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In this supplement, we provide the proofs that we omitted from the main paper. In
Appendix D, we provide the proof of Fact 4 in Section 3. The proof is the same as Mishra
and Talman’s (2010), but we provide it for completeness. Fact 5 is already shown by
Demange and Gale (1985) and Roth and Sotomayor (1990). For completeness, we also
give the proof of Fact 5 in Appendix E.

Appendix D: Proof of Fact 4

The following theorem is used to prove Fact 4.

Hall’s theorem (Hall 1935). Let N ≡ {1� � � � � n} and M ≡ {1� � � � �m}. For each i ∈ N , let
Di ⊆ M . Then there is a one-to-one mapping x′ from N to M such that for each i ∈ N ,
x′(i) ∈Di if and only if for each N ′ ⊆ N , |⋃i∈N ′ Di| ≥ |N ′|.

Fact 4 (Mishra and Talman 2010). Let R ⊆ RE and R ∈ Rn. A price vector p is a Wal-
rasian equilibrium price vector for R if and only if no set is overdemanded and no set is
underdemanded at p for R.

Proof. “Only if.” Let p ∈ P(R). Then there is an allocation z = (xi� ti)i∈N satisfying
conditions (WE-i) and (WE-ii) in Definition 3. Let M ′ ⊆ M .

We show that M ′ is not overdemanded at p for R. Let N ′ ≡ {i ∈ N :D(Ri�p) ⊆ M ′}.
Since for each i ∈ N ′, xi ∈ D(Ri�p) ⊆ M ′, and each real object is consumed by at
most one agent, |N ′| = |{xi : i ∈ N ′}|. Since {xi : i ∈ N ′} ⊆ M ′, |{xi : i ∈ N ′}| ≤ |M ′|. Thus,
|N ′| ≤ |M ′|.

We show that M ′ is not underdemanded at p for R. Let N ′ ≡ {i ∈ N :
D(Ri�p) ∩ M ′ 	= ∅}. Suppose that for each x ∈ M ′, px > 0 and |N ′| < |M ′|. Note that
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|N ′| < |M ′| implies that there is x ∈ M ′ such that for all i ∈ N , xi 	= x. Then condition
(WE-ii) implies that px = 0. This is a contradiction. Thus, |N ′| ≥ |M ′|.

“If.” Assume that no set is overdemanded and no set is underdemanded at p for R.
Let Z∗ ≡ {z = (xi� ti)i∈N ∈ Z : for each i ∈ N�xi ∈ D(Ri�p) and ti = pxi}. First, we

show Z∗ 	= ∅. Suppose that there is N ′ ⊆ N such that for each i ∈ N ′, 0 /∈ D(Ri�p) and
|{⋃i∈N ′ D(Ri�p)}| < |N ′|. Then {⋃i∈N ′ D(Ri�p)} is overdemanded at p for R. Thus, for
each N ′ ⊆ N , if for each i ∈ N ′, 0 /∈ D(Ri�p), then |{⋃i∈N ′ D(Ri�p)}| ≥ |N ′|. Then, by
Hall’s theorem, there is z′ ∈Z such that for each i ∈ N , if 0 /∈ D(Ri�p), then x′

i ∈D(Ri�p)

and t ′i = px′
i . Thus, Z∗ 	=∅.

By the definition of Z∗, for each z ∈ Z∗, (z�p) satisfies (WE-i). We show that there is
z ∈Z∗ such that (z�p) satisfies (WE-ii). Let M+(p) ≡ {x ∈M :px > 0}. Let

z ∈ arg max
z′∈Z∗

∣∣{y ∈M+(p) : for some i ∈N�x′
i = y}∣∣� (1)

that is, z maximizes over Z∗ the number of objects in M+(p) that are assigned to some
agents. Then, by the definition of Z∗, (z�p) satisfies (WE-i).

Let M0 ≡ {y ∈ M+(p) : for each i ∈ N�xi 	= y}. Note that if M0 = ∅, then (z�p) also
satisfies (WE-ii). Thus, we show that M0 =∅. By contradiction, suppose that M0 	=∅.

Let N0 ≡ {i ∈ N :D(Ri�p) ∩ M0 	= ∅}. For each k = 1�2� � � � , let Mk ≡ {y ∈ M : for
some i ∈ Nk−1�xi = y} and Nk ≡ {i ∈ N :D(Ri�p) ∩ Mk 	= ∅} \ {⋃k−1

k′=0 N
k′ }. We claim by

induction that for each k≥ 0, Mk ⊆ M+(p) and Nk 	=∅.

Induction argument.

Step 1. By the definition of M0, M0 ⊆ M+(p). Since M0 is not underdemanded at p for
R, |N0| ≥ |M0|. Thus, M0 	= ∅ implies that N0 	= ∅.

Step 2. Let K ≥ 1. As induction hypothesis, assume that for each k ≤ K − 1, Mk ⊆
M+(p) and Nk 	= ∅.

First, we show that MK ⊆ M+(p). Suppose that there is x ∈ MK \ M+(p). Then
px = 0. By the induction hypothesis, there is a sequence {x(s)� i(s)}Ks=1 such that

x(1) = x� xi(1) = x(1)

x(2) ∈ D(Ri(1)�p)∩MK−1� xi(2) = x(2)

x(3) ∈ D(Ri(2)�p)∩MK−2� xi(3) = x(3)

���

x(K) ∈ D(Ri(K−1) �p)∩M1� xi(K) = x(K)�

Let x(K+ 1) ∈D(Ri(K)�p)∩M0. For each s ∈ {1�2� � � � �K}, let z′
i(s) ≡ (xi(s+1)�p

xi(s+1) ),

and for each j ∈ N \ {i(s)}Ks=1, let z′
j ≡ zj . Then z′ ∈Z∗ and

∣∣{y ∈M+(p) : for some i ∈N�x′
i = y}∣∣ = ∣∣{y ∈M+(p) : for some i ∈N�xi = y}∣∣ + 1�

This is a contradiction to (1). Thus, MK ⊆M+(p).
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Next, we show that NK 	= ∅. By MK ⊆ M+(p) and the induction hypothesis,⋃K
k=0 M

k ⊆M+(p). Thus, since
⋃K

k=0 M
k is not underdemanded at p for R,

∣∣∣∣∣

K⋃

k=0

Nk

∣∣∣∣∣ ≥
∣∣∣∣∣

K⋃

k=0

Mk

∣∣∣∣∣� (2)

By the definition of Mk and Nk, for each k�k′ ∈ {0�1� � � � �K} with k 	= k′, Nk ∩ Nk′ = ∅,
which also implies that Mk ∩Mk′ =∅. Thus,

∣∣∣∣∣

K⋃

k=0

Nk

∣∣∣∣∣ =
K∑

k=0

|Nk| and

∣∣∣∣∣

K⋃

k=0

Mk

∣∣∣∣∣ =
K∑

k=0

|Mk|�

Then, by (2),

K−1∑

k=0

|Nk| + |NK| =
K∑

k=0

|Nk| ≥
K∑

k=0

|Mk| =
K∑

k=1

|Mk| + |M0|� (3)

For each k ≥ 1, by Mk ⊆ M+(p), |Mk| = |Nk−1|. Thus,
∑K−1

k=0 |Nk| = ∑K
k=1 |Mk|.

Then, by (3),

|NK| ≥ |M0|�
Thus, by M0 	=∅, |NK| ≥ 1 and so NK 	=∅.

Since M+(p) is finite, by the above induction argument, for large K, |⋃K
k=0 M

k| =∑K
k=0 |Mk| > |M+(p)|. Since

⋃K
k=0 M

k ⊆M+(p), this is impossible. �

Appendix E: Proof of Fact 5

Let R ⊆ RE .

Lemma 15. Let i ∈ N and Ri ∈ R. Let p�q ∈ R
m+ and x� y ∈ L be such that x ∈ D(Ri�p)

and (y�qy) Pi (x�p
x). Then y ∈M and qy < py .

Proof. Since (y�qy) Pi (x�p
x) and x ∈ D(Ri�p), we have (y�qy) Pi (x�p

x) Ri 0. Thus,
y ∈M . Also, by x ∈ D(Ri�p), (y�qy) Pi (x�p

x) Ri (y�p
y). Thus, (y�qy) Pi (y�p

y) implies
qy < py . �

Given R�R′ ∈ Rn, (z�p) ∈W (R), and (z′�p′) ∈W (R′), let

N1 ≡ {i ∈N :z′
i Pi zi}� M2 ≡ {x ∈ M :px > p′x}

X1 ≡ {x ∈L : for some i ∈ N1�xi = x}� and X ′1 ≡ {x ∈L : for some i ∈N1�x′
i = x}�

Lemma 16 (Decomposition (Demange and Gale 1985)). Let R ∈ Rn and (z�p) ∈ W (R).
Let R′ be a d-truncation of R such that for each i ∈ N , di ≤ −CV i(0;zi), and let (z′�p′) ∈
W (R′). Then X1 = X ′1 =M2.
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Proof. First, we show X ′1 ⊆ M2. Let x ∈ X ′1. Then there is i ∈ N1 such that x′
i = x. By

i ∈ N1, (x′
i�p

′x′
i ) Pi (xi�p

xi). Thus, by xi ∈D(Ri�p) and Lemma 15, x′
i ∈M and p′x′

i < px′
i ,

and so x= x′
i ∈M2. Thus, X ′1 ⊆M2.

Next we show M2 ⊆ X1. Let x ∈ M2. Then x ∈ M and 0 ≤ p′x < px. Thus, by (WE-ii),
there is i ∈N such that xi = x. By di ≤ −CV i(0;zi) and Lemma 2(ii), (x′

i�p
′x′

i ) Pi (xi�p
xi).

Thus, i ∈N1 and so x= xi ∈X1. Thus, M2 ⊆X1.
Note that by the definition of X1 and X ′1, |X1| ≤ |N1| and |X ′1| ≤ |N1|. Since X ′1 ⊆

M2 ⊆ M , each agent in N1 receives a different object and so |X ′1| = |N1| ≥ |X1|. Since
X ′1 ⊆ M2 ⊆ X1, |X ′1| ≤ |M2| ≤ |X1|. Thus, |X ′1| = |M2| = |X1|. By |X ′1| = |M2| and X ′1 ⊆
M2, X ′1 =M2. By |M2| = |X1| and M2 ⊆ X1, M2 =X1. �

Lemma 17 (Lattice Structure (Demange and Gale 1985)). Let R ∈ Rn and (z�p) ∈ W (R).
Let R′ be a d-truncation of R such that for each i ∈ N , di ≤ −CV i(0;zi), and let (z′�p′) ∈
W (R′). Then (i) p̂ ≡ p∧p′ ∈ P(R) and (ii) p̄ ≡ p∨p′ ∈ P(R′).1

Proof. Let N1 ≡ {i ∈N :z′
i Pi zi} and M2 ≡ {x ∈ M :px > p′x}.

(i) Let ẑ be defined by setting for each i ∈ N1, ẑi ≡ z′
i, and for each i ∈ N \N1, ẑi ≡ zi.

We show that (ẑ� p̂) ∈ W (R).

Step 1. We have that (ẑ� p̂) satisfies (WE-i).

Let i ∈ N and x ∈ L. In the following two cases, we show (x̂i� p̂
x̂i ) Ri (x� p̂

x), which
implies x̂i ∈D(Ri� p̂).

Case 1. i ∈N1. By x̂i = x′
i and Lemma 16, x̂i ∈ M2, and so x̂i ∈ M and p′x̂i < px̂i . Thus,

p̂x̂i = p′x̂i .
First, assume that x ∈M2. Then, by p̂x = p′x,

(x̂i� p̂
x̂i ) = z′

i R′
i

x′
i∈D(R′

i�p
′)
(x�p′x)= (x� p̂x)�

Since R′
i is a di-truncation of Ri, x̂i 	= 0 and x 	= 0, Remark 1(i) implies (x̂i� p̂x̂i )Ri (x� p̂

x).
Next, assume that x /∈M2. Then, by p̂x = px,

(x̂i� p̂
x̂i )= z′

i Pi
i∈N1

zi Ri
xi∈D(Ri�p)

(x�px) = (x� p̂x)�

Case 2. i /∈N1. By x̂i = xi and Lemma 16, x̂i /∈ M2. Thus, px̂i ≤ p′x̂i or x̂i = 0. First, we
assume that x ∈ M2. Then p̂x = p′x. Note that i /∈N1 implies (x̂i� p̂x̂i ) = zi Ri z

′
i.

Case 2.1. x′
i 	= 0. By x′

i ∈ D(R′
i�p

′), z′
i R

′
i (x�p

′x) = (x� p̂x). Since R′
i is a di-truncation

of Ri, x′
i 	= 0, and x 	= 0, Remark 1(i) implies z′

i Ri (x�p
′x). Thus,

(x̂i� p̂
x̂i ) = zi Ri z

′
i Ri (x�p

′x) = (x� p̂x)�

1Denote p∧p′ ≡ (min{px�p′x})x∈M and p∨p′ ≡ (max{px�p′x})x∈M .
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Case 2.2. x′
i = 0. Note z′

i = 0. Since x′
i ∈D(R′

i�p
′), CV ′

i(x; 0) ≤ p′x. Thus, if CV i(x; 0) ≤
CV ′

i(x; 0), then z′
i Ri (x�p

′x), which implies that

(x̂i� p̂
x̂i )= zi Ri z

′
i Ri (x�p

′x)= (x� p̂x)�

Next, assume that CV i(x; 0) > CV ′
i(x; 0). Then, since R′

i is a di-truncation of Ri, di >
0, which implies that xi 	= 0.2 Then, by di ≤ −CV i(0;zi), CV i(x;zi) ≤ CV ′

i(x; 0) ≤ p′x,
which implies that zi Ri (x�p

′x). Thus,

(x̂i� p̂
x̂i )= zi Ri y(x�p

′x) = (x� p̂x)�

Next assume that x /∈M2. Then p̂x = px. Since x̂i = xi ∈D(Ri�p),

(x̂i� p̂
x̂i ) = zi Ri (x�p

x) = (x� p̂x)�

Step 2. We have that (ẑ� p̂) satisfies (WE-ii).

Let x ∈ M be such that p̂x > 0. We show that there is i ∈ N such that x̂i = x. Since
p̂ = p∧p′, p̂x > 0 implies px > 0 and p′x > 0.

Case 1. x ∈ M2. By Lemma 16, there is i ∈ N1 such that x′
i = x. Since i ∈ N1, by con-

struction of ẑ, x̂i = x′
i. Thus, x̂i = x.

Case 2. x /∈ M2. By px > 0, there is i ∈ N such that xi = x. By Lemma 16, i /∈ N1. Thus,
x̂i = xi, and so x̂i = x.

(ii) Let z̄ be defined by setting for each i ∈N1, z̄i ≡ zi, and for each i ∈N \N1, z̄i ≡ z′
i.

We show (z̄� p̄) ∈ W (R′).

Step 1. We have that (z̄� p̄) satisfies (WE-i).

Let i ∈ N and x ∈ L. In the following two cases, we show (x̄i� p̄
x̄i ) R ′

i (x� p̄
x), which

implies x̄i ∈D(R′
i� p̄).

Case 1. i ∈ N1. By x̄i = xi and Lemma 16, x̄i ∈ M2, and so x̄i ∈ M and p′x̄i < px̄i . Thus,
p̄x̄i = px̄i . First assume that x ∈M2. Since x̄i = xi ∈ D(Ri�p) and p̄x = px,

(x̄i� p̄
x̄i ) = zi Ri (x�p

x) = (x� p̄x)�

Since R′
i is a di-truncation of Ri, x̄i 	= 0, and x 	= 0, Remark 1(i) implies

(x̄i� p̄
x̄i ) R ′

i (x� p̄
x).

Next, assume that x /∈M2. Then px ≤ p′x or x= 0.

Case 1.1. x 	= 0. Since x̄i = xi ∈D(Ri�p) and p̄x = p′x ≥ px,

(x̄i� p̄
x̄i ) = zi Ri y(x�p

x) Ri (x� p̄
x)�

Since R′
i is a di-truncation of Ri and x̄i 	= 0, (x̄i� p̄x̄i ) R ′

i (x� p̄
x).

2To see this, suppose that xi = 0. Then di ≤ −CV i(0;zi)= 0, which contradicts di > 0.
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Case 1.2. x= 0. Since R′
i is a di-truncation of Ri and di ≤ −CV i(0;zi),

(x̄i� p̄
x̄i ) = zi R

′
i 0 = (x� p̄x)�

Case 2. i /∈N1. By x̄i = x′
i and Lemma 16, x̄i /∈M2. Thus, px̄i ≤ p′x̄i or x̄i = 0. If x̄i = 0,

(x̄i� p̄
x̄i ) = 0 = z′

i R′
i

x′
i∈D(R′

i�p
′)
(x�p′x) R′

i
px̄=max{px�p′x}

(x� p̄x)�

Thus, assume that x̄i 	= 0. Then

(x̄i� p̄
x̄i ) =

px̄i≤p′x̄i=p̄x̄i

z′
i R′

i
x′
i∈D(R′

i�p
′)
(x�p′x) R′

i
p̄x=max{px�p′x}

(x� p̄x)�

Step 2. We have that (z̄� p̄) satisfies (WE-ii).

Let x ∈ M be such that p̄x > 0. We show that there is i ∈ N such that x̄i = x. Since
p̄ = p∨p′, p̄x > 0 implies px > 0 or p′x > 0.

Case 1. x ∈M2. By Lemma 16, there is i ∈ N1 such that xi = x. Since i ∈ N1, by con-
struction of z̄, x̄i = xi. Thus, x̄i = x.

Case 2. x /∈M2. If p′x = 0, then p′x = 0 < px. Thus, x ∈ M2, which is a contradiction.
Thus, p′x > 0. Then there is i ∈ N such that x′

i = x. By Lemma 16, i /∈ N1, which implies
that x̄i = x′

i. Thus, x̄i = x. �

The following is a corollary of Lemma 17.

Corollary 3. Let R ∈ Rn and p�p′ ∈ P(R). Then (i) p∧p′ ∈ P(R) and (ii) p∨p′ ∈ P(R).

Fact 5 (Roth and Sotomayor 1990). Let R ∈ Rn and let R′ be a d-truncation of R such
that for each i ∈N , di ≥ 0. Then pmin(R

′)≤ pmin(R).

Proof. Let (z′�p′) ∈ W (R′). Then, for each i ∈ N , since CV ′
i(0;z′

i) ≤ 0 and di ≥ 0,
−di ≤ 0 ≤ −CV ′

i(0;z′
i). Since R is the (−d)-truncation of R′, Lemma 17 implies p̂ ≡

p′ ∧pmin(R) ∈ P(R′). Thus, since pmin(R
′)≤ p̂, pmin(R

′)≤ pmin(R). �
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