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Appendix SA contains the two extensions mentioned in the main text.
Appendix SB provides the details of the algebra omitted from the proofs.

Appendix SA: Extensions

SA.1 Directly updating on the pivotal event

In this subsection, I assume that each voter directly updates her set of priors conditional
on being pivotal. While this assumption is without loss of generality for SEU voters, it
implies different behavior for MEU voters. Theorem SA.1 extends Theorem 1 to this
setting.

I consider games as in Section 3 except that I restrict attention to Ra = {ra} and
Rb = {rb}. Instead of updating only on her signal, each voter also updates conditional
on being pivotal. Her set of posteriors after observing signal t equals the set �̂t , where
π̂t ∈ �̂t if and only if there exists π ∈ � so that π̂t(·) = π(·|ti = t�piv�σ−i). In particu-
lar, the marginal probability of a conditional on ti = t and being pivotal is in the range
[
¯
qt(σ)� q̄t(σ)] where

¯
qt(σ) = ¯

pt Pr(piv|a�σ−i)

¯
pt Pr(piv|a�σ−i)+ (1 −

¯
pt)Pr(piv|b�σ−i)

and

q̄t(σ) = p̄t Pr(piv|a�σ−i)

p̄t Pr(piv|a�σ−i)+ (1 − p̄t)Pr(piv|b�σ−i)
�

After observing signal t, voter i chooses her strategy to maximize

V̂t(σ̂�σ−i) = min
q∈[

¯
qt(σ)�q̄t (σ)]

qσ̂(A)+ (1 − q)σ̂(B)�

When p̄ >
¯
p, V̂t(·�σ−i) is an affine transformation of Vt(·�σ−i) if and only if θa(σ) =

θb(σ); in general, they have different maximizers. Consequently, the best response to
σ−i according Vt(·) may differ from that according V̂t(·). Any collection �̂ = (I� [

¯
p� p̄]�T�

ra� rb) defines an ambiguous pivotal voting game if players maximize V̂t(·) rather than
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Vt(·). An equilibrium for such a game is as in the main text, except Vt(σ̂�σ−i) is replaced
by V̂t(σ̂�σ−i). Theorem 1 holds as stated when considering ambiguous pivotal voting
games rather than ambiguous voting games.

Theorem SA.1. Any symmetric equilibrium to an ambiguous pivotal voting game where
voters lack confidence does not have correct expected winners.

Proof. For the sake of contradiction, suppose that σ is a symmetric equilibrium where
τA(σ |a) > 1

2 and τB(σ |a) > 1
2 . Note that V̂t(σ̂;σ−i) =Wt(σ̂(A);σ−i) where

Wt(s;σ−i)= min
p∈[

¯
pt�p̄t ]

pPr(piv|a�σ−i)s + (1 −p)Pr(piv|b�σ−i)(1 − s)

pPr(piv|a�σ−i)+ (1 −p)Pr(piv|b�σ−i)
�

The superdifferential of Wt equals

∂Wt(s;σ−i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ ¯
pt Pr(piv|a�σ−i)−(1−

¯
pt)Pr(piv|b�σ−i)

¯
pt Pr(piv|a�σ−i)+(1−

¯
pt)Pr(piv|b�σ−i)

} if s > 1
2

{pPr(piv|a�σ−i)−(1−p)Pr(piv|b�σ−i)
pPr(piv|a�σ−i)+(1−p)Pr(piv|b�σ−i)

: p ∈ [
¯
pt� p̄t]} if s = 1

2

{ p̄t Pr(piv|a�σ−i)−(1−p̄t )Pr(piv|b�σ−i)
p̄t Pr(piv|a�σ−i)+(1−p̄t )Pr(piv|b�σ−i)

} if s < 1
2 .

This implies that s = 0 is the only optimum of Wt if and only if

p̄t

1 − p̄t
<

Pr(piv|b�σ−i)

Pr(piv|a�σ−i)
�

that any s ∈ [0� 1
2 ] is an optimum of Wt if

p̄t

1 − p̄t
= Pr(piv|b�σ−i)

Pr(piv|a�σ−i)
�

that s = 1
2 is the only optimum of Wt if and only if

¯
pt

1 −
¯
pt

<
Pr(piv|b�σ−i)

Pr(piv|a�σ−i)
<

p̄t

1 − p̄t
�

that any s ∈ [ 1
2 �1] is an optimum of Wt if

¯
pt

1 −
¯
pt

= Pr(piv|b�σ−i)

Pr(piv|a�σ−i)
�

and that s = 1 is the only optimum of Wt if and only if

¯
pt

1 −
¯
pt

>
Pr(piv|b�σ−i)

Pr(piv|a�σ−i)
�

Label
⋂

t∈T [
¯
pt� p̄t] = [

¯
p1� p̄2], noting that

¯
pt ≤

¯
p1 and p̄t ≥ p̄2 for all t ∈ T . By

symmetry, all voters perceive the same strategies of others, so fix any i and consider
β = Pr(piv|b�σ−i)/Pr(piv|a�σ−i). If β < p̄2/(1 − p̄2), then for all t ∈ T , β < p̄t/(1 − p̄t),
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so σ(t)(A) ≥ 1
2 by the above. Conclude that τB(σ |b) ≤ 1

2 , a contradiction. Finally, if
β >

¯
p1/(1 −

¯
p1), then for all t ∈ T , β >

¯
pt/(1 −

¯
pt), so σ(t)(A) ≤ 1

2 by the above. Con-

clude that τA(σ |a) ≤ 1
2 , a contradiction. These cases are mutually exhaustive and both

result in a contradiction. Therefore, it is impossible that τA(σ |a) > 1
2 and τB(σ |b) > 1

2 ,
completing the proof. �

SA.2 Ambiguity about likelihoods

Voters assign a marginal probability to a between
¯
p and p̄, where 0 <

¯
p ≤ p̄ < 1. Con-

ditional on state s, the signal that voter i observes is distributed according to one of the
distributions in the set Rs, where each Rs is a closed, convex, nonempty set of probabil-
ity distributions over T . Formally, π ∈ � if and only if there exists a p ∈ [

¯
p� p̄] and an rs

in the convex hull of {⊗i∈I rs�i : rs�i ∈ Rs ∀i ∈ I} for each s ∈ S so that

π(a� t) = pra(t) and π(b� t)= (1 −p)rb(t)

for all (s� t) ∈�.
Voters form a set of posteriors by updating each measure in � according to Bayes

rule. Denoting the vector of signals seen by other voters as t−i, Bayes rule gives that πt is
an extreme point of �(·|ti = t) if and only if there exists p ∈ {

¯
pt� p̄t} as well as an ra�i ∈Ra

and an rb�i ∈Rb for every i ∈ I so that

πt(a� t� t−i)= p
∏
j �=i

ra�j(tj) and πt(b� t� t−i) = (1 −p)
∏
j �=i

rb�j(tj)

for every (s� t) ∈�, where

p̄t = r̄a�t p̄

r̄a�t p̄+¯rb�t(1 − p̄)

and

¯
pt = ¯ra�t ¯

p

¯ra�t ¯
p+ r̄b�t(1 −

¯
p)

for r̄a�t = maxra∈Ra ra(t), ¯rb�t = minrb∈Rb
rb(t), ¯ra�t = minra∈Ra ra(t), and r̄b�t = maxrb∈Rb

rb(t).
Say that (rσa�i� r

σ
b�i)i∈I is a minimizing likelihood for a strategy profile σ if for every t ∈ T ,

there is a minimizer of Vt(σi�σ−i), π ′
t , that has the form π ′

t (a� t� t−i) = p
∏

j �=i r
σ
a�j(tj) and

π′
t (b� t� t−i) = (1 −p)

∏
j �=i r

σ
b�j(tj) for some p ∈ (0�1).

Lemma SA.2. If σ is a strategy profile, then there exists a minimizing likelihood
(rσa�i� r

σ
b�i)i∈I for σ . If σ is symmetric, then this likelihood can be taken to be symmetric,

i.e., rσa�i = rσa�j = rσa and rσb�i = rσb�j = rσb for every i� j ∈ I.

Proof. Fix an arbitrary voter i, a signal τ ∈ T , and another voter j ∈ I \ {i}. For an ar-
bitrary likelihood (ra�k)k∈I\{i}, voter i’s interim utility conditional on state a and signal τ
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can be written as

E[ui|a�σ�τ] = f (σ−i�−j� (ra�k)k∈I\{i�j})+
∑
t∈T

ra�j(t)σj(t)(A)

× [
σi(τ)(A)Pr(n− 1 voters in I \ {i� j} vote for A|(ra�k)k∈I\{i�j}�σ−i−j)

+ σi(τ)(B)Pr(n voters in I \ {i� j} vote for A|(ra�k)k∈I\{i�j}�σ−i−j)
]
�

where f (·) is the probability that n + 1 voters in I \ {i� j} vote for A, given their strate-
gies and the distribution of signals. Therefore, for all τ ∈ T , any ra�j that minimizes∑

t∈T ra�j(t)σj(t)(A) minimizes E[ui|a�σ�τ] regardless of the other likelihoods. Similar
rewriting is possible for b, resulting in rb�j minimizing

∑
t∈T rb�j(t)σj(t)(B).

For each j, pick an arbitrary

rσa�j ∈ arg min
ra∈Ra

∑
t∈T

ra(t)σj(t)(A)

and an arbitrary

rσb�j ∈ arg min
rb∈Rb

∑
t∈T

rb(t)σj(t)(B)�

Given the above observation, the collection (rσa�k� r
σ
b�k)k∈I\{i} is a minimizing likeli-

hood. If σ is symmetric, then it is without loss to take rσa�j = rσa�k and rσb�j = rσb�k for
all j�k ∈ I since arg minra∈Ra

∑
t∈T ra(t)σj(t)(A) = arg minra∈Ra

∑
t∈T ra(t)σk(t)(A) (and

similarly for b), completing the proof. �

Theorem SA.3. If voters lack confidence and σ is a symmetric equilibrium, then for any
distribution of signals r∗a , r∗b , expected winners are not correct.

Proof. Apply Lemma SA.2. Follow the arguments of Theorem 1 in the main text using
the minimizing collection of likelihoods rather than ra, rb to establish that σ(t)(A) > 1

2
implies σ(t ′)(A) ≥ 1

2 for all t ′ ∈ T . Conclude that for any distribution r∗a , r∗b , τA(σ |a) > 1
2

implies τA(σ |b) > 1
2 , where τ uses r∗a , r∗b . �

Appendix SB: Algebra

SB.1 Algebra for the proof of Theorem 1

Let f (m�p�n)= (n
m

)
pm(1 −p)n−m, noting that

∂f

∂p
=

(
n

m

)
[mpm−1(1 −p)n−m − (n−m)pm(1 −p)n−m−1]

= n

(
n− 1
m− 1

)
[pm−1(1 −p)n−m −pm(1 −p)n−m−1]

= n[f (m− 1�p�n− 1)− f (m�p�n− 1)]
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if 1 <m< n and that ∂f (n�p�n)/∂p = npn−1 = nf(n− 1�p�n− 1). Write

θa(σ) =
2n∑

m=n+1

f (m�τA(σ |a)�2n)

and conclude that

∂θa

∂τA(σ |a)
∣∣∣∣
τA(σ |a)=p

= 2n

{ 2n−1∑
m=n+1

[f (m− 1�p�2n− 1)− f (m�p�2n− 1)]

+ f (2n− 1�p�2n− 1)

}

= 2n
{[f (n�p�2n− 1)− f (2n− 1�p�2n− 1)] + f (2n− 1�p�2n− 1)

}
= (2n)f (n�p�2n− 1)�

Since ρs(σ) = (2n
n

)
τc(σ |s)n(1 − τc(σ |s))n, it follows that

∂ps

∂τc(σ |s)
∣∣∣∣
τc(σ |s)=t

= 2n[f (n− 1; t�2n− 1)− f (n; t�2n− 1)]

= 2n

(
2n− 1
n− 1

)
[pn−1(1 −p)n −pn(1 −p)n−1]

= (1 − 2p)2n

(
2n− 1
n− 1

)
pn−1(1 −p)n−1�

Therefore, the ρs(σ) decreases as the vote share of the candidate with the most votes in
state s increase. Combining yields

∂[2θa + ρa]
∂τA(σ |a)

∣∣∣∣
τA(σ |a)=p

= (2n)[2f (n�p�2n− 1)+ f (n− 1; t�2n− 1)− f (n; t�2n− 1)]

= (2n)[2f (n�p�2n− 1)+ f (n− 1; t�2n− 1)] > 0�

SB.2 Algebra for the proof of Theorem 3

Define fo(t�m)= (2m+1
m

)
tm(1 − t)m+1 + (2m+1

m+1

)
tm+1(1 − t)m and fe(t�m)= (2m

m

)
tm(1 − t)m.

Write

ρA�s + ρB�s =
n∑

i=0

f (2i;τ∅�2n)fe(τ∗
A� i)+

n−1∑
i=0

f (2i+ 1;τ∅�2n)
1
2
fo(t� i)�

Since
(2m+1

m

) = (2m+1
m+1

)
, fo(t�m) can be rewritten as fo(t�m) = (2m+1

m

)
tm(1 − t)m.

To see that ρA�s + ρB�s decreases in |τ∗
A − 1

2 |, note that ∂fe
∂t = (1 − 2t)m2(2m

m

)
tm−1 ×

(1 − t)m−1 and ∂fo
∂t = (1 − 2t)m2(2m+1

m

)
tm−1(1 − t)m−1, establishing the result.
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I turn now to establishing that it increases in τ∅. I first show that every term is in-
creasing. To see fe(t�m) > 1

2fo(t�m),

2fe(t�m)

fo(t�m)
= 2

(2m
m

)
tm(1 − t)m(2m+1

m

)
tm(1 − t)m

= 2 (2m)!
m!m!

(2m+1)!
m!m+1!

= 2m+ 2
2m+ 1

> 1�

and to see 1
2fo(t�m) > fe(t�m+ 1),

fo(t�m)

2fe(t�m+ 1)
=

(2m+1
m

)
tm(1 − t)m

2
(2m+2
m+1

)
tm+1(1 − t)m+1

=
(2m+1)!
m!(m+1)!

2 (2m+2)!
(m+2)!(m+1)! t(1 − t)

= (m+ 1)(m+ 2)
2(2m+ 2)t(1 − t)

>
(m+ 1)(m+ 2)

(2m+ 2) 1
2

=m+ 2 > 1�

To conclude that ρA�s + ρB�s increases in τ∗
∅

, use the following lemma.

Lemma SB.1. If f : [0�1] → R is a weakly increasing (decreasing) simple function and π

first order stochastically dominates π ′, then
∫
f dπ ≥ ∫

f dπ ′ (
∫
f dπ ≤ ∫

f dπ ′).

Proof. Consider a weakly increasing, simple function f . Proceed by induction on the
number of distinct values of f , n. If f is constant, then

∫
f dπ = ∫

f dπ ′. Now let n ≥ 2
and suppose that

∫
gdπ ≥ ∫

gdπ ′ whenever g takes n − 1 distinct values. Suppose
f takes n distinct values, with values x1�x2� � � � � xn on the intervals E1� � � � �En (where
zi ∈Ei and zi+1 ∈Ei+1 implies zi < zi+1). Then let g take values x1�x2� � � � � xn−1 on the in-
tervals E1� � � � �En−1 ∪En, respectively. Then f = g+ (xn − xn−1)χEn , where χE(z) equals
1 if z ∈E and 0 otherwise. By the induction hypothesis,

∫
gdπ ≥ ∫

gdπ ′ and∫
χEn dπ = π(En) ≥ π ′(En)=

∫
χEn dπ

′

by first order stochastic domination (FOSD). Since∫
f dπ =

∫
(g + (xn − xn−1)χEn)dπ

=
∫

gdπ +
∫
(xn − xn−1)χ(en−1] dπ

≥
∫

gdπ ′ +
∫
(xn − xn−1)χ(en−1] dπ

′ =
∫

f dπ ′�

the result holds when f takes n distinct values. Consequently, it holds for all simple
functions. Similar arguments establish the other part of the result when f is weakly
decreasing rather than weakly increasing. �
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To see that utility in a is larger than b if (1 −
¯
pt)/ ¯

pt < (ρAa + ρBa)/(ρBb + ρAb) and a
t-voter plays (A�α) if and only if α ≤ 1 + (θa − θb)/(ρA�a + ρA�b) = α∗

A, note that

(1 − α)ρA�a + θa ≥ θb − (1 − α)ρA�b

−α ≥ θb − θa

ρA�a + ρA�b
− 1

α ≤ 1 + θa − θb
ρA�a + ρA�b

= α∗
A�

To see that utility in a is larger than b if (1 − p̄t)/p̄t > (ρAa + ρBa)/(ρBb + ρAb) and a
t-voter plays (B�α) if and only if α∗

B = 1 + (θb − θa)/(ρB�b + ρB�a)≤ α, note that

−(1 − α)ρB�a + θa ≥ θb + (1 − α)ρB�b

θa − θb ≥ (1 − α)[ρB�b + ρB�a]
θa − θb

ρB�b + ρB�a
− 1 ≥ −α

α∗
B = 1 + θb − θa

ρB�b + ρB�a
≤ α�

To see that U(p�m) increases in p if p ≥ 1
2 , note that F(k;p�m) = (m − k)

(m
k

)×∫ 1−p
0 tm−k−1(1− t)k dt so ∂F

∂k = −(m−k)
(m
k

)
(1−p)m−kpk. This implies that 1−F(k;p�m)

increases in p, immediately establishing the result if m is even. Note that ∂f (m/2;p�m)
∂p =( m

m/2
)
m2pm−1(1 −p)m−1(2p− 1), which is also positive if p ≥ 1

2 .

To see that U(p�m) increases in m if p> 1
2 , consider m> 0 and even. Then

U(p�m) = 1 − F
(

1
2m;p�m

)
+ 1

2f
(

1
2m;p�m

)
< 1 − F

(
1
2m;p�m

)
+pf

(
1
2m;p�m

)
= (1 −p)

(
1 − F

(
1
2m;p�m

))
+p

(
1 − F

(
1
2m− 1;p�m

))
= 1 − F

(
1
2(m− 1);p�m+ 1

)
=U(p�m+ 1)�

Similarly,

U(p�m) = 1 − F
(

1
2m;p�m

)
+ 1

2f
(

1
2m;p�m

)
= (1 −p)

[
1 − F

(
1
2m;p�m− 1

)]
+p

[
1 − F

(
1
2m− 1;p�m− 1

)]
+ 1

2f
(

1
2m;p�m

)
> 1 − F

(
1
2m;p�m− 1

)
= U(p�m− 1)�

Hence, U(p�m) increases in m if p> 1
2 .
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If expected winners are correct, applying Lemma SB.1 gives that θs(σ) is increasing
in τ(∅|s�σ) and increasing in τ(cs|σ� s)/(τ(A|σ� s)+ τ(B|σ� s)).

Co-editor Faruk Gul handled this manuscript.
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