
Theoretical Economics 9 (2014), 313–338 1555-7561/20140313

An algorithm for two-player repeated games
with perfect monitoring

Dilip Abreu
Department of Economics, Princeton University

Yuliy Sannikov
Department of Economics, Princeton University

Consider repeated two-player games with perfect monitoring and discounting.
We provide an algorithm that computes the set V ∗ of payoff pairs of all pure-
strategy subgame-perfect equilibria with public randomization. The algorithm
provides significant efficiency gains over the existing implementations of the al-
gorithm from Abreu et al. (1990). These efficiency gains arise from a better under-
standing of the manner in which extreme points of the equilibrium payoff set are
generated. An important theoretical implication of our algorithm is that the set of
extreme points E of V ∗ is finite. Indeed, |E| ≤ 3|A|, where A is the set of action
profiles of the stage game.

Keywords. Repeated games, perfect monitoring, computation.

JEL classification. C63, C72, C73.

1. Introduction

The paper develops a new algorithm for computing the set of subgame-perfect equilib-
rium payoff vectors in repeated games with finitely many actions, perfect monitoring,
discounting, and public randomization. This is a very classical setting, which serves as a
basis for many applications. Nevertheless, our results suggest that significant improve-
ments in existing computational procedures can be obtained from a better understand-
ing of the structure of equilibria, especially the generation of extreme equilibrium payoff
vectors. Besides describing a faster computational algorithm, we also provide a publicly
available implementation of our algorithm, which should be useful both to researchers
trying to understand the impact of changes in underlying parameters on equilibrium
possibilities and to students seeking to develop an understanding of dynamic games
and how they “work.”

Dilip Abreu: dabreu@princeton.edu
Yuliy Sannikov: sannikov@princeton.edu
We are very grateful to Benjamin Brooks, Rohit Lamba, and Richard Katzwer for excellent research assis-
tance. Brooks and Lamba wrote the initial programs that implement our algorithm. Subsequently Brooks
has been responsible for further development of the Matlab programs and the user interface with input
from the authors, and Katzwer wrote the stand-alone Java implementation. We would also like to thank
a co-editor and anonymous referees. Abreu acknowledges financial support from the National Science
Foundation. Sannikov acknowledges financial support from the Alfred P. Sloan Foundation.

Copyright © 2014 Dilip Abreu and Yuliy Sannikov. Licensed under the Creative Commons Attribution-
NonCommercial License 3.0. Available at http://econtheory.org.
DOI: 10.3982/TE1302

http://econtheory.org/
mailto:dabreu@princeton.edu
mailto:sannikov@princeton.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://econtheory.org/
http://dx.doi.org/10.3982/TE1302
http://creativecommons.org/licenses/by-nc/3.0/


314 Abreu and Sannikov Theoretical Economics 9 (2014)

Prior work on this topic has as its starting point the algorithm suggested by Abreu
et al. (1990), hereafter APS. This is true of the approach presented here also. The APS
algorithm works iteratively, starting with the set of feasible payoffs of the stage game
W 0. The set of subgame-perfect equilibrium payoffs V ∗ is found by applying a set oper-
ator B to W 0 iteratively until the resulting sequence of sets W 0�W 1� � � � �W n+1 = B(W n)

converges. For a payoff set W , the operator B(W ) gives the set of payoffs that can be
generated through some action profile a in the current period and using continuation
values from W in the next period, while respecting all incentive constraints.

A classic paper by Judd et al. (2003) (to which we refer frequently below as JYC) pro-
vides a numerical implementation of the APS algorithm based on linear programming
problems. Each set W n is approximated by its supporting hyperplanes. Such an approx-
imation can be defined by a set of linear inequalities, for a fixed number of directions,
that the points of W n must satisfy. The JYC implementation solves a set of linear pro-
gramming problems, one for each action profile, to find the supporting hyperplane of
the set W n+1 for each direction.

Rather than implementing the APS algorithm directly, we simplify it using a better
understanding of how the extreme points of the equilibrium payoff set V ∗ are generated.
It turns out that any extreme point of V ∗ can be generated either by (i) an infinite rep-
etition of some action profile a on the equilibrium path or (ii) some action profile a in
the current period and a vector of continuation payoffs for the next period such that the
incentive constraint of at least one of the players is binding. In the former case, profile
a generates a single extreme point of V ∗. In the latter case, profile a generates at most
four extreme points, all with a constraint of at least one player binding.

While the structure of the set V ∗ is fairly simple, the generation of the set W n+1 =
B(W n) by the APS algorithm can be fairly complicated. Each action profile a can poten-
tially generate very many extreme points of the set W n+1. We modify the APS algorithm
by introducing a stronger set operator that keeps at most four points that correspond
to each action profile a by focusing on binding incentive constraints. Keeping at most
four points per action profile speeds up the algorithm and allows us to represent payoff
sets via their extreme points, rather than supporting hyperplanes. Clearly, because our
algorithm is based on a stronger operator than B, it cannot converge to a set larger than
V ∗. We are also able to show that the sequence of sets we generate contains V ∗ and,
therefore, it must converge to V ∗.

We compare the running time of our algorithm to that of JYC both theoretically, and
experimentally. Theoretically, the JYC algorithm takes considerably more time to per-
form one iteration than our algorithm. In practice, our algorithm also runs significantly
faster than that of JYC. See Section 5 for details.

The most that one could hope for in this endeavor is to, in fact, be able to solve for the
equilibrium value set analytically. A novel feature of our work is that we are indeed able
to obtain analytical solutions by exploiting what the algorithm reveals about the limit
equilibrium structure. This allows us to write down a set of simultaneous equations (in
the coordinates of the extreme points of V ∗) that may be solved to obtain the extreme
points analytically in terms of the underlying payoffs of the stage game. This is discussed
in Section 6.



Theoretical Economics 9 (2014) Two-player repeated games 315

This paper is organized as follows. Section 2 reviews background information on re-
peated games and the APS algorithm. Section 3 presents our algorithm together with a
proof of convergence. Section 4 presents several computed examples and compares our
algorithm with that of JYC. Section 5 discusses methods to evaluate numerical errors,
including inner approximations that generate a lower bound on V ∗ and (as discussed
above) methods to solve for the vertices of V ∗ analytically. A stand-alone implementa-
tion of our algorithm with a convenient graphical user interface is available online at
www.princeton.edu/econtheorycenter/research-links/dynamic-games-algorithm/.1

2. The setting and background

Consider a two-player repeated game with simultaneous-move stage game G =
{N�(Ai)i∈N� (gi)i∈N}, in which players N = {1�2} have a common discount factor δ < 1.
The players observe each other’s actions after each repetition of the stage game. Our ob-
jective is to construct an algorithm to compute the set V ∗ of payoff pairs achievable in
pure-strategy subgame-perfect equilibria of the repeated game with public randomiza-
tion. The set V ∗ is the largest compact self-generating set (see Abreu et al. 1986, 1990).2

To formalize this concept, for any action aj ∈ Aj , denote by

gi(aj)= max
ai

gi(ai� aj)

the maximal one-period payoff that player i can get in response to aj . Let hi(a) =
gi(aj)−gi(a). For any compact set X ⊂R2, denote the worst punishment for each player
i by

Pi(X) = min{xi | (x1�x2) ∈X for some xj}�

Definition 1. A point v is generated by the set X if there is an action pair a ∈ A in the
current period and a pair of continuation values w ∈X such that

v = (1 − δ)g(a)+ δw (adding up)
δ(w − P(X)) ≥ (1 − δ)h(a) (IC)

A set X is called self-generating if each extreme point of X can be generated by X .

The incentive constraints (IC) guarantee that each player prefers to follow her equi-
librium action rather than to deviate and receive her worst equilibrium punishment. In
what follows, we denote the worst punishments from the set V ∗ by v = P(V ∗). APS pro-
pose an algorithm to compute the set V ∗, which is based on the operator B defined as

B(W ) = co
{
v | ∃w ∈W�a ∈A s.t. v = (1 − δ)g(a)+ δw and δ(w − P(W )) ≥ (1 − δ)h(a)

}
�

1The portion of the implementation devoted to analytical solutions uses Mathematica in addition. A zip
file of the program is also available in a supplementary file on the journal website, http://econtheory.org/
supp/1302/supplement.zip.

2The straightforward adaptation of the original APS framework to the simpler setting of perfect monitor-
ing environments appears in Cronshaw and Luenberger (1994), and in teaching notes and problem sets of
the original authors. See Mailath and Samuelson (2006) for an excellent general exposition of discrete-time
repeated games.

http://www.princeton.edu/econtheorycenter/research-links/dynamic-games-algorithm/
http://econtheory.org/supp/1302/supplement.zip
http://econtheory.org/supp/1302/supplement.zip


316 Abreu and Sannikov Theoretical Economics 9 (2014)

APS also show that the operator B is monotonic, that is, for any two sets W ⊆ W ′,

B(W ) ⊆ B(W ′)�

The APS algorithm starts with a (bounded) convex set W 0 that clearly contains V ∗, and
applies operator B infinitely many times. Defining recursively W n = B(W n−1), APS show
that

W n → V ∗ as n → ∞�

If B(W 0) ⊆ W 0, then the monotonicity of operator B implies that V ∗ ⊆ · · · ⊆ W n ⊆
W n−1 ⊆ · · · ⊆ W 0. One such possible starting point for the iterative algorithm is the
convex hull of all feasible payoffs,

W 0 = co{g(a) | a ∈A}�

3. A theoretical result

We present here a basic result on how extreme points are generated. An immediate im-
plication is that the number of extreme points of V ∗ is finite, in fact, at most 4|A|, where
|A| is the number of stage game action profiles. This result is of theoretical interest. It
also motivates the algorithm that we develop below.

To understand our approach, one needs a detailed mechanical understanding of the
operator B. It is useful to “break down” the operator B as follows: for an action profile a

and a threat point u ∈ R2, denote by Q(a�W �u) the intersection of the quadrant

{w ∈R2 | δ(w − u) ≥ (1 − δ)h(a)}
with the set W . To compute B(W ), one takes the linear combination

Ba(W )= (1 − δ)g(a)+ δQ(a�W �P(W ))

and finds the convex hull of the union of Ba(W ) over all action profiles a. This procedure,
which yields B(W ), is illustrated in Figure 1.

Since each set Ba(W ) could have as many vertices as the set W itself (or more), the
number of vertices that the sets of the sequence {W n} have could potentially grow with-
out bound. Hence, the APS algorithm does not yield a bound on the number of extreme
points of V ∗. However, the following theorem does lead to such a bound, by specifying
a limited number of ways in which extreme points of V ∗ can be generated.

Theorem 1. Any action profile a such that g(a) ≥ v + (1 − δ)/δh(a) generates at most
one extreme point of V ∗, v = g(a). Any action profile for which

g1(a) < v1 + 1 − δ

δ
h1(a) or g2(a) < v2 + 1 − δ

δ
h2(a)

generates at most four extreme points of V ∗, using continuation payoff vectors w that are
extreme points of Q(a�V ∗� v) such that

δ(w1 − v1) = (1 − δ)h1(a) or δ(w2 − v2) = (1 − δ)h2(a)�



Theoretical Economics 9 (2014) Two-player repeated games 317

Figure 1. The construction of the operator B(W ).

The proof follows directly from a stronger Theorem 2 below.
Abreu (1986) has results with this flavor (see especially Lemma 44) in the special

setting of continuous action repeated Cournot games.
In the finite setting of the current paper Theorem 1 has a significant theoretical im-

plication of independent interest: the number of extreme points of V ∗ is at most 4|A|,
where |A| is the number of stage game action profiles. In this setting, it was not even
known (as far as we are aware) that the number of extreme points is finite. For instance,
as noted above, the APS algorithm does not yield this conclusion.

In fact, this bound can be tightened to 3|A| extreme points; see Theorem 4 in the
Appendix.

The reader may wonder whether a similar bound holds for games with three or more
players. It is still true that each action profile a generates either a single payoff profile
g(a) or possibly several payoff profiles, each with a payoff of vi+(1−δ)/δhi(a) for at least
one player i who has a binding incentive constraint. However, for three or more players,
this fact alone does not produce a bound on the number of extreme points of V ∗.

4. Our algorithm

We develop an algorithm for computing the set V ∗ that is related to the APS algorithm,
but happens to be more efficient and simpler to program. As noted earlier, the num-
ber of vertices of the sets of the APS sequence {Bn(W 0)} could potentially grow without
bound, making computation difficult. We propose a simpler computational procedure,
which is faster and more parsimonious.

Motivated by the theoretical results above, we focus on points produced by the APS
algorithm, which are generated with one of the constraints binding or attained by re-
peated play of a particular action profile. Specifically, our algorithm makes use of the
operator R(W �u) defined below.



318 Abreu and Sannikov Theoretical Economics 9 (2014)

Definition 2. For an action profile a, a convex set W , and a punishment vector u, de-
fine C(a�W �u) = {g(a)} if

δ(g(a)− u) ≥ (1 − δ)h(a)�

and otherwise let C(a�W �u) be the set of extreme points of Q(a�W �u) such that

δ(w1 − u1)= (1 − δ)h1(a) or δ(w2 − u2)= (1 − δ)h2(a)�

Let

R(W �u) = co
⋃
a∈A

(1 − δ)g(a)+ δC(a�W �u)�

Figure 2 illustrates the relationship between the sets Q(a�W �u) and C(a�W �u). Note
that C(a�W �u) picks up at most four points of the set Q(a�W �u).

Note that by Theorem 1, V ∗ = R(V ∗� v). Our algorithm is based on successive appli-
cations of the operator R. The decisive advantage of this operator is that for any a ∈ A,
whereas B takes account of all extreme points of Q(a�W �u), our operator R considers
at most four extreme points. At each iteration, there are fewer computations and the set
generated is smaller than under the operator B. This advantage is, of course, cumulative.
Whereas the nth application of the APS operator B might yield a set with |A|n+1 extreme
points, our algorithm yields a set with at most 4|A| extreme points at every round.

Why does this approach work? There are many potential problems. The most ob-
vious and primary one is that the operator R may discard too much. Of course, Theo-
rem 1 offers some hope that this might not be the case.3 Furthermore, what guarantees
convergence? This is indeed potentially problematic because R does not necessarily
generate a monotone sequence. The precise specification of our algorithm (in particu-
lar, the inductive definition of un+1) finesses this issue, although it does not guarantee
monotonicity.

We suggest the following algorithm:
Step 1. Start with a convex set W 0 that contains the set V ∗ and a vector u0 ∈ R2 such

that u0 ≤ P(V ∗).
Step 2. Inductively compute W n =R(W n−1�un−1) and denote

un = max(un−1�P(W n))�

Then W n contains some, but usually not all, points generated by W n−1, that is,
W n ⊆ B(W n−1). Moreover, the threats un defined inductively are potentially weaker than
P(W n). Inductively, it follows that W n ⊆ Bn(W 0) (see Lemma 5). Since the sequence
{Bn(W 0)} converges to V ∗ as n → ∞, it follows immediately that W n also converges to
V ∗ if we can show that V ∗ ⊆ W n for all n. In that case, the sequence {W n} would be
squeezed between {Bn(W0)} and V ∗, and the algorithm works.

3It is only suggestive because it is a property of V ∗ and not, in the form stated in Theorem 1, related to
any sets that we might encounter in the process of computing V ∗.



Theoretical Economics 9 (2014) Two-player repeated games 319

Figure 2. The relationship between the sets Q(a�W �u) and C(a�W �u).

Of course, given our analysis so far, there is no guarantee yet that W n contains V ∗
for all n. All we have so far is crude intuition, motivated by Theorem 1, that the operator
R(W n−1�un−1) keeps only essential points and discards points that would be eventually
eliminated by the APS algorithm. How do we establish that each element W n of the
sequence produced by the algorithm contains V ∗?

It turns out that while the operator R(W �u) is monotonic in W , it is not monotonic
in u.4 Therefore, inductively V ∗ ⊆W n−1 and v ≥ un−1 do not imply that V ∗ =R(V ∗� v) ⊆
R(W n−1�un−1). To make the inductive argument work, as an intermediate step, we de-
fine sets V (u) that contain V ∗ whenever u≤ v, and prove by induction on n that

V (un)⊆ W n and un ≥ v

for all n. We proceed now to the details.

4The operator R(W �u) does not have to be monotonic in u because coC(a�W �u) is not monotonic in u.
For severe threats u, C(a�W �u) consists of a single point {g(a)}. As the threat weakens, C(a�W �u) consists
of multiple points. Even after that, coC(a�W �u) is nonmonotonic because it does not contain the entire
set Q(a�W �u). Any point of Q(a�W �u) becomes an element of C(a�W �u′) for some u′ ≥ u.



320 Abreu and Sannikov Theoretical Economics 9 (2014)

Definition 3. Denote by B(W �u) the set of points generated by a set W ⊆ R2 using the
threats given by u ∈R2, that is,

B(W �u) = co
⋃
a∈A

(1 − δ)g(a)+ δQ(a�W �u)�

Let V (u) denote the largest bounded self-generating set under B(·�u) (i.e., such that
V (u) ⊆ B(V (u)�u)).

Since B(·�u) is monotonic in its first argument, it follows directly from definitions
that the union of all self-generating sets is self-generating and that V (u) = B(V (u)�u).
Since stronger threats relax the incentive constraints, we have the following lemma,
which implies that V ∗ ⊆ V (u) whenever u≤ v.

Lemma 1. If u ≤ u′, then V (u′) ⊆ V (u).

The proof follows directly from definitions.
Moreover, it turns out that any extreme point of the set V (u) is generated by some

action profile a with continuation payoff vector from C(a�W �u), as shown in Theorem 2
below.

Theorem 2. We have V (u)= R(V (u)�u).

Proof. We need to show that if v ∈ V (u) is an extreme point generated with the action
profile a ∈A and continuation value w ∈ V (u), then w ∈ C(a�V (u)�u). First, if g(a) ≥ u+
(1 − δ)/δh(a), then g(a) ∈ V (u). Since v = (1 − δ)g(a) + δw, it follows that v = w = g(a)

or else v cannot be an extreme point of V (u) (since w is also in V (u)).
Otherwise, g1(a) < u1 + (1 − δ)/δh1(a) or g2(a) < u2 + (1 − δ)/δh2(a) and so v �= w

(see Figure 3). Since v is extreme, w must be an extreme point of Q(a�V (u)�u). Note that
also [w�v] ≡ {w′ | w′ = λw + (1 − λ)v�λ ∈ [0�1]} ⊆ V (u). Now, if the incentive constraints
are slack, that is, w > u + (1 − δ)/δh(a), then (w�v] ∩ Q(a�V (u)�u) �= ∅. Consider w′ ∈
(w�v] ∩ Q(a�V (u)�u) and let z = (1 − δ)g(a) + δw′ ∈ V (u). Then v = λw + (1 − λ)z for
some λ ∈ (0�1) and so v is not extreme, a contradiction. It follows that w is an extreme
point of Q(a�V (u)�u) such that wi = ui + (1 − δ)/δhi(a) for i = 1 or 2, that is, one of the
two incentive constraints is binding. Therefore, w ∈ C(a�V (u)�u) in this case as well. �

It is also useful to note that R is increasing in its first argument.

Lemma 2. The function R(·�u) is increasing in its first argument.

Proof. Note that for all a, coC(a�W �u) is increasing in W . Therefore,

co{(1 − δ)g(a)+ δC(a�W �u)}
is increasing in W and R(W �u) is increasing in W by the definition of R(W �u). �

The following lemma presents the main inductive argument.



Theoretical Economics 9 (2014) Two-player repeated games 321

Figure 3. The proof of Theorem 2: the case of g1(a) < u1 + ((1 − δ)/δ)h1(a).

Lemma 3. If V ∗ ⊆ V (un−1) ⊆W n−1 and un−1 ≤ v, then un ≤ v and V ∗ ⊆ V (un) ⊆W n.

Proof. By definition, un ≥ un−1. It follows from Lemma 1 that V (un) ⊆ V (un−1).
Since V (un−1) ⊆W n−1, it follows from Lemma 2 that

R(V (un−1)�un−1)⊆ R(W n−1�un−1)�

The left hand side is V (un−1) (contains V (un)) by Theorem 2. The right hand side is W n

by definition. Therefore, V (un)⊆ W n.
Since V ∗ ⊆ V (un−1) ⊆ W n and un−1 ≤ v, we have un = max(un−1�P(W n)) ≤ v.

Hence, Lemma 1 implies that V ∗ ⊆ V (un) (which is contained in W n by the previous
paragraph). �

Letting u0 be the vector of pure-strategy minmax payoffs of players 1 and 2, we have
u0 ≤ v and V ∗ ⊆ V (u0) ⊆ W 0, and so Lemma 3 implies that V ∗ ⊆ W n for all n, by induc-
tion on n.

Hence, the sequence W n is squeezed between V (un), which contains V ∗, and
Bn(W 0), which converges to V ∗ by APS. It follows that W n must converge to V ∗ also,
a conclusion that we summarize in Theorem 3.

Theorem 3. We have W n → V ∗ as n→ ∞.

Proof. Lemma 3 implies that V ∗ ⊆ V (un) ⊆ W n. Also, by induction on n, W n ⊆
B(W n−1�un−1) ⊆ B(W n−1) ⊆ Bn(W 0) (see Lemma 5 in the Appendix). This leads to the
desired conclusion. �

That is, our algorithm does indeed yield convergence to V ∗ (despite possible lack of
monotonicity and the fact that it drops points that the APS algorithm includes).5

5In particular, if the set V ∗ is empty, then W n = R(W n−1�un−1) becomes empty at some finite stage n;
a decreasing sequence of closed nonempty sets cannot converge to an empty set. Note that a necessary
condition for V ∗ to be empty is that the stage game have no pure-strategy Nash equilibria.



322 Abreu and Sannikov Theoretical Economics 9 (2014)

5. Implementation, examples, and evaluation

The set V ∗ is naturally described by its extreme points: any extreme point of V ∗ is gener-
ated by some action profile a today and some incentive compatible continuation value
w ∈Q∗(a) tomorrow, where Q∗(a) denotes the set of incentive compatible continuation
values. According to Theorem 1, if g(a) ∈ Q∗(a), then w = g(a). If not, w must be an
extreme point of Q∗(a) at which one or both players’ incentive constraints are binding.
There are at most four such points. Crucially, we were able to show that an algorithm that
mimics these properties of the equilibrium set V ∗ does, in fact, work and yields conver-
gence to V ∗. This yields an important simplification that goes beyond the natural focus
on extreme points of Q∗(a) that is a noteworthy feature of the APS algorithm.

In this section, we start by presenting a simple illustrative example. We then turn to
a comparison of our algorithm with that of Judd et al. (2003) (JYC). To perform a prac-
tical comparison of running times, we use a Cournot duopoly example from JYC and
calculate the equilibrium payoff set with the two algorithms. To perform theoretical
comparisons, we estimate the number of steps that each algorithm takes to run for a
game with a given number of actions per player and for a given level of computational
precision.

Implementation. Because our algorithm exploits our knowledge about the structure
of equilibria, the algorithm also produces output in a form that makes clear not only the
shape of V ∗, but also of the equilibria themselves. As noted in the Introduction, a stand-
alone implementation of our algorithm is available in the supplementary material. Here
the user may input payoffs for any finite two-player game and any discount factor, and
immediately see the solution, the coordinates of the extreme points, how they are gen-
erated, solve for exact solutions (see Section 5), observe, if desired, the iterative steps of
the algorithm, and so on. The reader is invited to explore the algorithm here and solve
their games of choice.

Simple example. We turn now to a simple example that illustrates the algorithm
and its implementation “in action.” The computation of V ∗ and the decomposi-
tion of extreme points and associated diagrams are all taken directly from the im-
plementation discussed above. Consider a Cournot duopoly game with the payoff
matrix

L M H

L 16�9 3�13 0�3
M 21�1 10�4 −1�0
H 9�0 5�−4 −5�−15

In this game, the Nash equilibrium is (M�M), with payoffs (10�4). At the same time,
profiles (L�L), (L�M), and (M�L) all produce a higher sum of payoffs. The minmax
payoffs are 1 for player 1 and 0 for player 2.

Figure 4a shows the set of feasible payoffs and the hexagonal set V ∗ for the discount
factor δ = 0�3. It also illustrates how the extreme point v ∈ V ∗, which maximizes the pay-
off of player 2, is generated using the profile (L�M) with payoffs (3�13). Because player 1



Theoretical Economics 9 (2014) Two-player repeated games 323

Figure 4a. The set V ∗ in the three-by-three Cournot example, δ= 0�3.

has a large deviation payoff, this action profile is enforced using continuation value w,
with a large payoff to player 1. The dashed quadrant in the figure tells us that player 1’s
constraint is binding.

The four small panels of Figure 4b illustrate the generation of five other extreme
points, highlighting the current-period action profile, the continuation value in the
next period, and the binding constraint(s). Interestingly, play on the Pareto fron-
tier involves complex dynamics, in which all three action profiles (L�L), (L�M), and
(M�L) necessarily have to be used on the equilibrium path. For example, the play
of (L�L) requires a continuation value on the line segment, which is generated us-
ing public randomization between profiles (L�M) and (L�L) (see top right small
panel). If the randomization points to (L�M), the continuation value in the follow-
ing period requires public randomization between profiles (L�L) and (M�L) (see Fig-
ure 4a). A play of (M�L) in the following period would be followed by randomiza-
tion between (M�L) and (L�L) (see top left small panel of Figure 4b). Thus, the in-
formation provided in the panels allows us to simulate the evolution of equilibrium
play.

The punishment extreme points of V ∗ are used only after deviations off the equi-
librium path. Note that both punishment points of player 2 are generated by the pro-
file (H�M) with player 2’s constraint binding. Thus, player 2 is indifferent between
taking the equilibrium action or deviating to the best response L. If he does the
latter, he receives his minmax payoff of 0 and receives punishment in the next pe-
riod. From this, we know that the worst equilibrium punishment of player 2 is ex-
actly 0.

In contrast, player 1’s punishment point is generated by the profile (M�H) with
player 2’s constraint binding. Player 1 strictly prefers to participate in his own



324 Abreu and Sannikov Theoretical Economics 9 (2014)

Figure 4b. The set V ∗ in the three-by-three Cournot example, δ= 0�3.

punishment. Therefore, his worst punishment is strictly greater than 1, which is his
best response payoff to action H of player 2, and also his minmax payoff.

In Section 6.1, we discuss how the knowledge of how each extreme point of V ∗ is
generated translates into an exact system of equations for coordinates of these points.
These equations can be often solved analytically.

This game takes 23 iterations (and 0�11 seconds) to solve.

The JYC algorithm and theoretical comparison. The JYC algorithm, in princi-
ple, can be applied to games with more than two players. Below we describe the JYC
algorithm in the context of two-player games.

The JYC algorithm is based on linear programming. Rather than representing sets via
its extreme points, it represents sets by outer approximations via inequalities. A convex
set W is approximated by

{x ∈ �2 | x · hl ≤ cl for all l = 1� � � � �L}�

where hl = (cos(2πl/L)� sin(2πl/L)), L is the number of approximating subgradi-
ents, and cl = maxw∈W w · hl. The JYC algorithm is based on linear programming



Theoretical Economics 9 (2014) Two-player repeated games 325

problems

c′
l(a) = max

w
hl · [(1 − δ)g(a)+ δw]

s.t. (i) w · hl ≤ cl for all l = 1� � � � �L (1)

(ii) (1 − δ)gi(a)+ δwi ≥ (1 − δ)gi(aj)+ δPi(W )�

where the number Pi(W ) itself can be found using linear programming. To find
B(W ), JYC solve (1) for each subgradient, for each action profile a ∈ A. Then they let
c′
l = maxa∈A cl(a) and approximate B(W ) by

{x ∈ �2 | x · hl ≤ c′
l for all l = 1� � � � �L}�

If a game has M action profiles, then the computational complexity of the JYC al-
gorithm per iteration can be estimated as follows. Although the two-dimensional linear
programming problem (1) would run quite fast, it takes at least O(L) steps to solve,
where L is the number of approximating subgradients. Since it has to be solved LM

times during each iteration, the running time of the algorithm is at least O(ML2) per
iteration.

In contrast, to evaluate the complexity of our algorithm, note that after each iter-
ation, the set W n−1 has at most 4M extreme points. In our implementation, we order
the points in such a way that the search for extreme points of each set Q(a�W n−1�un−1)

takes O(log(M)) steps. Since we need to do this for every profile a, the running time
of the algorithm is O(M logM). The JYC algorithm could potentially be faster on
games with a huge number of actions when using relatively few approximating sub-
gradients, that is, M � L. However, approximations via few subgradients could easily
lead the JYC algorithm to converge to a much larger set than V ∗ (although JYC also
propose an inner approximation method to deal with this issue).6 If a large num-
ber of actions is chosen to approximate a continuous action space, it makes sense to
choose L to achieve a similar precision of approximation for the shape of the bound-
ary of V ∗. At the minimum, L should be of O(M1/2), that is, the number of ac-
tions per player. In this case, the running time of the JYC algorithm of O(M2) is
slower than the running time of our algorithm of O(M logM). The difference can be
a lot more significant when the number of subgradients is motivated by the preci-
sion of approximation of V ∗, but the number of actions is finite. As we discuss at
the end of this section, the error of approximating a set of radius R with L subgradi-
ents is about Rπ2/(2L2). For many examples, this motivates values of L much larger
than M .

In addition, unlike our algorithm, the JYC algorithm does not provide direct infor-
mation about the paths of equilibrium play. For each subgradient direction, the JYC
algorithm provides a point that maximizes payoffs in that direction, as well as continua-
tion values used in the following period. However, after that, it is difficult to express the
continuation values as linear combinations of points that can be generated, as the algo-
rithm characterizes the set via subgradients and not extreme points. In contrast, once
our algorithm has converged, each extreme point is generated as a linear combination

6See our discussion of inner approximations in Section 6.2.



326 Abreu and Sannikov Theoretical Economics 9 (2014)

Figure 5. The set V ∗ in the Cournot duopoly game from JYC.

of at most two other extreme points. This provides direct information about the paths
of play and serves as a basis for a procedure to get exact solutions that we describe in
Section 6.1.

Experimental comparison with the JYC algorithm. We borrow a game from JYC:
a Cournot duopoly in which firms face the demand function P = 6 −q1 −q2, and receive
payoffs q1(P − 0�6) and q2(P − 0�6) (that is, c1 = c2 = 0�6). The set of actions of each firm
is the interval [0�6], discretized to include 15 evenly spaced points. That is, altogether
the game has 152 = 225 action profiles, which could result in a nontrivial computation
time. The discount factor is set at δ= 0�8.

Figure 5 presents the set V ∗. The algorithm with an error threshold of 0�0001 (in
Hausdorff metric) takes eight iterations and a total run time of 0�34 seconds.

We also performed the same computation using a Fortran implementation of the
JYC algorithm, kindly provided to us by Sevin Yeltekin. These experimental results com-
plement the theoretical analysis above. Certainly, comparisons of implementations in
different programming languages are quite crude, because differences in running times
could be driven by particularities of the language or the implementation, rather than
fundamentals of the algorithm. So reported results should be taken with the under-
standing that there may be many reasons for the differences. In our experiment, the
JYC algorithm with the same error threshold of 0�0001 converged after 48 iterations in
6 minutes 51 seconds.7 The average time per iteration of the JYC algorithm was 8�56 sec-
onds versus 0�043 seconds for our algorithm. The iterations of the JYC algorithm are not
equivalent to those of our algorithm, since the JYC iteration produces somewhat larger

7Following the JYC implementation, we used 72 subgradients to represent sets in the JYC algorithm. See
the description of the algorithm in this section.



Theoretical Economics 9 (2014) Two-player repeated games 327

sets than the APS algorithm, while an iteration of our algorithm produces somewhat
smaller sets. That is why our algorithm converges in fewer steps than the JYC algorithm
in this example. As it happens, our limit set is strictly contained in the JYC limit set (al-
though this would not be obvious on visual inspection!). The following table records our
observations of running times:

JYC AS

Error 10−4 No. of iterations 48 8
Run time 6 min 51 s 0�34 s

Error 2−52 No. of iterations 260 26
Run time 32 min 16 s 1�09 s

In their 2003 paper JYC report a run time of 44 minutes 53 seconds for this example
with L = 72 approximating subgradients and faster running times of 4 minutes 46 sec-
onds and 63 seconds for L= 32 and 16, respectively, using an error threshold of 10−5. We
can estimate the error of approximating a circle of radius R with L subgradients to be
about Rπ2/(2L2). This suggests that the number of approximating subgradients has to
be tailored to the desired precision of calculation. To get an error margin of about 10−5

for the set of radius 3 (see Figure 5), it seems appropriate to use at least 1,000 approxi-
mating subgradients.8

6. Further topics

6.1 From almost convergence to exact solutions

This section combines computational methods with analytical ones in a novel way. This
hybrid approach may well be more widely applicable and is an important component of
the current paper.

Once the algorithm “stops,” the set of extreme points remains fixed and we can ex-
press how each extreme point is generated as a linear combination of at most two other
extreme points. These relationships provide direct information about the paths of equi-
librium play. They also lead to a simultaneous equation system that, in principle, can be
solved exactly. This is particularly simple when the system is linear, as it will frequently
turn out to be.

Suppose the algorithm has almost converged and we, therefore, know (generically)
how many extreme points there are and precisely how they are generated. Let the ex-
treme points be ordered in some convenient way, say clockwise, E1�E2� � � � �EM . Let
m(i) index the extreme point that yields the lowest payoff to player i. There is an action
profile am associated with every extreme point Em. From Theorems 1 and 3, we know
that there are four possibilities:

(i) Neither player’s constraint binds and Em = g(am), where g denotes the stage game
payoff function.

8JYC indicate that they ran their program on a 550 MHz Pentium PC. We ran their program on a 3�4 GHz
machine.



328 Abreu and Sannikov Theoretical Economics 9 (2014)

Figure 6. The case of player 2’s binding constraint.

(ii) Player 2’s constraint binds. This case is depicted in Figure 6.

Recall that hi(a
m) is the (maximal) gain to player i of deviating from ami given that

his opponent plays amj in the stage game. If player 2’s constraint binds, then player 2’s

continuation payoff is w2 =E
m(2)
2 + (1 − δ)/δh2(a

m). Hence,

Em
2 = (1 − δ)g2(a

m)+ δ

(
Em(2)

2 + 1 − δ

δ
h2(a

m)

)
︸ ︷︷ ︸

w2

= (1 − δ)g2(a
m)+ δEm(2)

2 �

The continuation payoff w2 is obtained by public randomization between the ex-
treme points Ek

2 and Ek+1
2 with weights αm and (1 − αm), respectively.

We may solve for αm, where

αmEk
2 + (1 − αm)Ek+1

2 =Em(2)
2 + 1 − δ

δ
h2(a

m) (=w2)�

Furthermore,

Em
1 = (1 − δ)g1(a

m)+ δ[αmEk
1 + (1 − αm)Ek+1

1 ]�

(iii) Player 1’s constraint binds. This case is analogous to (ii) above with the indices 1
and 2 reversed.

(iv) Both constraints bind. Then

Em = (1 − δ)g(am)+ δ

[
u+ 1 − δ

δ
h(am)

]

= (1 − δ)g(am)+ δu� where u≡ (E
m(1)
1 �E

m(2)
2 )�



Theoretical Economics 9 (2014) Two-player repeated games 329

Figure 7. The set V ∗ in the three-by-three Cournot example of Section 5, for δ= 0�4.

This yields a system of simultaneous equations in the unknown Em
i ’s and (in the rel-

evant cases) corresponding αm’s. The equations that correspond to cases (i) and (iv) are
trivial. Some of the type (ii) and (iii) equations will also be simple (in particular, linear)
when Ek

i and Ek+1
i correspond to cases (i) or (iv) above. So linearity might be conta-

gious. In any case, this system of equations does not seem terribly complicated and in
many instances should solve quite easily. This would then yield a kind of “holy grail” (at
least locally): a closed form solution for the set of discounted equilibrium payoffs in a
repeated game.

Such exact solutions are of great interest because they are expressed symbolically
in closed form (in our current implementation, we simply use Mathematica) and may
be used to perform comparative statics with respect to changes in payoffs (driven by
changes in underlying parameters of cost or demand, for instance) in a neighborhood
of the original payoffs. The ability to do this in applied problems is potentially quite
exciting.

We demonstrate this approach with the example introduced earlier, which we now
evaluate with a discount factor δ = 0�4 (which also serves to illustrate the evolution of
the set as the discount factor increases). The algorithm yields the limit set in Figure 7.

The coordinates of the respective extreme points are reported as

(0�43169727312472�2�4)� (6�17267888662042�0)�

(10�15�0)� (20�125�2�4)� (16�9)�

(6�17267888662042�12�0237911118091)�

The equation system that corresponds to the above limit set is also reported as a
final step in our algorithm and we solve this system using Mathematica. Mathematica



330 Abreu and Sannikov Theoretical Economics 9 (2014)

reports the exact solution for the extreme points,
(

3,573 − √
12,520,729

80
�

12
5

)
�

(
4,773 − √

12,520,729
200

�0
)
�

(
203
20

�0
)
�

(
161
8

�
12
5

)
� (16�9)�

(
4,773 − √

12,520,729
200

�
4,277 + √

12,520,729
650

)
�

which agrees with the earlier algorithmic solution up to the 12th decimal place.
Now suppose we replace the payoff pair that corresponds to, say, (M�H) by

(−1 + x�0 + y). The exact solutions obtained by Mathematica are(
3,613 +A(x�y)

80
�

12
5

)
�

(
4,773 +A(x�y)

200
�0

)
�

(
203
20

�0
)
�

(
161

8
�

12
5

)
� (16�9)�

(
4,773 +A(x�y)

200
�

4,277 −A(x�y)

650

)
�

where

A(x�y) = 40x− 195y

−
√

12,520,729 − 217,360x+ 1,600x2 − 1,081,470y − 15,600xy + 38,025y2�

and we have explicit expressions for how the extreme points vary with x and y.

6.2 Inner approximation

Very low error thresholds give one substantial confidence that the true equilibrium value
set V ∗ has been basically attained and it is not obvious to us, as a practical matter, that
one needs further confirmation that V ∗ has been, for all practical purposes, determined.
Nevertheless there is the theoretical possibility of a discontinuity. In response to this
concern JYC suggest performing “inner approximation” to complement their “outer ap-
proximation” of the set.9

In this section, we (i) describe JYC’s inner approximation procedure, (ii) discuss po-
tential problems with the procedure, and (iii) to address the problems, propose a mod-
ification of the JYC procedure based on a new theoretical result (Lemma 4 below). Of
course, the inner approximation procedure is unnecessary in cases where we obtain ex-
act solutions along the lines outlined in the preceding subsection; in those cases, we are
decisively done.

The procedure that JYC suggest works as follows. After running their implementa-
tion of the APS algorithm and almost converging, they “shrink” their final set W n by

9Technically, the set produced by our main algorithm is an outer approximation of V ∗, that is, it con-
tains V ∗.



Theoretical Economics 9 (2014) Two-player repeated games 331

a small amount (such as 2–3%) to obtain a new set W 0. The first step in their proce-
dure entails checking if W 0 ⊆ B(W 0). If it is, they proceed to iteratively compute W n.
However, unlike in the original iteration, which errs on the side of a larger set by ap-
proximating via supporting hyperplanes, here they use an alternative implementation
BI that errs on the side of a smaller set. In particular, given a fixed set of search subgra-
dients {hl� l = 1� � � � �L}, BI(W ) is the convex hull of extreme points of B(W ) that solve
maxx∈R(W ){x · hl | x ∈ B(W )}.

The operator BI is also used initially to test whether W 0 is self-generating. If this
test is passed, it follows directly that W n = BI(W n−1) is an increasing sequence. Conver-
gence is registered when the distance between W n and W n−1 is small, and W n is taken
to be a lower bound on V ∗.

If W 0 ⊆ BI(W 0), then, in a sense, JYC are already done; W 0 is contained in V ∗ and
is, moreover, within (say) 2% of it. The additional steps are less essential and serve to
whittle away at that initial slight shrinkage.

However, a potential difficulty with the starting point of the JYC procedure is that the
initial set W 0 may not be self-generating. Consider, for example, a game with the payoff
matrix

1 2 3

1 400�530 0�−400 1�1
2 1,100�−1,200 0�0 −400�0
3 1�1 −1,200�1,100 530�400

For the discount factor δ = 0�6, the set V ∗ for this game is presented in Figure 8. The
extreme points of V ∗ are

(0�0)� (490�440)� and (440�490)�

Unless the search directions chosen in the JYC algorithm accidentally coincide with
the faces of V ∗, then the outer approximation W n obtained by JYC will have the form
presented in Figure 9.

Depending on the grid of possible search directions and their relation to the true V ∗,
a “slightly” shrunken version10 of W n may or may not be contained in V ∗. If not, such a
W 0 will obviously not self-generate.11

10We “shrink” a convex set C with a finite number of extreme points as follows. Let e denote the arith-
metic average of the set of extreme points. Then for every extreme point e of C, we define a new extreme
point e′ = αe+ (1 −α)e, where α is the shrinkage factor. Our shrunken set C ′ is the convex hull of the e′s. In
the example, we use α = 0�02.

11In their footnote 11, JYC (p. 1246) suggest that in such a situation, one might define W 0 to be the set
of payoffs obtainable using simple subgame-perfect strategies such as those that prescribe constant action
profiles and Nash reversion in the event of deviation. In the example above, the only such equilibrium
strategy is playing the Nash equilibrium always and the inner approximation this yields will be W 0 = {(0�0)}
itself.



332 Abreu and Sannikov Theoretical Economics 9 (2014)

Figure 8. A narrow set V ∗ for δ= 0�6.

Figure 9. Outer approximation with 32 search hyperplanes.

Remark. The difficulty here is that there are spurious extreme points that do not get
shrunken away. An easy fix to this problem is to specify W 0 by shrinking BI(W n−1) rather
than the larger set BO(W n−1)≡ W n.

However, even when we modify the JYC procedure as above, it is not the case that
“generically” W 0 � B(W 0). There is a more subtle difficulty also illustrated by the same
example.



Theoretical Economics 9 (2014) Two-player repeated games 333

Figure 10. An example in which the set W 0 does not supergenerate.

Let us shrink V ∗ by 2% to obtain W 0. Then as shown in Figure 10, W 0 � B(W 0).
Hence, W 0 � BI(W 0). Note that there is nothing nongeneric about this example. Slight
perturbations of payoffs or the discount factor do not affect the conclusion.

The example demonstrates that there is no presumption that a slightly smaller set
than V ∗ will necessarily expand in all directions in one round of application of the B

(or related) operator(s). Intuitively, the difficulty is that there are many interdependent
extreme points and the initial movement in some may be large relative to others. One
cannot be assured of initial containment followed by a monotonic process of expansion.
Unfortunately, JYC inner approximation only “launches” if W0 ⊆ B(W0).12 We suggest
an alternative procedure that is also based on slight initial shrinkage but bypasses the
(possibly overly stringent) JYC test. Our starting point is the reasonable expectation that
successive applications of the operator within a “basin of attraction” of V ∗ will get close
to V ∗ and, therefore, eventually contain the initial slightly shrunken set. But how does

12As noted earlier, if JYC launches from a slightly shrunken set, the procedure is somewhat redundant;
“slight” shrinkage is reduced to “slighter” shrinkage. On the other hand, if W0 is much smaller than V ∗,
then there is the danger that inner approximation converges to a fixed point of B that is distinct from (and
smaller than) V ∗. Footnote 11 provides an extreme example.



334 Abreu and Sannikov Theoretical Economics 9 (2014)

Figure 11. Sets W 0 and W m in our inner approximation procedure.

one convert this eventual containment into a sufficient condition for a legitimate inner
approximation?

The following new lemma provides an answer; it generalizes the self-generation re-
sult of APS.

Lemma 4. Suppose X ⊆R2 is compact and let Y ≡ ⋃m
k=1 B

k(X). If X ⊆ Y , then

Y ⊆ B(Y) ⊆ V ∗�

Proof. We first argue that Y ⊆ B(Y). That B(Y) ⊆ V ∗ then follows directly from self-
generation. Suppose y ∈ Bk(X), k = 2� � � � �m. Then (by definition) y ∈ B(Bk−1(X)) ⊆
B(Y) (since B is a monotone operator). Finally, if y ∈ B1(X), then y ∈ B(Y) since X ⊆ Y

by assumption. �

Motivated by Lemma 4 and the preceding discussion, we propose the following inner
approximation procedure (where the sets W n now are taken to denote the sets obtained
iteratively by our algorithm).

Step 1. Shrink W n slightly to obtain W 0.
Step 2. Apply our operator R to W 0 to obtain W 1 and proceed to define W 2�W 3� � � �

inductively until convergence at W m.
Step 3. Check if W 0 ⊆ W m. If so,

⋃m
k=1 W k ⊆ V ∗. In particular, W m is an inner ap-

proximation of V ∗.
Applying this procedure to our example, we find that we obtain convergence to

within 10−6 in 0�0847 seconds and in 31 iterations.
Furthermore, W 0 ⊆ W m as required. As can be seen in Figure 11, W m is visually

indistinguishable from W 0.
In terms of the above schema, one could replace the operator R in Step 3 with the

JYC inner approximation operator even when W 0 � B(W 0). (As noted above, we would
define W 0 by shrinking BI(W n−1) rather than BO(W n−1) as JYC do.)



Theoretical Economics 9 (2014) Two-player repeated games 335

We have argued above and demonstrated by example that an inner approximation
procedure based on an initial condition W 0 ⊆ B(W 0) might “fail to launch.” Fortunately,
the new Lemma 4, suggests a way out of this difficulty and provides the needed theoret-
ical foundation for the approach we suggest.

7. Conclusion

In the context of two-player finite action repeated games with perfect monitoring, we
developed a new algorithm for computing the set of pure-strategy subgame-perfect
equilibrium payoffs. Compared to the well known algorithm of JYC, ours appears to be
remarkably quick; indeed over 1,000 times quicker (6 minutes 51 seconds versus 0�34 sec-
onds) in the Cournot example featured in JYC. Our algorithm is inspired by a theoretical
result of independent interest: any action profile a can generate at most four extreme
points. The most one could hope for from a computational perspective are closed form
expressions (“exact” solutions) for the set of extreme points. We demonstrate how, in
many cases, this is attainable. We complement our “exact” approach with a new inner
approximation procedure that is also quick and finesses some potential difficulties with
the approach to inner approximation pioneered by JYC. Finally, we have made avail-
able on the web a user friendly implementation of our algorithm, which is available in
the supplementary material. This provides a very accessible way for students and re-
searchers to investigate the equilibrium value sets of two-player repeated games, to see
their structural properties in terms of generation via actions today and continuation val-
ues, to solve for exact solutions, perform inner approximations, and so on. We note that
our algorithm exploits the particular geometry of two-player games. The JYC method, on
the other hand, is quite general and can be directly applied to games with three or more
players. It is unclear at this point whether this leads to computation in reasonable time
frames for games with three or more players, because of the “curse of dimensionality”
that arises under the JYC approach.

The key to our approach was to develop a finer understanding of how extreme points
are generated and, in particular, to determine which incentive compatible continuation
values could possibly generate extreme points. In the environment considered here,
the JYC approach based on solving families of linear programming problems seems un-
necessarily cumbersome and a relatively simple approach based directly on computing
all necessary extreme points at every iteration turns out to be very effective. In fact, a
straightforward implementation of APS could run into problems if the number of ex-
treme points increased, possibly without bound, along the sequence of iterations. The
JYC approach evades this difficulty by limiting the number of extreme points considered
to the number of exogenously given “search subgradients.” Of course, a central feature
of our algorithm is that at every iteration, the number of extreme points is bounded
above by 4|A|, where |A| is the number of action profiles. Some readers have expressed
a preference for solutions to games with continuous action spaces. We are a bit mysti-
fied by strong tastes in this regard. On the one hand, our view is that the choice between
continuous and discrete modeling is purely a matter of analytical convenience. On the



336 Abreu and Sannikov Theoretical Economics 9 (2014)

other hand, we are not aware of any application in which in reality the units of measure-
ment are continuous. If anything, the concern should be whether continuous models
provide a good approximation to a discrete underlying economic reality.

Turning to other dynamic game settings, our work suggests that it might be produc-
tive to look for special structure in how extreme points are generated and to incorporate
the relevant structure in the design of the algorithm as we have done here. For example,
while it is not the case that our results extend directly to the case of two-player stochastic
games, many basic ideas have useful analogues.13 This is a subject of ongoing research
by the authors together with Ben Brooks.

Even absent the availability of very sharp structural results, it is quite possible that
the number of extreme points does not grow without bound in actual applications. In
such cases, it is quite possible that a naive implementation of APS is more speedy than
an optimization based approach that involves repeated solution of families of linear
programs.

The detailed simplifications obtained here depend on the geometry of two-player
games. However, other kinds of structural features might apply to different settings.
Three or more player games with perfect monitoring, and, of course, the entire uni-
verse of perfect and imperfect public monitoring dynamic games, could, in principle,
be usefully investigated from this perspective.

Appendix

Lemma 5. We have W n ⊆ B(W n−1�un−1)⊆ B(W n−1) ⊆ Bn(W 0).

Proof. First, note that B(W �u) is increasing in W and decreasing in u. Clearly
W n ≡ R(W n−1�un−1) ⊆ B(W n−1�un−1). Since un−1 ≥ P(W n−1), B(W n−1�un−1) ⊆
B(W n−1�P(W n−1)) ≡ B(W n−1). Furthermore, W n−1 ⊆ Bn−1(W 0) implies B(W n−1) ⊆
Bn(W 0). Since W 1 ⊆ B(W 0), the conclusion follows. �

Theorem 4. The number of extreme points of V ∗ is at most 3|A|.

Proof. The proof of Theorem 2 in Section 4 implies that each action profile a such that
g(a) ≥ v + (1 − δ)/δh(a) generates at most one extreme point of V ∗, v = g(a). Any other
action profile a generates at most four extreme points, using continuation values w that
are extreme points of Q(a�V ∗� v) such that

w1 = v1 + 1 − δ

δ
h1(a) or w2 = v2 + 1 − δ

δ
h2(a)� (2)

To prove Theorem 4, it is sufficient to narrow down this set of possibilities to three. We
need to consider two cases.

13Promising examples include the games from Thomas and Worrall (1990) and Phelan and Stacchetti
(2001). Indeed, these are particularly close in that they embody both perfect monitoring and a two-player
structure.



Theoretical Economics 9 (2014) Two-player repeated games 337

Figure 12. Case 2 in the proof of Theorem 4.

Case 1 (The result of this case is due to Ben Brooks): Suppose gi(a) ≥ vi +
(1 − δ)/δhi(a) for some i = 1�2, but gj(a) < vj + (1 − δ)/δhj(a) for j �= i. Then a can
only generate extreme points v with continuation values w that, in addition to being
extreme points of Q(a�V ∗� v), satisfy wj = vj + (1 − δ)/δhj(a). Clearly there are at most
two such points. For an extreme point w of Q(a�V ∗� v) to generate an extreme point v of
V ∗, as in the proof of Theorem 3, it is necessary that (w�v] ∩ Q(a�V ∗� v) = ∅. Note that
(w�v] ⊂ V ∗. If wj > vj + (1 −δ)/δhj(a), then by continuity for small λ ∈ (0�1), (1 −λ)w+
λv ≥ v+ (1 −δ)/δh(a) (because also vi = (1 −δ)gi(a)+δwi ≥ vi + (1 −δ)/δhi(a)). Hence
(w�v] ∩Q(a�V ∗� v) �=∅, a contradiction.

Case 2: gi(a) < vi + (1 − δ)/δhi(a) for both i = 1�2. Then we claim that Q(a�V ∗� v)
has at most three extreme points such that (2) holds. Suppose that there are four such
points wi�wi, i = 1�2, as shown in Figure 12. Then all of these points have to be on the
boundary of V ∗. This cannot be the case because w1 is strictly inside the triangle with
vertices w1�w2� v1 = (1 − δ)g(a)+w1 ∈ V ∗, a contradiction. �

Remark. We can modify the R operator along the lines of Case 1 of the proof of The-
orem 4; however, there appears to be no natural modification that covers Case 2 in a
manner that preserves the monotonicity of R in W . So unlike Theorem 1, Theorem 4
does not translate directly into an algorithmic procedure.

References

Abreu, Dilip (1986), “Extremal equilibria in oligopolistic supergames.” Journal of Eco-
nomic Theory, 39, 191–225. [317]

Abreu, Dilip, David Pearce, and Ennio Stacchetti (1986), “Optimal cartel equilibria with
imperfect monitoring.” Journal of Economic Theory, 39, 251–269. [315]

Abreu, Dilip, David Pearce, and Ennio Stacchetti (1990), “Toward a theory of dis-
counted repeated games with imperfect monitoring.” Econometrica, 58, 1041–1063.
[313, 314, 315]

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/a86&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/aps86&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/aps90&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/a86&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/aps86&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/aps90&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V


338 Abreu and Sannikov Theoretical Economics 9 (2014)

Cronshaw, Mark B. and David G. Luenberger (1994), “Strongly symmetric subgame per-
fect equilibria in infinitely repeated games with perfect monitoring and discounting.”
Games and Economic Behavior, 6, 220–237. [315]

Judd, Kenneth, Sevin Yeltekin, and James Conklin (2003), “Computing supergame equi-
libria.” Econometrica, 71, 1239–1254. [314, 322]

Mailath, George J. and Larry Samuelson (2006), Repeated Games and Reputations. Ox-
ford University Press, New York. [315]

Phelan, Christopher and Ennio Stacchetti (2001), “Sequential equilibria in a Ramsey tax
model.” Econometrica, 69, 1491–1518. [336]

Thomas, Jonathan and Timothy Worrall (1990), “Income fluctuations and asymmetric
information: An example of a repeated principal–agent problem.” Journal of Economic
Theory, 51, 367–390. [336]

Submitted 2012-8-6. Final version accepted 2013-1-15. Available online 2013-1-15.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/cl94&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/jyc03&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/ps01&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/tw90&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/cl94&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/cl94&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/jyc03&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/ps01&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/tw90&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/tw90&rfe_id=urn:sici%2F1933-6837%28201405%299%3A2%3C313%3AAAFTRG%3E2.0.CO%3B2-V

	Introduction
	The setting and background
	A theoretical result
	Our algorithm
	Implementation, examples, and evaluation
	Further topics
	From almost convergence to exact solutions
	Inner approximation

	Conclusion
	Appendix
	References

