder is a very special type of strict partial order. The interest of semiorders is that

they can be interpreted as a simple threshold model of (partial) rankings: on suitable

domains, P is a semiorder if and only if there exists a real valued function f on X and

a number σ ≥ 0 such that (x, y) ∈ P if and only if f (x) > f (y) + σ. Here f (x) is the

‘value’of the alternative x and σ is the amount by which the value of one alternative x

must exceed the value of another alternative y for x to be declared superior to y. The

fact that σ is fixed makes this a very parsimonious model of binary preferences.9

Tversky [33] essentially proposed a lexicographic procedure, which extends the use of

semiorders, to make binary comparisons between alternatives in a set X. There exists

an ordered sequence f = (f1, ..., fn) of real valued functions on X and a σ > 0 such

that x is declared better than y iff, for the first i for which |fi (x) − fi (y) | > σ, we

have fi (x) > fi (y) + σ. The idea is that the agent compares alternatives along several

dimensions. As in our opening example, dimensions are ranked in order of importance,

and a later dimension is only considered if all previous dimensions failed to discriminate

between the two alternatives under consideration. In other words, the agent examines the

dimensions lexicographically: as soon as a dimension i is found for which one alternative x

7Irreflexivity: for all x ∈ X, (x, x) /∈ P .
8Transitivity: for all x, y, z ∈ X, (x, y) ∈ P , (y, z) ∈ P ⇒ (x, z) ∈ P .
9In an interval order (Fishburn [7]), characterised by condition 1 alone, the threshold σ is allowed to

vary with the alternatives being compared, being a function σ : X → R+. This makes for a much richer

structure. See e.g. Fishburn [8].
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is superior to another alternative y by an amount exceeding the threshold σ, x is declared

better than y. When such an i is found, no dimension j that comes later in the order

has any bearing, no matter the size of the differences between the alternatives in these

subsequent dimensions. That σ is chosen to be the same for all fi is not a relevant issue,

since even if we had different σi, the fi and σi can always be rescaled so as to choose

σi = 1. Given f and σ, this procedure can be used to generate a revealed preference

relation �(f,σ) on pairs of alternatives.10

Suppose now that the agent wants to apply the procedure to produce a selection out

of choice sets S larger than the binary ones. There are several ways to do so, some of

which are however problematic. One could for example start from the binary revealed

preference relation and use either of the following two plausible methods:

- the choice from S is the set of the maximal elements of �(f,σ)

- the choice from S is the top cycle (or the uncovered set) of �(f,σ) restricted to each

S.11

Unfortunately, the preference relation �(f,σ) may be cyclic - this ‘anomalous’feature

was indeed the very point of Tversky introducing the procedure. So the first method

above may not be well-defined if a nonempty-valued choice function is desired. The

second method above borrows the ideas of authors such as Ehlers and Sprumont [5] and

Lombardi [15], who use weaker notions of maximization to produce choices out of non-

standard preferences formed of asymmetric and complete binary relations (tournaments).

These methods would for example select the entire set S = {x1, x2, ..., xn} whenever

x1 �(f,σ) x2 �(f,σ) ... �(f,σ) xn �(f,σ) x1.

Here we pursue a different natural way of extending Tversky’s idea. The method we

suggest is, on the one hand, more in line with the procedural (as opposed to maximising)

10Rubinstein [28] proposes a related but distinct procedure. This procedure has recently been studied

experimentally by Binmore, Voorhoeve and Wallace [2].
11More precisely, let P |S denote the restriction to S of a complete asymmetric binary relation P

defined on X. (Completeness: for all x, y ∈ X either (x, y) ∈ P or (y, x) ∈ P . Asymmetry: for all

x, y ∈ X, (x, y) ∈ P ⇒ (y, x) /∈ P ). Let (P |S)
t denote the transitive closure of P |S. The top cycle of

P in S is the set of maximal elements of (P |S)
t in S. Define the covering relation C (P, S) of P in S

by: (x, y) ∈ C (P, S) iff x, y ∈ S and either (x, y) ∈ P or there exists z ∈ S such that (x, z) ∈ P and

(z, y) ∈ P . The uncovered set of P in S is the set of maximal elements of C (P, S) in S.
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nature of Tversky’s approach; and, on the other hand, it can produce a unique selection

even from the awkward cycles discussed above. The reason for these two features is that

the method, unlike the others suggested, preserves and uses the information on the order

in which the dimensions are considered.

We impose no arbitrary uniform bound on the number of dimensions that the agent

is allowed to consider. Nevertheless, we insist that the procedure always halts in a finite

number of steps in any choice situation.

Our proposed procedure works via a process of sequential elimination. Formally, let

Σ be a domain of choice sets, where each S in Σ is a nonempty subset of X. A choice

function on Σ is a function c : Σ→ X such that c (S) ∈ S for all S ∈ Σ. A choice set S

which has the form S = {x} for some x ∈ X will be called trivial. A collection C ⊆Σ of

choice sets is trivial if each S ∈ C is trivial.

An ordered sequence f = (fi)i∈I , where I is either an interval of numbers {1, ..., n} or

the entire set of natural numbers N, together with a σ > 0 is a lexicographic semiorder

on X, denoted (f1, f2, ..., σ) = (fi, σ)i∈I . We abuse terminology and call each fi directly

a semiorder although strictly speaking fi is a numerical representation of it.

Given a choice set S⊆X and a lexicographic semiorder (fi, σ)i∈I , define inductively

the following ‘survivor sets’Mi(S), for all i > 0:

M0(S) = S

Mi(S) = {s ∈Mi−1 (S) |∀s′ ∈Mi−1 (S) fi (s) + σ ≥ fi (s
′)}

This sequence of sets captures the procedure the agent follows in order to arrive at a final

selection from the choice set S: at every round i he looks for alternatives in the current

survivor set Mi−1 (S) which are judged ‘worse’than some other alternative in Mi−1 (S)

according to the Tversky procedure described before. He discards all such inferior alter-

natives (if any), generating the next survivor set Mi (S), and so on.

Definition 1 A choice function c is a choice by lexicographic semiorder (cles) iff

there exists a lexicographic semiorder (fi, σ)i∈I such that, for all S ∈ Σ, there is a j ∈ I

for which {c (S)} = Mj (S) = Mk (S) for all k ≥ j.

In this case we say that (fi, σ)i∈I induces c.
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That is, for a cles c, the iterative elimination procedure described before stops on any

choice set S after a finite number of steps, yielding precisely the alternative that c picks

in S. Note that, in spite of this property of ‘finite termination’, there might not exist any

fixed j that works for all S. When such a j exists, which means that I can be chosen to

be finite, we say that c is a choice by finite lexicographic semiorder.12

Basic Semiorders

A semiorder fi is basic if it ranges only in {−1, 0, 1} and σ = 1. A lexicographic

semiorder (fi, σ)i∈I is basic if each fi is basic. So, with a basic lexicographic semiorder

the agent has only a very limited power of discrimination. Essentially, on each dimension

he can only perform a rough classification of alternatives into ‘good’ones (those x for

which fi (x) = 1), ‘bad’ ones (fi (x) = −1), and ‘neutral ones’ (fi (x) = 0): a good

alternative ‘beats’a bad one (on the given dimension), and a neutral alternative neither

beats a bad one nor is beaten by a good one.

A basic lexicographic semiorder can be denoted simply as f = (fi)i∈I . To emphasise

that the survivor sets Mi (S) are obtained from the basic lexicographic semiorder f we

write them as M f
i (S).

Example: Let X = {x, y, z} and let Σ = {{x, y} , {y, z} , {z, x} , X}. Let c ({x, y}) =

c (X) = x, c ({y, z}) = y and c ({x, z}) = z. This is a choice function by basic lexi-

cographic semiorder. To see this, let f1 (x) = 0, f1 (y) = 1, f1 (z) = −1, f2 (x) = 1,

f2 (y) = −1, f2 (z) = 0, f3 (x) = −1, f3 (y) = 1, f3 (z) = 1. Observe how different

(unique) choices from X can be obtained by permuting the order of the fi.

3 Characterisation

Tversky thought that the model of binary choice by lexicographic semiorders, while useful

to explain the anomaly of cyclical preferences, had a narrow scope otherwise. He writes:

12Aside from this twist, we could also have called the model ‘semiorder sequentially rationalisable

choice’, following the terminology we initiated in Manzini and Mariotti [21]. However, we prefer to use

the Tversky terminology, in recognition of the priority of his idea.
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" ... despite its intuitive appeal, it is based on a noncompensatory principle

that is likely to be too restrictive in many contexts." (Tversky [33], p. 40).

Following this logic, one might conjecture that the version with basic semiorders, with

its minimal concession to discriminatory powers, is even more restrictive. We study this

issue, highlighting the role of the domain of c.

We begin by observing that, when restricted to binary choices (interpretable as possibly

incomplete preferences) as in the original application, the cles model is in fact completely

unrestrictive provided that the set X is not too large. We state this result separately

because of its interest, although it is a particular case of the more general proposition 2

below.

Proposition 1 Let c be defined on a domain Σ such that S ∈ Σ implies S = {x, y}

for some distinct x, y ∈ X. Let X be countable. Then there exists a basic lexicographic

semiorder which induces c.

As noted, more generally all choice data satisfying a classical revealed preference axiom

could be generated by a cles:

WARP: If x = c (S), y ∈ S and y = c (T ) for some S, T ∈ Σ then x /∈ T .

Proposition 2 Let c satisfy WARP. Let X be countable. Then there exists a basic lexi-

cographic semiorder which induces c.

Proof. Enumerate the elements in X with a bijection b from N (or an interval of N of

cardinality equal to |X| if X is finite) to X. Define a basic lexicographic semiorder as

follows. For all x, y ∈ X, let

fb−1(y) (x) =


1 if x = y

−1 if ∃S ∈ Σ such that x 6= y = c (S) and x ∈ S

0 otherwise

Let c (S) = x 6= y ∈ S. WARP and the definition of f imply that, for all z ∈ X with

b−1 (z) < b−1 (x), fb−1(z) (x) = 0 if z = y, and that fb−1(z) (y) ≤ 0 whenever fb−1(z) (x) =

−1. Therefore x ∈Mi (S) for all i < b−1 (x). And since fb−1(x) (x) = 1 and fb−1(x) (y) = −1

for all y ∈ S with y 6= x, {x} = Mb−1(x) (S) = Mk (S) for all k ≥ b−1 (x).
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Because WARP does not imply SARP on general domains,13 a cles can explain cyclical

patterns of strict revealed preference, generalising example 2.

In order to pinpoint the restrictions on behavior implied by the cles, we recall some

definitions.

Definition 2 A choice function c is sequentially rationalisable whenever there exists

an ordered list {Pi}i∈I of asymmetric relations, with Pi ⊆ X × X for i ∈ I, such that,

defining recursively

M∗
0 (S) = S

M∗
i (S) =

{
x ∈M∗

i−1 (S) |∀y ∈M∗
i−1 (S) (y, x) /∈ Pi

}
for all S ∈ Σ there is a j ∈ I such that

{c (S)} = M∗
j (S) = M∗

k (S) for all k ≥ j

In that case we say that {Pi}i∈I sequentially rationalise c. Each Pi is a rationale.14

Two specialisations of sequential rationalisability are the following:

Definition 3 A choice function is a Rational Shortlist Method (RSM) iff it is se-

quentially rationalisable with two rationales. A choice function is acyclic sequentially

rationalisable iff it is sequentially rationalisable by rationales that are acyclic.

Sequentially rationalisable choice functions and RSMs were defined in Manzini and

Mariotti [21]. The restriction to acylic rationales for the finite case has been studied by

Apesteguia and Ballester [1]. Evidently, the cles model we are considering in this paper is

a restriction of sequential rationalisability by constraining the rationales to be semiorders.

Both acyclic and standard sequential rationalisability constitute at first sight a much more

13SARP says that the revealed preference relation Pc, given by xPcy ⇔ ∃S ∈ Σ : x = c (S) , y ∈ S, is

acyclic.
14This definition slightly extends the one we originally gave in [21], and has the same format of the

definition of a lexicographic semiorder. In the original definition we considered a finite ordered list

P1, ...PK of asymmetric relation with the {c (S)} = M∗
K (S) for all S ∈ Σ. While still imposing finite

termination on each choice set, the current definition disposes with the assumption that there exists a

uniform bound K on the number of rationales needed to rationalise a given choice function.
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general model, because the rationales are not required to have any threshold structure

and can thus apparently accommodate more sophisticated discriminations. But in fact,

for arbitrary finite domains, the behaviours that can be generated by the lexicographic

semiorder model and those that can be generated by the acyclic sequential rationalisability

model are just the same. And, we need look no further than basic semiorders to yield this

equivalence.

On the other side of the coin, the restriction to finite domains is not merely a conve-

nience for the inductive argument used in the proof, but it is necessary for the equivalence

to hold. When the restriction is relaxed even marginally (by retaining the finiteness of

each choice set but allowing for a countable number of choice sets), the model of acyclic

sequential rationalisability suddenly appears far more general than the lexicographic semi-

order model: even only two acyclic rationales suffi ce to produce behaviours that cannot be

induced by any basic lexicographic semiorder. And increasing the discriminatory ability

of the agent is to no avail: the ‘basic’restriction is inessential for this result.

These assertions are made precise in the next two results. In the case of the domain

consisting of all finite subsets, the first result can also be derived from theorem B.1 in [1],

as we explain below. We present here a different method of proof which highlights the

importance of the domain and is instructive in this respect.

Proposition 3 Let X be finite. Then a choice function c is acyclic sequentially rational-

isable if and only if it is induced by a basic lexicographic semiorder.

Proof. A semiorder is an acyclic rationale, so it suffi ces to prove the ‘only if’part of

the statement. Given acyclic rationales (P1, ..., PK), recall the definition 2 of survivor sets

M∗
i (S). We will show that, for any domain Σ, there exists a basic lexicographic semiorder

f = (fi)i∈I such that, for all S ∈ Σ, there is a j ∈ I such thatM∗
K(S) = M f

j (S) = M f
k (S)

for all k ≥ j. This proves the assertion in the statement.

The proof is by induction on the sum of the cardinalities of the sets S in Σ, which

we denote by n (Σ) =
∑

S∈Σ
|S|. If n (Σ) = 1 the claim is obviously true. Take now

n (Σ) > 1. If Σ is trivial, then the claim is also obviously true, so assume Σ is not trivial,

and w.l.o.g. assume in addition that P1 is nonempty on some S ∈ Σ (otherwise just

exclude P1 and renumber the remaining Pi). By the acyclicity of P1 and the finiteness of

11



X there exist S ∈ Σ and x, y ∈ S such that (x, y) ∈ P1 and (y, z) /∈ P1 for all z ∈
⋃

S∈Σ
S

with y, z ∈ T for some T ∈ Σ (in words, y is P1−dominated in some choice set and it

does not P1−dominate any element which appears together with y in any choice set). Fix

those x and y, and define

Σ′ = {S : {x, y} * S ∈ Σ} ∪ {S : S = T\ {y} for some T ∈ Σ s.t. {x, y}⊆T}

Because a T as in the right-hand member of the union above exists by construction,

n (Σ′) < n (Σ). So by the inductive hypothesis there exists a basic lexicographic semiorder

f = (fi)i∈I such that, for all S ∈ Σ′, there is a j ∈ I such thatM∗
K(S) = M f

j (S) = M f
k (S)

for all k ≥ j. Now consider the basic lexicographic semiorder g = (gi)i∈I′ defined by

gi = fi−1 for all i > 1

g1 (x) = 1, g1 (y) = −1 and g1 (z) = 0 for all z 6= x, y

Thus, for all S ∈ Σ such that {x, y}⊆S, M g
1 (S) = S\ {y} ∈ Σ′ and consequently

M∗
K(S\ {y}) = M g

j+1 (S) = M g
k (S) for all k ≥ j + 1 (this follows by the second line of the

displayed definition of g and the fact that M∗
K(S\ {y}) = M f

j (S\ {y}) = M f
k (S\ {y}) for

all k ≥ j). Moreover, clearly for all S ∈ Σ such that {x, y}⊆S, M∗
K (S) = M∗

K (S\ {y}).

Therefore, for all S ∈ Σ, M∗
K (S) = M∗

K (S\ {y}) = M g
j+1 (S) = M g

k (S) for all k ≥ j + 1.

Proposition 4 There exist Rational Shortlist Methods using acyclic rationales which are

not induced by any lexicographic semiorder.

Proof. Let X = {1, 2...}, let Σ be the collection of finite subsets of X, and let c be

uniquely defined as the RSM rationalised by the following two acyclic rationales P1 and

P2:

P1 = {(i, i+ 1) : i ∈ X}

and

P2 = {(j, i) : j > i+ 1}

We show that c is not induced by any lexicographic semiorder. By contradiction,

suppose that (fα, σ)α∈I is a lexicographic semiorder which induces c. Let i, j ∈ X be such
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that f1 (j) > f1 (i) + σ. Such an i and j exists w.l.o.g., possibly by renumbering the fα

so that f1 is the first fα for which f1 (k′) > f1 (k) + σ for some k, k′ ∈ X. Also, note that

i 6= 1 since the application of the rationales yields c ({1, 2, .., l}) = 1 for all l ∈ X. It must

be j = i− 1 (that is, i is eliminated by i− 1 in the first step in any set that contains both

of them). Otherwise suppose first that j > i. Then c ({i, i+ 1, i+ 2, ..., j}) = i would be

contradicted by i /∈M1 ({i, i+ 1, i+ 2, .., j}). Alternatively, suppose that j < i−1. Then

c ({j, i}) = i would be contradicted by i /∈M1 ({j, i}).

Thus, f1 (i− 1) > f1 (i)+σ. Since c ({i− 1, i+ 1}) = i+1, it must be that, letting n be

the first α for whichMα ({i− 1, i+ 1}) 6= {i− 1, i+ 1}, we have fn (i+ 1) > fn (i− 1)+σ.

Applying this fact to S = {i− 1, i, i+ 1}, we have that if n = 1 then M1 (S) = {i+ 1},

contradicting c (S) = i− 1. If instead n > 1, then either f1 (i) > f1 (i+ 1) + σ, in which

case we also have f1 (i− 1) > f1 (i+ 1) + σ, contradicting c ({i− 1, i+ 1}) = i + 1; or

this is not the case, so that c (S) = c (M1 (S)) = c ({i− 1, i+ 1}) = i + 1. In both cases

we have a contradiction with c (S) = i− 1.15

Some observations are in order. Apesteguia and Ballester [1] define a simple rationale

P as a relation of the type P = {(x, y)} for some x and y in X. That is, a simple

rationale relates only one pair of alternatives. Our notion of ‘basic’refers instead to the

number of discriminations the agent is able to make, rather than to the number of pairs

ranked by the relation (which may be high). However, [1] show that, for the case of the

domain consisting of all subsets of a finite set X, sequential rationalisability with acyclic

rationales is equivalent to sequential rationalisability with simple rationales. The ranking

made by a simple rationale P = {(x, y)} can be expressed with a basic semiorder (though

not vice-versa), by setting f (x) = 1, f (y) = −1 and f (z) = 0 for all other z. Therefore,

as observed above, proposition 3 can be derived by their result in the case of full domain.

While a simple rationale can be expressed by means of a single semiorder, there is no

upper bound to the number of simple rationales needed to express a basic semiorder. For

example, the rationale P = {(x, y) : y ∈ X\ {x}}, for a fixed x, is a single basic semiorder
15Observe that it is at this step of the proof that the domain assumption bites. For {i− 1, i, i+ 1} and

{i− 1, i+ 1} might not be well-defined if we did not have the entire integer set at our disposal.
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for any n, which is nevertheless decomposed into (n− 1) distinct simple rationales.16

Proposition 4 shows that the domain restriction |X| <∞ of theorem B.1 of [1] is nec-

essary. Their result establishes that, on the domain of all nonempty subsets of a finite set

X, the only crucial distinction is between the asymmetry and the acyclicity (a strength-

ening of asymmetry) of the rationales: further strengthening acyclicity to transitivity, for

example, produces no further behavioural restriction. Proposition 4 shows that on larger

domains the move from acyclicity to transitivity (semiorders) crosses another important

threshold: the transitivity of the agent’s discriminatory power alone suffi ces to rule out

behaviours allowed by acyclic rationales. This remains true no matter how limited that

power is.

3.1 ‘Revealed preference’characterisation

How could an external observer establish whether a set of choice data (i.e. a choice

function c) could have been generated by the procedure we have proposed? The key

to answering this question is to consider the behaviour of c over restricted domains of

choice, as well as on the domain Σ of definition of c. The method we shall suggest can be

viewed an extension of techniques used in standard analysis of rationalisability of choice

functions on special domains. For example, in recent work, Kalandrakis [12] studies the

rationalisability of a set of binary voting choices on Euclidean policy space by means of a

quasiconcave utility function. He identifies rationalisability conditions with the following

format: for every subdomain of choice C, there exists an ‘extreme alternative’(i.e. not

obtainable as a convex combination of other alternatives) x such that x is never chosen

from choice sets in the collection C. The interpretation is that x is a least preferred

alternative among those appearing in the choice problems in C. This permits the ultimate

construction of a (quasiconcave) utility function.

16In recent work, Mandler [18] has studied in detail the general issue of the minimum number of

rationales needed to express a given arbitrary preference relation (interpretable as the base relation of

a choice function) using the procedure of sequential rationalisability. His main result is that a ‘rational

agent’(an agent with complete and transitive preferences) never needs more, and sometimes needs fewer,

rationales than a non-rational agent.
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Let us see how analogous ideas can work in our setting. Because our model does

not involve the simple maximisation of preferences, we cannot hope to identify ‘least

preferred’alternatives. But if the agent were really using our lexicographic procedure,

in any subdomain C we should at least be able to identify alternatives x and y such

that x makes y ‘C−irrelevant’: namely, if x and y belong to some S in C, removing y

from S has no effect on the final choice from S (so that, in particular y is never chosen

if x is available). This alternative y is simply one of the alternatives the agent would

eliminate with the first semiorder which he applies on C, say fC, and x is an alternative

with fC (x) > fC (y) + σ. In other words, given any C an agent following our procedure

should always implicitly indicate at least one pair (x, y) where x makes y C−irrelevant.

To illustrate, take any choice function c (defined on a possibly large domain Σ)

for which c ({x, y}) = c ({x, z}) = x, c ({x, y, z}) = y. Consider the subdomain C =

{{x, y} , {x, z} , {x, y, z}}. Because the agent has chosen x both from {x, y} and {x, z},

so that x is not made C−irrelevant by either of the other alternatives, the agent is ‘in-

dicating’that, even if he were using a lexicographic heuristic, the first rationale which

is active on C would not eliminate x. Similarly, because c ({x, y, z}) 6= c ({x, z}) and

c ({x, y, z}) 6= c ({x, y}), so that neither y nor z are C−irrelevant, the agent is also indi-

cating that the first active rationale would not eliminate y or z. Thus, no alternative can

be eliminated, and we can conclude that the agent cannot possibly be choosing according

to our lexicographic procedure.

The remarkable thing is that the following axiom, which formalises this intuition, is

not only necessary, but turns out to embody all the observable implications of the model:

Reducibility: For every nonempty C ⊆ Σ, there exists S ∈ C and x, y ∈ S such that, for

all T ∈ C:

(T\ {y}) ∈ C, x ∈ T ⇒ c (T ) = c (T\ {y})

A choice function which satisfies Reducibility is called reducible.

If x makes y C−irrelevant, we cannot identify from choice data alone why this is the

case. It could simply be that x is ‘better’than y (e.g. superior by any criterion). But it

could also be that x is pizza, y is steak tartare, and you simply ignore steak tartare in any
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restaurant which also offers pizza (though you may or may not choose pizza). Here, pizza

might be a negative signal about the kitchen’s sophistication, so that you are induced to

ignore sophisticated items on the menu, even if you may end up not choosing the signal

item itself.17

Obviously, one extreme way of satisfying Reducibility is the existence of a ‘best’al-

ternative. If c is a choice function that maximizes an ordinary strict preference relation,

an alternative which is chosen from an S in C trivially makes C−irrelevant any alter-

native which is not chosen from S. In fact in standard theory ‘irrelevant’is essentially

synonymous with ‘unchosen’. Therefore c is reducible in the standard case.

Reducibility relaxes the standard requirement that all rejected alternatives need to

be made C-irrelevant on all C (via the single preference relation) by the ‘best’(chosen)

alternative, and it does so in two ways. First, some rejected alternatives may not be

made C-irrelevant. And, second, an alternative may be made C-irrelevant by some other

alternative which is itself not chosen. In other words, Reducibility requires just a bare

skeleton of preference to survive.

An example of a reducible non-standard choice function is the three-cycle of choice:

X = {x, y, z}, c (X) = c ({x, y}) = x, c ({y, z}) = y, c ({x, z}) = z. Here y makes z

C−irrelevant when either X or {y, z} are in C, and Reducibility is satisfied vacuously

otherwise. Observe that the choice from the grand set does not make either y or z

C−irrelevant for C coinciding with the full domain.

On the contrary, the choice function c in the proof of proposition 4 (where c is sequen-

tially rationalisable but not cles) is not reducible. In that example Reducibility fails on

the collection C = Σ. To see this, observe that no i can make i+ 1 C−irrelevant, since we

would have the contradiction c ({i, i+ 1, i+ 2}) = i 6= i + 2 = c ({i, i+ 2}). Also, i + 1

cannot make i C−irrelevant, for c ({i, i+ 1}) = i. Moreover, no two non adjacent alterna-

tives i and j with j > i+ 1 are suitable either. It cannot be that j makes i C−irrelevant
17In this example pizza plays a symmetric role that of frog legs in the celebrated example by Luce and

Raiffa [17] (a decision maker chooses steak when frog legs are on the menu and salmon when they are

not). In Luce and Raiffa’s example, frog legs are a positive signal about the quality of the restaurant,

so that the decision maker is induced by the presence of frog legs on the menu to choose a high quality

item, even if not frog legs themselves.
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since c ({j, j − 1, ..., i+ 2, i}) = i, and it cannot be that i makes j C−irrelevant since

c ({i, j}) = j. This reasoning also highlights the role that infinite domains play in sepa-

rating lexicographic semiorders from sequentially rationalizable choice.

Reducibility is easily seen to be a weakening of a standard contraction consistency

axiom. Consider the following formulation of Independence of Irrelevant Alternatives:

Independence of Irrelevant Alternatives (IIA): Let C ⊆ Σ. Then c (S) = c (S\ {y})

for all y ∈ S\ {c (S)} for all S ∈ C such that S\ {y} ∈ Σ.

Now consider the following weakening (where we highlight in boldface the additional

conditions):

Reducibility (restated): Let C ⊆ Σ. Then for some x ∈ X, c (S) = c (S\ {y}) for

some y ∈ S\ {c (S)} for all S ∈ C such that S\ {y} ∈ Σ and S 3 x.

While standard IIA requires the choice to be unchanged if any unchosen alternative

is removed from any set, Reducibility requires this to hold only for some alternative and

for some sets (those containing x). Because IIA is so strong, the fact that if it holds, it

must hold on the entire domain Σ as well as on any subcollection C, usually does not need

to be made explicit.

Below we establish that Reducibility identifies all the observable implications of the

lexicographic semiorder procedure, and that basic lexicographic semiorders cover exactly

the same ground as general lexicographic semiorders.

Theorem 1 Let X be finite. Let c be a choice function defined on the domain Σ of all

finite subsets of X. Then the following statements are equivalent:

(i) c is a choice by lexicographic semiorder;

(ii) c is reducible;

(iii) c is a choice by basic lexicographic semiorder.

Proof. (i) ⇒ (ii). Let c be induced by the lexicographic semiorder (fi, σ)i∈I , and let

C ⊆ Σ be any non-trivial collection of choice sets. Let

j = min {i : Mi (S) 6= S for some S ∈ C}
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(j is well-defined because of the single valuedness of c).18

Let T ∈ C be such thatMj (T ) 6= T . Fix x,y ∈ T such that fj (x) > fj (y)+σ. For any

S ∈ C either {x, y} * S, in which case Reducibility holds vacuously; or {x, y} ⊆ S. In

this latter case (which holds at least for S = T ), for any z ∈ S, if fj (y) > fj (z) + σ then

also fj (x) > fj (z) + σ. Therefore Mj (S) = Mj (S\ {y}), implying c (S) = c (S\ {y}).

(ii) ⇒ (iii). Let c be a reducible choice function on Σ. We first provide an algorithm

to construct a basic lexicographic semiorder for any choice function, then show that this

semiorder induces c.

The algorithm proceeds by recursively defining a sequence of collections {Ci}i∈I and

an associated sequence of pairs {xi, yi}i∈I , where I is the interval {0, 1, ..., n} for some

n. Let C0 = Σ, and let x0, y0 ∈ X be any two alternatives such that, for all S ∈ C0,

x0, y0 ∈ S ⇒ c (S) = c (S\ {y0}) (alternatives such as x0 and y0 exist by Reducibility,

and S\ {y0} ∈ Σ by assumption). For 0 < i define recursively xi, yi ∈ X as any two

alternatives such that (xi, yi) 6= (xj, yj) for all j < i, and

for all S ∈
⋂

j<i
Cj: xi, yi ∈ S ⇒ c (S) = c (S\ {yi})

and

Ci =
⋂

j<i
Cj\
{
S ∈

⋂
j<i
Cj : {xi, yi} ⊆ S

}
For all i, let fi (xi) = 1, fi (yi) = −1, fi (z) = 0 for all z ∈ X\ {xi, yi}, and σ = 1.

Because X is finite, for any i, unless S ∈ Ci+1 ⇒ |S| = 1 (i.e. unless Ci is a trivial

collection), it is true by Reducibility that Ci 6= Ci+1. Therefore S ∈
⋂

i∈I
Ci ⇒ |S| = 1.

This defines a basic lexicographic semiorder f = (fi)i∈I . As we show below, f induces

c. Recall the definition of the survivor sets Mi (S).

Fix S ∈ Σ. Suppose by induction that c (S) ∈ Mi (S). It must be that Mi (S) ∈

Ci. Otherwise, there would exist k ≤ i such that fk (xk) = 1, fk (yk) = −1 and

{xk, yk} ⊆Mi (S) ∈ Ck, contradicting the definition of Mi (S). If also Mi (S) ∈ Ci+1, then

{xi+1, yi+1} * Mi (S) and so we have immediately c (S) ∈ Mi+1 (S). If Mi (S) /∈ Ci+1,

then (since Mi (S) ∈ Ci) it must be {xi+1, yi+1} ⊆ S. It cannot be yi+1 = c (S) since,

18For choice correspondences one would change the qualifier that not all S in C are singletons with that

that not all of them are such that c (S) = S.
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by construction of the sequence {xi, yi}i∈I , c (S) = c (S\ {y1}) = ... = c (S\ {y1, .., yi+1}).

Therefore c (S) ∈Mi+1 (S).

We now show that for all s ∈ S\ {c (S)} there exists a k such that s /∈ Mk (S).

If not, let
⋂

i∈I
Mi (S) = T , and let s ∈ T . The definition of T implies that, for all

i ∈ I, {xi, yi} * T (otherwise xi, yi ∈ Mi (S), which is impossible by construction since

fi (xi) = 1 and fi (yi) = −1). Therefore T ∈
⋂

i∈I
Ci. But this is a contradiction with

c (S) 6= s ∈ T and c (S) ∈ T , since, as observed before, T ∈
⋂

i∈I
Ci implies |T | = 1.

(iii) ⇒ (i). Trivial.

Remark 1 The proof of theorem 1 implies in fact an even more general result. The

only feature of a lexicographic semiorder that we have used in the proof is transitivity.

Therefore, the same characterisation would hold even for procedures which use generic

partial orders at each stage of elimination.

3.2 Sequentially rationalisable choice

Theorem 1 can be used together with proposition 3 to provide a characterization of acyclic

sequential rationalisability:

Corollary 1 Let X be finite and let Σ be the set of all nonempty subsets of X. Then a

choice function on Σ is acyclic sequentially rationalisable if and only if it is reducible.

In short, then, while acyclic sequential rationalizability and lexicographic semiorders

coincide on finite sets, they are nested for choice functions defined over more general

domains (see proposition 4). This observation prompts the following natural question:

what types of behaviour can be explained by the sequential rationalisability model but

not by the lexicographic semiorder model? To this aim we introduce a weakening of

Reducibility:

Weak reducibility: For every non empty C ⊆ Σ, there exists S ∈ C and a collection of

pairs {xi, yi}i=1,2,..., with xi, yi ∈ S for all i, such that, for all T ∈ C:

T\
⋃

i:xi∈T
{yi} ∈ C ⇒ c (T ) = c

(
T\

⋃
i:xi∈T

{yi}
)
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A choice function that satisfies Weak reducibility is called weakly reducible.

The only difference between Reducibility andWeak reducibility is that in the latter the

single pair (x, y) has been replaced by a collection {xi, yi}i=1,2,... of pairs. In other words,

compared to a reducible choice function, a choice function which is only weakly reducible

is such that some alternatives which are not individually C−irrelevant (the removal of any

one of those alternatives does affect choice) may nevertheless be ‘collectively’C−irrelevant

(their collective removal from a choice set has no relevance for choice).

We show that the choice functions which are sequentially rationalisable but not cles

are exactly those which are only weakly reducible but not reducible.

Theorem 2 Let X be finite. Let c be a choice function defined on the domain Σ of

all finite subsets of X. Then c is sequentially rationalisable if and only if it is weakly

reducible.

Proof. Necessity. Let c be sequentially rationalisable with rationales {Pi}i∈I , and let

C ⊆ Σ. Let

j = min {i : M∗
i (S) 6= S for some S ∈ C}

Let A = {(x, y) : x, y ∈ S for some S ∈ C and (x, y) ∈ Pj}. A is nonempty by the defin-

ition of j. Enumerate the pairs in A to obtain {xi, yi}i∈J where J is the finite interval

{1, 2...n} for some n. Let j (S) = min {j : Mj (S) = Mk (S) for all k ≥ j}. Note that

j is well defined since c is sequentially rationalisable. It follows straightforwardly that

M∗
j(S)

(S) = M∗
j(S)

(
S\
⋃
i:xi∈S {yi}

)
for all S ∈ C. The sequential rationalisability of c

thus implies that c (S) = c
(
S\
⋃
i:xi∈S {yi}

)
.

Suffi ciency. Let c be weakly reducible. We construct the rationales explicitly. Let C0 = Σ,

and define recursively

Pi = {(xji, yji)}j=1,...,n(i) , where {xji, yji}j=1,...,n(i) is any collection of pairs such that

c (S) = c

S\ ⋃
j:xji∈S

{yji}

 ∀S ∈ Ci−1;

Ci = {S ∈ Ci−1 : S = M∗
i (T ) for some T ∈ Ci−1}

The Pi are well-defined by Weak reducibility. Similarly to the proof of theorem 1,

unless S ∈ Ci+1 ⇒ |S| = 1 (i.e. unless Ci is a trivial collection), it is true by Weak
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Reducibility that Ci 6= Ci+1. Therefore S ∈
⋂

i∈I
Ci ⇒ |S| = 1. We show that {Pi}i∈I ,

where I is the interval {1, 2...n} for some n, sequentially rationalise c.

Let x = c (S). Whenever S ∈ Ci−1 for some i, it cannot be (y, x) = Pi, since c (S) 6=

c (S\ ({x} ∪ A)) for any A⊆X, contradicting the definition of Pi. This implies that x ∈

M∗
i (S) for all i.

We now show that for all y ∈ S\ {c (S)} there exists a k such that y /∈ Mk (S). If

not, let
⋂

i∈I
Mi (S) = T , and let y ∈ T . The definition of T implies that, for all i ∈ I,

{xji, yji}j=1,...,n(i) * T (otherwise xji, yji ∈ Mi (S), which is impossible by construction

since (xji, yji) ∈ Pi). Therefore T ∈
⋂

i∈I
Ci. But this is a contradiction with c (S) 6= y ∈

T and c (S) ∈ T , since, as observed before, T ∈
⋂

i∈I
Ci implies |T | = 1.

Theorems 1 and 2 are interesting in themselves, as Manzini and Mariotti [21] left the

characterization of sequential rationalisability as an open problem.

Apesteguia and Ballester [1] have pioneered a solution to that problem, in so doing

offering key insights. Their characterisation of acyclic sequential rationalisability is in

terms of a condition called Independence of One Irrelevant Alternative (IOIA). To quickly

sketch that condition, we need to define some auxiliary terms. A binary selector is a

function f which associates to every feasible set S including at least two alternatives a

binary feasible set in S. A binary selector f that satisfies certain consistency properties19

is called consistent. Then IOIA requires that c(S) = c(S\ (f (S) \ {c (f (S))})) for some

consistent binary selector. While this condition may appear involved, its broad logic is

simple, as it essentially imposes a two-stage structure on the choice function c. This

is convenient because it reduces the problem of detecting an arbitrarily long sequential

structure on c to that of detecting a far simpler construction. Thus, IOIA and Reducibility,

which by our results and [1]’s are equivalent conditions in the finite case, highlight different

aspects of sequential rationalisability. In both cases, the key idea is to somehow identify

the sequence by which eliminations are made. Roughly speaking, both axioms try to

identify the next step in the elimination process. IOIA’s consistent binary selector tells

which pair gets compared next out of any given set. Reducibility tells which pair gets

19We refer the reader to Apesteguia and Ballester [1] for a precise statement of the definition, which

requires substantially more notation extraneous to the purposes of this paper.
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compared next out of a given set of sets.20

As we have already noted, in the case of finite domains what really matters is the move

from asymmetric to acyclic rationales - further strengthening the discriminatory power

of each criterion to transitivity implies no additional restrictions for observed behaviour.

However, when moving to larger domains this conclusion no longer holds. More precisely,

for the case of countable domains we already saw (proposition 4) that there are RSMs with

acyclic rationales which are not cles; in addition, the proof of proposition 4 can be easily

modified to show that there are choice functions that are RSMs with acyclic rationales but

that cannot be induced by any sequence of transitive rationales.21 Furthermore, it can be

shown that there are choice functions which are sequentially rationalizable by means of

transitive rationales, but not by a lexicographic semiorders.22 In sum, for domains with

countableX we have that sequential rationalizability by means of asymmetric rationales is

more permissive than when acyclic rationales are used, which is in turn more permissive

than is the case if transitive rationales are required; and in turn, cles are even more

restrictive in terms of observable choice behaviour.

The challenge ahead is to provide characterisations in this vein for very general do-

mains, including for example those of standard consumer theory. This remains an open

question. Of course, in domains that are not finite, if one insists on finite termination

20We are grateful to Bart Lipman for suggesting this interpretation of the relation between the two

conditions. An explicit proof of the equivalence between the two conditions in the finite case, as well as

an example of their non-equivalence in the infinite case, is available from the authors upon request.
21Take the c function induced by the RSM in the proof of proposition 4, and suppose by contradiction,

that Q1...QK is a list of transitive rationales that rationalises c. For any two alternatives i and j let

k (i, j) = min {k : (i, j) ∈ Qk or (j, i) ∈ Qk}. Fix some i and j such that (i, j) ∈ Q1, and observe that

j 6= 1, for otherwise c ({1, 2, .., l}) = 1 for all l ∈ X could not be retrieved. Moreover, it must be that

i = j−1: if either i < j−1 or i = j+1 then the choice c ({i, j}) = j could not be retrieved, while if i > j+1

then c ({j, j + 1, ..., i}) = j could not be retrieved. So (i, i+ 1) ∈ Q1, and since Q1 is transitive, it must

be (i+ 2, i) /∈ Q1, for otherwise (i+ 2, i+ 1) ∈ Q1, and c ({i+ 1, i+ 2}) = i + 1 could not be retrieved.

But then if (i+ 1, i+ 2) ∈ Q1 we cannot retrieve c ({i, i+ 2}) = i+2, since by transitivity (i, i+ 2) ∈ Q1;

while if (i+ 1, i+ 2) /∈ Q1 we cannot retrieve c ({i, i+ 1, i+ 2}) = i (observe that (i+ 2, i) ∈ Qk(i,i+2)
since c ({i, i+ 2}) = i+ 2).
22We are grateful to Gil Riella for providing us with the example. As the example is rather lengthy,

we omit it from the paper; however details are available from the authors upon request.
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on each set, the procedure underlying choice by lexicographic semiorder will only lead to

a unique selection if (at least some of) the criteria are capable of eliminating an infinite

number of alternatives. For those domains, one may have to accept in general that a

choice correspondence, instead of a choice function, is the appropriate primitive. In par-

ticular, one could imagine that the procedure studied so far describes only a preselection

of suitable alternatives (a ‘shortlist’), while a final unique choice might delegated for ex-

ample to a standard complete and transitive criterion that picks from the shortlist. Such

a procedure would still have the merit of replacing the computation of explicit tradeoffs

with basic comparisons until a stage where the choice set has been suitably reduced. In

the light of remark 1, on the domain we have studied the behavioural restrictions imposed

by the modified procedure would still include Reducibility (because of the transitivity of

the final criterion).23

4 Concluding remarks

We have focussed especially on the most minimalist version of the model we are proposing,

which attributes to the agent very weak powers of discrimination (basic lexicographic

semiorders). On finite domains this version is coextensive with a natural restriction of

the seemingly far more general sequentially rationalisable choice model of Manzini and

Mariotti [21]. On broader domains the model restricts choice data more narrowly than

even a stripped down version of sequential rationalisability (Rational Shortlist Methods).

23For a concrete illustration, consider the case of choice under uncertainty. A class of decision cri-

teria that has gained attention because of their applicability to realistic situations is that of ’quantile

maximisation’(see Rostek [27]). Such criteria generalise classical criteria such as maximin, by allowing

the use of any other quantile of the induced distribution, instead of the worst outcome. For the reasons

we have discussed, however, it is hard to imagine that a decision maker ignores any other aspect of a

gamble except, say, its median utility. Rather, if the difference in the median outcomes of two gambles is

not too large, he is likely to look at some other quantile, and so on. This procedure, which sequentially

uses quantiles of interest to discard gambles, is likely to achieve a significant reduction of a choice set.

After that reduction, the use of a cardinal, mean-based criterion to single out a gamble may be far more

appealing, because its lack of robustness (which justifies the use of ordinal criteria first) becomes less of

a drawback in small sets.
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The Reducibility condition delimits exactly the restrictions on choice behaviour that

our theory implies. The weakening of Reducibility we have studied illustrates the addi-

tional behaviours admitted by sequential rationalisability tout court.

While we would argue that Reducibility has more than a whiff of plausibility, we have

eschewed defending it as an a priori compelling property of bounded rationality. The

appeal of the theory stems mostly from its psychological basis, its tractability and its

testability. Our main aim was to extend Tversky’s idea into a model of choice and to

tease out the observable implications of the model, in the spirit of the ‘revealed prefer-

ence approach’(see Caplin [3], Gul and Pesendorfer [10], Rubinstein and Salant [29] for

methodological discussions of this issue). Reducibility is an easily interpretable and oper-

ationally workable concept (as demonstrated by our workouts), and as such we believe it

fulfills this role. Our approach is thus in the same spirit as a recent body of work which

seeks to characterise models of boundedly rational choice in terms of direct axioms on

choice behaviour (e.g. Cherepanov, Feddersen and Sandroni [4]; Eliaz, Richter and Rubin-

stein [6]; Masatlioglu and Ok [22] and [23]; Masatlioglu and Nakajima [24]; Masatlioglu,

Nakajima and Ozbay [25]; Salant and Rubinstein [30]; Tyson [35], beside those already

discussed).

The present work is also related to the ‘checklist’model of choice in Mandler, Manzini

and Mariotti [19]. In that model, an agent goes through an ordered checklist of properties

(unary relations), at each step eliminating the alternatives that do not have the specified

property. For example, the agent who wishes to buy a house looks first for houses in

a certain location, then for those in that location with a minimum square footage, and

so on until a final selection is made. A choice by basic lexicographic semiorder could

be interpreted as a weakening of a choice by checklist, in which the membership of a

property is allowed to have three values instead of only two. On this interpretation,

fi (x) = 1 (resp., fi (x) = −1) means that x definitely has (resp., does not have) property

i, while fi (x) = 0 means that x neither fully has nor fully does not have property i (it

falls in a ‘grey area’or ‘is neutral’with respect to that property). For example, a house’s

location may neither be entirely convenient (e.g. close to both spouses’workplaces) nor

entirely inconvenient (far from both spouses’workplaces).
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Because (on certain domains) choosing by checklist is exactly equivalent to maximising

a utility function (as shown in Mandler, Manzini and Mariotti [19]), a choice by lexico-

graphic semiorder can also be seen as a versatile but minimal departure from the standard

model of rational choice.
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5 Appendix

It is instructive to see how the algorithm to construct the rationales of theorem 2 works.

We use an example provided by Apesteguia and Ballester [1]. The grand set of alternatives

is X = {α, β, γ, δ, ε, ϕ}. The inverse image of the choice function (i.e. the collection of

sets from which each alternative is chosen) is given below:

c−1 (α) =



{α, β, γ, δ, ε} ,

{α, β, γ, ε} , {α, β, γ, δ} , {α, β, δ, ε} , {α, γ, δ, ε} ,

{α, β, δ} , {α, δ, ε} , {α, β, γ} , {α, β, ε} , {α, γ, ε} ,

{α, β} , {α, ε} , {α, δ}



c−1 (β) =



{β, γ, δ, ε, ϕ} ,

{β, γ, δ, ε} , {β, δ, ε, ϕ} , {β, γ, ε, ϕ} ,

{β, γ, δ} , {β, δ, ε} , {β, γ, ε} , {β, ε, ϕ} ,

{β, δ} , {β, γ} , {β, ε}


c−1 (γ) =


{γ, δ, ε, ϕ} , {α, γ, δ, ϕ} ,

{α, γ, ϕ} , {α, γ, δ} , {γ, δ, ε} , {γ, δ, ϕ} ,

{α, γ} , {γ, δ} , {γ, ϕ}


c−1 (δ) = {{β, δ, ϕ} , {δ, ε, ϕ} , {δ, ε} , {δ, ϕ}}

c−1 (ε) =



X, {α, β, γ, ε, ϕ} , {α, β, δ, ε, ϕ} , {α, δ, γ, ε, ϕ} ,

{α, β, ε, ϕ} , {α, γ, ε, ϕ} , {α, δ, ε, ϕ} ,

{α, ε, ϕ} , {γ, ε, ϕ} ,

{γ, ε} , {ε, ϕ}



c−1 (ϕ) =



{α, β, δ, γ, ϕ} ,

{α, β, γ, ϕ} , {β, γ, δ, ϕ} , {α, β, δ, ϕ} ,

{α, β, ϕ} , {β, γ, ϕ} , {α, δ, ϕ} ,

{α, ϕ} , {β, ϕ}


The base relation Pc = {(a, b) ∈ X ×X : a = c ({a, b})} is thus:
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Pc =

 (α, β) , (α, ε) , (α, δ) , (δ, ε) , (δ, ϕ) , (β, δ) , (β, γ) , (β, ε) ,

(γ, α) , (γ, δ) , (γ, ϕ) , (ε, γ) , (ε, ϕ) , (ϕ, α) , (ϕ, β)


If the rationales Pi and the collections Ci−1 are built according to the algorithm in

the proof of theorem 2, obviously it can never be (a, b) ∈ Pc ∩ Pi for any a and b such

that b is chosen from some S ∈ Ci−1 that also contains a. Consequently we are going

to construct the rationales by first ruling out as potential members of Pi all such pairs;

then we will verify whether the residual subcollection of pairs in Pc which have not yet

been ‘allocated’to any previous rationale Pj, j < i, satisfy the requirement in the Weak

reducibility axiom, removing more pairs if necessary until we have the largest collection

that satisfies the axiom.

Beginning with C0 = Σ, inspection of the inverse images reveals that the only candidate

pairs are (α, β), (α, δ), (β, γ), (γ, δ), (ε, ϕ) and (ϕ, α), since for all other pairs (a, b) ∈ Pc
it is always the case that b is chosen in some set where a is present.

However, δ is also the only alternative such that, when it is removed from sets that

also contain α, leaves choice unchanged. To see this, observe that (α, β) /∈ P1, since

e.g. α = c ({α, β, γ}) 6= c ({α, γ}) = γ; (β, γ) /∈ P1, since e.g. ϕ = c ({β, γ, δ, ϕ}) 6=

c ({β, δ, ϕ}) = δ; (γ, δ) /∈ P1, since e.g. γ = c ({γ, δ, ε}) 6= c ({γ, ε}) = ε; (ε, ϕ) /∈ P1, since

e.g. ε = c ({α, ε, ϕ}) 6= c ({α, ε}) = α; and (ϕ, α) /∈ P1, since e.g. ε = c ({α, β, ε, φ}) 6=

c ({β, ε, φ}) = β.

Consequently,

P1 = {(α, δ)}

The domain thus reduces from C0 to C1 as indicated in the display that follows (simply

remove all sets containing α and δ), where observe that the first line is a subcollection of

c−1 (α), the second line is a subcollection of c−1 (β), and so on:
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C1 =



{α, β, γ, ε} , {α, β, γ} , {α, β, ε} , {α, γ, ε} , {α,β} , {α, ε}

{β, γ, δ, ε, ϕ} , {β, γ, δ, ε} , {β, δ, ε, ϕ} , {β, γ, ε, ϕ} ,

{β, γ, δ} , {β, δ, ε} , {β, γ, ε} , {β, ε, ϕ} , {β, δ} , {β,γ} , {β, ε}

{γ, δ, ε, ϕ} , {α, γ, ϕ} , {γ, δ, ε} , {γ, δ, ϕ} , {α, γ} , {γ, δ} , {γ, ϕ}

{β, δ, ϕ} , {δ, ε, ϕ} , {δ, ε} , {δ, ϕ}

{α, β, γ, ε, ϕ} , {α, β, ε, ϕ} , {α, γ, ε, ϕ} , {α, ε, ϕ} , {γ, ε, ϕ} , {γ, ε} , {ε,ϕ}

{α, β, γ, ϕ} , {β, γ, δ, ϕ} , {α, β, ϕ} , {β, γ, ϕ} , {α,ϕ} , {β, ϕ}


Next, observe that α and ϕ are chosen in the presence of γ, so that our algorithm

prescribes (γ, α) /∈ P2 and (γ, ϕ) /∈ P2. Moreover, β is chosen in the presence of ϕ; γ is

chosen in the presence of ε; δ and ε in the presence of β; ε is chosen in the presence of α;

and ϕ is chosen in the presence of δ. This leaves only (α, β), (β, γ), (γ, δ), (δ, ε), (ε, ϕ)

and (ϕ, α) as potential members of P2 (appearing in boldface in the above display), and

it is easy to verify that indeed the whole collection of ‘candidate pairs’

P2 = {(α, β) , (β, γ) , (γ, δ) , (δ, ε) , (ε, ϕ) , (ϕ, α)}

is such that c (S) = c
(
S\
⋃
i:xi∈S yi

)
for all S ∈ C1 as in the definition of Weak Re-

ducibility. Note also that Reducibility fails on the collection C1: no set contains α

and δ, and by the same considerations contained in the previous paragraphs, the only

pairs of alternatives that might satisfy Reducibility are {α, β}, {β, γ}, {γ, δ}, {δ, ε},

{ε, ϕ} and {ϕ, α}. However, none of them does: first of all, because all these binary

sets are in C1, the ‘losing’ alternative must be the one that is not chosen in pairwise

sets; in addition, (x2, y2) /∈ {(α, β) , (β, γ) , (γ, δ) , (ε, ϕ) , (ϕ, α)} since the same sets for

which c (S) 6= c (S\ {y2}) when checking C0 are also in C1; while x2, y2 6= δ, ε since e.g.

β = c ({β, γ, δ, ε, ϕ}) 6= c ({β, γ, δ, ϕ}) = ϕ.

Going back to our algorithm, the construction of P2 yields

28



C2 =



{α, γ, ε} , {α, ε}

{β, δ} , {β, ε}

{α, γ} , {γ,ϕ}

{β, δ, ϕ} , {δ,ϕ}

{γ, ε}

{β,ϕ}


For the next step, we note that δ is chosen in the presence of β; α is chosen in the

presence of γ. So one can verify that all together the remaining candidate pairs provide

a suitable P3, that is:

P3 = {(α, ε) , (ε, γ) , (β, ε) , (δ, ϕ) , (ϕ, β) , (γ, ϕ)}

As a consequence, the subdomain reduces to:

C3 = {{β, δ} , {α, γ}}

so that we can build the final rationale

P4 = {(β, δ) , (γ, α)}

It is straightforward to double check that P1, P2, P3, P4 so defined sequentially ratio-

nalises c.
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