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A. Proofs for Section 2

A.1 Proof of Theorem 2a (the semi-separating equilibrium)

The proof of Theorem 2a is divided into a series of lemmas and remarks. We begin by
outlining the general argument.

Outline

Related literature Elements of our argument draw on reasoning proposed by Lebrun
(1997, 1999, 2004, 2006). Though our notation is generally different, we also employ η
to denote the maximal equilibrium bid. We further draw on Lebrun’s conclusions re-
garding the monotonicity of the equilibrium bidding strategy as a function of η, and we
follow the common practice of examining inverse bid functions. As previously noted,
Maskin and Riley (2003) and Lizzeri and Persico (2000) propose similar arguments in
their analyses. The presence of a jump discontinuity in the equilibrium strategy of some
bidders differentiates our argument from prior studies. To keep the discussion manage-
able and to reduce the number of cases, we suppose N1 ≥ 2 and N2 ≥ 2. If Nk = 1, then
the equilibrium will feature the bidder in group k bidding rk.

Preliminaries To prove Theorem 2a, we first complete the definition of the proposed
strategy. This involves identifying the appropriate values for ŝ1 and ŝ2. In defining these
two values below, we also determine η∗, the maximal bid.

To identify the preceding values, we first derive several preliminary results. In par-
ticular, we define four functions: b1(s), b2(s), bτ(s), and bψ(s). For k ∈ {1�2}, bk(s) has
domain [rk� s̄] and is defined as

bk(s) := s−
∫ s

rk

[
Fk(z)

Fk(s)

]Nk−1
dz� (A.1)

The function bk(s) is the equilibrium bidding strategy in a symmetric first-price auction
and it constitutes the lower portion of the strategy defined in Theorem 2a.

The functions bτ(s) and bψ(s) are defined in Remark A.2 below. Intuitively, bτ(s) cor-
responds to the utility-maximizing bid above r2 of a type-s group-1 agent conjecturing
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that all group-2 bidders bid according to b2(s). Its definition relies on the function τ(s),
which is defined below (Lemma A.1). Likewise, bψ(s) corresponds to the bid above r2
that satisfies an indifference condition for bidders in group 1 (Lemma A.8). This is the
indifference condition that supports the discontinuous increase in bid among group-1
members. The definition of bψ(s) relies on the function ψ(s), which is defined below
(Lemma A.4).1

Lemmas A.5 and A.6 prove some additional properties of ψ(s) that are useful else-
where in the analysis, particularly in understanding the relative positions and geometry
of b1(s), b2(s), bτ(s), and bψ(s). A sketch of the resulting configuration is provided in
Figure A.2.

Identification of ŝ1, ŝ2, and η∗ Having defined bψ(s) and b2(s), we adapt the argument
of Lebrun (1999) to simultaneously identify ŝ1, ŝ2, and η∗ (Lemma A.11 and Remarks A.4
and A.5). Intuitively, this argument proceeds as follows: For each candidate value of
η∗ we look at solutions to the system of differential equations defined in the theorem’s
statement. This system characterizes bidding near the top of the equilibrium bid distri-
bution. By varying η∗ we look for a solution to this system that “hits” bψ(s) and b2(s) at
a common level, b∗. Figure A.4 conveys this intuition and illustrates the final outcome.
The values ŝ1 and ŝ2 are then defined as ŝ1 := b−1

ψ (b
∗) and ŝ2 := b−1

2 (b∗). We note that the
argument in Lemmas A.10 and A.11 and Remarks A.4 and A.5 is more complex notation-
ally as the system of differential equations characterizing equilibrium bidding is defined
with reference to inverse bid functions.

This definition of ŝ1 and ŝ2 ensures that a group-2 bidder’s equilibrium strategy is
continuous at ŝ2. Additionally, a group-1 bidder of type ŝ1 is indifferent between the bids
b1(ŝ1) and bψ(ŝ1). Furthermore, since bψ(ŝ1)≤ bτ(ŝ1), a group-1 bidder has no incentive
to bid b ∈ [r2� bψ(ŝ1)) given the strategy adopted by bidders in group 2.

Verification of equilibrium The proof’s final step involves confirming that the defined
strategy profile is an equilibrium (Lemma A.15). The proof of this lemma mirrors the
case-by-case analysis from the proof of Theorem 1a. The proof relies on several prelim-
inary results (Lemmas A.12–A.14).

Preliminaries As noted in the outline above, a key preliminary step is the definition of
two functions, τ(s) and ψ(s). To introduce these functions define

p(s) :=
∫ s

r1

F2(r2)
N2F1(z)

N1−1 dz�

qs(t) := F1(s)
N1−1F2(t)

N2(s− t)+ F1(s)
N1−1F2(t)

∫ t

r2

F2(z)
N2−1 dz�

The function p(s) coincides with the expected payoff of a type-s group-1 bidder when
he and others in group 1 bid according to b1(·). The function qs(t) is the expected payoff
of a type-s group-1 agent when he places the same bid as a type-t group-2 agent, b2(t),

1In this supplement, the function ψ is distinct from the equilibrium allocation rule, defined in Section 3
in the main text. No confusion should result.
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and all group-1 agents of type s′ < s (s′ > s) bid less (more) than b2(t). To simplify nota-
tion, we write q′

s(t) := ∂
∂t qs(t). At boundaries, q′

s(t) is understood to be the right or left
derivative as appropriate.

Lemma A.1. Let τ(s) := arg maxt∈[r2�s̄] qs(t). Then for all s ∈ [r2� s̄],
(i) τ(s) �=∅ and is single valued

(ii) τ(r2)= r2, τ(s̄)= s̄, and for all s ∈ (r2� s̄), s < τ(s)≤ s̄
(iii) t < τ(s) =⇒ q′

s(t) > 0 and s̄ ≥ t > τ(s) =⇒ q′
s(t) < 0

(iv) τ(s) is nondecreasing.

Proof. The function qs(t) is continuous; hence, for all s, τ(s) �=∅. To confirm the other
points of the lemma, we begin by computing the derivative of qs(t) with respect to t:

q′
s(t)= F1(s)

N1−1f2(t)

(
N2(s− t)F2(t)

N2−1 +
∫ t

r2

F2(z)
N2−1 dz

)
︸ ︷︷ ︸

q̂s(t)

�

From the preceding expression, sgn(q′
s) = sgn(q̂s). Fix s ∈ [r2� s̄] and choose τ ∈

arg maxt∈[r2�s̄] qs(t). There are three cases.

Case 1. Suppose τ = r2. Then q′
s(r2) ≤ 0 =⇒ q̂s(r2) ≤ 0 =⇒ N2(s − r2)F2(r2)

N2−1 ≤
0 =⇒ s ≤ r2 =⇒ s = r2. Hence, r2 can maximize qs(t) only when s = r2. Then
for all t > r2,

q̂r2(t)=N2(r2 − t)F2(t)
N2−1 +

∫ t

r2

F2(z)
N2−1 dz

< (r2 − t)F2(t)
N2−1 +

∫ t

r2

F2(z)
N2−1 dz < 0�

Since for all t > r2, q′
r2
(t) < 0, we conclude that indeed τ(r2)= r2.

Case 2. Suppose τ ∈ (r2� s̄). At an interior maximum, τ must satisfy the first-order
condition q′

s(τ)= 0. If q̂s(t)= 0 and t > r2, then

0 =N2(s− r2)F2(t)
N2−1 +

∫ t

r2

F2(z)
N2−1 −N2F2(t)

N2−1 dz︸ ︷︷ ︸
<0

�

Thus, s > r2. Moreover, by inspection, if t ≤ s, then q̂s(t) > 0. Thus, τ > s > r2.
First, we argue that if for some t∗ ∈ (s� s̄), q′

s(t
∗) = q̂s(t

∗) = 0, then t∗ must
be a local maximum of qs(t). Taking the derivative of q̂s(t) with respect to t
gives

q̂′
s(t)= −(N2 − 1)F2(t)

N2−2(F2(t)+N2(t − s)f2(t)
)
�
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Thus, t > s =⇒ q̂′
s(t) < 0. Let ε > 0 be small. Then q̂s(t∗ − ε) > q̂s(t

∗) = 0 >
q̂s(t

∗ + ε). Hence, q′
s(t

∗ − ε) > 0 = q′
s(t

∗) > q′
s(t

∗ + ε). Therefore, if q′
s(t

∗)= 0,
then t∗ must be a local maximum of qs(t).

Since q′
s(τ) = 0, τ must be the only local maximum of qs(t) for all t ∈

[s� s̄]. If there were other local maxima on the interval, then there would
also exist a local minimum at some t∗ ∈ (s� s̄), satisfying q′

s(t
∗) = 0, which

would be a contradiction since such points must be local maxima. There-
fore, q′

s(t) > 0 for all t < τ, q′
s(t) < 0 for all t > τ, and τ(s) is single val-

ued.

Case 3. Suppose τ = s̄. Then q′
s(s̄)≥ 0. Recalling the arguments in the preceding case,

if there exists t∗ ∈ (s� s̄) that is also a maximizer of qs(t), then there would also
exist a local minimum on this interval—but that would be a contradiction.
Thus, for all t < s̄, q′

s(t) > 0.

In each of the preceding cases, there is a unique maximizer of qs(t). It was also shown
that τ(r2) = r2 and when s ∈ (r2� s̄), τ(s) > s since q′

s(s) > 0. The desiderata concerning
the derivative of qs(t) were also shown to apply in each case. To show that τ(s) is non-
decreasing, note that when τ(s) ∈ (r2� s̄), it must satisfy q̂s(τ(s)) = 0. However, if s′ > s,
then 0 = q̂s(τ(s)) < q̂s′(τ(s)). Thus, q′

s′(τ(s)) > 0 and, therefore, τ(s′) > τ(s). �

Lemma A.2 is a preliminary result leading to Lemma A.3, which defines š and s̃.
These values are used in the definition of ψ(s) in Lemma A.4 below.

Lemma A.2. For all s ∈ [r2� s̄], (i) s 	→ qs(s)− p(s) is continuous and strictly increasing,
and (ii) s 	→ qs(τ(s))−p(s) is continuous and strictly increasing.

Proof. (i) Let q(s) := qs(s). To show that qs(s)−p(s) is strictly increasing, it is sufficient
to show that q′(s) > p′(s) for all s > r2:

q′(s) =
(
d

ds
F1(s)

N1−1
)(
F2(s)

∫ s

r2

F2(z)
N2−1 dz

)

+ F1(s)
N1−1f2(s)

∫ s

r2

F2(z)dz+ F1(s)
N1−1F2(s)

N2

> F1(s)
N1−1F2(s)

N2

> F1(s)
N1−1F2(r2)

N2 = p′(s)�

(ii) To show that qs(τ(s))−p(s) is strictly increasing, fix s∗ ∈ (r2� s̄) and let τ∗ = τ(s∗).
From the previous lemma, τ∗ ≥ s∗. Consider the derivative

d

ds

(
qs

(
τ∗) −p(s))

= F1(s)
N1−2F1(s)

(
F2

(
τ∗)N2 − F2(r2)

N2
)

+ (N1 − 1)f1(s)F2
(
τ∗)F1(s)

N1−2
((
s− τ∗)F2

(
τ∗)N2−1 +

∫ τ∗

r2

F2(z)
N2−1 dz

)
�
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We note that τ∗ > r2 and when s = s∗, (s∗ − τ∗)F2(τ
∗)N2−1 + ∫ τ∗

r2
F2(z)

N2−1 dz ≥ N2(s
∗ −

τ∗)F2(τ
∗)N2−1 + ∫ τ∗

r2
F2(z)

N2−1 dz = q̂s∗(τ∗)≥ 0. Hence d
ds (qs(τ

∗)− p(s))|s=s∗ > 0 and for

s > s∗, d
ds (qs(τ

∗)− p(s)) > 0. Now take s < s′. Then qs(τ(s))− p(s) < qs′(τ(s))− p(s′) ≤
qs′(τ(s′))−p(s′). �

Lemma A.3. (i) There exists a unique s̃ ∈ (r2� s̄) such that p(s̃)= qs̃(s̃). (ii) There exists a
unique š ∈ (r2� s̃] such that qš(τ(š))−p(š)= 0.

Proof. (i) By inspection, p(r2) > 0 = qr2(r2) and

p(s̄)=
∫ s̄

r1

F2(r2)
N2F1(z)

N1−1 dz <

∫ s̄

r2

F2(z)
N2−1 dz = qs̄(s̄)�

Since qs(s)−p(s) is continuous and strictly increasing, by the intermediate value theo-
rem there exists s̃ ∈ (r2� s̄) such that p(s̃)= q(s̃).

(ii) Similarly, note that qr2(τ(r2))− p(r2) < 0 and qs̃(τ(s̃))− p(s̃) ≥ qs̃(s̃)− p(s̃) = 0.
Since qs(τ(s))−p(s) is continuous and strictly increasing, the conclusion follows. �

Lemma A.4. Let	 := {(s� t) ∈ [r2� s̄]2 : 0 ≤ qs(t)−p(s)} and define the functionψ : [š� s̄] →
[r2� s̄] as

ψ(s) := inf
t≥r2

{
(s� t) ∈	}

�

whereψ(s) is continuous,ψ(s̃)= s̃, and for all t ∈ (ψ(s)� τ(s)], (s� t) ∈	. Moreover, p(s)=
qs(ψ(s)).

The proof is an immediate consequence of continuity and the preceding two lem-
mas.

The following two lemmas identify some useful properties of the ψ(·) function de-
fined in Lemma A.4.

Lemma A.5. The function ψ(·) is decreasing.

Proof. Let s ≥ š be fixed and, to simplify notation, let ψ̄= ψ(s). Note that ψ̄≤ τ(s). To
show thatψ(s) is decreasing, it is sufficient to show that s 	→ qs(ψ̄)−p(s) is nondecreas-

ing. Since ψ̄ ≥ r2, it is sufficient to show that (s − ψ̄)F2(ψ̄)
N2−1 + ∫ ψ̄

r2
F2(z)

N2−1 dz ≥ 0.

This is obviously true if s ≥ ψ̄. Suppose instead that s < ψ̄. Then (s − ψ̄)F2(ψ̄)
N2−1 +∫ ψ̄

r2
F2(z)

N2−1 dz ≥N2(s− ψ̄)F2(ψ̄)
N2−1 + ∫ ψ̄

r2
F2(z)

N2−1 dz = q̂s(ψ̄)≥ 0. The final inequal-

ity follows from the fact that ψ̄≤ τ(s). �

Lemma A.6. Let s > š. ψ(s)= r2 ⇐⇒ s− ∫ s
r1

[F1(z)
F1(s)

]N1−1 dz ≥ r2.

Proof. (⇒) Suppose ψ(s)= r2. Then (s� r2) ∈	, so qs(r2)≥ p(s). Thus,

qs(r2)≥ p(s) ⇐⇒ F2(r2)
N2F1(s)

N1−1(s− r2)≥
∫ s

r1

F2(r2)
N2F1(z)

N1−1 dz

⇐⇒ s−
∫ s

r1

[
F1(z)

F1(s)

]N1−1
dz ≥ r2�
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Figure A.1. An illustration of τ(s) and ψ(s).

(⇐) Suppose s − ∫ s
r1

[F1(z)
F1(s)

]N1−1 dz ≥ r2. Then qs(r2) ≥ p(s). Thus, (s� r2) ∈ 	. Hence,
ψ(s)≤ r2. By definition, ψ(s)≥ r2. Therefore, ψ(s)= r2. �

Remark A.1. Throughout the remainder of our analysis we draw all diagrams with the
assumption that there exists an x̂ such that for all s ≥ x̂, ψ(s) = r2, and for all s < x̂,
ψ(s) > r2. This assumption is made for illustration and does not affect the conclusions
of our analysis. Figure A.1 sketches the relationship between τ(s) and ψ(s); ψ(s) is illus-
trated as equal to r2 for s ≥ x̂.

Remark A.2. We defined b1(s) and b2(s) in expression (A.1). Given b2(s), let bτ : [r2� s̄] →
[r2� s̄] be defined as bτ(s) := b2(τ(s)). Likewise, let bψ : [š� s̄→ [r2� s̄] be bψ(s) := b2(ψ(s)).
It is straightforward to verify that b1, b2, and bτ are nondecreasing and continuous; bψ is
nonincreasing and continuous. Since τ(s) > s for s ∈ (r2� s̄), bτ(s) > b2(s).

To simplify notation, let b̃= b2(s̃)= bψ(s̃) and b̌= bτ(š)= bψ(š)= b2(š
′), where š and

s̃ are defined above. It is easy to confirm that š′ > š.

Lemma A.7. Define s̃ as in Lemma A.3. Then b1(s̃) < r2.

Proof. Suppose b1(s̃) ≥ r1. This implies
∫ s̃
r1
F1(z)

N1−1 dz < F1(s̃)
N1−1(s̃ − r2). But then

p(s̃)= qs̃(s̃) > qs̃(r2), which implies
∫ s̃
r1
F2(r2)

N2F1(z)
N1−1 dz > F1(s̃)

N1−1F2(r2)
N2(s̃− r2),

which is a contradiction. �

Figure A.2 sketches the functions b1(s), b2(s), bτ(s), and bψ(s).
The following lemma verifies an indifference condition for bidders in group 1 when

s > š.
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Figure A.2. The functions b1(s), b2(s), bτ(s), and bψ(s). The illustration assumes that Re-
mark A.1 applies.

Lemma A.8. Let s > š and suppose b1(s) < r2. Then

F1(s)
N1−1F2(r2)

N2
(
s− b1(s)

) = F1(s)
N1−1F2

(
b−1

2

(
bψ(s)

))N2
(
s− bψ(s)

)
�

Proof. The left-hand side is

F1(s)
N1−1F2(r2)

N2
(
s− b1(s)

) =
∫ s

r1

F2(r2)
N2F1(z)

N1−1 dz = p(s)�

After some algebra, one can show that the right-hand side is

F1(s)
N1−1F2

(
b−1

2

(
bψ(s)

))N2
(
s− bψ(s)

)
= F1(s)

N1−1F2
(
ψ(s)

)N2
(
s−ψ(s)) + F1(s)

N1−1F2
(
ψ(s)

) ∫ ψ(s)

r2

F2(z)
N2−1 dz = qs

(
ψ(s)

)
�

Thus, the result follows from the definition of ψ(s) since p(s)= qs(ψ(s)). �
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Identification of ŝ1, ŝ2, and η∗ In this section we formally identify ŝ1, ŝ2, and η∗ (Re-
marks A.4 and A.5). Prior to those remarks, we note some properties of the system of dif-
ferential equations that characterize equilibrium bidding. The following result follows
from the analysis of Lebrun (1999).

Lemma A.9 (Lebrun (1999)). Consider the system of differential equations

φ′
k(b)= 1

Nk +Nj − 1
Fk

(
φk(b)

)
fk

(
φk(b)

)
×

[
1

φk(b)− b + Nj
(
φk(b)−φj(b)

)(
φk(b)− b)(φj(b)− b)

]
�

(A.2)

k ∈ {1�2}�k �= j, defined in the domain (b�φ1�φ2) ∈ [0� s̄]3.

(i) For each η ∈ (0� s̄), there exists a unique, strictly increasing solution to (A.2)
satisfying the boundary condition φ1(η) = φ2(η) = s̄. Denote this solution as
φ
η
k(b) : [bη�η] → [0� s̄], where [bη�η] is the solution’s maximal domain.

(ii) There exists η̄ such that for all η< η̄, bη = 0 and for all η> η̄, φηk(bη)= bη.

(iii) If η′ > η, then for all b on which both φη
′
k (b) and φηk(b) are defined, φη

′
k (b) >

φ
η
k(b).

Remark A.3. Since the solutions of (A.2) depend continuously onη and they are mono-
tone in η, for any (b� s2) such that s2 ≤ b there exists an η such that φη2 (b)= s2.

Lemma A.10. Let (φη̌1 �φ
η̌
2 ) be the solution of (A.2) satisfying the condition φη̌2 (b̌) = š′.

Then φη̌1 (b̌)≥ š.

Proof. To prove this lemma, it suffices to show that τ(φη̌1 (b̌)) ≥ š′. First if φη̌1 (b̌) ≥
φ
η̌
2 (b̌) = š′, then the conclusion is satisfied since š′ ≥ š. Suppose instead that φη̌1 (b̌) <

φ
η̌
2 (b̌). Since φη̌1 is nondecreasing, we can refer to (A.2) to see that

[
1

φ
η̌
1 (b̌)− b̌

+ N2
(
φ
η̌
1 (b̌)−φη̌2 (b̌)

)
(
φ
η̌
1 (b̌)− b̌)(φη̌2 (b̌)− b̌)

]
≥ 0

=⇒ N2
(
φ
η̌
2 (b̌)−φη̌1 (b̌)

) ≤φη̌2 (b̌)− b̌

=⇒ N2
(
š′ −φη̌1 (b̌)

) ≤ š′ −
(
š′ −

∫ š′

r2

[
F2(z)

F2
(
š′

)]N2−1
dz

)

=⇒ 0 ≤N2F2
(
š′

)N2−1(
φ
η̌
1 (b̌)− š′) +

∫ š′

r2

F2(z)
N2−1 dz

=⇒ 0 ≤ q̂
φ
η̌
1 (b̌)

(
š′

)
=⇒ š′ ≤ τ(φη̌1 (b̌))� �
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Figure A.3. An illustration of the argument in Lemma A.11. b−1
ψ is illustrated assuming the

conditions of Lemma A.6 are satisfied.

Lemma A.11. For each b ∈ [r2� b̌], let (φηb1 �φ
ηb
2 ) be the solution of (A.2) such that

φ
ηb
2 (b)= b−1

2 (b). Then there exists b∗ ∈ (r2� b̌) such that b−1
ψ (b

∗)=φηb∗1 (b∗).

Proof. Sinceηb varies continuously in b and the solutions of the system (φ
ηb
1 �φ

ηb
2 ) also

vary continuously in ηb, it follows that φ
η(·)
2 (·) : [r2� b̌] → [r2� s̄] is also continuous. From

Lebrun (1999) it is known that φ
ηr2
2 (r2) = r2 while from Lemma A.10 φη̌2 (b̌) ≥ š. Since

b−1
ψ (b) is downward sloping, continuous, b−1

ψ (b̌) = š, and, for every s ≥ š, there exists b

such that b−1
ψ (b)= s, there exists b∗ such that b−1

ψ (b
∗)=φηb∗1 (b∗). See Figure A.3. �

Remark A.4. Let b∗ ∈ [r2� b̌] be any value satisfying the conditions in Lemma A.11. De-
fine the constants ŝ1 = b−1

ψ (b
∗) and ŝ2 = b−1

2 (b∗). Note that bψ(ŝ1) = b2(ψ(ŝ1)) = b∗ =
b2(ŝ2) and thus ψ(ŝ1)= ŝ2.

Remark A.5. Let b∗ be defined as in Remark A.4 and let η∗ be the associated value of
η from Lemma A.11. Given the equations (φη

∗
1 �φ

η∗
2 ), which are the solution of (A.2)

satisfying the conditionsφη
∗

1 (b
∗)= ŝ1 andφη

∗
2 (b

∗)= ŝ2, and the terminal boundary con-

dition φη
∗

1 (η
∗)=φη∗

2 (η
∗)= s̄, let b̂η

∗
k : [ŝk� s̄] → [b∗�η∗] be defined as the inverse of φη

∗
k .

Figure A.4 places the functions (b̂η
∗

1 � b̂
η∗
2 ) in the context of our preceding definitions.

Remark A.6. Since b̂η
∗

1 (ŝ1)= bψ(ŝ1) and ŝ1 > š, by Lemma A.8 we see that

U1
(
b1(ŝ1)|ŝ1

) = F1(ŝ1)
N1−1F2(r2)

N2
(
ŝ1 − b1(ŝ1)

)
= F1(ŝ1)

N1−1F2
(
b−1

2

(
bψ(ŝ1)

))N2
(
ŝ1 − bψ(ŝ1)

)
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Figure A.4. The functions {b1� b2� bτ�bψ} and (b̂η
∗

1 � b̂
η∗
2 ). For illustration, b∗ ∈ (b̃� b̌).

= F1(ŝ1)
N1−1F2(ŝ2)

N2
(
ŝ1 − b̂η∗

1 (ŝ1)
)

=U1
(
b̂
η∗
1 (ŝ1)|ŝ1

)
�

Verification of equilibrium In this subsection, we verify that the constructed strategy
profile is an equilibrium of the auction (Lemma A.15). Lemmas A.12–A.14 record some
preliminary results, which are used in the proof of Lemma A.15.

Lemma A.12. Let ŝ1 be as defined in Remark A.4. Let q∗
s (t) : [r2� s̄] →R be defined as

q∗
s (t) = F1(ŝ1)

N1−1F2(t)
N2(s− t)

+ F1(ŝ1)
N1−1F2(t)

∫ t

r2

F2(z)
N2−1 dz�

Define τ(s) as in Lemma A.1. Then for all s ∈ [r2� s̄],
(i) τ(s)= arg maxt∈[r2�s̄] q∗

s (t) and q∗
s (τ(s)) is continuous
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(ii) for all t < τ(s), d
dt q

∗
s (t) > 0; for all t > τ(s), d

dt q
∗
s (t) < 0

(iii) s 	→ q∗
s (τ(s))−p(s) is continuous and strictly increasing for all s ≤ ŝ1

(iv) there exists a unique š∗ such that q∗
š∗(τ(š

∗)) = p(š∗) and for all s ∈ [š∗� ŝ1],
q∗
s (τ(s))≥ p(s).

Proof. Much of this proof follows from the proof of Lemma A.1 since q∗
s (t) =

[F(ŝ1)F(s) ]N1−1qs(t). As with qs(t), q∗
s (t) is continuous in (s� t) and is differentiable.

(i) Suppose τ∗ ∈ arg maxt∈[r2�s̄] q∗
s (t) ⇐⇒ τ∗ ∈ arg maxt∈[r2�s̄][F(ŝ1)F(s) ]N1−1qs(t) ⇐⇒ τ∗ ∈

arg maxt∈[r2�s̄] qs(t). Since τ(s)= arg maxt∈[r2�s̄] qs(t), the result follows. Continuity
of q∗

s (τ(s)) is trivial.

(ii) Suppose t < τ(s), then d
dt q

∗
s (t)= d

dt ([F(ŝ1)F(s) ]N1−1qs(t))= [F(ŝ1)F(s) ]N1−1 d
dt qs(t) > 0. The

case of t > τ(s) is analogous.

(iii) When s < ŝ1, d
ds (q

∗
s (t)− p(s))= F1(ŝ1)

N1−1F2(t)
N2 − F1(s)

N1−1F2(r2)
N2 > 0. If s <

s′ ≤ ŝ1, then q∗
s (τ(s))−p(s) < q∗

s′(τ(s))−p(s′)≤ q∗
s′(τ(s

′))−p(s′).
(iv) We have q∗

r2
(τ(r2)) − p(r2) < 0 and q∗

ŝ1
(τ(ŝ1)) − p(ŝ1) = qŝ1(τ(ŝ1)) − p(ŝ1) >

qŝ1(ŝ1)−p(ŝ1)= 0. Thus, there exists š∗ such that q∗
š∗(τ(š

∗))−p(š∗)= 0. Unique-
ness of š∗ follows from q∗

s (τ(s))− p(s) being strictly increasing; therefore, for all
s ∈ [š∗� ŝ1], q∗

s (τ(s))≥ p(s). �

Lemma A.13. Define ψ∗ : [š∗� ŝ1] → [r2� s̄] as ψ∗(s) = inft≥r2{(s� t) ∈ p(s) ≤ q∗
s (t)}. Then

ψ∗(s) is decreasing and for all s ∈ [š∗� ŝ1], ψ∗(s)≥ ŝ2.

Proof. From Lemma A.12, s 	→ q∗
s (t)− p(s) is increasing when s ∈ [š∗� ŝ1]. Thus, ψ∗(s)

is decreasing. Finally, qŝ1(ψ
∗(ŝ1))= p(ŝ1) =⇒ ψ∗(ŝ1)=ψ(ŝ1) =⇒ ψ∗(ŝ1)= ŝ2. Thus, for

all s ∈ [š∗� ŝ1], ψ∗(s)≥ψ∗(ŝ1)≥ ŝ2. �

Lemma A.14. For all s ≤ ŝ1 and for all t ∈ [r2� ŝ2], q∗
s (t)≤ p(s).

The proof is a direct consequence of Lemmas A.12 and A.13.

Lemma A.15. For each k, let

βk(s)=

⎧⎪⎪⎨
⎪⎪⎩
� if s < rk�

bk(s) if s ∈ [rk� ŝk]�
b̂
η∗
k (s) if s ∈ (ŝk� s̄]�

The strategy profile β= (β1�β2) is a Bayesian–Nash equilibrium.

Proof. Figure A.5 presents a sketch of β1(s) and β2(s), building on the preceding dis-
cussion. For illustration, ŝ1 < ŝ2. The converse is also possible and the argument is
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Figure A.5. The equilibrium strategy profile in Lemma A.15. The case where ŝ1 < ŝ2.

unchanged. As in the symmetric case, the argument proceeds in cases due to the dis-
continuity in the proposed equilibrium strategy. For notation, let γk : [ŝk� s̄] → [ŝj� s̄] be

defined as γk(z)= (φη∗
j ◦ b̂η∗

k )(z), j �= k; γk(z) is nondecreasing.
Suppose all bidders follow the prescribed strategy. By a standard argument, appeal-

ing to the envelope theorem, we can write the expected utility of a bidder in group 1
when he bids β1(s) as

U1
(
β1(s)|s

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s < r1�∫ s

r1

F1(z)
N1−1F2(r2)

N2−1 dz if s ∈ [r1� ŝ1]�∫ ŝ1

r1

F1(z)
N1−1F2(r2)

N2−1 dz

+
∫ s

ŝ1

F1(z)
N1−1F2

(
γ1(z)

)N2 dz if ŝ1 < s�
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The expected utility of a bidder in group 2 when bidding β2(s) is

U2
(
β2(s)|s

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s < r2�∫ s

r1

F2(z)
N2−1F1(ŝ1)

N1 dz if s ∈ [r2� ŝ2]�∫ ŝ2

r1

F2(z)
N2−1F1(ŝ1)

N1 dz

+
∫ s

ŝ2

F2(z)
N2−1F1

(
γ2(z)

)N1 dz if ŝ2 < s�

It is clear that all group-k bidders of type s < rk are best off bidding � and no bidder
of type s ≥ rk can benefit from bidding �. It is sufficient to rule out profitable devia-
tions for this latter set of bidders to alternative bids in the range of β. We consider four
cases.

Case 1: A group-1 bidder of type s ∈ [r1� ŝ1].
(a) A bidder in this class has no profitable deviation to a bid b1(t) ∈ [r1� ŝ1].

The argument is identical to the symmetric case.

(b) Suppose this bidder bids b2(t), t ∈ [r2� ŝ2]. The expected payoff from plac-
ing this bid is

U1
(
b2(t)|s

) = F1(ŝ1)
N1−1F2(t)

N2
(
s− b2(t)

)
= F1(ŝ1)

N1−1F2(t)
N2(s− t)+ F1(ŝ1)

N1−1F2(t)

∫ t

r2

F2(z)
N2−1 dz

= q∗
s (t)

≤ p(s)
=U1

(
b1(s)|s

)
�

The inequality follows from Lemma A.14. Thus, U1(b2(t)|s)≤U1(b1(s)|s).
(c) Suppose this bidder bids b̂η

∗
1 (t), t ∈ (ŝ2� s̄]. Then

U1
(
b̂
η∗
1 (t)|s

)
= F1(t)

N1−1F2
(
γ1(t)

)N2
(
s− b̂η∗

1 (t)
)

= F1(t)
N1−1F2

(
γ1(t)

)N2(s− t)+U1
(
b1(ŝ1)|ŝ1

)
+

∫ t

ŝ1

F1(z)
N1−1F2

(
γ1(z)

)N2 dz

=U1
(
b1(ŝ1)|ŝ1

) + F1(t)
N1−1F2

(
γ1(t)

)N2(s− ŝ1)

+ F1(t)
N1−1F2

(
γ1(t)

)N2(ŝ1 − t)+
∫ t

ŝ1

F1(z)
N1−1F2

(
γ1(z)

)N2 dz
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≤U1
(
b1(ŝ1)|ŝ1

) + F1(t)
N1−1F2

(
γ1(t)

)N2(s− ŝ1)

=U1
(
b1(s)|s

) +
∫ ŝ1

s
F1(z)

N1−1F2(r2)
N2 dz+ F1(t)

N1−1F2
(
γ1(t)

)N2(s− ŝ1)

≤U1
(
b1(s)|s

)
�

Thus, U1(b̂
η∗
1 (t)|s)≤U1(b1(s)|s) and this deviation is not profitable.

Therefore, a bidder in group 1 of type s ∈ [r1� ŝ1] does not have a profitable
deviation from β1(s).

Case 2: A group-1 bidder of type s ∈ (ŝ1� s̄].
(a) Suppose this bidder bids b1(t), t ∈ [r1� ŝ1]. Then

U1
(
b1(t)|s

) −U1
(
b̂
η∗
1 (s)|s

)
= F1(t)

N1−1F2(r2)
N2

(
s− b1(t)

) −U1
(
b1(ŝ1)|ŝ1

)
−

∫ s

ŝ1

F1(z)
N1−1F2

(
γ1(z)

)N2 dz

= F1(t)
N1−1F2(r2)

N2(s− ŝ1)+ F1(t)
N1−1F2(r2)

N2(ŝ1 − t)

+
∫ t

r1

F1(z)
N1−1F2(r2)

N2 dz−
∫ t

r1

F1(z)
N1−1F2(r2)

N2 dz

−
∫ ŝ1

t
F1(z)

N1−1F2(r2)
N2 dz−

∫ s

ŝ1

F1(z)
N1−1F2

(
γ1(z)

)N2 dz

≤ F1(t)
N1−1F2(r2)

N2(s− ŝ1)−
∫ s

ŝ1

F1(z)
N1−1F2

(
γ1(z)

)N2 dz ≤ 0�

The inequality follows from t ≤ ŝ1 ≤ z and r2 ≤ γ1(z). Thus, U1(b1(t)|s) ≤
U1(b̂

η∗
1 (s)|s) and this deviation is not profitable.

(b) Suppose this bidder bids b2(t), t ∈ [r2� ŝ2]. Then

U1
(
b2(t)|s

) −U1
(
b̂
η∗
1 (s)|s

)
= F1(ŝ1)

N1−1F2(t)
N2

(
s− b2(t)

) −U1
(
b̂
η∗
1 (s)|s

)
= F1(ŝ1)

N1−1F2(t)
N2(s− ŝ1)−U1

(
b̂
η∗
1 (s)|s

)
+

[
F1(ŝ1)

N1−1F2(t)
N2(ŝ1 − t)+ F1(ŝ1)

N1−1F2(t)

∫ t

r2

F2(z)
N2−1 dz

]

≤ F1(ŝ1)
N1−1F2(t)

N2(s− ŝ1)−U1
(
b̂
η∗
1 (s)|s

)
+

[∫ ŝ1

r1

F1(z)
N1−1F2(r2)

N2 dz

]
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= F1(ŝ1)
N1−1F2(t)

N2(s− ŝ1)−
∫ s

ŝ1

F1(z)
N1−1F2

(
γ1(z)

)N2 dz

=
∫ s

ŝ1

(
F1(ŝ1)

N1−1F2(t)
N2 − F1(z)

N1−1F2
(
γ1(z)

)N2
)
dz ≤ 0�

The first inequality is from Lemma A.14. The second inequality is because
z ≥ ŝ1 and γ1(z) ≥ ŝ2 ≥ t. Thus, U1(b2(t)|s) ≤ U1(b̂

η∗
1 (s)|s). Hence, this

deviation is not profitable.

(c) This bidder has no profitable deviation to a bid b1(t) ∈ (ŝ1� s̄]. The argu-
ment is identical to the case of a standard asymmetric first-price auction.

Therefore, a bidder in group 1 of type s ∈ (ŝ1� s̄] does not have a profitable
deviation from β1(s)= b̂η∗

1 (s).

Case 3: A group-2 bidder of type s ∈ [r2� ŝ2].
(a) This bidder has no profitable deviation to a bid b2(t) ∈ [r2� ŝ2]. The argu-

ment is identical to the case of a symmetric auction.

(b) Suppose this bidder bids b2(t), where t ∈ [ŝ2� s̄]. By an argument fully par-
allel to Case 1(c) above, we can show that U2(b̂

η∗
2 (t)|s)≤U2(b2(s)|s).

Therefore, a bidder in group 2 of type s ∈ [r2� ŝ2] does not have a profitable
deviation from β2(s)= b2(s).

Case 4: A group-2 bidder of type s ∈ (ŝ2� s̄].
(a) Suppose this bidder bids b2(t), where t ∈ [r2� ŝ]. Then

U2
(
b2(t)|s

) −U2
(
b̂
η∗
2 (s)|s

)
= F1(ŝ1)

N1F2(t)
N2−1(s− b2(t)

) −U2
(
b̂
η∗
2 (s)|s

)
= F1(ŝ1)

N1F2(t)
N2−1(s− t)+

∫ t

r2

F1(ŝ1)
N1F2(z)

N2−1 dz−U2
(
b̂
η∗
2 (s)|s

)
= F1(ŝ1)

N1F2(t)
N2−1(s− ŝ2)−

∫ s

ŝ2

F1
(
γ2(z)

)N1F2(z)
N2−1 dz

+ F1(ŝ1)
N1F2(t)

N2−1(ŝ2 − t)+
∫ t

ŝ2

F1(ŝ1)
N1F2(z)

N2−1 dz

=
∫ s

ŝ2

(
F1(ŝ1)

N1F2(t)
N2−1 − F1

(
γ2(z)

)N1F2(z)
N2−1)dz

+
∫ ŝ2

t

(
F1(ŝ1)

N1F2(t)
N2−1 − F1(ŝ1)

N1F2(z)
N2−1)dz ≤ 0�

Thus, this is not a profitable deviation.



16 Maciej H. Kotowski Supplementary Material

(b) Suppose this bidder bids bη
∗

2 (t), t ∈ (ŝ2� s̄]. It can be shown that this is
not a profitable deviation. The argument is identical to the case of an
asymmetric auction (Lebrun 1999).

Therefore a bidder in group 2 of type s ∈ (ŝ2� s̄] does not have a profitable de-
viation from β2(s)= b̂η∗

2 (s).

Since bids outside of the range of β1 and β2 are dominated, the preceding argument
exhausts all relevant cases. Thus, β is an equilibrium strategy profile. �

A.2 Proof of Theorem 2b (the pooling equilibrium)

It is simple to verify that a group-1 bidder will not wish to deviate to a bid in the range of
β1 and that a group-2 bidder will not wish to deviate to a bid in the range of β2. (The ar-
gument is identical to a symmetric first-price, sealed-bid auction.) Therefore, we check
that a bidder in group 1 will not wish to bid β2(t), where t ∈ [r2� s̄].

Let Uk(b|s) be the expected utility of a bidder in group k of type s if he bids b and all
other bidders are following the theorem’s prescribed strategy. Then

U1
(
β2(t)|s

) = F1(s̄)
N1−1F2(t)

N2
(
s−β2(t)

)
= F1(s̄)

N1−1F2(t)
N2(s− t)+ F1(s̄)

N1−1F2(t)

∫ t

r2

F2(z)
N2−1 dz

≤
∫ s

r2

F2(r2)
N2F1(z)

N1−1 dz

=U1
(
β1(t)|s

)
�

The inequality follows from an adaptation of Lemmas A.12 and A.14 (replace ŝ1 with s̄ as
needed) from the semi-separating case. (See also the proof of Lemma A.15, Case 1(b).)
Therefore, β defines a group-symmetric equilibrium.

A.3 Proof of Theorem 3 (equilibrium uniqueness)

To verify the uniqueness of the auction’s equilibrium, we adapt prior results on equilib-
rium uniqueness in asymmetric first-price auctions. The following analysis draws heav-
ily on Lebrun (1997, 1999) and Maskin and Riley (2003). For brevity, we reference these
authors’ relevant results without repeating their arguments in detail. Throughout, we let
βik(s) be an equilibrium strategy of bidder i in group k for some fixed equilibrium β.

Asymmetric first-price auctions can exhibit equilibria where an agent bids more
than his valuation (Kaplan and Zamir 2015). This issue does not arise in our particular
model.

Lemma A.16. There does not exist an equilibrium where a bidder places a bid that strictly
exceeds his valuation with strictly positive probability.
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Proof. Suppose to the contrary and assume that bidder i in group k of type s > 0 bids
βik(s) > s, β

i
k(s) ≥ rk, in equilibrium. As this bid leads to a negative payoff conditional

on winning, it must win with probability 0. Given the full support of the valuation dis-
tribution, the event that all bidders other than i have a valuation less than s occurs with
positive probability. Thus, there must exist some bidder j �= i who bids more than βik(s)
with positive probability conditional on his valuation being less than s. Moreover, with-
out loss of generality, bidder jmust win the auction with this bid when others’ valuations
are less than s. But this implies bidder j receives a negative payoff conditional on win-
ning the auction. Thus, he has a profitable deviation to a bid less than his valuation—
a contradiction.

If a bidder of type s = 0 bids βik(0) > 0, βik(0) ≥ rk, then he wins the auction with
strictly positive probability. (With positive probability all other bidders have valuations
less than βik(0) and, by the previous part, bid less than βik(0) with probability 1.) Thus,
βik(0) cannot be an equilibrium bid since a bid of 0 yields a greater payoff. �

From Lemma A.16, we can infer that βik(s) = � for all s < rk and rk ≤ βik(s) ≤ s

for all s ≥ rk. Standard arguments show that each βik(s) is nondecreasing and dif-
ferentiable almost everywhere. To simplify notation, let βik(s

−) := limx→s− β
i
k(x) and

βik(s
+) := limx→s+ β

i
k(x) denote the left- and right-hand limits of βik(·) at s.

The following lemma confirms that the distribution of equilibrium bids cannot have
any mass points at values different from the reserve prices.2 Its proof is standard.

Lemma A.17. Fix an equilibrium and let βik(s) be the strategy of bidder i in group k. If
βik(s

′) > rk, then s′′ > s′ =⇒ βik(s
′′) > βik(s

′).

For the proof, see the proof of Proposition 3 in Maskin and Riley (2000).
Suppose henceforth that β is the strategy profile from an equilibrium where all

group-1 bidders place a bid above r2 with strictly positive probability. We show that
this equilibrium is characterized by the strategy reported in Theorem 2a.

When all bidders bid above r2 with positive probability, Lebrun (1999) and Maskin
and Riley (2003) show that there is a common maximal bid submitted by all bidders
in the auction, say η∗. This is a consequence of the common support of the valuation
distributions. Near this common maximal bid, the agents’ bidding strategies are charac-
terized by a system of differential equations. As shown by Lebrun (1997, Section 5) and
Lebrun (1999), under the assumptions of Theorem 2a, this system has a unique solu-
tion (due to the symmetry among bidders in each group) and this system of differential
equations simplifies to the expression stated in Theorem 2a. Sufficiently close to the
maximal bid, all agents in group k follow the same strategy, i.e., βik(s) = β

j
k(s) for all i

and j when s is close to s̄.
The strategy of each bidder i in group 1, βi1(s), must be strictly increasing, except

possibly when βi1(s)= r1. Thus, there exists a unique ŝi1 for each bidder i in group 1 such
that s < ŝi1 =⇒ β1

i (s) < r2 and s > ŝi1 =⇒ β1
i (s) > r2.

Lemma A.18. (a) For each j, the function βj2(s) is continuous at each s > r2.

2When there is one agent in group k, he may bid rk for a range of valuations.
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Figure A.6. A situation where ŝi1 > ŝ
j
1.

(b) For each i, the function βi1(s) is continuous at each s > r1, except possibly at ŝi1.

(c) For all i and j, ŝ1 = ŝi1 = ŝj1.

Proof. The continuity of each βi1(s) and βj2(s) at all points specified in the lemma fol-

lows from Lebrun (1999, pp. 136–137).3 To prove part (c), suppose ŝi1 > ŝ
j
1 are the two

greatest distinct elements in {ŝj′1 }j′=1�����N1 . Let βi1(s) and βj1(s) be the corresponding bid-

ding strategies. For all s > ŝi1, βi1(s) = β
j
1(s).

4 Since βj1(s) is strictly increasing and con-

tinuous, βj1(ŝ
j+
1 ) < β

j
1(ŝ

i
1) = βi1(ŝ

i+
1 ) and bidder j in group 1 with a valuation s ∈ (ŝj1� ŝi1)

must place a bid b ∈ (βi1(ŝj+1 )�βi1(ŝ
i+
1 )). Furthermore, because βj1(ŝ

j+
1 ) ≥ r2, it follows

that βi1 has a jump discontinuity at ŝi1, i.e., βi1(ŝ
+
1 ) > r2 ≥ βi1(ŝ−1 ). An instance of such a

situation is illustrated in Figure A.6. This situation satisfies the conditions shown to be
incompatible with equilibrium bidding by Lebrun (1999, pp. 136–137). �

Remark A.7. Since the strategies of all group-1 bidders coincide when s is sufficiently
large, βi1(s) = β

j
1(s) for all i and j and s > ŝ1. Let b∗ = βi1(ŝ

+
1 ) for some i. For each i,

let ŝi2 be the largest value where βi2(ŝ
i+
2 )= b∗. Since the strategies of all group-2 bidders

coincide when s is sufficiently large, there exists an ŝ2 such that ŝ2 = ŝi2 = ŝ
j
2 and βi2(s)=

β
j
2(s) for all s ≥ ŝ2 for all i and j. By continuity, b∗ = βi2(ŝ2).

Lemma A.19. (a) IfN2 = 1, then b∗ = r2.

3Lebrun’s (1999) argument does not necessarily imply continuity of βi1 at ŝi1. The augment involves
bounding the change in the probability of winning when some bidders place a hypothetically lower bid.
In our setting, group 2 bidders cannot bid less than r2. This constraint precludes applying Lebrun’s rea-
soning under all circumstances. Specifically, discontinuities where βi1 “jumps over” r2 cannot be ruled out

when the strategy of all group-1 bidders has a jump discontinuity at a common value, i.e., ŝi1 = ŝ
j
1 for all i

and j. Otherwise, even when ŝi1 �= ŝj1, Lebrun’s argument applies.
4This follows from the common maximal bid for each agent. The associated system of differential equa-

tions that characterizes equilibrium bidding in the neighborhood of this maximal bid has a unique solution
with the property that all group-1 agents adopt the same strategy.
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(b) IfN2 ≥ 2, then either (i) b∗ = r2 and ŝ2 = r2 or (ii) b∗ > r2 and ŝ2 > r2.

Proof. (a) Let N2 = 1 and suppose b∗ > r2. Thus, no group-1 bidder places a bid in
the range (r2� b∗). Therefore, the single group-2 bidder has a profitable deviation from
each bid b ∈ (r2� b∗] to an infinitesimally lower one. Thus, his equilibrium strategy must
satisfy βi2(s)= r2 for all s ≤ ŝ2. Thus, b∗ = βi2(ŝ2)= r2.

(b) Suppose b∗ = r2 but ŝ2 > r2. Thus, two group-2 bidders bid r2 whenever their
valuations are s ∈ (r2� ŝ2). Thus, the equilibrium bid distribution has an atom at r2 and at
least one of the group-2 bidders can increase his payoff by increasing his bid slightly—
a contradiction. Hence, ŝ2 = r2. Alternatively, suppose b∗ > r2. Then b∗ = βi2(ŝ2) > r2.
Since βi2(s)≤ s, it necessarily follows that ŝ2 > r2. �

Lemma A.20. For every bidder i in group 2, βi2(s)= s− ∫ s
r2

[F2(z)
F2(s)

]N2−1 dz for all s ∈ [r2� ŝ2].

Proof. When N2 = 1, Lemma A.19 implies that b∗ = r2. Hence, βi2(s) = r2 for all
s ∈ [r2� ŝ2], as required. Suppose N2 ≥ 2. From Lemma A.19, there are two cases. If
b∗ = r2, then ŝ2 = r2 and the strategy defined above reduces to βi2(r2) = r2. If b∗ > r2
instead, then ŝ2 > r2. Let φi2(·) denote the inverse of the equilibrium bidding strategy
of bidder i in group 2. When this bidder places a bid b ∈ (r2� b∗), his expected payoff is
F1(ŝ1)

N1
∏
j �=i F2(φ

j
2(b))(s− b). This bidder faces direct competition from other group-2

bidders. He is certain to defeat all group-1 bidders with a valuation less than ŝ1 due to
the discontinuity in their bidding strategies (recall b∗ = βi1(ŝ

+
1 ) > r2 ≥ βi1(ŝ−1 )). Group-1

bidders with a valuation greater than ŝ1 and group-2 bidders with a valuation greater
than ŝ2 bid above b∗; hence, they do not affect the local incentives faced by i in group 2
when placing a bid below b∗. As shown by Lebrun (1999), the inverse bid functions must
solve the system of differential equations

d

db

∑
j �=i

log
(
F2

(
φ
j
2(b)

)) + log
(
φi2(b)− b) = 0� i= 1� � � � �N2�

subject to the boundary condition φi2(b
∗)= ŝ2 for all i= 1� � � � �N2. This system satisfies

the standard assumptions of the fundamental theorem of differential equations. Thus, it
admits a unique solution. Due to the situation’s symmetry, this solution satisfiesφi2(b)=
φ
j
2(b) for all i and j. That is, all group-2 bidders follow the same strategy.

Since φi2(b) defines an equilibrium strategy that is symmetric for all bidders in
group 2, it must also satisfy the boundary condition φi2(r

+
2 ) = r2. Computing the in-

verse of φi2, as in a standard first-price auction with risk-neutral symmetric bidders, we
conclude that the equilibrium strategy for every bidder i in group 2 must be βi2(s) =
s− ∫ s

r2
[F2(z)
F2(s)

]N2−1 dz when s ∈ [r2� ŝ2]. �

Lemma A.21. For every bidder i in group 1, βi1(s)= s− ∫ s
r1

[F1(z)
F1(s)

]N1−1 dz for all s ∈ [r1� ŝ1].

Proof. First, observe that βi1(ŝ
−
1 )= βj1(ŝ−1 ) for each bidder i and j in group 1. This con-

clusion follows as a corollary to Maskin and Riley (2003, Lemma 10) when applied to a
first-price auction with valuations distributed on [0� ŝ1] with the c.d.f. F1(s)/F1(ŝ1).
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Given that each bidder’s equilibrium bidding strategy must coincide at ŝ−1 , the same
reasoning as in the proof of Lemma A.20 lets us conclude that the equilibrium bid for
bidder i in group 1 must βi1(s)= s − ∫ s

r1
[F1(z)
F1(s)

]N1−1 dz for all s ∈ [r1� ŝ1]. (Of course, when

there is only one group-1 bidder, this function reduces to βi1(s)= r1.) �

The preceding lemmas together confirm that if there is an equilibrium where all
group-1 bidders bid above r2 with strictly positive probability, then the equilibrium strat-
egy is characterized by the strategy outlined in Theorem 2a.

Lemma A.22. There exists at most one equilibrium where all group-1 bidders bid above
r2 with strictly positive probability.

Proof. Let β and β̃ be two distinct equilibria where all group-1 bidders bid above r2
with strictly positive probability. As established above,β and β̃ are both characterized by
a strategy conforming to the description in Theorem 2a. We use the following notation:

(i) Let ŝ1 be the point such that β1(ŝ
−
1 ) ≤ r2 ≤ β1(ŝ

+
1 ). For all s ∈ [r1� ŝ1), β1(s) = s −∫ s

r1
[F1(z)
F1(s)

]N1−1 dz. Similarly, define s̃1 as the point such that β̃1(s̃
−
1 ) ≤ r2 ≤ β̃1(s̃

+
1 ).

As above, β̃1(s)= s− ∫ s
r1

[F1(z)
F1(s)

]N1−1 dz for all s ∈ [r1� s̃1).
(ii) Let ŝ2 be the transition points in the bidding strategy of a typical group-2 bidder.

Then β2(s)= s− ∫ s
r2

[F2(z)
F2(s)

]N2−1 dz for all s ∈ [r2� ŝ2] and β2(ŝ2)= β1(ŝ
+
1 ). The value

s̃2 is defined analogously, i.e., β̃2(s) = s − ∫ s
r2

[F2(z)
F2(s)

]N2−1 dz for all s ∈ [r2� s̃2] and

β̃2(s̃2)= β̃1(s̃
+
1 ).

(iii) Let η∗ = β1(s̄) = β2(s̄) be the common maximal bid submitted in the β equilib-
rium. Analogously, η̃∗ = β̃1(s̄)= β̃2(s̄).

(iv) LetUk(b|s) denote the expected utility of a type-s group-k bidder when he bids b
and all others bid according to β. We define Ũk(b|s) similarly but assume that all
others bid according to β̃ instead.

In this proof, we make use of the following property of the equilibrium strategies due
to Lebrun (1997, Lemma A2-8). He shows that the solutions to the system of differential
equations that characterize equilibrium bidding in the range where agents from both
groups bid (above r2) are monotone in the maximal bid submitted in the auction.5 Thus,
β̃1 andβ1 cannot cross in the range above r2 and given s′ ≥ ŝ1, β̃1(s

′) > β1(s
′) > r2 implies

that β̃1(s) > β1(s) > r2 for all s ≥ s′ (in particular, η̃∗ > η∗). An analogous relationship
applies to β̃2 and β2 in the relevant range.

We consider several cases depending on the relative values of ŝ1, s̃1, ŝ2, and s̃2. First,
suppose ŝ2 = s̃2. Thus, β2(ŝ2) = β̃2(s̃2). It follows that β1(ŝ

+
1 ) = β̃1(s̃

+
1 ). Without loss

5Consider two different solutions to the system of differential equations, and let βk and β̃k be the as-

sociated bidding strategies for bidders in group k. If η∗ (η̃∗) is the maximal bid submitted under βk (β̃k),
then η̃∗ >η∗ =⇒ β̃k(s) > βk(s) for all values of s such thatβk(s)≥ r2. Thus, increasing the maximal bid in-
creases the associated bidding strategy at each valuation (in the relevant domain). The strategies presented
in Figures A.7 and A.8 illustrate this monotonicity property.
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Figure A.7. Equilibrium strategies when s̃1 ≤ ŝ1 and ŝ2 < s̃2; case (A). For clarity, we illustrate the
strategy of group-2 bidders only for bids above β̃2(s̃2). The value ŝ2 is located on the identified
interval. By assumption it is less than s̃2.

of generality, suppose ŝ1 < s̃1. By strict monotonicity, β1(s̃1) > β̃1(s̃
+
1 ). Consequently,

η∗ > η̃∗. However, by the monotonicity of the equilibrium strategies in the maximal bid,
β2(ŝ2) > β̃2(s̃2), which is a contradiction.

Henceforth, assume that ŝ2 < s̃2. This assumption is without loss of generality. By
point (ii) above, β2(ŝ2) = β̃2(ŝ2) < β̃2(s̃2). There are two further cases depending on ŝ1
and s̃1.

Case 1. Suppose ŝ1 < s̃1. Point (i) above implies that β1(s) = β̃1(s) for all s < ŝ1 and
β1(ŝ

−
1 )= β̃1(ŝ1) < β̃1(s̃

−
1 ) < r2.

Consider a type-ŝ1 bidder in the β̃ equilibrium. Suppose this bidder places
the bid β1(ŝ

+
1 ) > r2 instead of β̃1(ŝ1). With the higher bid, the agent defeats

all bidders in group 2 with a valuation less than ŝ2. He also defeats all bidders
in group 1 who are bidding less than r2. These bidders have a valuations less
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Figure A.8. Equilibrium strategies when s̃1 ≤ ŝ1 and ŝ2 < s̃2; case (B). For clarity, we illustrate the
strategy of group-2 bidders only for bids above β̃2(s̃2). The value ŝ2 is located on the identified
interval. By assumption it is less than s̃2. It is greater than ŝ1 because β2(s) is bounded above by
β1(s).

than s̃1. He does not defeat any bidders from group 1 who are bidding above
r2 since β̃1(s̃

+
1 )= β̃2(s̃2) > β2(ŝ2)= β1(ŝ

+
1 ). We observe that

Ũ1
(
β1

(
ŝ+1

)|ŝ1) = F2(ŝ2)
N2F1(s̃1)

N1−1(ŝ1 −β1
(
ŝ+1

))
>F2(ŝ2)

N2F1(ŝ1)
N1−1(ŝ1 −β1

(
ŝ+1

))
= F2(r2)

N2F1(ŝ1)
N1−1(ŝ1 −β1

(
ŝ−1

))
= F2(r2)

N2F1(ŝ1)
N1−1(ŝ1 − β̃1(ŝ1)

)
= Ũ1

(
β̃1(ŝ1)|ŝ1

)
�
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The inequality follows from the assumption that s̃1 > ŝ1. The subsequent
equality is because a type-ŝ1 bidder is indifferent between the bidsβ1(ŝ

−
1 ) and

β̃1(ŝ
+
1 ) in the β equilibrium. The next equality follows from β1(ŝ

−
1 ) = β̃1(ŝ1).

Thus, a group-1 bidder of type ŝ1 has a profitable deviation in the β̃ equilib-
rium, which is a contradiction.

Case 2. Suppose s̃1 ≤ ŝ1. Thus, β1(s) = β̃1(s) for all s < s̃1 and β̃1(s̃
−
1 ) = β1(s̃1) ≤

β1(ŝ
−
1 ) < r2.

Recall that β̃2(s̃2) = β̃1(s̃
+
1 ) and β2(ŝ2) = β1(ŝ

+
1 ). Because β̃2(s̃2) > β2(ŝ2),

we conclude that β̃1(s̃
+
1 ) > β1(ŝ

+
1 ). Since ŝ1 ≥ s̃1, by monotonicity β̃1(ŝ

+
1 ) >

β̃1(s̃
+
1 ) > β1(ŝ

+
1 ). Since equilibrium strategies are monotone in the maximal

bid (Lebrun 1997, Lemma A2-8), β̃1(ŝ
+
1 ) > β1(ŝ

+
1 ) =⇒ β̃1(s) > β1(s) for all

s ≥ ŝ1 and, in particular, η̃∗ = β̃1(s̄) > β1(s̄) = η∗. Furthermore, η̃∗ = β̃2(s̄)

and η∗ = β2(s̄).
To simplify notation, for each group k, let

s∗k :=
{
β−1
k

(
β̃2(s̃1)

)
if η∗ > β̃2(s̃2)�

s̄ if η∗ ≤ β̃2(s̃2)�

When η∗ > β̃2(s̃1), then s∗k < s̄. By Lebrun (1999, Corollary 3), there are two
possible cases:

(A) β2(s)≥ β1(s) for all s ≥ s∗1 and β̃2(s)≥ β̃1(s) for all s ≥ s̃1.

(B) β2(s)≤ β1(s) for all s ≥ s∗2 and β̃2(s)≤ β̃1(s) for all s ≥ s̃2.6

In Figures A.7 and A.8 we illustrate cases (A) and (B), respectively. In each
figure the solid lines depict the β equilibrium while the dashed curves depict
the β̃ equilibrium, at bids above r2. For clarity, we illustrate the strategy of
bidders from group 2 only for bids above β̃2(s̃2).

In each case, β1(ŝ
+
1 ) < β̃2(s̃2) and by monotonicity of β1, ŝ1 < s∗1 . Similarly,

ŝ2 < s
∗
2 . (These inequalities also hold when η∗ ≤ β̃2(s̃1) and s∗k = s̄.)

Now consider a type-s̃1 bidder in the β equilibrium. Suppose this bidder
bids β̃1(s̃

+
1 ) = β̃2(s̃2) instead of β1(s̃1). With this higher bid he defeats all

group-1 bidders with a valuation s ≤ s∗1 and all group-2 bidders with a valu-
ation s ≤ s∗2 . Thus,

U1
(
β̃1

(
s̃+1

)|s̃1) = F2
(
s∗2

)N2F1
(
s∗1

)N1−1(
s̃1 − β̃1

(
s̃+1

))
>F2(s̃2)

N2F1(s̃1)
N1−1(s̃1 − β̃1

(
s̃+1

))
= F2(r2)

N2F1(s̃1)
N1−1(s̃1 − β̃1

(
s̃−1

))
6We can restrict attention to these two cases since the maintained regularity condition, i.e., d

ds (
Fk(s)
Fk′ (s) ) < 0

for all s > r2, ensures that β1(·) and β2(·) (and β̃1(·) and β̃2(·)) are strictly ordered (Lebrun 1999, Corol-
lary 3). This conclusion follows from the properties of the solutions to the differential equations character-
izing equilibrium bidding.
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= F2(r2)
N2F1(s̃1)

N1−1(s̃1 −β1(s̃1)
)

=U1
(
β1(s̃1)|s̃1

)
�

Therefore, the bidder has a profitable deviation, which is a contradiction.

The preceding cases exhaust all possibilities. Therefore, there exists at most one equi-
librium where all group-1 bidders bid above r2. �

The following lemma shows that if all group-1 bidders bid exclusively below r2, the
auction’s equilibrium is characterized by the bidding strategy reported in Theorem 2b.

Lemma A.23. Consider an equilibrium where βi1(s̄)≤ r2 for all bidders i in group 1. Then

βik(s)=

⎧⎪⎨
⎪⎩
� if s < rk�

s−
∫ s

rk

[
Fk(z)

Fk(s)

]Nk−1
dz if s ≥ rk�

(A.3)

for all bidders i in group k ∈ {1�2}.

Proof. If all bidders in group 1 bid below r2 in equilibrium, their presence has no effect
on the incentives faced by bidders in group 2. From their point of view, the auction is
equivalent to a symmetric auction with N2 bidders and reserve price r2. As shown by
Lebrun (1999, Corollary 3) and Maskin and Riley (2003, Proposition 2), the equilibrium
in such an auction is unique and is given by (A.3) with k= 2.

Now consider bidders in group 1. Since β is an equilibrium, bidder i must not wish
to deviate to any other bid in the range of the other bidders’ strategies or to any bid
above r2. Since all of the bids of agents in group 1 are bounded above by r2 it follows that
these strategies of group-1 bidders also define an equilibrium in a symmetric first-price
sealed-bid auction with N1 bidders and a reserve price of r1. But such an auction has a
unique equilibrium where all bidders bid according to (A.3) with k= 1. �

Lemma A.24. There does not exist any equilibrium where some group-1 bidders bid above
r2 with positive probability and others always bid less than r2.

This situation is equivalent to that addressed by Lemma A.18 with ŝi1 = s̄. Therefore,
it is ruled out by the argument provided by Lebrun (1999, pp. 136–137).

Lemma A.25. Suppose there exists an equilibrium where all group-1 bidders bid above
r2 with strictly positive probability. Then there does not exist an equilibrium where all
bidders in group 1 bid exclusively less than r2.

Proof. Suppose there exists an equilibrium where all group-1 bidders bid above r2 with
positive probability. Given the preceding results, we may assume that this equilibrium
is in group-symmetric strategies. Let β1 and β2 denote the equilibrium strategies for
groups 1 and 2, respectively. Thus, β1(ŝ

−
1 )≤ r2 ≤ β1(ŝ

+
1 ) for some ŝ1 < s̄. From above, we

know that βk(s)= s− ∫ s
rk

[Fk(z)Fk(s)
]Nk−1 dz for all s ∈ [rk� ŝk) and β1(ŝ

+
1 )= β2(ŝ2).
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Let β̃1 and β̃2 denote the strategies of bidders in groups 1 and 2, respectively, in an
alternative equilibrium where β̃1(s) ≤ r2 for all s. From above, we known that β̃k(s) =
s− ∫ s

rk
[Fk(z)Fk(s)

]Nk−1 dz for all s ∈ [rk� s̄].
The expected utility of a type-s group-1 bidder in the “β̃” equilibrium is

Ũ1
(
β̃1(s)|s

) = F2(r2)
N2

∫ s

r1

F1(z)
N1−1 dz�

This agent must not have a profitable deviation to any bid in the range of β̃2. If he bids
β̃2(t), t ≥ r2, his expected payoff is

Ũ1
(
β̃2(t)|s

) = F2(t)
N2

(
s− t +

∫ t

r2

[
F2(z)

F2(t)

]N2−1
dz

)
�

In particular,

Ũ1
(
β̃1(s)|s

) ≥ Ũ1
(
β̃2(ŝ2)|s

)
(A.4)

for all s ≥ r2.
Given the indifference condition supporting the β equilibrium and the definitions

of βk and β̃k, we observe that at s = ŝ1,

Ũ1
(
β̃1(ŝ1)|ŝ1

) =U1
(
β1

(
ŝ−1

)|ŝ1) =U1
(
β1

(
ŝ+1

)|ŝ1) =U1
(
β2(ŝ2)|ŝ1

) ≤ Ũ1
(
β̃2(ŝ2)|ŝ1

)
�

The final inequality is because a group-1 bidder defeats all other group-1 bidders with
the bid β2(ŝ2)= β̃2(ŝ2) in the β̃ equilibrium. Combined with (A.4), we conclude that

Ũ1
(
β̃1(ŝ1)|ŝ1

) = Ũ1
(
β̃2(ŝ2)|ŝ1

)
�

However,

d

ds
Ũ1

(
β̃1(s)|s

) = F2(r2)
N2F1(s)

N1−1 < F2(ŝ2)
N2 = d

ds
Ũ1

(
β̃1(ŝ2)|s

)
�

Thus, for s′ > ŝ1, Ũ1(β̃1(s
′)|s′) < Ũ1(β̃2(ŝ2)|s′), which contradicts (A.4). �

Thus, we conclude that the equilibrium identified by Theorems 2a and 2b is this
auction’s unique equilibrium in each case.

Corollary 1. If F1 = F2, the auction has a unique equilibrium.

Proof. Uniqueness of the equilibrium in the symmetric case follows from the pre-
ceding analysis. The sole necessary qualification concerns the regularity condition
d
ds (

Fk(s)
Fk′ (s) ) < 0 that was imposed in our analysis of the asymmetric case.
The preceding argument continues to apply once we observe the following. First,

due to the common support of valuations, all bidders in a semi-separating equilibrium
submit a common maximal bid. Near this common maximal bid, it is well known that
the agents’ bidding strategies are characterized by a system of differential equations. As
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shown by Lebrun (1997, Section 5) and Lebrun (1999), this system has a unique solu-
tion that is symmetric across bidders. Thus, sufficiently close to s̄, βik(s) = β

j
k′(s) for

all bidders i, j, and k�k′ ∈ {1�2}. This solution varies monotonically with the max-
imal bid submitted in the auction (Lebrun 1999). The remainder of the above argu-
ment is unchanged with ŝ1 = ŝ2 = ŝ defining the critical point in the strategy of a group-1
bidder. �

B. Proofs from Section 4

Proof of Theorem 6. The proof proceeds similarly to the case of reserve prices. Let
Uk(b|s) be the expected utility of a group-k bidder of type s when he bids b given that all
others follow the strategy prescribed in the theorem.

(i) Consider a group-1 bidder of type s < š1. Suppose this bidder enters the auction
and places the bid β1(t), t ∈ [š1� š2). His expected payoff is

U1
(
β1(t)|s

)
= F(t)N1−1F(š2)

N2

(
s− t +

∫ t

š1

[
F(z)

F(t)

]N1−1
dz+ c1

F(t)N1−1F(š2)
N2

)
− c1

= F(š2)N2

(
F(t)N1−1(s− š1)− F(t)N1−1(t − š1)+

∫ t

š1

F(z)N1−1 dz

)

= F(š2)N2

(
F(t)N1−1(s− š1)+

∫ t

š1

[
F(z)N1−1 − F(t)]dz) ≤ 0�

If instead this bidder places the bid β1(t), t ≥ š2, his expected payoff is

U1
(
β1(t)|s

) = F(t)N1+N2−1
(
s− t +

∫ t

š2

[
F(z)

F(t)

]N1+N2−1
dz+ c2

F(t)N1+N2−1

)
− c1

= F(t)N1+N2−1(s− š2)− F(t)N1+N2−1(t − š2)

+
∫ t

š2

F(z)N1+N2−1 dz+ F(š2)N2

∫ š2

š1

F(z)N1−1 dz

= F(t)N1+N2−1(s− š1)+ F(t)N1+N2−1(š1 − š2)

+ F(š2)N2

∫ š2

š1

F(z)N1−1 dz

+
∫ t

š2

F(z)N1+N2−1 dz− F(t)N1+N2−1(t − š2)

= F(t)N1+N2−1(s− š1)+
∫ š2

š1

[
F(š2)

N2F(z)N1−1 − F(t)N1+N2−1]dz
+

∫ t

š2

[
F(z)N1+N2−1 − F(t)N1+N2−1]dz ≤ 0�



Supplementary Material On asymmetric reserve prices 27

Therefore, it is optimal for a type s < š1 bidder in group 1 to not bid in the auction
given the strategies adopted by the other bidders.

(ii) Consider a group-1 bidder of type s ∈ [š1� š2). When this bidder and others fol-
low the prescribed strategy, his expected payoff is U1(β1(s)|s) = ∫ s

š1
F(š2)

N2 ×
F(z)N1−1 dz.

Suppose this agent bids β1(t), t ∈ [š1� š2). Then

U1
(
β1(t)|s

) = F(š2)N2

(
F(t)N1−1(s− t)+

∫ t

š1

F(z)N1−1 dz

)
�

Let �(t� s) :=U1(β1(t)|s)−U1(β1(s)|s). For all t ∈ [š1� š2),

�(t� s)= F(š2)N2

(
F(t)N1−1(s− t)+

∫ t

s
F(z)N1−1 dz

)

= F(š2)N2

(∫ t

s

[
F(z)N1−1 − F(t)N1−1]dz) ≤ 0�

If instead this bidder places the bid β1(t), t ≥ š2, his expected payoff is

U1
(
β1(t)|s

) = F(t)N1+N2−1(s− t)+
∫ t

š2

F(z)N1+N2−1 dz+ c2 − c1�

Let �(t� s) :=U1(β1(t)|s)−U1(β1(s)|s). Hence,

�(t� s) = F(t)N1+N2−1(s− t)+
∫ t

š2

F(z)N1+N2−1 dz

+ F(š2)N2

∫ š2

š1

F(z)N1−1 dz− F(š2)N2

∫ s

š1

F(z)N1−1 dz

= F(t)N1+N2−1(s− t)+
∫ t

š2

F(z)N1+N2−1 dz+ F(š2)N2

∫ š2

s
F(z)N1−1 dz

= F(t)N1+N2−1(s− š2)+ F(š2)N2

∫ š2

s
F(z)N1−1 dz

+ F(t)N1+N2−1(š2 − t)+
∫ t

š2

F(z)N1+N2−1 dz

≤ F(š2)
N2

∫ š2

s

[
F(z)N1−1 − F(t)N1−1]dz

+
∫ t

š2

[
F(z)N1+N2−1 − F(t)N1+N2−1]dz ≤ 0�

Therefore, β1(s) is the utility-maximizing bid for a type s ∈ [š1� š2) bidder in group
1 given the other bidders’ strategies.
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(iii) Consider a group-1 bidder of type s ≥ š2. When this bidder and others follow the
prescribed strategy, his expected payoff is

U1
(
β1(s)|s

) = F(š2)N2

∫ š2

š1

F(z)N1−1 dz+
∫ s

š2

F(z)N1+N2−1 dz�

If this agent bids β1(t), t ≥ š2, then

U1
(
β1(t)|s

)
= F(t)N1+N2−1(s− t)+

∫ t

š2

F(z)N1+N2−1 dz+ F(š2)N2

∫ š2

š1

F(z)N1−1 dz�

Let �(t� s) :=U1(β1(t)|s)−U1(β1(s)|s). Hence,

�(t� s)= F(t)N1+N2−1(s− t)+
∫ t

s
F(z)N1+N2−1 dz

=
∫ t

s

[
F(z)N1+N2−1 − F(t)N1+N2−1]dz ≤ 0�

Suppose this agent bids β1(t), t ∈ [š1� š2). Then

U1
(
β1(t)|s

) = F(š2)N2

(
F(t)N1−1(s− t)+

∫ t

š1

F(z)N1−1 dz

)
�

As t < s, the same reasoning as in case (ii) confirms that U1(β1(t)|s) −
U1(β1(s)|s)≤ 0.

(iv) Consider a group-2 bidder of type s < š2. For this bidder,U2(β2(s)|s)= 0. Suppose
that he bids β1(t), t ∈ [š1� š2). Then

U2
(
β1(t)|s

)
= F(t)N1F(š2)

N2−1
(
s− t +

∫ t

š1

[
F(z)

F(t)

]N1−1
dz+ c1

F(t)N1−1F(š2)
N2

)
− c2

≤ F(t)N1−1F(š2)
N2

(
s− t +

∫ t

š1

[
F(z)

F(t)

]N1−1
dz+ c1

F(t)N1−1F(š2)
N2

)
− c2

= F(t)N1−1F(š2)
N2(s− t)+ F(š2)N2

∫ t

š1

F(z)N1−1 dz+ c1 − c2�

Differentiating the final line with respect to t gives (N1 − 1)F(t)N1−2f (t)F(š2)
N2 ×

(s− t)−F(t)N1−1F(š2)+F(š2)F(t)N1−1, which is positive when t < s and negative
when t > s. Hence, the final expression above achieves a maximum at t = s. Thus,

U2
(
β1(t)|s

) ≤ F(š2)N2

∫ s

š1

F(z)N1−1 dz+ c1 − c2

= F(š2)N2

∫ s

š1

F(z)N1−1 dz− F(š2)N2

∫ š2

š1

F(z)N1−1 dz ≤ 0�
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If instead this agent bids β2(t), t ≥ š2, his expected payoff is

U2
(
β2(t)|s

)
= F(t)N1+N2−1

(
s− t +

∫ t

š2

[
F(z)

F(t)

]N1+N2−1
dz+ c2

F(t)N1+N2−1

)
− c2

= F(t)N1+N2−1(s− t)+
∫ t

š2

F(z)N1+N2−1 dz

= F(t)N1+N2−1(s− š2)+
∫ t

š2

[
F(z)N1+N2−1 − F(t)N1+N2−1]dz ≤ 0�

Thus, given the strategy adopted by the other bidders, it is optimal for this bidder
not to enter the auction.

(v) Consider a group-2 bidder of type s ≥ š2. When this bidder and others follow
the prescribed strategy, his expected payoff is U2(β2(s)|s) = ∫ s

š2
F(z)N1+N2−1 dz.

Reasoning parallel to that from case (iii) shows that this bidder cannot gain from
a deviation to any bid β2(t), t ≥ š2.

If he bids β1(t), t ∈ [š1� š2), his expected payoff is

U2
(
β1(t)|s

)
= F(t)N1F(š2)

N2−1
(
s− t +

∫ t

š1

[
F(z)

F(t)

]N1−1
dz+ c1

F(t)N1−1F(š2)
N2

)
− c2�

Let �(t� s) :=U2(β1(t)|s)−U2(β2(s)|s). Then

�(t� s) ≤ F(t)N1−1F(š2)
N2(s− t)+ F(š2)N2

∫ t

š2

F(z)N1−1 dz

− F(š2)N2

∫ š2

š1

F(z)N1−1 dz−
∫ s

š2

F(z)N1+N2−1 dz

≤ F(š2)
N2F(t)N1−1(s− š2)−

∫ s

š2

F(z)N1+N2−1 dz

+ F(š2)N2F(t)N1−1(š2 − t)+ F(š2)N2

∫ t

š2

F(z)N1−1 dz

= F(š2)

∫ s

š2

[
F(t)N1−1 − F(z)N1−1]dz

+ F(š2)N2

∫ t

š2

[
F(z)N1−1 − F(t)N1−1]dz ≤ 0�

The final inequality follows since t ≤ š2 ≤ s. Therefore, a group-2 bidder of type
s ≥ š2 does not have a profitable deviation from the prescribed strategy.

As the preceding cases exhaust all possibilities, the proposed strategy is an equilib-
rium. �
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Proof of Corollary 1. Let š1 and š2 be the cutoff type submitting a competitive bid in
the auction with entry fees c1 ≤ c2. Let š′1 and š′2 be the cutoff types submitting compet-
itive bids given entry fees c′1 < c1 and c′2 = c2. To prove the claim, it is sufficient to show
that š′1 < š1 ≤ š2 < š′2.

From Theorem 6, we can characterize the cutoff types participating in an auction
with entry fees c1 and c2 as the values of s1 and s2 where the following curves intersect in
(s1� s2) space:

c1 = F(s1)N1−1F(s2)
N2s1 (B.1)

c2 = F(s2)N2

∫ s2

s1

F(z)N1−1 dz+ F(s1)N1−1F(s2)
N2s1� (B.2)

Both curves are downward sloping in (s1� s2) space, with (B.2) being “steeper” than (B.1).
Reducing c1 shifts (B.1) up for each s1, while (B.2) remains constant. Thus, the curves
intersect at a point (š′1� š

′
2) such that š′1 < š1 ≤ š2 < š′2. �

Proof of Corollary 2. The equilibrium allocation rule with entry fees—say, ψE—
differs from the allocation rule with reserve prices—say, ψR—only in the following way.
In reference to Figure 3 (see the main text), when (s̃1� s̃2) ∈ B, the item is allocated
to the agent with the highest valuation among all bidders when entry fees apply, i.e.,
ψE1 (s̃1� s̃2)= 1 andψE2 (s̃1� s̃2)= 0. With reserve prices, the item is allocated to the agent in
group 2 with the highest valuation, i.e., ψR1 (s̃1� s̃2)= 0 and ψR2 (s̃1� s̃2)= 1. As J(s) is non-
decreasing,

∑
k ψ

E
k (s̃1� s̃2)J(s̃k)≥ ∑

k ψ
R
k (s̃1� s̃2)J(s̃k) for all (s̃1� s̃2) ∈ B. Thus, the auction

with entry fees generates greater revenues. �

References

Kaplan, Todd R. and Shmuel Zamir (2015), “Multiple equilibria in asymmetric first-price
auctions.” Economic Theory Bulletin, 3, 65–77. [16]

Lebrun, Bernard (1997), “First price auctions in the asymmetric N bidder case.” Unpub-
lished paper, Université Laval, Cahier 9715. [1, 16, 17, 20, 23, 26]

Lebrun, Bernard (1999), “First price auctions in the asymmetric N bidder case.” Interna-
tional Economic Review, 40, 125–142. [1, 2, 8, 9, 16, 17, 18, 19, 23, 24, 26]

Lebrun, Bernard (2004), “Uniqueness of the equilibrium in first-price auctions.” Unpub-
lished paper, Discussion Paper Department of Economics, York University. [1]

Lebrun, Bernard (2006), “Uniqueness of the equilibrium in first-price auctions.” Games
and Economic Behavior, 55, 131–151. [1]

Lizzeri, Alessandro and Nicola Persico (2000), “Uniqueness and existence of equilibrium
in auctions with a reserve price.” Games and Economic Behavior, 30, 83–114. [1]

Maskin, Eric and John Riley (2003), “Uniqueness of equilibrium in sealed high-bid auc-
tions.” Games and Economic Behavior, 45, 395–409. [1, 16, 17, 19, 24]

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/KaplanZamir2015a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/Lebrun1999a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/Lebrun2006a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/LizzeriPersico2000a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/MaskinRiley2003a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/KaplanZamir2015a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/Lebrun1999a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/Lebrun2006a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/LizzeriPersico2000a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/MaskinRiley2003a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J


Supplementary Material On asymmetric reserve prices 31

Maskin, Eric S. and John G. Riley (2000), “Equilibrium in sealed high bid auctions.” Re-
view of Economic Studies, 67, 439–454. [17]

Co-editor Johannes Hörner handled this manuscript.

Manuscript received 9 April, 2014; final version accepted 23 April, 2017; available online 6 June,
2017.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/MaskinRiley2000a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/MaskinRiley2000a&rfe_id=urn:sici%2F1933-6837%28201801%2913%3A1%2B%3C1%3ASTOARP%3E2.0.CO%3B2-J

	Proofs for Section 2
	Proof of Theorem 2a (the semi-separating equilibrium)
	Outline
	Related literature
	Preliminaries
	Identiﬁcation of s1, s2, and eta*
	Veriﬁcation of equilibrium

	Preliminaries
	Identiﬁcation of s1, s2, and eta*
	Veriﬁcation of equilibrium

	Proof of Theorem 2b (the pooling equilibrium)
	Proof of Theorem 3 (equilibrium uniqueness)

	Proofs from Section 4
	References

