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In Appendix C, for a large class of Poisson games, we define Bayes–Nash equilib-
rium and extend the definition of strictly perfect equilibrium (Okada 1981). We
show some useful properties of Nash equilibria and we characterize the set of
strictly perfect equilibria. We define a limit property of Nash equilibria as the
number of players grows large: asymptotic strict perfection. Our characterization
allows for a simple procedure to find all asymptotically strictly perfect equilibria
in any Poisson voting game with infinite type set.

In Appendix D, we extend the model to include an endogenous second round
where the probability of upset victory converges to zero as the number of voters
grows large. We prove that the results of our initial model hold (at least qualita-
tively) regardless of the speed of convergence to zero. We discuss the differences.

Appendix C

A Poisson game �≡ (n�T �F�C�u) is defined by the expected number of voters n ∈ N, the
set of types (a metric space) T with t being a typical element of T , a probability measure
F defined over T , a set of actions C, and a payoff vector ut : C × Z(C) → R, for all t ∈ T ,
where Z(C) is the set of all action profiles. Without loss of generality, we restrict attention
to T = R

|C|−1. In this appendix, we provide a series of definitions and results concerning
a class of Poisson games, namely the games satisfying the following assumption.

Call σ ≡ ((σt(c))c∈C)t∈T ∈ �(C)T a profile of strategies.1 Define τ : �(C)T × F →
�(C),

τ(σ�F) ≡
(∫

T
σt(c)dF(t)

)
c∈C

�

where F is a set of distributions over T that admit a density and have full support over T .
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Assumption S1. We have F ∈ F .

We define the expected gain from action c ∈ C for type t ∈ T when the expected pro-
file of actions is nτ as Gt(c�nτ). As usual in the literature, this expected gain is defined
as the difference between the expected utility for a voter of type t if she votes for c and if
she abstains. This gain depends on the voter’s type and on the strategy function for all
voters, σ .

Notice that Assumption S1 implies that, given any τ ∈ �(C), the set

T nτ
c�c′ ≡ {t ∈ T : Gt(c�nτ)= Gt(c

′� nτ)}

has probability measure zero:
∫
T nτ
c�c′

dF(t) = 0.

In the remainder of this appendix, we define (Bayes–Nash) equilibrium and extend
the definition of strictly perfect equilibrium (Okada 1981) to Poisson games. We show
a few useful properties of Nash equilibria and we characterize the set of strictly perfect
equilibria. We define a new concept: asymptotic strict perfection. Our characterization
allows for a simple procedure to find all asymptotically strictly perfect equilibria in any
Poisson voting game with infinite types.

A best response for type t given τ ∈ �(C) is

Bt(τ) = arg max
σt∈�(C)

∑
c∈C

σt(c)Gt(c�nτ)�

Definition S1. The strategy profile σ∗ ∈ �(C)T is said to be a (Bayes–Nash) equilib-
rium of � if σ∗

t ∈ Bt(τ(σ
∗�F)) for every type t ∈ T .

The following proposition partially characterizes the set of equilibria. It shows that
in every equilibrium (i) there are types for which the equilibrium strategy is not a strict
best response and (ii) the measure of these types is zero.

Proposition S1. Let σ∗ be an equilibrium of �. This equilibrium σ∗ is a (pure strategy)
strict best response to itself for all but a measure zero of types. Moreover, there always exists
a type t ∈ T for which σ∗

t is not a strict best response to itself.

Proof. For any pair of actions c� c′ ∈ C, let Tc�c′ be the set of types with σ∗
t (c)�σ

∗
t (c

′) > 0.
Then it must be

Tc�c′ ⊆ T nτ(σ∗
t (c)�F)

c�c′ ≡ {
t ∈ T : Gt(c�nτ(σ

∗
t (c)�F)) = G(c′� nτ(σ∗

t (c)�F))
}
�

That is, Tc�c′ is a subset of the types that are indifferent between c and c′. By Assump-
tion S1, the measure of this set is zero. Hence, the set of players playing a mixed strategy
or being indifferent between two strategies is the sum of measure zero sets. Nonethe-
less, by Assumption S1, there is at least one t who is indifferent between every possible
pair of actions c� c′ ∈ C. Hence, the equilibrium is not strict. �
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Definition S2. Let η ≡ (ηt�c)t∈T �c∈C ∈ R
CT

be such that ηt�c ≥ 0,
∑

c∈C ηt�c < 1, and
define

	t(η) ≡ {σt ∈ �(C) : σt(c) ≥ ηt�c�∀c ∈ C}�
The perturbed game (��η) is the infinite strategies game (n�T �F� (	t(η))t∈T �u). Let
Bη
t (τ) be a best response in (��η).

Definition S3. The strategy profile σ∗ ∈ (�(C))t∈T is said to be a strictly perfect equi-
librium of � if for any arbitrary sequence {ηk = (ηk

t�c)}∞k=1 such that

ηk > 0 ∀k
ηk → 0 (k → ∞)�

there exists σ∗(ηk) ∈ (	t(η
k))t∈T , k= 1� � � � , such that

σ∗
t (η

k) ∈ Bηk

t (τ(σ∗(ηk)�F)) ∀t ∈ T

σ∗(ηk) → σ∗�

The following proposition identifies a necessary and sufficient condition for a strat-
egy profile to be a strictly perfect equilibrium. This condition greatly simplifies the char-
acterization of the set of strictly perfect equilibria.

Proposition S2. In a Poisson voting game satisfying Assumption S1, σ∗ is a strictly
perfect equilibrium if and only if ∃ε > 0 such that if τ ∈ �(C): |τ − τ(σ∗�F)| < ε, then
σ∗
t ∈ Bt(τ) ∀t ∈ T .

Proof. We begin by proving the if direction. Assume ∃ε > 0 such that ∀τ ∈ �(C):
|τ − τ(σ∗�F)| < ε, σ∗

t ∈ Bt(τ) ∀t ∈ T . Let {(��ηk)}∞k=1 be a sequence of perturbed games
with ηk → 0. Choose a subsequence (ηk)k=K���� with ηK < ε. Let

σ̄(ηk) ≡
(

arg min
σt(ηK)∈	t(ηk)

|σt(η
k)− σ∗|

)
t∈T

be the (perturbed game) strategy profile when all players minimize their tremble with
respect to the (unperturbed) equilibrium strategy. Since with σ̄(ηk), ηk < ε, each player
deviates to a different action c ∈ C with probability at most ε, τc can increase by at most
ε for all c. That is ∣∣τ(σ̄(ηk)�F)− τ(σ∗�F)

∣∣ < ε�

By assumption it follows that σ∗
t ∈ Bt(τ(σ̄(η

k)�F)). That is, if players could choose to
play the original equilibrium strategy, this would be a best response to σ̄(ηk). Since
σ̄(ηk) minimizes the tremble from σ∗

t , it follows that σ̄t(η
k) ∈ Bη

t (τ(σ̄(η
k)�F)). By con-

struction, it is also true that σ̄(ηk) → σ∗. Hence, σ∗ is a strictly perfect equilibrium.
We turn now to prove the only if direction. Let {σ∗

t (η
k)}∞k=1 be any sequence of equi-

libria of perturbed games converging to a strictly perfect equilibrium σ∗. There exists
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ε > 0 such that ∀ηk < ε—that is, a limit subsequence of {ηk}∞k=1—σ∗
t ∈ Bt (τ(σ

∗(ηk)�F))

∀t and σ∗
t = Bt (τ(σ

∗(ηk)�F)) for all positive measures of types. To see this, recall that
by Proposition S1, σ∗ is a strict best response to itself for all positive measures of types.
Suppose that the claim is not true and even for large k, σ∗

t /∈ Bt(τ(σ
∗(ηk)�F)) for all

t ∈ T̄ , where T̄ is some positive measure subset of T . That is, type t players play some
action c ∈ C in equilibrium and strictly prefer this action to all others. Nevertheless,
they play it with zero probability in all perturbed games along the sequence. This im-
plies σ∗(ηk) � σ∗, contradicting the assumption that σ∗ is strictly perfect. Further-
more, notice that for k sufficiently large, if σ∗(ηk) → σ∗, then the profile τ(σ∗(ηk)�F)

is arbitrarily close to τ(σ∗�F). Since σ∗ is a strict equilibrium for all positive measures
of players, it must be that for τ(σ∗(ηk)�F) sufficiently close to τ(σ∗�F), for all t ∈ T̄ ,
σ∗
t = Bt (τ(σ

∗(ηk)�F)).
Notice that since σ∗

t = Bt(τ(σ
∗(ηk)�F)) for all positive measures of types, then, for

the same types, σ̄t(η
k) = Bηk

t (τ(σ∗(ηk)�F)). By construction σ̄(ηk) → σ∗. Call ε̄ the
minimum of all the ε for each sequence ηk → 0. For all such sequences, there is a limit
sub-sequence with ηk < ε̄ such that σ̄(ηk) is a sequence of equilibria (for all positive
measures of types) of the perturbed games σ̄(ηk)→ σ∗ and σ∗

t ∈ Bt (τ(σ̄(η
k)�F)).

Notice that

{
τ ∈ �(C) : τ = τ(σ̄(η)�F)� some η< ε̄

} = {
τ ∈ �(C) : |τ − τ(σ∗�F)| < ε̄

}
�

To see this, recall from Proposition S1 that all but a measure zero of players must play
a pure strategy in σ∗. Therefore, any τ(c): |τ(c) − τ(σ∗�F)(c)| < ε̄ can be generated by
simply choosing ηt�c , all t and c such that

τ(c) =
∫
T
σ̄t(η)dF(t) ≡

∫
T

min{1�σ∗
t (c)+ηt�c}dF(t)�

Hence, since σ∗
t ∈ Bt(τ(σ̄(η)�F)) ∀η< ε̄, then σ∗

t ∈ Bt (τ) ∀τ: |τ − τ(σ∗�F)| < ε̄. �

A refinement concept with similar intuition to strict perfection has been employed
in the analysis of voting games. Expectationally stable equilibria (Fey 1997, Palfrey and
Rosenthal 1991) are equilibria that are robust to a small deviation in the expectation of
the voters regarding the result of an election. That is, suppose that voters expect τ(σ∗�F)
to be the share of votes and σ∗ ∈ B(τ(σ∗�F)) so that σ∗ is an equilibrium. This equilib-
rium is expectationally stable if for sufficiently small deviations of the strategy profiles
of all the voters, if a single voter is allowed to reoptimize, he does not deviate excessively
from the original equilibrium.2

2The exact definitions of Fey (1997) and Palfrey and Rosenthal (1991) cannot be applied to generic games,
since it is valid only when the equilibrium strategy is a one-dimensional cutoff strategy. Both Fey (1997)
and Palfrey and Rosenthal (1991) seem to suggest that their interpretation of the solution concept implies a
more restrictive definition of expectational stability, where the reoptimized strategy is closer to the original
equilibrium or is in the direction of it. This more stringent solution concept trivially implies our definition
of expectational stability.
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Definition S4. The strategy profile σ∗ such that σ∗
t ∈ Bt (τ(σ

∗�F)) ∀t ∈ T is an expec-
tationally stable equilibrium if for all ε > 0, there exists δ > 0 such that, if σ is a strategy
profile such that |σt − σ∗

t | < δ ∀t ∈ T , then |Bt(τ(σ�F))− σ∗
t | < ε.

We now show that this concept is equivalent to strict perfection in large Poisson vot-
ing games with infinite types.

Proposition S3. Let � be a Poisson game satisfying Assumption S1. Then σ∗ is an ex-
pectationally stable equilibrium of � if and only if it is strictly perfect.

Proof. We begin by considering the if direction. Let σ∗ be a strictly perfect equi-
librium. Hence, by Proposition S2, there exists η > 0 such that for any τ ∈ �(C):
|τ − τ(σ∗�F)| < η, σ∗

t ∈ Bt (τ) for all t ∈ T . Let each player play σt : |σt − σ∗
t | < η. Since

each player deviates to a different action c ∈ C with probability at most η, τc can increase
by at most η for all c. That is

|τ(σ�F)− τ(σ∗�F)| <η�

By assumption, it follows that σ∗
t ∈ Bt (τ(σ�F)). Hence, for any ε > 0, there exists δ = η

such that ∀σ : |σt − σ∗
t | < δ, ∀t ∈ T , |Bt(τ(σ�F))− σ∗

t | = 0 < ε.
To prove the only if direction, let σ∗ be an expectationally stable equilibrium. By

contradiction, let us consider the possibility that, for any δ > 0, σ∗
t /∈ Bt (τ(σ�F)) for some

t ∈ T and σ : |σt − σ∗
t | < δ. This implies that there is an action c ∈ C played with positive

probability by type t players in σ∗
t that is not a best response to σ for the same players.

That is, Bt (τ(σ�F)) does not contain strategy profiles where players of type t play c with
positive probability. Let ε < σ∗

t (c). Then |Bt(τ(σ))−σ∗
t |> ε. Hence, it must be that σ∗

t ∈
Bt (τ(σ�F)) for all t ∈ T and all σ : |σt − σ∗

t | < δ. Since σ : |σt − σ∗
t | < δ spans the entire

set τ ∈ �(C): |τ − τ(σ∗�F)| < δ, we conclude that the equilibrium is strictly perfect. �

In Poisson voting games, the object of the analysis is usually the limit of the set of
equilibria as n → ∞. In the remainder of this appendix, we refer to a point in this set as
an aymptotic equilibrium.

Definition S5. Let �̂≡ {�n}n→∞ be a sequence of games �n ≡ (n�T �F�C�u). A strategy
profile σ∗

t ∀t ∈ T is an asymptotic equilibrium of �̂ if there exists a sequence of Nash
equilibria {σ∗

n}n→∞ of �n such that σ∗
n�t → σ∗

t for almost all t ∈ T .

Let us clarify the meaning of this definition by means of an example. Take a Du-
verger’s law equilibrium in a plurality voting game. In such an equilibrium, only two
serious candidates receive a positive expected share of votes. For any finite n, there ex-
ists a positive measure of voters who are expected to vote for a third candidate—those
that are almost indifferent between the two serious candidates, but like this third candi-
date very much. What we mean when we say that there is a Duverger’s law equilibrium
as n → ∞ is that, as n grows large, the measure of voters expected to vote for a third
candidate goes to zero.
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We apply a similar limit concept to strict perfection. For n finite, the equilibrium
is not strictly perfect, because there exist voters whose best response is not robust to
some perturbation of the strategy space. We say that a sequence of Nash equilibria
{σ∗

n}n→∞ is asymptotically strictly perfect if (i) it admits a limit and (ii) as n grows large,
Pr[t ∈ T : σ∗

t /∈ Bt (τn)] → 0 for any τn sufficiently close to τ(σ∗
n�F).

Definition S6. An asymptotic equilibrium σ∗ is asymptotically strictly perfect (ASP) if
there exists a sequence of Nash equilibria {σ∗

n} → σ∗ for almost all t ∈ T such that, for any
δ > 0, there exist N ∈N and ε > 0 such that, for any n >N , if τn ∈ �(C): |τn−τ(σ∗

n�F)| < ε,
then Pr[t ∈ T : σ∗

t /∈ Bt (τn)] < δ.

Proposition S4 (below) shows that if, as n grows large, a strategy profile is a best re-
sponse to itself only if two pivotal events have identical magnitudes, then it is not an ASP
equilibrium. Importantly, this does not imply that a strategy profile that is not associated
with a unique largest magnitude (as n goes to infinity) cannot be an ASP equilibrium. To
prove this proposition, we introduce two lemmata.

Myerson (2000) shows that, in a Poisson game, the probability of an exact profile
of action shares is exponentially decreasing in the expected number of players, n, and
converges to zero at a speed proportional to its magnitude. The probability of the action
profile x depends on τ, which itself depends on σ and F . In particular, this probability
is

Pr(x|τ) =
∏
i∈C

(
exp(−nτi)(nτi)

xi

xi!
)
�

To lighten notation, we omit the τ from the notation of the probability of any action
profile or set of action profiles.

An event E is a set of action profiles that satisfy given constraints, i.e., a subset of
Z(C). As shown in Myerson (2000, Theorem 1), for a large population of size n, the prob-
ability of an event E is such that

μ(E)≡ lim
n→∞

log[Pr(E)]
n

= max
x∈E

∑
i

xi
n

(
1 − log

(
xi
nτi

))
− 1�

That is, the probability that event E occurs is exponentially decreasing in n; μ(E) ∈
[−1�0] is called the magnitude of event E. Its absolute value represents the “speed” at
which the probability decreases toward 0: the more negative is the magnitude, the faster
the probability goes to 0.

Furthermore, Myerson (2000, Corollary 1) shows the following lemma.

Lemma S1. Compare two events E�E′ ⊆ 2Z(C) with different magnitudes under τ ∈ �(C):
μτ(E) < μτ(E

′). Then the probability ratio of the former over the latter event goes to zero
as n increases:

μτ(E) < μτ(E
′) ⇒ Pr(E|nτ)

Pr(E′|nτ) →
n→∞ 0�
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The intuition is that the probabilities of different events do not converge toward zero
at the same speed. Hence, unless two events have the same magnitude, their likelihood
ratio converges either to zero or to infinity when the number of players grows large.
Myerson calls this result the magnitude theorem.

In a voting game, it is possible to find a subset of events where the action of a sin-
gle player can change the payoff outcome of the game. These events are called piv-
otal events. The set of pivotal events is PIV ⊆ 2Z(C). Let Ḡt(c|E) be the gain of action c,
conditional on some event E having occurred, for a voter of type t ∈ T . By definition,
Ḡt(c|E) = 0 ⇒E ∈ PIV. Furthermore, it is easy to see that

Gt(c�nτ)=
∑

E∈PIV

Pr(E|nτ)Ḡt(c|E)�

That is, when deciding what action to take, all the players only consider the relative
probability of different pivotal events.

We say that two pivotal events E and E′ are generically independent if μτ(E)= μτ(E
′)

only for a measure zero of expected voting shares.

Definition S7. Two pivotal events E and E′ in PIV are generically independent if

{τ ∈ �(C) : μ(E)= μ(E′)}

has measure zero.

The following proposition allows us to rule out the possibility of strictly perfect equi-
libria relying on a specific ratio between the probabilities of two generically independent
pivotal events.

Proposition S4. Let σ∗ be an asymptotic equilibrium only if two generically indepen-
dent pivotal events have equal magnitudes under τ(σ∗�F). Then σ∗ is not ASP.

Proof. We prove this statement by contradiction. Let E and E′ be two pivotal events.
Let σ∗ be an asymptotic equilibrium only if μ(E) = μ(E′) under τ∗ ≡ limn→∞ τ(σ∗�F).
By definition, this means that, as n → ∞, σ∗

t ∈ Bt (τn) for almost all t ∈ T and σ∗
t /∈ Bt(τn)

for a positive measure of voters’ types for any {τn}n→∞ inducing μ(E) = μ(E′). Suppose
that σ∗ is asymptotically strictly perfect. This means that for any ε > 0 sufficiently small,
as n → ∞, σ∗

t ∈ Bt (τn) for all τ ∈ �(C): |τn − τ∗| < ε and almost all t ∈ T . Since, E and
E′ are generically independent, then there exists τ ∈ �(C): |τ − τ∗| < ε such that μ(E) =
μ(E′). (Proposition 2 in Myerson 2002 guarantees that μ(E) and μ(E′) are continuous
function of τ.) Then asymptotic strict perfection implies that, as n → ∞, σ∗

t ∈ Bt (τn) for
some {τn}n→∞ inducing μ(E) = μ(E′), reaching a contradiction. �

Proposition S4 highlights that asymptotic strict perfection is equivalent to require
stability with respect to perturbations in the distribution of preferences. Indeed,
τ(σ∗�F) changes if F changes and σ∗ remains the same.
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Appendix D

The model presented in this paper assumes that for any given pair of candidates par-
ticipating in the second round, the probability of victory is exogenous, positive, and
constant (i.e., independent of the size of the electorate). As shown in Bouton (2013),
generically, the chance of second-round victory for a large electorate is never constant
in the size of the population. In this appendix, we show that our results do not hinge on
the particular reduced-form way of modeling the second round that we have assumed.
Indeed, all our results hold (at least qualitatively) in a model with an endogenous second
round.

As shown in Bouton (2013), when there is uncertainty about the realized distribution
of preferences in the electorate after the first round, when the expected number of voters
grows large, the risk of an upset victory converges to zero. The speed of convergence to
zero, i.e., the magnitude of the upset victory event, depends on the particular assump-
tions on the distribution of preferences made to obtain such uncertainty. We prove that
the results of our initial model hold (at least qualitatively) no matter what is the speed of
convergence to zero.3 That is, in the spirit of the rest of the paper, we are able to prove
general properties of the set of equilibria for any distribution of preferences.

In a model that includes the second round, we show that (i) there always exist at
least two strictly perfect Duverger’s law equilibria, and (ii) there may exist strictly per-
fect equilibria in which three candidates receive a positive share of the votes (i.e., a Du-
verger’s hypothesis equilibrium). As in the model with the reduced-form second round,
the characteristics of the Duverger’s hypothesis equilibria are as follows: (i) they never
support pushover, (ii) they never support sincere voting by all voters, and (iii) they can
lead to the exclusion of the Condorcet winner from the second round.

Even if the results are qualitatively identical to those derived with the reduced-form
second round, there are some small differences that deserve to be highlighted. First, the
Duverger’s law equilibrium in which W is the runner-up might not exist. In line with
Bouton (2013), this equilibrium exists whenever the support for W against the front-
runner is large enough. The exact condition for existence depends on the structure of
the second round. For instance, if there is a complete new draw of voters (from the
same distribution of preferences), as in Bouton (2013), then the support for W against
the front-runner must be larger than 6�7% of the electorate. The intuition is the same
as in Bouton (2013, pp. 1268–1274). Second, there may exist a Duverger’s hypothesis
equilibrium in which some voters who prefer R to the runner-up do not vote for the
former. This can only happen when W is the runner-up. One direct implication is that
in the model with an endogenous second round, the (expected) vote share of the front-
runner may increase between the two rounds. This is so, even if all voters are strategic.

Proposition S9 below compares the set of equilibria with reduced-form and endoge-
nous second round. We show that the set of equilibria with reduced-form second round

3Note that we could also just adopt the exact same structure as in Bouton (2013), i.e., there is a com-
plete new draw of voters between the two rounds. This would imply that, for almost all F , ∀i ∈ {S�W },
either limn→∞ Pr(R|R� i) = 1 or limn→∞ Pr(R|R� i) = 0, and we would be able to pinpoint precisely the rate
of convergence of these events.
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converges to a subset of the set of equilibria with endogenous second round if we let
Pr(i|Ri) converge to 0 or 1 for all candidates i = R. Not surprisingly, this subset is identi-
fied by those equilibria in which the difference between first-round pivotal events dom-
inates the difference between second-round winning probabilities.

Lemma S2. In any strictly perfect equilibrium with endogenous second round,

μ(S|RS)≥ μ(W |RW )�

Proof. By definition, for any finite n, the chances of S defeating R are higher than those
of W defeating R. �

Before we begin the analysis, we define

χ ≡ [μ(pivR/RS)−μ(pivRS/RW )] − [μ(S|RS)−μ(W |RW )]�

Notice that if χ > 0, then the difference between first-round pivotal events dominates
the difference between second-round winning probabilities.

Proposition S5. There always exist strictly perfect Duverger’s law equilibria. If χ > 0
or if the front-runner is the Condorcet loser, then any opponent can be the runner-up.
Otherwise, only the strong opponent can be the runner-up.

Proof. In a Duverger’s law equilibrium, there exists a candidate j ∈ C with τj = 0.
Hence, in equilibrium, we have μ(pivR/Ri) = μ(pivi/Ri) ≥ any other magnitude. Since
magnitude formulae are continuous in τ, to show that we have a strictly perfect Du-
verger’s law equilibrium, we need to show that, as n → ∞, σt(j) = 0 is a best response for
almost all t ∈ T , whenever μ(pivR/Ri) ≥ μ(pivi/Ri) > any other magnitude.

We begin by showing the result for j = W . Let

ρ ≡ Pr(pivS/RS)

Pr(pivR/RS)

φ ≡ Pr(pivRS/RW )

Pr(pivR/RS)
�

Notice that μ(pivR/Ri) = μ(pivi/Ri) ⇒ ρ →n→∞ ρ̄ ∈ (0�1), φ → 0, and μ(pivR/Ri) >

μ(pivi/Ri) ⇒φ, ρ→ 0. Then we have

lim
n→∞

Gt(R�nτ)

Pr(pivR/RS)
− lim

n→∞
Gt(S�nτ)

Pr(pivR/RS)

= 2 Pr(S|RS)(U(R|t)−U(S|t))
(S1)

+ 2ρ
[
U(R|t)−U(S|t)+ Pr(S|RS)(U(S|t)−U(R|t))]

−φ
[
Pr(S|RS)(U(S|t)−U(R|t))+ Pr(W |RW )(U(R|t)−U(W |t))]
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and

lim
n→∞

Gt(R�nτ)

Pr(pivR/RS)
− lim

n→∞
Gt(W �nτ)

Pr(pivR/RS)

= 2 Pr(S|RS)(U(R|t)−U(S|t)) (S2)

−φ
[
Pr(S|RS)(U(R|t)−U(S|t))+ Pr(W |RW )(U(W |t)−U(R|t))]

lim
n→∞

Gt(S�nτ)−Gt(W �nτ)

Pr(pivR/RS)

= 2ρ[U(S|t)−U(R|t)+ Pr(S|RS)(U(R|t)−U(S|t))]
+ 2φ

[
Pr(S|RS)(U(S|t)−U(R|t))+ Pr(W |RW )(U(R|t)−U(W |t))]�

We can now determine the behavior of voters. There are three cases to consider: (i) R
is a Condorcet loser, i.e., limn→∞ Pr(R|RS) = 0 = limn→∞ Pr(R|RW ); (ii) R is a Condorcet
winner, i.e., limn→∞ Pr(R|RS) = 1 = limn→∞ Pr(R|RW ); and (iii) R is neither of the two,
i.e., limn→∞ Pr(R|RS)= 0 < limn→∞ Pr(R|RW ) = 1.

First, notice that in all three cases, (S1) and (S2) converge to a multiple of U(R|t) −
U(S|t). The last condition converges to

2
[
U(S|t)−U(R|t)+ Pr(S|RS)(U(R|t)−U(S|t))]

in cases (i) and (iii), and to U(S|t)−U(R|t) in case (ii). It sufficient to notice that for all
finite n, Pr(S|RS) < 1 for all finite n to conclude that all voters who prefer R to S vote for
R and all those who prefer S to R vote for S. The measure of voters voting for W equals 0.

We now consider the case of j = S. Let

ρ ≡ Pr(pivW/RW )

Pr(pivR/RW )

φ ≡ Pr(pivRS/RW )

Pr(pivR/RW )
�

We have

lim
n→∞

Gt(R�nτ)

Pr(pivR/RW )
− lim

n→∞
Gt(S�nτ)

Pr(pivR/RW )

= 2 Pr(W |RW )(U(R|t)−U(W |t)) (S3)

− ρ
[
Pr(W |RW )(U(R|t)−U(W |t))+ Pr(S|RS)(U(S|t)−U(R|t))]

and

lim
n→∞

Gt(R�nτ)

Pr(pivR/RW )
− lim

n→∞
Gt(W �nτ)

Pr(pivR/RW )

= 2 Pr(W |RW )(U(R|t)−U(W |t)) (S4)

+ 2φ
[
U(R|t)−U(W |t)+ Pr(W |RW )(U(W |t)−U(R|t))]

− ρ
[
Pr(W |RW )(U(W |t)−U(R|t))+ Pr(S|RS)(U(R|t)−U(S|t))]
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lim
n→∞

G(S�nτ)

Pr(pivR/RW )
− lim

n→∞
Gt(W �nτ)

Pr(pivR/RW )

= 2φ
[
U(R|t)−U(W |t)+ Pr(W |R�W )(U(W |t)−U(R|t))] (S5)

+ 2ρ
[
Pr(W |RW )(U(R|t)−U(W |t))+ Pr(S|RS)(U(S|t)−U(R|t))]�

We can now determine the behavior of voters. There are three cases to consider: (i) R
is a Condorcet loser, i.e., limn→∞ Pr(R|R�S) = 0 = limn→∞ Pr(R|R�W ); (ii) R is a Con-
dorcet winner, i.e., limn→∞ Pr(R|R�S) = 1 = limn→∞ Pr(R|R�W ); and (iii) R is neither of
the two, i.e., limn→∞ Pr(R|R�S)= 0 < limn→∞ Pr(R|R�W ) = 1.

Notice that if χ> 0, then

Pr(W |RW )

φPr(S|RS) → ∞�

This is sufficient to show that (S3) and (S4) converge to a multiple of U(R|t)−U(W |t) in
all three cases. Condition (S5) converges to a multiple of U(R|t) − U(W |t) in cases (ii)
and (iii), and to

2
[
U(R|t)−U(W |t)+ Pr(W |RW )(U(W |t)−U(R|t))]

in case (i). It sufficient to notice that for all finite n, Pr(W |RW ) < 1 for all finite n to
conclude that all voters who prefer R to W vote for R and all those who prefer W to R

vote for W . The measure of voters voting for S equals 0.
Notice that if χ< 0, then

Pr(W |RW )

φPr(S|RS) → 0�

This implies that in cases (ii) and (iii), (S3) converges to U(R|t) − U(S|t), leading to a
positive share of voters voting for S and contradicting the hypothesis.

Last, notice that case (i) corresponds to the R being the Condorcet loser to finish the
proof. �

Proposition S6. For some distribution of preferences, there exist strictly perfect Du-
verger’s hypothesis equilibria in which all voters who prefer the front-runner to the
runner-up vote for the front-runner. If the front-runner is not the Condorcet loser, χ > 0,
and the runner-up is the weak opponent, some of the supporters of the weak opponent
vote for the strong opponent. Otherwise, all voters who prefer the runner-up to the front-
runner vote for their preferred candidate.

Proof. The equilibria in this proposition are all those with

μ(pivR/Ri) ≥ μ(pivRS/RW ) ≥ any other magnitude�

where i ∈ {S�W } is the runner-up. Since magnitude formulae are continuous in τ,
to show that σ∗ is a strictly perfect equilibrium, we need to show that, as n → ∞,
σ∗ is a best response for almost all t ∈ T , whenever μ(pivR/Ri) > μ(pivRS/RW ) >

any other magnitude.
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We begin by showing the result for i = S. Let

φ ≡ Pr(pivRS/RW )

Pr(pivR/RS)
�

Crucially, notice that φ → 0 as n grows large.
We have

lim
n→∞

Gt(S�nτ)

Pr(pivR/RS)
− Gt(W �nτ)

Pr(pivR/RS)

= 2φU(R|t)[Pr(R|RS)− Pr(R|RW )] + 2φ[U(S|t)Pr(S|RS)−U(W |t)Pr(W |RW )]

lim
n→∞

Gt(R�nτ)

Pr(pivR/RS)
− Gt(W �nτ)

Pr(pivR/RS)

= 2 Pr(S|RS)[U(R|t)−U(S|t)] (S6)

−φ
[
Pr(W |RW )(U(W |t)−U(R|t))+ Pr(S|RS)(U(R|t)−U(S|t))]�

and

lim
n→∞

Gt(R�nτ)

Pr(pivR/RS)
− Gt(S�nτ)

Pr(pivR/RS)

= 2 Pr(S|RS)(U(R|t)−U(S|t))
−φ

[
Pr(S|RS)(U(S|t)−U(R|t))+ Pr(W |RW )(U(R|t)−U)(W |t)]�

We can now determine the behavior of voters. There are three cases to consider: (i) R
is a Condorcet loser, i.e., limn→∞ Pr(R|RS) = 0 = limn→∞ Pr(R|RW ); (ii) R is a Condorcet
winner, i.e., limn→∞ Pr(R|RS) = 1 = limn→∞ Pr(R|RW ); and (iii) R is neither of the two,
i.e., limn→∞ Pr(R|RS)= 0 < limn→∞ Pr(R|RW ) = 1.

First, we show that all voters who prefer R to S vote for R. That is, in all three cases,
(S6) and (S9) converge to a multiple of U(R|t)−U(S|t). To see this point, it is sufficient
to recall that φ→ 0 and μ(S|RS)≥ μ(W |RW ).

Second, we can determine the behavior of voters who prefer S to R. Using condition
(S8), we have that such a voter votes for S only if

U(S|t)−U(W |t) > Pr(R|RW )[U(R|t)−U(W |t)] + Pr(R|RS)[U(S|t)−U(R|t)]� (S7)

Otherwise she votes for W .
For each of the three cases, we have to determine the behavior of the three types of

voters who prefer S to R, i.e., tSRW , tSW R, and tW SR.

Case (i): R is a Condorcet loser. In this case, the right-hand side of (S7) converges to
zero. Therefore, voters who prefer S to W (i.e., tSW R, and tSRW ) vote for S and voters
who prefer W to S (i.e., tW SR) vote for W .

Case (ii): R is a Condorcet winner. In this case, the right-hand side of (S7) converges
to U(S|t) − U(W |t) from below (because Pr(R|Ri) < 1 for any finite n). Therefore,
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voters who prefer S to W (i.e., tSW R, and tSRW ) vote for S and voters who prefer W
to S (i.e., tW SR) vote for W .

Case (iii): R is neither. In this case, there is no Duverger’s hypothesis equilibrium be-
cause (S7) converges to U(S|t) − U(R|t) (all voters who prefer S to R vote for S).
Notice that this implies μ(pivR/Ri) = μ(pivi/Ri)≥ any other magnitude.

A similar proof holds for μ(pivRS/RW )= μ(pivR/RW ).
We now consider the case of i = W . Let

φ ≡ Pr(pivRS/RW )

Pr(pivR/RS)
�

Crucially, notice that φ→ 0 as n grows large.
We have

lim
n→∞

Gt(S�nτ)

Pr(pivR/RW )
− Gt(W �nτ)

Pr(pivR/RW )
= 2φPr(S|RS)[U(S|t)−U(R|t)]

+ 2φPr(W |RW )[U(R|t)−U(W |t)]
(S8)

lim
n→∞

Gt(R�nτ)

Pr(pivR/RW )
− Gt(W �nτ)

Pr(pivR/RW )
= (2 +φ)Pr(W |RW )[U(R|t)−U(W |t)]

+φPr(S|RS)[U(R|t)−U(S|t)]
(S9)

and

lim
n→∞

Gt(R�nτ)

Pr(pivR/RW )
− Gt(S�nτ)

Pr(pivR/RW )
= (2 −φ)Pr(W |RW )[U(R|t)−U(W |t)]

+φPr(S|RS)[U(R|t)−U(S|t)]�
(S10)

We can now determine the behavior of voters. There are three cases to consider: (i) R
is a Condorcet loser, i.e., limn→∞ Pr(R|RS) = 0 = limn→∞ Pr(R|RW ); (ii) R is a Condorcet
winner, i.e., limn→∞ Pr(R|RS) = 1 = limn→∞ Pr(R|RW ); and (iii) R is neither of the two,
i.e., limn→∞ Pr(R|RS)= 0 < limn→∞ Pr(R|RW ) = 1.

First, we show that all voters who prefer R to W vote for R. To see this point, recall
that φ → 0 and μ(S|RS)≥ μ(W |RW ). Also, let χ> 0 and notice that this implies

Pr(W |RW )

φPr(S|RS) → ∞�

With this in mind, it is easy to see that (S9) and (S10) both converge to a multiple of
U(R|t)−U(W |t) in all three cases. Hence, a voter who prefers R to W votes for R.

On the contrary, if χ < 0, (S9) and (S10) both converge to a multiple of U(R|t) −
U(W |t) only in case (i). Otherwise, they converge to a multiple of U(R|t)−U(S|t).

Second, we can determine the behavior of voters who prefer W to R. From (S8), we
have that such a voter will vote for W only if

Pr(S|RS)[U(S|t)−U(R|t)] < Pr(W |RW )[U(W |t)−U(R|t)]�



14 Bouton and Gratton Supplementary Material

Otherwise she votes for S. In case (i), this converges to U(S|t) < U(W |t). Otherwise it
converges to U(S|t) < U(R|t). We can, therefore, conclude that in case (i), all voters who
prefer R to W vote for R and the remaining voters vote for their most preferred candi-
date. In cases (ii) and (iii), if χ > 0, then all voters who prefer R to W vote for R, and
the remaining voters vote for W if and only if they prefer R to S. That is, some W sup-
porter votes for S. In cases (ii) and (iii), if χ < 0, there is no voter who votes for W .
Notice that this implies a Duverger’s law equilibrium with μ(pivR/Ri) = μ(pivi/Ri) ≥
any other magnitude. A similar proof holds for μ(pivRS/RW )= μ(pivR/RS). �

Proposition S7. For some distribution of preferences, if χ < 0 and the front-runner is
not the Condorcet loser, then there exists a strictly perfect Duverger’s hypothesis equilib-
rium where (i) the weak opponent is the runner-up, (ii) all voters who prefer the runner-
up to the front-runner vote for the runner-up, and (iii) among the voters who prefer the
front-runner to the runner-up, those who prefer the strong opponent to the front-runner
vote for the strong opponent.

Proof. Notice that if χ< 0,

Pr(W |RW )

φPr(S|RS) → 0�

Then, when μ(pivR/RW ) > μ(pivW/RW ) > any other magnitude, in cases (ii) and (iii),
(S3) in the Proof of Proposition S5 converges to U(R|t) − U(S|t). Also, (S4) and (S5)
converge to a multiple of U(R|t)−U(W |t). This says that all voters who prefer R to both
S and W vote for R. All voters who prefer W to R vote for W . Yet, this is not a Duverger’s
law equilibrium because some of the voters who prefer R to the runner-up, W , vote for S.
These are the voters who prefer S to R and R to W (i.e., tSRW voters). �

Proposition S8. There is no other strictly perfect equilibrium.

From Lemma 3 and Proposition 3, we know that in any strictly perfect equilibrium,
the order of first-round magnitudes must be either

μ(pivR/Ri) ≥ μ(pivi/Ri) ≥ any other magnitude

or

μ(pivR/Ri) ≥ μ(pivRS/RW ) ≥ any other magnitude�

The first case is completely discussed in the proofs of Propositions S5 and S7, and leads
only to equilibria described in those two propositions. The second case is completely
discussed in the proof of Proposition S6. Finally, notice that, by Lemma 1, if a strategy
profile is an equilibrium only if χ= 0, then it is not strictly perfect.

Corollary S1. There is no strictly perfect Duverger’s hypothesis equilibria supporting
pushover or sincere voting.
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Proof. The corollary follows from the description of the equilibria in Propositions S5,
S6, and S7, and that these are all the strictly perfect equilibria. �

We now turn to the comparison of the model with reduced-form second round. For
this exercise, we denote by ς ∈ (0�1) and ω ∈ (0�1) the exogenously given probabilities
that candidate S and W defeat R in the second round. Let E(ς�ω;F) be the set of strictly
perfect equilibria, as n → ∞, when F is the distribution of voters, and second-round
probabilities are given exogenously by ς and ω. We also define

s ≡ lim
n→∞ Pr(S|RS)

w ≡ lim
n→∞ Pr(W |RW )

� ≡ lim
n→∞

Pr(W |RW )

Pr(S|RS) �

Then we can denote the set of strictly perfect equilibria (as n → ∞) with endogenous
second-round probabilities as Ē(s�w;F).

Let Ē(s�w;F |χ > 0) be the set of elements of Ē(s�w;F) for which χ > 0. Notice that
this includes all equilibria where R is the Condorcet loser. The following proposition
says that provided that χ> 0, the model with reduced-form second round converges to
the model with endogenous second round when the reduced-form second-round win-
ning probabilities converge to the limit of their endogenous counterpart.

Proposition S9. For all distributions of voters’ preferences in the first round F , and for
all endogenous second-round winning probabilities converging to s and w,

lim
ς→s�ω→w

ω
ς →�

E(ς�ω;F) = Ē(s�w;F |χ> 0)�

Proof. We show the result for W being the runner-up. The case for S being the runner-
up is similar with the exception that χ plays no role.

If χ > 0, there always exist three Duverger’s law equilibria for any exogenous or en-
dogenous second-round specification. Hence, the proposition is trivially true for Du-
verger’s law equilibria.

We now turn to the Duverger’s hypothesis equilibria. In all equilibria with an exoge-
nous second round, all voters who prefer R to W vote for R. With an endogenous second
round, this is true whenever χ> 0. It remains to show that the choice between S and W

is the same as ς → s and ω→w.
Notice that this choice depends on

vote for S only if [U(S|t)−U(R|t)] > ω

ς
[U(W |t)−U(R|t)]� (S11)

There are three cases to consider: (i) when R is the Condorcet loser, that is, s = w = 1;
(ii) when R is the Condorcet winner, that is, s = w = 0; and (iii) when R is neither, that is,
s = 1 > 0 = w.
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In the first case, ω/ς → 1−; hence, (S11) converges to U(S|t) > U(W |t). This is the
same as the case in Proposition S6 when R is the Condorcet loser.

In the second and third cases, ω/ς → 0. (We know from the endogenous model that
any strictly perfect equilibrium with w = 0 must be an equilibrium also when �= 0, that
is, when μ(S|RS) > μ(W |RW ).) Then (S11) converges to U(S|t) > U(R|t). This is the
same as the case in Proposition S6 when R is not the Condorcet loser. �
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