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S1. Equilibrium equivalence

In the baseline version of the game, �(D�k� s), agents invest in communication before
they learn the value of their local state. In the alternative time line, �θ(D�k� s) (men-
tioned at the end of Section 3), agents choose communication intensities after they ob-
serve their local states. In this section, we show that both versions of the game have the
same perfect Bayesian equilibrium.

From Theorem 1, we know that the baseline game �(D�k� s) has an equilibrium in
linear decision functions

ai = biiθi +
∑
j �=i

bijyij�

We now show that the alternative version �θ(D�k� s) has the exact same equilibrium.

Theorem 12. The games �(D�k� s) and �θ(D�k� s) have the same equilibrium in linear
strategies.

Proof. We are going to show that both games have perfect Bayesian equilibria that sat-
isfy the same four sets of conditions, which in turn correspond to the conditions used in
the proof of Theorem 1:

Dibii = dii +
∑
j �=i

dijbji for all i (19)

Dibij = rijpij

sjrij + sjpij + rijpij

∑
k�=i

dikbkj for all i� j �= i (20)
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djibij

kr
= rij for all i� j �= i (21)

√
Dibij

kp
= pij for all i� j �= i� (22)

First, note that the second stage is identical in the two versions of the game. Agent i
knows that he has chosen (r̃ji)j �=i and (p̃ij)j �=i (which may be different from the equilib-
rium values). He assumes that the other agents have chosen communication intensities
according to the equilibrium values and that they will choose actions according to the
equilibrium linear strategies. The first-order conditions are, therefore, still given by (8)
and (9), which yield (19) and (20).

The only difference in the first stage is that i chooses (r̃ji)j �=i and (p̃ij)j �=i after ob-
serving θi. It is easy to see that the expression for the expected payoff (10) is now

−E[ui] = dii

(
(b̃ii − 1)2θ2

i +
2∑

k�=i

b̃2
ik(σk + ρik +πik)

)

+
∑
j �=i

dij

(∑
k

(b̃ik − bjk)
2σk +

∑
k�=i

b̃2
ik(ρik +πik)+

∑
k�=j

b2
jk(ρjk +πjk)

)

+ k2
r

∑
j �=i

1
ρji

+ k2
p

∑
j �=i

1
πij

�

The only difference is that the term (b̃ii − 1)2σi is now (b̃ii − 1)2θ2
i . But it easy to see that

this does not affect the first-order conditions for communication intensities as that term
is separate from (r̃ji)j �=i and (p̃ij)j �=i. Hence the first-order conditions are unchanged, as
in (21) and (22). �

This equivalence rests on two assumptions. One is that agents’ payoffs are linear-
quadratic. While agent i’s incentive to coordinate with other agents depends on his local
state of the world θi, his incentive to reduce the variance of the actions of the other
agents does not. But, as the following proof shows, it is only the latter that is affected
by unilateral deviations in communication investments. The other assumption is that
signals have full support. While the normality assumption may not be essential, it is
important that the support of yij does not depend on communication investment. If it
did, a deviation from the equilibrium communication investment could be detectable
and costly signaling may be unavoidable in equilibrium.

The question about uniqueness, which we mentioned for game �(D�k� s) and which
we discuss in Section S2, is present here as well.

S2. Uniqueness

One may wonder about the importance of the restriction to linear equilibria. Do
�(D�k� s) and �θ(D�k� s) have equilibria where agents use strategies that are not lin-
ear in their signals? A similar question has arisen in other games with quadratic payoff



Supplementary Material Communication and influence 3

functions, such as Morris and Shin (2007), Angeletos and Pavan (2007, 2009), Dewan
and Myatt (2008), and Calvó-Armengol and de Martí Beltran (2009).

Uniqueness in the team-theoretic setting is proven in Marschak and Radner (1972,
Theorem 5).

Calvó-Armengol and de Martí Beltran (2009) show that Marschak–Radner’s line of
proof extends to a strategic setting if the game admits a potential. Unfortunately, this
does not apply to the game at hand (�(D�k� s) has a potential only in the special case
where dij = dji for all pairs ij).

Angeletos and Pavan (2009) prove uniqueness by showing that in their economy the
set of equilibria corresponds to the set of efficient allocations. A similar argument is
used by Hellwig and Veldkamp (2009).

Dewan and Myatt (2008) prove uniqueness by restricting attention to strategies with
nonexplosive higher-order expectations.

For our game, we can prove the following uniqueness result. Consider �(D�k� s) but
assume that local states and actions are bounded above and below. Namely, assume that
ai ∈ [−ā� ā] and θi is distributed as a truncated normal distribution on [−kā�kā], where
k < 1. Call this new game �ā(D�k� s). We can show that as the bound ā goes to infinity,
the set of equilibria of the game �ā(D�k� s) contains (at most) one equilibrium and that
this equilibrium corresponds to the linear equilibrium that we study here.

Consider the following variation of our game:

• Payoffs are the same as before.

• Local information is bounded: θi ∈ [−θ̄� θ̄], with θ̄ ∈R, follows a truncated normal
distribution27 with mean 0 and precision s.

• The set of possible actions is bounded. In particular, ai ∈ [−ā� ā] for all i, where
ā= cθ̄ for some c ≥ 1. Note that this implies that [−θ̄� θ̄] ⊆ [−ā� ā].

• Communication reports are defined as in text and, thus, are unbounded: yij =
θi + εij +ηij with

εij ∼ N (0� rij)

ηij ∼ N (0�pij)�

Observe that as θ̄ → +∞, we converge to our initial specification of the model.
We define the expectation operators Ei[·] =E[·|θi� {yij}j �=i] for every i ∈ {1� � � � � n}.

Lemma 13. For any action profile (a1� � � � � an), we have that ωiiθi + ∑
j �=i ωijEi[aj] ∈

[−ā� ā] for all i.

Proof. Just note that Ei[aj] ∈ [−ā� ā] for all i, j. Since θi ∈ [−θ̄� θ̄] ⊂ [−ā� ā] and∑n
i=1 ωij = 1, the linear combination ωiiθi + ∑

j �=i ωijEi[aj] must be in [−ā� ā]. �

27See, for example, Patel and Read (1996).
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Lemma 14. The matrix � with off-diagonal entries equal to ωij and diagonal entries
equal to 0 is a contraction.

Proof. The Gerschgorin theorem says that all eigenvalues of a matrix � are in the
union of the sets

Fi =
{
λ

∣∣∣ |λ−ωii| ≤
∑
j �=i

|ωij|
}
�

In our case, ωii = 0 and
∑

j �=i |ωij| = 1 − dii/Di, and, hence, all eigenvalues have abso-
lute value smaller than 1. This is the necessary and sufficient condition for � being a
contraction. �

Proposition 15. Given θ̄, ā, and (rij�pij)i�j , the game in which agents choose actions
{ai}i has a unique equilibrium.

Proof. Expected payoffs are

−Ei[ui] = dii(ai − θi)
2 +

∑
j �=i

dij(a
2
i − 2aiE[aj] +E[a2

j ])− k2
r

∑
j �=i

rji − k2
p

∑
j �=i

pij�

Therefore, first-order conditions with respect to actions are

−∂Ei[ui]
∂ai

= 2dii(ai − θi)+ 2
∑
j �=i

dij(ai −Ei[aj]) = 0�

Given information sets {yi}i, individual actions satisfy Kuhn–Tucker’s conditions. Thus,
for each i ∈ {1� � � � � n}, either

ai =ωiiθi +
∑
j �=i

ωijEi[aj]

or

ai ∈ {−ā� ā}�
More precisely,

BRi(a−i) =

⎧⎪⎨
⎪⎩
ωiiθi + ∑

j �=i ωijEi[aj] if ωiiθi + ∑
j �=i ωijEi[aj] ∈ [−ā� ā]

ā if ωiiθi + ∑
j �=i ωijEi[aj]> ā

−ā if ωiiθi + ∑
j �=i ωijEi[aj]< −ā.

We can make use of Lemma 13 to show that, indeed,

BRi(a−i) =ωiiθi +
∑
j �=i

ωijEi[aj] for all i�

Hence, equilibrium conditions become

a∗
i =ωiiθi +

∑
j �=i

ωijEi[a∗
j ]� i = 1� � � � � n� (23)
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Nesting these conditions, we get

a∗
i = ωiiθi +

∑
j �=i

ωijEi

[
ωjjθj +

∑
k�=j

ωjkEj[a∗
k]

]
(24)

= ωiiθi +
∑
j �=i

ωijωjjEi[θj]
︸ ︷︷ ︸

expectations on primitives

+
∑
j �=i

∑
k�=j

ωijωjkEiEj[a∗
k]

︸ ︷︷ ︸
strategic interdependence

�

The last term in this expression allows for a new level of nestedness that we obtain by

plugging (23) into (24):

a∗
i =ωiiθi +

∑
j �=i

ωijωjjEi[θj] +
∑
j �=i

∑
k�=j

ωijωjkωkkEiEj[θk]
︸ ︷︷ ︸

expectations on primitives

+
∑
j �=i

∑
k�=j

∑
s �=k

ωijωjkωksEiEjEk[a∗
s ]

︸ ︷︷ ︸
strategic interdependence

�

Observe that, again, this last interdependence term allows for adding another level of

nestedness and that we can keep repeating this nestedness procedure up to any level. In

particular, if we repeat this l times, we obtain the expression

a∗
i = ωiiθi +

∑
k �=i

ωikωkkEi[θk] + · · · +
∑
i1 �=i

∑
i2 �=i1

· · ·
∑

il �=il−1

∑
k �=il

ωi�i1 · · ·ωil�kωkkEiEi1 · · ·Eil [θk]
︸ ︷︷ ︸

expectations on primitives

+ ∑
i1 �=i

∑
i2 �=i1

· · ·
∑

il �=il−1

∑
k �=il

∑
s �=k

ωi�i1 · · ·ωil�kωksEiEi1 · · ·EilEk[a∗
s ]

︸ ︷︷ ︸
strategic interdependence

�

where, i1� � � � � il are indices that run from 1 to n.

We want to show that as l → +∞, this expression converges and, therefore, that the

equilibrium is unique. We are going to show this in two steps:

(i) First, we are going to show that the limit when l → +∞ of expectations on prim-

itives is bounded above and below. This ensures that the expression of expecta-

tions on primitives is well defined at the limit.

(ii) Second, we are going to show that the expression of strategic interdependencies

vanishes when l → +∞.

The proof of both steps relies on Lemma 14.
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To prove (i), first note that all expectations Ei[θk]�EiEj[θk]� � � � �EiEi1 · · ·Eil [θk] are
bounded above by θ̄ and bounded below by −θ̄. Then the expression

∑
k�=i

ωikωkkEi[θk] +
∑
j �=i

∑
k�=j

ωijωjkωkkEiEj[θk] + · · ·

+
∑
i1

· · ·
∑
il

∑
k�=il

ωi�i1 · · ·ωil�kωkkEiEi1 · · ·Eil [θk]

is bounded above by

θ̄

(∑
k�=i

ωikωkk +
∑
j �=i

∑
k�=j

ωijωjkωkk + · · · +
∑
i1

· · ·
∑
il

∑
k�=il

ωi�i1 · · ·ωil�kωkk

)

and is bounded below by

−θ̄

(∑
k�=i

ωikωkk +
∑
j �=i

∑
k�=j

ωijωjkωkk + · · · +
∑
i1

· · ·
∑
il

∑
k�=il

ωi�i1 · · ·ωil�kωkk

)
�

We can apply now the following result: the entry (i� j) of �l, which we denote ω[l]
ij , is

equal to
∑

i1
· · ·∑il−1

ωi�i1ωi1�i2 · · ·ωil−2�il−1ωil−1�j . Hence,

∑
k�=i

ωikωkk +
∑
j �=i

∑
k�=j

ωijωjkωkk + · · · +
∑
i1

· · ·
∑
il

∑
k�=il

ωi�i1 · · ·ωil�kωkk =ωkk

l∑
j=1

ω
[j]
ik �

The element
∑l

j=1 ω
[j]
ik is the (i�k) entry of the matrix

∑
1≤j≤l�

j . A sufficient condition

for the infinite sum
∑

j≥1 �
j to converge is that � is a contraction. Thus, by Lemma 14,

ωkk
∑l

j=1 ω
[j]
ik is bounded when l → +∞ and, hence, the expression of expectations on

primitives is bounded too. This proves (i).
To prove (ii), first note that, trivially, EiEi1 · · ·EilEk[a∗

s ] is bounded above by ā and
below by −ā. Hence, the expression

∑
i1

· · ·
∑
il

∑
k�=il

∑
s �=k

ωi�i1 · · ·ωil�kωksEiEi1 · · ·EilEk[a∗
s ]

is bounded above by

ā
∑
i1

· · ·
∑
il

∑
k�=il

∑
s �=k

ωi�i1 · · ·ωil�kωks

and below by

−ā
∑
i1

· · ·
∑
il

∑
k�=il

∑
s �=k

ωi�i1 · · ·ωil�kωks�
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Then, since
∑

i1
· · ·∑il

∑
k�=il

∑
s �=k ωi�i1 · · ·ωil�kωks = ∑

s �=k ω
[l+1]
is and ω[l+1]

is → 0

when l → ∞ for all s = 1� � � � � n,28 we can ensure that
∑

s ω
[l+1]
is → 0 when l → ∞. There-

fore, the upper and lower bounds of the strategic interdependencies term tend to 0 when
l → ∞. This proves (ii). �

Note that this proof does not require normality in our structure of communication
reports. Any other information structure would not change the uniqueness result. Of
course, it would change the shape of this equilibrium.

Proposition 16. The unique equilibrium of the game when θ̄ → +∞ (and, therefore,
ā → +∞ too) is linear.

Proof. The previous proposition states that the equilibrium for any given θ̄ and ā is

a∗
i = lim

l→+∞

{
ωiiθi +

∑
k�=i

ωikωkkEi[θk] + · · ·

+
∑
i1

· · ·
∑
il

∑
k�=il

ωi�i1 · · ·ωil�kωkkEiEi1 · · ·Eil [θk]
}
�

We have to compute explicitly the expectations in the previous expression when θ̄ →
+∞. Observe that when θ̄ → +∞, all θis probability distributions tend to the normal
distribution with mean 0 and precision s. Bayesian updating with normal distributions
takes a simple linear form. To be more precise, in our setup, since the mean of all prior
distributions is equal to 0, we have that

Ei[θj] = αijyij for all i �= j

Ei[yjk] = βijkyik for all k �= i �= j �= k

with αij ∈ [0�1] and βijk ∈ [0�1] being constants that depend on the precisions (rij�pij)i�j
chosen in the first stage of the game. Observe that this immediately implies that
also higher-order expectations EiEi1 · · ·Eil [θk] are linear in {yij}j �=i. In particular,

EiEi1 · · ·Eil [θk] = ϕ[l]
ikyik, where ϕ[l]

ik is a product of one α (in particular, of αil�k) and l − 1
different β’s. Note that ϕ[l]

ik ∈ [0�1] for all i, k, l. Therefore,

a∗
i =ωiiθi +

∑
k�=i

ωkk

+∞∑
l=1

ϕ[l]
ikω

[l]
ikyik for all i� (25)

To show that this expression is well defined, we proceed as in the proof of Propo-
sition 15. The expression

∑+∞
l=1 ϕ[l]

ikω
[l]
ik is bounded below by 0 and above by

∑+∞
l=1 ω[l]

ik .

This last infinite sum is the entry (i�k) of the matrix
∑

l≥1 �
l that is well defined because

� is a contraction. Thus, we conclude that the expression in (25) is well defined for all
players and is linear in (θi� {yij}j �=i) for each i ∈ {1� � � � � n}. �

28This is, precisely, because
∑

l≥1 �
l converges.
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S3. Precluding communication and transfers

In this section, we intend to demonstrate the existence of a strategic effect due to indi-
rect interactions between agents. For example, an agent can inhibit a communication
channel by paying some monetary transfer to the agents who would be involved in it.
We illustrate this point with a simple three-agent numerical example.

Consider an organization formed by three agents with interaction matrix

D =
⎛
⎝0�3 0�3 1

0�3 0�3 1
1 100 1

⎞
⎠

and such that si = 0�1 for all i, kp = kr = 0�01. Agents 1 and 2 occupy an equivalent
position inside the organization, and they want primarily to coordinate with agent 3.
Instead, agent 3 shows a severe coordination motive with agent 2, compared with any
other payoff externality.

When considering unrestricted communication, as we do in the main text, the final
utilities of each agent are

u1 = −7�0346� u2 = −3�5932� u3 = −17�789�

If, instead, we consider a setup with inhibited communication in which agents 1 and
2 cannot communicate with each other, some algebra shows that agents’ utilities under
this communication restriction are

u1 = −11�446� u2 = −6�1297� u3 = −16�267�

Comparing utilities in both cases, one immediately observes that agent 3 benefits
from inhibited communication in the communication lines among agents 1 and 2, while
the first two agents are worse off. This suggests that there is room in this model to ana-
lyze monetary transfers among agents to limit information transmission. Of course, this
would raise other strategic considerations, such as the enforcement of the agreements.

S4. Broadcasting

In our baseline game, communication is essentially bilateral. In particular, investments
in active communication are link-specific. While this is true in certain circumstances, in
other cases there may be economies of scale in active communication. Here we consider
the polar opposite, where the investment in active communication that an agent makes
affects all his links equally.

Each agent chooses a unique ri, a common precision for active communication with
all other players. This can be understood as an approximation to the analysis of broad-
casting. When an agent broadcasts a signal, its quality is the same for all agents. Of
course passive communication is still individually chosen. This could be the case of
e-mail lists, where the sender is allowed to send a unique message to the organization
as a whole, and it is at the discretion of each one of the receivers to attend to it. In our
model, when the agent chooses the precision ri, he determines the possible ambiguity
in the message: if the signal is very precise, everybody is going to receive essentially the
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same common signal; if the signal is very noisy, the receiver needs to exert a high effort
to decode this message.

Before proceeding to present and prove the characterization of the equilibrium in
the broadcasting case, we need to introduce additional notation. Given a vector λ·i, let

gji(λ·i) =
{
ωii if i = j

−si(
kp√
Dj

+ kr
λij

) otherwise.

With this notation in mind, we can prove a variant of Theorem 1 for the broadcasting
case.

Proposition 17. For any (D� s), if kr and kp are sufficiently low, the game �̃(D�k� s) has
a unique pure-strategy equilibrium.

(i) Decisions are given by

b·j = (I −�)−1 · g·j(λ·j) for all j�

where λ·j is an endogenously determined vector with positive entries that satisfy∑
k�=j djkb

2
kj = λ2

ijb
2
ij .

(ii) Active communication is

ri = λijbij

kr
for all j�

(iii) Passive communication is

pij =
√
Dibij

kp
for all i �= j�

Proof. If agent i chooses a unique ρi, the set of first-order conditions is equal to

−1
2
∂E[ui]
∂bii

= dii(bii − 1)σi +
∑
k�=i

dij(bii − bji)σi = 0

−1
2
∂E[ui]
∂bij

= diibij(σj + ρj +πij)+
∑
k�=i

dik((bij − bkj)σj + bijρj + bijπij)= 0

−∂E[ui]
∂ρij

=
∑
j �=i

dijb
2
ji + k2

r

(
1
ρi

)2

= 0

−∂E[ui]
∂πij

= Dib
2
ij + k2

p

(
1
πij

)2

= 0�

This set of first-order conditions is equivalent to

Dibii = dii +
∑
k�=i

dijbji
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Dibij = σj

σj + ρj +πij

∑
k�=i

dikbkj (26)

√∑
k�=i dikb

2
ki

kr
= ri

√
Dibij

kp
= pij� (27)

Since
rjpij

sjrj + sjpij + rjpij
= σj

σj + ρj +πij
�

condition (26) becomes

Dibij = rjpij

sjrj + sjpij + rjpij

∑
k�=i

dikbkj�

By permuting i and j in this last expression, we get

Djbji = ripji

siri + sipji + ripji

∑
k�=i

djkbki� (28)

Since √∑
k�=i dikb

2
ki

kr
= ri�

we can define an endogenous value λji such that
√∑

k�=i dikb
2
ki = λjibji for each j �= i.

In particular, it is the unique positive number such that
∑

k�=i dikb
2
ki = λ2

jib
2
ji. Then the

first-order condition associated to ρi can be rewritten as

λjibji

kr
= ri

for any j �= i. Plugging this expression and (27) into (28), we get that

bji −
∑
k�=i

wjkbki = −si

(
kp√
Dj

+ kr

λji

)
for all i

or, equivalently, in matrix form,

b·i = (I −�)−1 · g(λ·i)� �

Observe that the main difference in the equilibrium action of the broadcasting case
as compared with that of Theorem 1 is the change from the vector h to the vector g(λ·i).
The matrix that relates these vectors with the equilibrium actions b remains the same in
both cases.

A natural question that arises with the analysis of this new communication protocol
is whether we should expect that agents engage in more active communication than
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before. The following result gives us an answer in terms of the ratio of passive versus
active communication already considered in a previous section.

Proposition 18. In the symmetric case, in which dij = d̄Q for all i �= j and dii =
(1 − (n− 1)d̄)Q for some Q> 0, the ratio of passive versus active communication is

kp

kr

√
(n− 1)d̄�

Proof. Because of symmetry, for all pairwise different i, j, k we have that bji = bki = b∗.
Therefore,

λji =
√∑

k�=i

dik =
√
(n− 1)d̄Q�

This implies that √
(n− 1)d̄Qb∗

kr
= ri√

Qb∗

kp
= pij�

The ratio between active and passive communication in this case is

ri
pij

= kp

kr

√
(n− 1)d̄Q

Q
= kp

kr

√
(n− 1)d̄� �

Again, when active and passive communication are equally costly, i.e., kp = kr , the
upper bound for this ratio is 1. Observe also, that the ratio in the case of broadcasting
does not necessarily decreases when n increases. When d̄ = 1/n, we obtain that the
ratio of active versus passive communication is

√
(n− 1)/n. In that case, ri/pij tends to

1 when n is large. In clear contrast to the case of pairwise communication, active and
passive communication are almost equal when the number of agents is large.

S5. Corner solutions

It is natural to assume that communication intensities cannot be negative. In fact, we
assume a small but positive lower bound ξ, to prevent equilibria based on coordination
failure. The equilibrium characterization in Theorem 1 rests on the assumption that the
communication cost parameters, kp and kr , are sufficiently low to guarantee that the
lower bound ξ is nonbinding and the equilibrium can be described by unconstrained
first-order conditions.

This section allows some or all of the lower-bound constraints to be binding. As one
would expect, the solution of the unconstrained case can be extended with Kuhn–Tucker
conditions. The resulting set of conditions is more complex than the baseline case, but
still tractable—a fact that we illustrate through a numerical example.
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We have to include formally in the analysis the inequality constraints

pij ≥ ξ for all i �= j

rij ≥ ξ for all i �= j�

The relevant terms in the Lagrangian that incorporates i’s ex ante expected utility
and the restrictions are

ûi = −Di

∑
j �=i

b2
ijπij −

∑
j �=i

dijb
2
jiπji

− k2
p

∑
j �=i

pij − k2
r

∑
j �=i

rji −
∑
j �=i

λij(ξ −pij)−
∑
j �=i

μji(ξ − rji)

= −Di

∑
j �=i

b2
ij

(
1
sj

+ 1
pij

+ 1
rij

)
−

∑
j �=i

dijb
2
ji

(
1
si

+ 1
pji

+ 1
rji

)

− k2
p

∑
j �=i

pij − k2
r

∑
j �=i

rji −
∑
j �=i

λij(ξ −pij)−
∑
j �=i

μji(ξ − rji)�

where λij and μij are the multipliers for the constraint that involve pij and rij , respec-
tively. It follows from the Kuhn–Tucker conditions that

Dib
2
ij

1
ξ2 ≤ k2

p

whenever p∗
ij = ξ, and

dijb
2
ji

1
ξ2 ≤ k2

r

whenever r∗ji = ξ. Otherwise both inequalities become equalities and we are in the
case considered in the main text, where all communication precisions are strictly larger
than ξ. Below, we provide sufficient conditions for this latter case.

For each channel, from individual j to individual i, there are four different possi-
bilities depending on whether pij and/or rij are greater than or equal to ξ. However,
first-order conditions at the second stage of the game determine that, in any case, the
system of equations that relates the b’s is given by

bik = pikrik
pikrik + sipik + sirik

∑
j �=i

ωijbjk�

First of all, we are going to check that the relation between the b’s that results from
the four different combinations of active and passive communication is in all cases lin-
ear. We know it for the case where both precisions are strictly larger than ξ.

If pik = ξ and rik > ξ, we have that

bik = ξ

√
dki
kr

bik

ξ

√
dki
kr

bik + siξ+ si

√
dki
kr

bik

∑
j �=i

ωijbjk�
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which after some rearrangement is equal to

bik = −si
ξ

ξ + si

kr√
dki

+ ξ

ξ + si

∑
j �=i

ωijbjk�

This again provides a linear relation.
When pik > ξ and rik = ξ, we have that

bik =
ξ

√
Di
kp

bik

ξ
√
Di
kp

bik + siξ + si
√
Di
kp

bik

∑
j �=i

ωijbjk�

which leads to

bik = −si
ξ

ξ + si

kp√
Di

+ ξ

ξ + si

∑
j �=i

ωijbjk�

Again, we end up with a linear relation between the b·k terms.
Finally, if both pik and rik are exactly equal to ξ, then

bik = ξ

ξ + 2si

∑
j �=i

ωijbjk�

which is clearly linear in the entries b·k.
We can gather all these different types of linear relations in a single compact matrix-

form expression. Formally, to check for corner equilibria, we have to proceed as follows:

• According to the four different combinations, we can distinguish four types of
communication links: bidirectional (where both precisions are strictly larger
than ξ), only active (where just the active precision of the communication link
is strictly larger than ξ), only passive (where just the passive precision of the com-
munication link is strictly larger than ξ), and mute (where both are equal to ξ).

• After some rearrangement, if necessary and without loss of generality, we can
rewrite the system in blocks as

⎛
⎜⎜⎜⎝

bB
·k

bOA
·k

bOP
·k

bM
·k

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

I −�B�B −�B�OA −�B�OP �B�M

− ξ
ξ+s �OA�B I − ξ

ξ+s �OA�OA − ξ
ξ+s�OA�OP − ξ

ξ+s�OA�M

− ξ
ξ+s�OP�B I − ξ

ξ+s�OP�OA I − ξ
ξ+s�OP�OP − ξ

ξ+s�OP�M

− ξ2

ξ2+2siξ
�M�B − ξ2

ξ2+2siξ
�M�OA − ξ2

ξ2+2siξ
�M�OP I − ξ2

ξ2+2siξ
�M�M

⎞
⎟⎟⎟⎠

−1

· h·k�

where individuals are partitioned according to the communication decisions be-
tween themselves and individual k. The entries of hjk are the same as in the inte-
rior case considered in the main text for the bidirectional, −si(ξ/(ξ+ si))(kr/

√
dki)

if the link is only active, −si(ξ/(ξ + si))(kp/
√
Di) if the link is only passive, and 0 if

ij is mute.
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• If the solution to the system satisfies the Kuhn–Tucker inequality conditions for
the only active, only passive, and mute cases we have presented above, then we
have found a corner equilibrium.

We now provide an example of a network that generates a corner equilibrium.
Consider the network

1 ↔ 2 ↔ 3�

where coordination concerns are given by d12 = d32 = β, d21 = d23 = γ, and d13 =
d31 = 0. The adaptation concerns are d11 = d22 = d33 = 1. Intuitively, if player 2 has
strong interests in coordinating with other players but players 1 and 3 have little interest
in coordinating with each other, it seems that there should exist an equilibrium where
only player 2 invests in passive communication and nobody else invests in communica-
tion, meaning that they fix all their communication decisions to ξ. Let us see.

• With regard to agent 2, consider communication with agent 1 (the case with agent
3 would be symmetric). In this case, agent 2 is passive and agent 3 is mute:

⎛
⎝b11

b21

b31

⎞
⎠ =

⎛
⎜⎝

1 − β
1+β 0

− ξ
ξ+s

γ
1+2γ 1 − ξ

ξ+s
γ

1+2γ

−0 − ξ2

ξ2+2siξ
β

1+β 1

⎞
⎟⎠

−1 ⎛
⎜⎝

1
1+β

−s ξ
ξ+s

kr√
1+2γ

0

⎞
⎟⎠ �

If kr = kp = 1, β= 0�1, γ = 1, and ξ = s = 0�5,

⎛
⎝b11

b21

b31

⎞
⎠ =

⎛
⎝ 1 − 0�1

1�1 0

− 1
6 1 − 1

6

−0 − 1
3

0�1
1�1 1

⎞
⎠

−1 ⎛
⎜⎝

1
1�1

− 0�5
2

1√
3

0

⎞
⎟⎠ :

⎛
⎝ 0�90976

7�3256 × 10−3

2�2199 × 10−4

⎞
⎠ �

Now for individual 2. In this case, nobody speaks or listens to him. All are mute. The
system is very simple:

⎛
⎝b12

b22

b32

⎞
⎠ =

⎛
⎜⎝

1 − 1
3

β
1+β 0

− γ
1+2γ 1 − γ

1+2γ

−0 − 1
3

β
1+β 1

⎞
⎟⎠

−1 ⎛
⎝ 0

1
1+2γ

0

⎞
⎠ �

In the numerical case considered before, this becomes⎛
⎝b12

b22

b32

⎞
⎠ =

⎛
⎝ 1 − 1

3
0�1
1�1 0

− 1
3 1 − 1

3

−0 − 1
3

0�1
1�1 1

⎞
⎠

−1 ⎛
⎝ 0

1
3

0

⎞
⎠ =

⎛
⎝1�0309 × 10−2

0�34021
1�0309 × 10−2

⎞
⎠ �

The case for player 3 is symmetric to player 1.
The inequality Kuhn–Tucker conditions are

Dib
2
ij

1
ξ2 ≤ k2

p whenever p∗
ij = ξ

dijb
2
ji

1
ξ2 ≤ k2

r whenever r∗ji = ξ�
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Given the numbers above, these are equivalent to

Dib
2
ij ≤ 0�25 whenever p∗

ij = ξ

dijb
2
ji ≤ 0�25 whenever r∗ji = ξ�

In particular, these apply to p12,

1�1(1�0309 × 10−2)2 ≤ 0�25

(this one holds), and also apply to p13,

1�1(2�2199 × 10−4)2 ≤ 0�25

(this one also holds).
It should not hold for agent 2,

3(0�90976)2 > 0�25 (ok)�

And it should apply to all active, since we are assuming the only communication
larger than ξ is that agent 2 passively communicates with the others:

dijb
2
ji

1
ξ2 ≤ k2

r �

With relations between agents 1 and 3, it is clear because d13 = d31 = 0. Between
agents 1 and 2,

r21: 0�1(0�90976)2 ≤ 0�25 (ok)

r12: 1(1�0309 × 10−2) ≤ 0�25 (ok)�

Therefore, all inequalities in the example above work and we get a case with a corner
equilibrium.

S6. Adaptation, coordination, and communication

At least since Marschak and Radner (1972), organizational economics has highlighted
the trade-off between adaptation and coordination. On the one hand, agents want to
adapt to local information. On the other hand, they want to coordinate with the rest
of the agents. One of the advantages of the quadratic setup adopted by mostly team-
theoretic work is that the relative strength of coordination and adaptation is represented
in a simple parametric way and can be used for comparative statics purposes (e.g.,
Dessein and Santos 2006).

A natural question in our setting is how communication investment varies with the
relative importance of adaptation and coordination. As we shall see, the relation is non-
monotonic: communication is maximal when the two concerns are balanced.

In our model, adaptation and coordination concerns are captured, respectively, by
dii and dij (with i �= j). We can thus analyze how different weights on these two concerns
affect communication and influence. As we shall see, the relation is nonmonotonic.
Define d′

ii = λdii and d′
ij = (2 − λ)dij for all j �= i. We make the following observations:
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• If λ → 0, then d′
ii → 0 and d′

ij → 2dij ≥ 0, and d′
ii/d

′
ij → 0. Coordination outweighs

adaptation.

• If λ = 1, we have the initial vector of i’s interaction terms d.

• If λ → 2, we obtain d′
ii = 2dii > 0 and d′

ij → 0, and d′
ii/d

′
ij → +∞. Adaptation out-

weighs coordination.

Proposition 19. If λ → 0 or λ → 2, agent i does not engage in active communication
and no agent passively communicates with him, i.e., rji = pij = ξ for all j.

Proof. (i) If λ = 0, then ωii = 0, and this immediately implies that we hit a boundary
equilibrium in which bji = 0 for all j. This implies that agent i is not going to put effort
into actively communicating with agent j and that agent j is not going to exert any kind
of effort in passive communication to learn about agent i’s state of the world.

(ii) If λ → 2, the matrix � tends to �′, where �′ is equal to � except that row i’s
entries in �′ are equal to 0. Also

h′
ji =

⎧⎨
⎩
w′
ii → 1 if i = j

−si(
kp√
Dj

+ kr√
d′
ij

) → −∞ otherwise.

It is easy to see that the nonnegative matrix (I − �′)−1 satisfies that all entries in row
i are also equal to 0, except for (I − �′)−1

ii = 1. Hence, following our equilibrium char-
acterization, the elements b′

ji would satisfy that, when λ → 2, b′
ii → 1 and b′

ji → −∞ if
j �= i. But this implies that we hit an equilibrium in the boundary that satisfies b′

ji = 0 for
all j �= i. Therefore, again there is neither passive communication by agent j nor active
communication by agent i. �

The reasons why communication vanishes when we approach the two extreme sit-
uations is different in each case. When coordination motives outweigh the adaptation
motive, communication engagement is null because there is a natural focal point that
resolves coordination problems: agents, according to prior information, fix their actions
to be 0. This trivially resolves coordination and does not affect the decision problem that
right now is of negligible magnitude. Local information is unnecessary.

Alternatively, when adaptation outweighs coordination, agents primarily want to re-
solve their respective local decision problems. The obvious way is to determine their
action close to the local information they possess.

References

Angeletos, George-Marios and Alessandro Pavan (2007), “Efficient use of information
and social value of information.” Econometrica, 75, 1103–1142. [3]

Angeletos, George-Marios and Alessandro Pavan (2009), “Policy with dispersed informa-
tion.” Journal of the European Economic Association, 7, 11–60. [3]

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/ap07&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/ap09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/ap07&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/ap09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P


Supplementary Material Communication and influence 17

Calvó-Armengol, Antoni and Joan deMartí Beltran (2009), “Information gathering in or-
ganizations: Equilibrium, welfare, and optimal network structure.” Journal of the Euro-
pean Economic Association, 7, 116–161. [3]

Dessein, Wouter and Tano Santos (2006), “Adaptive organizations.” Journal of Political
Economy, 114, 956–995. [15]

Dewan, Torun and David P. Myatt (2008), “The qualities of leadership: Direction, com-
munication, and obfuscation.” American Political Science Review, 102, 351–368. [3]

Hellwig, Christian and Laura Veldkamp (2009), “Knowing what others know: Coordina-
tion motives in information acquisition.” Review of Economic Studies, 76, 223–251. [3]

Marschak, Jacob and Roy Radner (1972), Economic Theory of Teams. Yale University
Press, New Haven, Connecticut. [3, 15]

Morris, Stephen and Hyun Song Shin (2007), “Optimal communication.” Journal of the
European Economic Association, 5, 594–602. [3]

Patel, Jagdish K. and Campbell B. Read (1996), Handbook of the Normal Distribution,
second edition. Academic Press, San Diego, California. [3]

Submitted 2013-2-22. Final version accepted 2014-6-25. Available online 2014-7-1.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/cm09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/ds06&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/DM&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/hv08&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/mr72&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/MS&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/cm09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/cm09&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/ds06&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/DM&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/hv08&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/mr72&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/MS&rfe_id=urn:sici%2F1933-6837%28201505%2910%3A2%2B%3C1%3ASTCAI%3E2.0.CO%3B2-P

	Equilibrium equivalence
	Uniqueness
	Precluding communication and transfers
	Broadcasting
	Corner solutions
	Adaptation, coordination, and communication
	References

