
rgsolve for Java

Richard M. Katzwer

Dept. of Economics

Princeton University

08/04/13

1 Introduction

This is documentation for the rgsolve package for Java. The package consists of a set of tools for solving

two-player repeated games with perfect monitoring and public randomization. These tools are primarily an

implementation of the algorithm described in Abreu & Sannikov (2013), hereafter “AS”. The algorithm of

AS it itself a refinement of of the methods developed in Abreu, Pearce & Stachetti (1990), hereafter “APS”.

This program was designed by Dilip Abreu, Yuliy Sannikov, Benjamin Brooks, Richard Katzwer and Rohit

Lamba. The program was implemented in Java by Richard Katzwer

Please direct inquiries for further information, comments, or bug reports to:

Dilip Abreu, dabreu@princeton.edu

Benjamin Brooks, babrooks@princeton.edu

Richard Katzwer, rkatzwer@princeton.edu

Yuliy Sannikov, sannikov@princeton.edu

Contents

1 Introduction 1

2 Quick-Start Guide 2

3 Using the rgsolve GUI 9

4 Writing, Saving and Loading Games 15

5 The rgsolve API 22

6 The rgsolve MATLAB Wrapper 25

7 Acknowledgments 26

1

mailto:dabreu@princeton.edu
mailto:babrooks@princeton.edu
mailto:rkatzwer@princeton.edu
mailto:sannikov@princeton.edu

Katzwer 2

2 Quick-Start Guide

This section is intended to help the user jump right in to loading and solving games with rgsolve.1

2.1 Installation and Execution

You can download the most current version of rgsolve at the Princeton Economic Theory Center website,

at

http://www.princeton.edu/econtheorycenter/research-links/dynamic-games-algorithm/

The website will direct you to download the file rgsolve.zip. The entire program and its resources is

contained in this runnable .jar file contained in this .zip file. 2 The unzipped directory should have the

following contents:

• rgolsve.jar, the Java executable of the repeated games software.

• A directory marked doc which contains the documentation (“Javadocs”) on the package’s classes and

methods.

• This pdf, named rgsolveUserGuide.pdf.

• A MATLAB scrip JavaRGSolve.m that acts a wrapper for calling the rgsolve Java package from

within MATLAB.

To run rgsolve, your machine needs to have a Java 6 (or higher) runtime environment installed. This can

be downloaded at

http://www.oracle.com/technetwork/java/javase/overview/index-jsp-136246.html

and can be installed on almost all systems (Windows, Mac, Linux, etc.).

rgsolve can be run3 by double-clicking the file rgsolve.jar. When you open rgsolve, you will be greeted

with the welcome screen. Click through this screen to continue to the application.

Hover your mouse over components of the program; for most components, a tool-tip will pop up explaining

the function of the component.

2.2 Example: Solving the Repeated Prisoner’s Dilemma

2.2.1 Entering the Game

You will see the main window of rgsolve as in figure 2.

To enter the Prisoner’s Dilemma using the user interface, make sure you are on the Game tab.

1. Set the dimensions of the game to 2 × 2 by entering the value 2 in the fields marked No. of Player 1
Actions and No. of Player 2 Actions. This will re-size the table in the Stage Payoffs tab to a 2× 2 game.

1For detailed discussion of how to use the GUI and the full flexibility of rgsolve’s capability for loading and saving games,
see sections 3 and 4, respectively.

2Additionally, I will be keeping some resources related to rgsolve (such as the Javadocs, and a web-applet) on my website,
at the directory http://www.princeton.edu/∼rkatzwer/rgsolve

3The first time rgsolve is run, it will unpack some directories and resources into whatever directory the rgsolve.jar file
was placed in.

http://www.princeton.edu/econtheorycenter/research-links/dynamic-games-algorithm/
http://www.oracle.com/technetwork/java/javase/overview/index-jsp-136246.html
http://www.princeton.edu/~rkatzwer/rgsolve

2.2 Example: Solving the Repeated Prisoner’s Dilemma Katzwer 3

Figure 1: Splash screen

2. Set the discount rate for the players. In this example, we will use δ = .7. In the field marked δ

[Discount], enter the value 0.7.

3. Next, enter the game payoffs. The table stores payoffs in the form < g1, g2 > where gi is the payoff to

player i.4 Payoffs should be separated by a comma. For this game, enter the matrix

Figure 3: Prisoner’s Dilemma Payoffs

4. We are now ready to solve the Prisoner’s Dilemma. Press the button marked Solve to start the solver.

2.2.2 Exploring the Solution

Your game should now be solved! The first thing to notice is that the top panel has changed, and should

look something like in figure 5.

• Time (s) displays how many seconds the algorithm took to converge. In our example, it took .004

seconds.

• Iterations is the number of iterations to achieve convergence, in this case 1 iteration.

• Error is the maximum distance between vertices between the last two iterates before the algorithm

stopped. In this example, the set converged exactly.

• Gen. Pts. displays the number of potential extreme points of V ∗ examined over the course of the

algorithm, in this case 12.

4Player 1 is always taken to be the row player, and player 2 is taken to be the column player.

2.2 Example: Solving the Repeated Prisoner’s Dilemma Katzwer 4

Figure 2: Main rgsolve window

Figure 4: Solve Button

The program will now automatically change panels so that you see the Solution tab instead of the Game tab.

This panel contains the solution to our Prisoner’s Dilemma (see figure 6).

2.2 Example: Solving the Repeated Prisoner’s Dilemma Katzwer 5

Figure 5: Basic Solution Information

Figure 6: The Solution to our Prisoner’s Dilemma

This panel is divided into three components:

• A control panel on the left with checkboxes and sliders for exploring the solution.

– Use the sliders to change the displayed iteration or action profile.

– Press Start to watch the operations of the entire algorithm from start to finish.

• A graph on the upper-right displaying the equilibrium set visually.

– Zoom in by pressing and dragging your mouse from the upper-left to lower-right.

– Zoom out by double-clicking the graph.

– Click on any vertex of the equilibrium set to show information and display graphically which

action supports it, what continuation values it involves, etc.

• A text area on the lower-right displaying information about what is currently displayed on the graph.

For example, clicking on the right-most vertex of V ∗ [the point (2.333, 1)] changes the graph to display the

decomposition of this extremal equilibrium as in figure 7.

The bright green circle on the lower right is the game payoff from the action (2, 1) [i.e. (Defect, Cooperate)].

The transparent blue square displays the expected continuation value in equilibrium when playing this

2.3 Example: Loading a game via rgsolve’s I/O routines Katzwer 6

Figure 7: A vertex of V ∗

action today. The transparent green circles represent the extremal equilibria the players randomize between

to achieve the continuation value. The printout in the text area makes this precise. It tells us that with 14.3%

probability, we return to the same equilibrium tomorrow (the point (1, 2.333)) and with 85.7% probability

we go to the extremal equilibrium point (2, 2) which corresponds to playing (Cooperate, Cooperate) forever.

The dashed blue L-shape corresponds to the incentive compatibility constraints on continuation values to

get players to play (Defect, Cooperate) today: player 1 needs at least 1 tomorrow and and player 2 needs at

least 1.857.

rgsolve is useful for converting approximate numerical solutions to exact solutions. On the menu bar, select

Tools→Mathematica exact solution command. This will bring up a window containing the text

s = Solve[
{ e12 == 3/10 * (-1) + 7/10 * (3/7 * 2 + e12),

e11 == 3/10 * (3) + 7/10 * (alpha1 * (e11) + (1-alpha1) * (e21)),
alpha1 * (e12) + (1-alpha1) * (e22) == 3/7 * 2 + e12,
e21 == 2, e22 == 2, e31 == 3/10 * (-1) + 7/10 * (3/7 * 2 + e31),
e32 == 3/10 * (3) + 7/10 * (alpha3 * (e22) + (1-alpha3) * (e32)),
alpha3 * (e21) + (1-alpha3) * (e31) == 3/7 * 2 + e31, e41 == 1, e42 == 1},

{ e11, e12, alpha1, e21, e22, e31, e32, alpha3, e41, e42 }]

which is the command to solve the system of equations defining the exact equilibrium set V ∗ in Mathematica.

2.3 Example: Loading a game via rgsolve’s I/O routines

One can enter games manually via the table on the Game tab, but this is time consuming for large games. It

is faster to define games elsewhere and load them into rgsolve. rgsolve’s full I/O functionality is described

in section 4, but we describe here how to load a simple Bertrand game from a text file. On the menu bar,

select File→Open Game, and the dialog in figure 8 should appear.

2.4 rgsolve settings Katzwer 7

Figure 8: Opening a saved game

We have packaged rgsolve with a text file BertrandExample1.txt that contains a 20× 20 action Bertrand

duopoly game.5 Highlight the file and press Open. This will load the game from the text file into rgsolve,

and the game can then be solved like any other. By default, all games are opened from and saved to the

/Games directory.

2.4 rgsolve settings

rgsolve allows the user to specify settings for the solver. We discuss these settings in detail in section 3.2,

but give a brief overview here. On the Algorithm Settings tab, you should see on the left panel the fields in

figure 9.

Figure 9: Basic rgsolve settings

• rgsolve uses iterative methods, that are controlled by the parameters Max Iters and Error Tolerance.
Max Iters sets the maximum amount of iterations rgsolve should use; the number of iterations necessary

can vary greatly in game size and discount factor. Error Tolerance is the convergence criterion of the

solver.

• The options Keep Iterations and Keep Actions specify what information from the run of the algorithm

rgsolve should store for later examination. If you select Keep Iterations, information from all iterations

5We discuss how to format text files for rgsolve compatibility in section 4.3.1.

2.4 rgsolve settings Katzwer 8

is stored in memory. Otherwise, only information from the last iteration is retained. Keep Actions
specifies what is stored from within each iteration. If it is selected, information on the intersection

of continuation incentive-compatibility constraints is stored for all supportable actions; otherwise only

the payoff sets at the start and end of the iteration are saved (along with how the extreme points of

the end-set are generated). You usage of these options should be dictated by the available memory of

your system and the dimensions of the game.

• The options Abreu-Sannikov and Abreu-Pearce-Stachetti tell the solver which algorithm to use. Abreu-
Sannikov is generally faster and less memory-intensive, although upon convergence the results are

indistinguishable.

Katzwer 9

3 Using the rgsolve GUI

This section discusses the components of the rgsolve GUI and their function in detail.

The main window (figure 2) of rgsolve has a panel stretching across the top that contains a button marked

Solve and the fields Time (s), Iterations, Error and Gen. Pts. The Solve button activates the solver and

computes the solution to the currently displayed game. The fields display information about the solution

such as the number of iterations to convergence, etc.

Above this panel is a standard menu bar. In section 3.3, we discuss the menu bar options.

The main window has four tabs:

• Game - Defines the stage game and discount factor.

• Algorithm Settings - Defines solver settings.

• Algorithm Run Log - Prints a log of what the solver is doing as it progresses.

• Solution - Contains an interactive panel for exploring the properties of game solutions

We will discuss Game and Algorithm Settings here, and Algorithm Run Log and Solution later.

3.1 The Game Tab

The Game tab is intuitive and contains all the information about the repeated game to be solved.

The left panel (marked Stage Game Options) defines some broad parameters for the game to be solved: the

number of actions available to each player and the discount rate δ. These fields are editable, and are used by

the user to define the broad bounds of the game. The spinner marked Display Digits indicates the precision

of the data displayed in the tab (but not the precision of the underlying data).

The Game tab has four sub-tabs used for exploring the game. They are fairly intuitive, and are

• Stage Payoffs - this tab displays the payoffs of the stage game in the traditional bimatrix format. Using

the spinners on the left-panel, you can change which game payoffs are displayed in the table. To keep

memory costs low, you can at most view 20 actions at a time.

The table component on this tab is editable, and you can change payoffs in the game by double-clicking

a cell in the spreadsheet and entering a payoff in the form <g1, g2>.

• Usable Actions - Like Stage Payoffs, this tab contains a table showing which action profiles are “allowed”

in equilibrium. That is, if an entry for an action profile is changed from true to false, the program

does not let the players use that profile in equilibrium. By default, games have all action profiles usable

(true).

• Game Notes - This tab contains a text-field where the user can enter any relevant notes on or description

of the current game.

• Payoff Graph - This tab (when selected) generates a graph of the convex hull of feasible stage payoffs

in the game. For very large games this may take some time.

3.2 The Algorithm Settings Tab

The Algorithm Settings tab in figure 10 controls the execution of the algorithms which solve the repeated

game.

3.2 The Algorithm Settings Tab Katzwer 10

Figure 10: The Algorithm Settings Tab

Parameters are divided into two categories, Algorithm Settings which control some basic settings of the pro-

gram, and Numerical Parameters, which are more advanced settings relating to some numerical complications

encountered in numerical computing of this sort. [Most users should never need to look at the Numerical
Parameters panel at all.]

We define each of these settings below:

3.2.1 Algorithm Settings

• Max Iters - The maximum number of iterations the solver should do before prompting the user about

whether to terminate the algorithm or to use more iterations. (Default: 500)

• Error Tolerance - The convergence criterion that should be used by the solver. The solver stops (and

considers the routine “converged”) if (a) the number of extreme points between successive iterates is

the same and (b) the (sup-norm) distance between corresponding extreme points in successive iterates

is less than this value. (Default: 1e(-12))

• Keep Iterations - A switch for whether the program should keep a record of all iterations performed, or

just keep what happened in the last iteration. (Default: false)

• Keep Actions - A switch for whether or not the program should keep a record of the I.C./Feasible-Set

intersections (and thereby a record of all candidate extreme points generated), or just keep the extreme

points that survive the convex hull operation. (Default: true)

• Abreu-Sannikov and Abreu-Pearce-Stachetti - These are linked radio buttons for selecting which algo-

rithm the solver should use, the methods of Abreu & Sannikov or the methods of Abreu, Pearce and

3.3 The menu bar Katzwer 11

Stachetti. (Default: AS)

3.2.2 Numerical Parameters

• Intersection Tolerance - This tells the program the“slack”to give the solver when calculating I.C.’s. This

is for cases where an I.C.-constraint is lies right up against the edge of the feasible set, and numerical

error would cause the program to not generate the correct points. (Default: 1e(-15))

• Smooth Hull - This is a switch for whether the convex hull routine should “smooth” the hull by eliminat-

ing extraneous extreme points via certain robustness checks, or whether the convex hull routine should

naively return all potential extreme points based on a potentially inaccurate floating point signed area

calculating. (Default: true)

– Hull: Angle Tolerance - If is Smooth Hull selected, this tells the convex hull routine how “flat”

angles between 3 adjacent points have to be to eliminate the middle point. If the angle formed by

the three points is in excess of π minus this value, the middle point is deleted. (Default: 1e(-15))

– Hull: CCW Tolerance - If is Smooth Hull selected, this tells the convex hull routine the minimum

(robustly calculated) signed area to allow between 3 adjacent extreme points. If the signed area

is less than this value, the middle point is deleted. (Default: 1e(-15))

• Rounding? and Precision (Digits) - If Rounding? is selected, all calculations in the solver are rounded

to the number of digits in Precision (Digits). (Default: false and 15)

• Max Point List Size - Typically, the solver generates many candidate extreme points over the course of an

iteration, and then takes the convex hull at the end to delete extraneous points. However, to conserve

memory, once the number of candidate points exceeds this number, the hull is taken immediately and

the extraneous points (up to that time) are deleted. (Default: 100000)

• Multi-thread - On systems with multi-core processors, selecting this tells the solver to break up some

of the computationally intensive tasks within an iterations and to send each sub-task to a different

processor to speed up computation time. Even if selected, the solver will only multi-thread games

where the number of action profiles exceeds five million.6 (Default: false)

3.3 The menu bar

The menu bar as the following menus and menu-items:

• File

– This menu contains options for opening and saving games. We discuss these options in greater

detail in section 4.

• Games

– This menu constructs games from certain pre-defined game classes (using the Predefined games
submenu), and allows the user to define new games. We discuss these games in detail in section

4.4.

• Tools

6Below this value, the speed-up from parallelization does not merit the computational costs of the overhead of multi-
threading.

3.4 The Solution Tab Katzwer 12

– Open Solution in New Window - This pops out the currently displayed solution on the Solution tab

into a new window.

– Save the Current Game Solution - This serializes the currently displayed solution on the Solution
tab into a .rgsoln file that can be loaded later into rgsolve. By default, solutions are saved and

loaded from the directory /Solutions, which is relative to the location of rgsolve.jar.

– Load the Solution to a Solved Game - This loads .rgsoln files, setting the Solution tab to display

the loaded solution and the Game tab to display the associated game.

– Mathematica Exact Solution Command - This prints to a new window the Mathematica command

for exactly solving the system of equations defining the equilibrium set V ∗.

– MATLAB Exact Solution Command - This prints to a new window the MATLAB command for

exactly solving the system of equations defining the equilibrium set V ∗.

• Settings

– Save current settings as user defaults - saves the settings in the Algorithm Settings tab to the file

Settings\UserDefaults.params. These are the settings that are loaded by rgsolve on start-up.

– Load user defaults - This sets the settings to those contained in the file tab to the file Settings\UserDefaults.params.

– Reset settings to RGSolve defaults - this loads the default settings stored in the program.

• Help

– Help [.pdf] - this item loads this User Guide into your default .pdf viewer. (Key-accelerator:

CTRL+H)

– rgsolve for Java website - this item loads this project’s homepage at the Princeton Economic Theory

Center (Key accelerator: CTRL+W)

– About - About rgsolve!

3.4 The Solution Tab

Using this tab, the user can explore the properties of the solutions to dynamic games interactively in great

detail. The solution panel is shown in figure 11. The best way to learn how to use this panel is to play with

it, but we will briefly discuss its functionality here.

On the left side of the panel you have some tools. On the right side is a graph which displays graphical

information about the solution. On the lower right is a text area which prints out information about the

solution.

The panel to the left of the solution tab has the following tools:

• An iteration slider which allows you to change the iteration that the graph shows (enabled only if the

option Keep Iters is selected).

• An action slider which allows you to step through an iteration and see exactly what happens and which

potential extreme points are generated at each action profile. If the slider is all the way to the left

[right], the graph shows the feasible set at the start [end] of the iteration. (You can only see what

happens within the iteration if Keep Actions is selected.)

• When the action slider is all the way to the right, you can use the Extreme Points Slider. Use this slider

allows you to examine each extreme point of the feasible set at the end of the iteration. The graph

panel will display the action and continuation values that supports the extreme point. The text area

will print information about the extreme point.

3.4 The Solution Tab Katzwer 13

Figure 11: The Solution panel

– Under this slider are two buttons. These buttons are only activated if (i) we are examining V ∗ on

the graph, (ii) an extreme point of V ∗ has been selected by either clicking on a vertex on the graph

or moving the extreme point slider, and (iii) the current extreme point has a continuation that

can be decomposed into the randomization between two other extreme points. If these conditions

are satisfied, you can use these buttons to “walk through” the equilibrium and see what happens

next period.

• Using the Start button, the entire algorithm will be played by back on the graph. You can pause and

stop the playback, and set the number of frames per second.

• The checkboxes

– Paint Vertices decides whether or not the vertices (extreme points) should be painted on the graph.

– Paint all generated points decides whether all generated potential extreme points in the current

iteration should be painted on the graph (up to the current action), or whether the current action

should be viewed alone.

– Show unsupportable actions decides whether the action slider should loop through all actions, or

just the actions that support equilibrium payoffs.

– Paint threat point decides whether the threat point in the current iteration should be painted.

– Show Graph Key toggles the lower-right panel between a graph key which decodes the images on

the graph and the text-output defining numerically what you are seeing on the graph.

3.4 The Solution Tab Katzwer 14

The graph panel is interactive. You can

• click on extreme points to bring up information on how they are generated.

• zoom in by holding down the mouse and dragging to the lower-right, and zoom out by double clicking.

• By right-clicking you can choose to load the current graph image to the system clipboard (and then

paste it anywhere you like).

• By right-clicking you can choose to save the current graph image to the /Images directory.

Katzwer 15

4 Writing, Saving and Loading Games

rgsolve has very flexible capabilities for saving and loading games. Using the Game tab on the GUI is the

quickest way to define small games, but for large games manually inputting each payoff pair is prohibitively

time consuming. There are several options here.

By default, Games are saved and loaded from the /Games directory, which is relative to the location of

rgsolve.jar.

4.1 The File Menu

4.1.1 Opening Games

The File menu has the menu item Open Game (key-accelerator: CTRL+O), which loads a file chooser window.

By default, the file chooser opens to the /Games directory, which is located relative to the location of the file

rgsolve.jar. Using the file chooser, you can navigate to and load games from any directory. We discuss

which types of files rgsolve can load in section 4.3.

4.1.2 Saving Games

The File menu has the menu item Save Game (key-accelerator: CTRL+S), which loads a file chooser window.

The user then has the By default, the file chooser opens to the /Games directory, which is located relative

to the location of the file rgsolve.jar. Using the file chooser, you can navigate to and save games to any

directory. When you choose to save a game, you will be prompted with the dialogs in figure 12, asking which

type of file you would like to save the game as. Any game in rgsolve can be saved in .txt or .mat format.

Certain games cannot be stores as .rgm or .gmcode formats. That is why we display the two prompts below;

rgsolve will only let you save in formats compatible with the loaded game.

In general, .rgm format is the most efficient and most compact way of storing games as when possible it

saves payoff rules rather than the actual payoff matrices as in .txt or .mat. The .gmcode format is for

special games generated through rgsolve with user-defined Java rules for payoffs. We discuss this special

case in section 4.3.4.

Figure 12: Prompt for file save types

4.2 The Games Menu

This menu is for loading/writing new games to rgsolve. The submenu Predefined Games allows the user

to load the games discussed in section 4.4. The Games menu also has the options enter game payoffs as text
matrices and enter game payoff functions as Java code, which we discuss below.

4.2 The Games Menu Katzwer 16

4.2.1 Inputting payoff matrices

Selecting the enter game payoffs as text matrices menu item, you can directly copy-paste payoff matrices in

text form into rgsolve. Selecting this item brings up the window in figure 13. Matrices should have entries

delimited by space characters, with each row on a new line. In figure 13, we show how to enter a simple

Prisoner’s Dilemma. rgsolve will conform the inputted matrices to the number of actions set in # Actions
1 and # Actions 2: that is, if the matrices are too small rgsolve will pad them with zero-entries, and if they

are too large the matrices will be truncated.

Figure 13: Enter payoff matrices as text

4.2.2 Inputting payoff rules as Java code [ADVANCED!]

Selecting the enter game payoff functions as Java code menu item brings up the the dialog in figure 14. rgsolve

is bundled with a Java compiler, which allows it to act as an interpreter and dynamically create and load

custom games for users. A user familiar with Java (or C/C++) syntax should use this option to generate

interesting games. The fields m1,m2, and discount are straightforward. In the field Fields, define any“global”

variables that you want your payoff functions to use. In the field Constructor, write any statements that you

want the constructor to execute (after a call to the super constructor of course!). All statements should be

on their own lines and terminated by a semicolon (;). In the fields 1’s Payoff Function and 2’s Payoff Function,

define rules for computing game payoffs. You can put in multiple lines here, but

• the payoff functions have the signature

@Override public double payoffi(int a1, int a2)

so your defined payoffs may depend on the actions, which are the int variables a1 and a2. Be aware

that although rgsolve displays actions ai as ranging from 1 to mi, within the source of the program

actions range from 0 to mi − 1.

4.3 File Types Katzwer 17

• make sure your last line involves returning a double.

• only use variables that you declared in Fields, or locally (within the scope of the method) defined

variables.

• to reference primitives of the Game super-class, use m1(), m2() and delta() to access the number of

actions available to player 1 and 2 respectively, and the discount rate.

Figure 14: User-defined payoff rules

Due to some complicated issues involving classpaths and serialization, games generated in this fashion cannot

be saved as .rgm files as they involve dynamically created and loaded Java classes that are thrown away

after the end of the runtime session. They can only be saved in matrix form as .mat or .txt files, or as the

special file format .gmcode which saves a concise representation of the source code representing the game,

which can be recompiled by rgsolve in any runtime session.

4.3 File Types

rgsolve is compatible with four different file types for saving games.

• .txt files represent games as text data.

• .rgm files represent games in binary through Java’s serialization functionality.

• .mat files represent games as MATLAB-readable binary files.

• .gmcode files represent games with user-defined Java-code rules defining payoffs.

We discuss each of these in turn below.

4.3 File Types Katzwer 18

4.3.1 .txt games

The simplest way to store and load games for beginners is to save them as simple text files. Text files must

be in the following format to be compatible with rgsolve:

<discount>
<m1>
<m2>
<G1>
<G2>
<actionsAreDisabled?>
<usableActions>
<Description>

discount is just the discount factor. m1 and m2 are the number of actions available to players 1 and 2. G1

and G2 are the payoff matrices; Gi(a1, a2) should be the payoff to player i when player j plays aj . Player 1

is the row player and Player 2 is the column player.

actionsAreDisabled should read either “true” or “false”. If it reads false, rgsolve assumes that all

action profiles in the game are usable in equilibrium. Otherwise, rgsolve expects an m1×m2 matrix of {0,

1}, where “0” denotes that the action is not usable, and “1” denotes that the action is usable.

Description can be a String of any length containing game notes on the game. For example, a simple

Prisoner’s Dilemma with δ = .7 could be written as in table 1. You can generate these text files in the

program/environment of your choice. Matrices should have entries delimited by space characters, with each

row on a new line.

Prisoner’s Dilemma with action
(1, 2) = (C,D) disabled:

Prisoner’s Dilemma with all actions
usable:

0.7
2
2
2 -1
3 1
2 3
-1 1
true
1 0
1 1
The classic Prisoner’s Dilemma

0.7
2
2
2 -1
3 1
2 3
-1 1
false
The classic Prisoner’s Dilemma

Table 1: Prisoner’s Dilemmas in .txt format

4.3.2 .mat games

This file type is compatible with MATLAB7 To write a game that is readable by rgsolve in this format, in

MATLAB generate

• m1 ×m2 matrices G1 and G2 in MATLAB storing the payoffs to player 1 and 2, respectively,

• a 1× 1 matrix delta storing the discount rate,

7and with the earlier MATLAB rgsolve implementation.

4.4 rgsolve’s Predefined Games Katzwer 19

• a m1 ×m2 matrix usableAction of {0,1} indicating which action profiles are usable (1) and unusable

(2) (optional),

• A String ’notes’ holding any desired game description or notes (optional).

Then use the command

save(’<gamename>.mat’, ’G1’, ’G2’, ’delta’, ’usableAction’ (optional), ’notes’ (optional));

to save the game as the file <gamename>.mat. For example, the code generating a Prisoner’s Dilemma would

be

G1 = [2 -1; 3 0];
G2 = G1’;
delta = 0.7;
notes = ’A prisoner’s dilemma.’;
save(’PD.mat’, ’G1’, ’G2’, ’delta’, ’notes’);

4.3.3 .rgm files

The easiest way to store games is to use Java’s serialization capabilities. .rgm is a file extension specifically

associated with serialized rgsolve game objects. This is probably the safest and most efficient way to store

most games.

4.3.4 .gmcode files

See section 4.2.2.

4.4 rgsolve’s Predefined Games

Using the Predefined Games submenu in the Games menu, rgsolve can generate and load games for the user

(using the GameFactory class).

Cournot Duopoly In this game, two oligopolists i = 1, 2 each produce a quantity qi and face a demand

curve

P (q1, q2) = max {0, α0 − α1 (q1 + q2)}

with constant marginal cost c. So profits are

πi (q1, q2) = qi [P (q1, q2)− ci] ,

where ci is the constant marginal cost to i. If player i has mi actions, then his action set is

Ai =

{
k − 1

mi − 1
Q̄i | k = 1, . . . ,mi

}
,

where maximum output

Q̄i =

max
{
α0

α1
, δ
(1−δ)2

1
ci

(α0−c1)2
4α1

}
, ci > 0

α0

α1
ci = 0

.

4.4 rgsolve’s Predefined Games Katzwer 20

Bertrand Duopoly [Perfect Substitutes] In this game, two oligopolists i = 1, 2 each charge a price pi
and face a demand curve

Qi(p1, p2) =


(ζ0 − ζ1pi)+ , pi < p−i
1
2 (ζ0 − ζ1pi)+ , pi = p−i

0, pi > p−i

.

Profits to i are then

πi (p1, p2) = Qi(p1, p2) [pi − ci] ,

where ci is the constant marginal cost to i. If player i has mi actions in the settings, then his actions in this

game are prices

pi ∈
{
ζ0
ζ1

k − 1

mi − 1
| k = 1, . . . ,mi

}
.

Bertrand Duopoly [Imperfect Substitutes] In this game, two oligopolists i = 1, 2 each charge a price

pi and face a demand curve

Qi(p1, p2) = max

{
a− bpi +

a+ pj
b

, 0

}
.

Profits to i are then

πi (p1, p2) = Qi(p1, p2) [pi − ci] ,

where ci is the constant marginal cost to i. If player i has mi actions in the settings, then his actions in this

game are prices

pi ∈
{
a

b

k − 1

mi − 1
| k = 1, . . . ,mi

}
.

Random Normal Game In this game, player i draws a random m1 × m2 payoff matrix Ai, where

Aikh ∼ N
(
µi, σ

2
i

)
and

Corr
(
A1
kh, A

2
kh

)
= ρ ∈ [−1, 1].

Random Uniform Game In this game, player i draws a random m1 × m2 payoff matrix Ai where

Aikh ∼iid U [0, 1].

Prisoners’ Dilemma This is the classical prisoners’ dilemma, with payoff bimatrix

Cooperate Defect
Cooperate 2, 2 −1, 3

Defect 3,−1 1, 1

Figure 15: Prisoners’ Dilemma

Hawk-Dove This game has the payoff matrix

Hawk Dove
Hawk 0, 0 3, 1
Dove 1, 3 2, 2

Figure 16: Hawk-Dove

4.4 rgsolve’s Predefined Games Katzwer 21

L M H
L 16, 9 3, 13 0, 3
M 21, 1 10, 4 −1, 0
H 9, 0 5,−4 −5,−10

Figure 17: Abreu-Sannikov Simple Example

Abreu-Sannikov Example 1 This game is the example on page 10 of Abreu-Sannikov 2013:

The default discount factor is δ = .3.

Abreu-Sannikov Example 2 This game is the example on page 18 of Abreu-Sannikov 2013:

L M H
L 400, 530 0, -400 1, 1
M 1100, -1200 0, 0 -400, 0
H 1, 1 -1200, 1100 530, 400

Figure 18: Abreu-Sannikov Example 2

The default discount factor is δ = .6.

Katzwer 22

5 The rgsolve API

5.0.1 Using the rgsolve package classes directly

To use the rgsolve package in your own Java projects (or projects that can access Java classes), you need

to put the rgsolve.jar file on your classpath. This tells your JRE/JDK the location of the rgsolve classes

and allows you to call them from any Java program on your machine. Settings the classpath varies from

system to system, and your best bet is to search the internet for specific instructions for your system.

For example, on a Windows 7 machine, go to

Control Panel → System → Advanced System Settings → Advanced → Environment Variables
Under User Variables, click New, and enter

Variable Name: classpath
Variable Value: .;< absolute location of rgsolve.jar >

Alternatively, if you are using a Java IDE, you can simply add rgsolve to the build path of your project.

5.0.2 The rgsolve Javadocs

At the address

http://www.princeton.edu/∼rkatzwer/rgsolve/doc/

one can find the API specification for the rgsolve package. Almost all of the classes and methods have

Javadoc comments except for the GUI classes in the package rgsolve.components. Using this documen-

tation, an experienced Java programmer should have no trouble using the rgsolve package in his own

projects!

5.1 A simple example to get started!

Below is a simple example of some source code which calls the objects and methods of the rgsolve package

directly.

package edu.princeton.repeatedgames.rgsolve.example;
import edu.princeton.repeatedgames.rgsolve.RGSolution;
import edu.princeton.repeatedgames.rgsolve.RGSolve;
import edu.princeton.repeatedgames.rgsolve.components.SolutionGraph;
import edu.princeton.repeatedgames.rgsolve.games.BimatrixGame;
import edu.princeton.repeatedgames.rgsolve.games.Game;

/**
* A class with some simple examples to get a Java programmer
* started with using the rgsolve package!
*/

public class RGSolveExample {

public static void main(String[] args) {

/* ------------------------------------ *
* Example 1: The Prisoner’s Dilemma *
* ------------------------------------ */

http://www.princeton.edu/~rkatzwer/rgsolve/doc/

5.1 A simple example to get started! Katzwer 23

// Define payoffs and discount rate
double[][] G1 = { { 2, -1},

{ 3, 1} };
double[][] G2 = { { 2, 3},

{-1, 1} };

double discount = .5;

// Instantiate the game
BimatrixGame pdgame = new BimatrixGame(

G1, G2, discount, null, "The The Prisoner’s Dilemma"
);

// Instantiate the solver for this game which will use
// the default parameters, and print output to the console
RGSolve rgsolve = new RGSolve(pdgame);

// Solve the game and store the solution
RGSolution pdsoln = rgsolve.solveGame();

// create a solution panel to view the solution
// to the game
SolutionGraph.showSolutionPanel(pdsoln);

/* ------------------------------------ *
* Example 2: A Bertrand Game *
* ------------------------------------ */

// instantiate an anonymous class for our Bertrand game
int m1 = 100, m2 = 100;
double discount2 = .5;
final double A = 10, B = 2; // Q = A - B * P
final double MC = .5; // marginal cost

/**
* A simple perfect-substitutes duopoly Bertrand game with
* demand function Q = A - B * P and marginal cost MC
*/
Game bertrand = new Game(m1, m2, discount2, "100x100 Bertrand") {

/** payoffs for player 1 */
@Override
public double payoff1(int a1, int a2) {

double p1 = A / B * a1/(m1()-1);
double p2 = A / B * a2/(m2()-1);
if(p1 > p2)

return 0;
else {

double Q = Math.max(A - B * p1, 0);
if(p1 == p2)

return Q / 2 * (p1 - MC);
else

return Q * (p1 - MC);

5.1 A simple example to get started! Katzwer 24

}
}

/** payoffs for player 2 */
@Override
public double payoff2(int a1, int a2) {

double p1 = A / B * a1/(m1()-1);
double p2 = A / B * a2/(m2()-1);
if(p2 > p1)

return 0;
else {

double Q = Math.max(A - B * p2, 0);
if(p2 == p1)

return Q / 2 * (p2 - MC);
else

return Q * (p2 - MC);
}

}
};

// Instantiate the solver for this game which will use
// the default parameters, and print output to the console
rgsolve = new RGSolve(bertrand);

// Solve the game and store the solution
RGSolution bertrandSoln = rgsolve.solveGame();

// create a solution panel to view the solution
// to the game
SolutionGraph.showSolutionPanel(bertrandSoln);

}
}

Katzwer 25

6 The rgsolve MATLAB Wrapper

rgsolve is best utilized via the GUI launched from rgsolve.jar, or calling the package directly from your own

Java project (as was discussed in section 5).8 However, since MATLAB is a common programming enviroment

in economics, rgsolve comes with some limited MATLAB capabilities. Including in the rgsolve.zip file

are two MATLAB files:

JavaRGSolve.m
JavaRGSolveExample.m

The first file is a MATLAB class that encapsulates the rgsolve Java package. The second file is a MATLAB

script giving an example of how to use the JavaRGSolve class. For these to work, these files must be in the

same directory as the file rgsolve.jar, as they import this package into MATLAB. 9

The best way to get a feel for these classes is to read the documentation included in the source code. To use

them right away though, all you need to do is the following:

% Instantiate a solver object
solver = JavaRGSolve();
% Solve a game
solver.solve(G1, G2, delta);

The payoff matrices G1 and G2 should be double matrices of the same dimension, and the discount factor

delta should be a scalar in (0, 1). So for trivial example, we generate a random symmetric game

G1 = rand(5,5); G2 = G1’; delta=.8;

Calling the method solve(.) will construct a BimatrixGame Java object, pass it to the RGSolve Java class.

The method returns an RGSolution Java object10 and displays a GUI for exploring the game solution.

From approximate to exact solutions. The MATLAB wrapper is convenient for finding exact solutions

for V ∗ (from approximate solutions, as described in Abreu-Sannikov 2013). We can simply call the command

% Get the exact solution using Matlab’s symbolic solver
Vstar = solver.getExactSolution(solution)

If the MATLAB symbolic solver is succesful, the variable Vstar should contain an exact algebraic description

of the extreme points of V ∗.11

8Using rgsolve through MATLAB requires that games be stored as matrices. This may not be the most efficient way to
store the games, particularly if payoffs are generated according to some rule (i.e. a Cournot game).

9Alternatively, one can use the command

javaaddpath(’<path to rgsolve.jar> /rgsolve.jar’);

to load the package if it is not in the same directory as your MATLAB application.
10See http://www.princeton.edu/∼rkatzwer/rgsolve/doc/index.html
11MATLAB may fail and give a numerical solutions; the Mathematica equation solver is better for this in my experience.

http://www.princeton.edu/~rkatzwer/rgsolve/doc/index.html

Katzwer 26

7 Acknowledgments

I wrote all of the Java code in rgsolve, with the following exceptions:

• The RowNumberTable class written by Rob Camick and can be accessed here online at

http://tips4java.wordpress.com/2008/11/18/row-number-table/.

(This provides the column of row-headers in the JTables of game payoffs.)

• Richard Katzwer adapted a C++ implementation of Andrew’s Monotone Chain Algorithm from the

website The Algorithmist, and the original C++ code can be found at

http://www.algorithmist.com/index.php/Monotone_Chain_Convex_Hull.cpp.

The rgsolve version implements some robustness checks on the hull output in the flavor of the papers

on robust 2D orientation problem papers by Katsuhisa Ozaki, Takeshi Ogita, Siegfried Rump, Shinichi

Oishi, and others.

• The routines which allow games to be saved and opened as .mat files are thanks to classes in the

JMatIO package, written by Wojciech Gradowski, and can be downloaded at

http://sourceforge.net/projects/jmatio/ 12

• The routines which allow user-defined payoff rules to be compiled and loaded onto the class path dy-

namically use code written by Morten Nobel, which can be found at

http://blog.nobel-joergensen.com/2008/07/16/using-eclipse-compiler-to-create-dynamic-java-objects-2/
This itself uses the the free Eclipse compiler, ecj.jar, which can be found at

http://download.eclipse.org/eclipse/downloads/ 13

• The code which computes rational approximations to double is based in part on C code which can be

found at

http://shreevatsa.wordpress.com/2011/01/10/not-all-best-rational-
approximations-are-the-convergents-of-the-continued-fraction/

• The look-and-feel of the rgsolve program is the TinyLaF Java look-and-feel, which was written by

Hans Bickel and can be found at

http://www.muntjak.de/hans/java/tinylaf/index.html 14

• Some of the rgsolve plotting classes use JAMA: A Java Matrix Package, which can be found at

http://math.nist.gov/javanumerics/jama/ 15

12License: Copyright (c) 2006, Wojciech Gradkowski All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following

conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
* Neither the name of the JMatIO nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

13License: http://www.eclipse.org/legal/epl-v10.html
14License: http://www.gnu.org/licenses/lgpl.html
15Copyright Notice: This software is a cooperative product of The MathWorks and the National Institute of Standards and

Technology (NIST) which has been released to the public domain. Neither The MathWorks nor NIST assumes any responsibility
whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any
other characteristic.

http://tips4java.wordpress.com/2008/11/18/row-number-table/
http://www.algorithmist.com/index.php/Main_Page
http://www.algorithmist.com/index.php/Monotone_Chain_Convex_Hull.cpp
http://sourceforge.net/projects/jmatio/
http://blog.nobel-joergensen.com/2008/07/16/using-eclipse-compiler-to-create-dynamic-java-objects-2/
http://download.eclipse.org/eclipse/downloads/
http://shreevatsa.wordpress.com/2011/01/10/not-all-best-rational-approximations-are-the-convergents-of-the-continued-fraction/
http://shreevatsa.wordpress.com/2011/01/10/not-all-best-rational-approximations-are-the-convergents-of-the-continued-fraction/
http://www.muntjak.de/hans/java/tinylaf/index.html
http://math.nist.gov/javanumerics/jama/

Katzwer 27

Katzwer 28

References

Abreu, D., Pearce, D., and Stacchetti, E. (1990) ”Toward a Theory of Discounted Repeated Games with

Imperfect Monitoring”. Econometrica, Vol. 58, pp. 1041-1063.

http://www.jstor.org/stable/2938299

Abreu, D., Sannikov, Y. (2013) ”An Algorithm for Two Player Repeated Games with Perfect Monitoring”.

Theoretical Economics (Forthcoming)

http://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/1302/8114/1

http://www.jstor.org/stable/2938299
http://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/1302/8114/1

	1 Introduction
	2 Quick-Start Guide
	3 Using the rgsolve GUI
	4 Writing, Saving and Loading Games
	5 The rgsolve API
	6 The rgsolve MATLAB Wrapper
	7 Acknowledgments

