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Appendix B: Alternative microfoundation of the kth norm and cutoff rule

In the main section, we have postulated that the benefit of link ij is decreasing in the
kth norm distance between i’s and j’s types, and this formulation led to cutoff rules un-
der linear cost functions. Here we provide an alternative microfoundation of the cutoff
rule model by considering a model where connected agents are involved with strategic
interactions across m dimensions. The kth norm and the value of k are endogenously
derived in this model, which also facilitates the interpretation of the comparative-statics
results in k.

Suppose that, if i and j are connected, each receives the benefit from the link

m∑
h=1

v
(|xih − xjh|

)
�

where, for each h= 1�2� � � � �m,

v
(|xih − xjh|

) =
{
v̄ if |xih − xjh| ≤ d̂�
0 if |xih − xjh|> d̂

for some d̂ > 0 and v̄ > 0. We interpret v(|xih − xjh|) to be the payoff obtained at dimen-
sion h. As shown by the examples at the end of this section, this type of benefit functions
naturally arises in various situations.

The payoff of agent i at network g is thus given by

ui(g)=
( ∑
j∈Ni(g)

m∑
h=1

v
(|xih − xjh|

)) − c̄qi� (A1)
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where c̄ > 0. It is straightforward to see that, for any realization of types (x1� � � � � xn),
there is a unique pairwise stable network that is generated by a cutoff rule under the
kth norm with k= � c̄v̄�, where d̂ is the corresponding cutoff value.1 Conversely, for any

k and d̂, we can find a payoff function of the form (A1) such that, for any realization of
types (x1� � � � � xn), a unique network formed by the cutoff rule under the kth norm and
cutoff d̂ is a unique pairwise stable network.

Example 1 (Repeated Prisoner’s Dilemma with Imperfect Monitoring). Consider the
situation in which, at each dimension h = 1� � � � �m, each of connected agents i and j
play an infinitely repeated prisoner’s dilemma with imperfect public monitoring in dis-
crete time t = 1�2� � � � with discount factor β < 1. Agents receive the following payoffs
at each period (but do not observe them over the course of play), where T�T ′ > 0 and
V̄ > T − T ′:

C D

C V̄ � V̄ −T ′� V̄ + T
D V̄ + T�−T ′ 0�0

There are two public signals G (good) and B (bad). Action profile (C�C) always re-
sults in G, but at (C�D), (D�C), or (D�D), B occurs with probability q(|xih − xjh|) that
is continuous and strictly decreasing in the type difference with q(1)= 0: monitoring is
less precise if agents are farther away from each other. We restrict attention to the strate-
gies such that the action at a dimension depends only on the past signals at that dimen-
sion, and we consider perfect public equilibria that maximize the sum of the two agents’
discounted sums of payoffs. Under this assumption, it is without loss to focus on the
following two types of strategies: (i) the strategy where each agent chooses C if and only
if only signalG has been observed in the past, and (ii) the unconditional repetition ofD.
Let v̄ := V̄

1−β . Then, for sufficiently high β< 1, there exists d̂ = q−1( Tβv̄ ) ∈ (0�1) such that,

at each dimension, each agent receives the equilibrium payoff v̄ if |xih−xjh| ≤ d̂, but the

unique equilibrium is the repetition ofD and thus agents receive 0 if |xih − xjh|> d̂.2 ♦

Example 2 (Repeated Prisoner’s Dilemma with Perfect Monitoring). Consider the fol-
lowing game where each of connected agents chooses either to cooperate (C) or not
(D) at each dimension h= 1�2� � � � �m, where V̄ �T ′�ψ(·) > 0, and V̄ > ψ(1)− T ′:

1There is an alternative but equivalent formulation in which the benefit from a neighbor is constant at
v̄ > 0, while the agents incur a cost at each dimension, as in

ui(g)= v̄qi −
( ∑
j∈Ni(g)

m∑
h=1

ψ
(|xih − xjh|

))
�

where ψ(|xih − xjh|) is equal to 0 if |xih − xjh| ≤ d̂ and is equal to c̄ > 0 if |xih − xjh| > d̂. This leads to the
cutoff rule using the kth norm with k= � v̄c̄ �.

2Note that (C�D) or (D�C) cannot be enforced at any history in this game because an agent would have
a strict incentive to chooseD at such a history.
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C D

C V̄ � V̄ −T ′� V̄ +ψ(|xih − xjh|)
D V̄ +ψ(|xih − xjh|)�−T ′ 0�0

We assume that ψ(·) is continuous and strictly increasing: the temptation to defect
is higher if agents are farther away from each other. Agents play the infinitely repeated
game with perfect monitoring with discount factor β < 1. Again, we restrict attention
to the strategies such that actions at each dimension h = 1�2� � � � �m at each period do
not depend on the past actions at other dimensions, and we suppose that agents play
a subgame-perfect equilibrium that maximizes the sum of the two agents’ discounted
sums of payoffs. Again, without loss, we focus only on the grim-trigger strategy. Namely,
agents start by playing C, and play D if and only if the history contains at least one D

by any agent. Let v̄ := V̄
1−β . If βV̄

1−β ∈ [ψ(0)�ψ(1)], then the following statements are true

with the unique d̂ :=ψ−1( βV̄1−β): If |xih − xjh| ≤ d̂, then the grim-trigger strategy profile is
sustained as a subgame-perfect equilibrium, and agents receive the equilibrium payoff
v̄. If, however, |xih − xjh|> d̂ holds, then the unique subgame-perfect equilibrium is for
agents to always chooseD, and agents receive payoff 0. ♦

Example 3 (Coordination Game). Consider the following static game where each of
connected agents chooses eitherA or B at each dimension h= 1�2� � � � �m,

A B

A v̄� v̄ −φ(|xih − xjh|)�0
B 0�−φ(|xih − xjh|) 0�0

where φ(·) > 0 represents the cost of miscoordination, which is strictly increasing: mis-
coordination is more costly if agents are farther away from each other.

Pick v̄ > 0 and d̂ > 0 such that φ(d̂)= v̄. This game has multiple strict Nash equilib-
ria, (A�A) and (B�B). We assume that agents play a strict risk-dominant equilibrium,
which generically exists.3 This implies that (A�A) is played if |xih − xjh|< d̂, and (B�B)

is played if |xih − xjh|> d̂. ♦

Appendix C: Omitted proofs for the main sections

C.1 Proof of Lemma 1

Let c(q)= c1q be the linear cost function, where c1 > 0.
Part (i): (a) Existence of a Pairwise Stable Network. Consider the maximum of ds that

satisfies b(d)−c1 ≥ 0, and denote it by d̂ (the maximum exists because b is nonincreasing

3There are various justifications behind this selection criterion, such as global games (Carlsson and Van
Damme 1993), information robustness (Kajii and Morris 1997), and evolutionary dynamics (Kandori et al.
1993, Young 1993), among others.
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and continuous from the left). We have

�c(q)= (
c1(q+ 1)

) − (c1q)= c1 for all q�

Network g is pairwise stable if and only if (α) there is no link ij ∈ g such that ui(g) <
ui(g− ij) and (β) there is no link ij /∈ g such that ui(g)≤ ui(g+ ij). Now, since �c(q)= c1
for all q, (α) is equivalent to saying that there is no ij ∈ g such that 0 > b(d(i� j)) − c1,
and (β) is equivalent to saying that there is no ij /∈ g such that 0 ≤ b(d(i� j))− c1. Noting
that b(d(i� j))− c1 ≥ 0 ⇐⇒ d(i� j)≤ d̂, we have that g= {ij : d(i� j)≤ d̂} is pairwise stable.
Thus, a pairwise stable network exists.

(b) Uniqueness of the Pairwise Stable Network. Suppose that there are two distinct
pairwise stable networks, g and g′. Without loss of generality, there exists a pair of agents
i� j ∈ N such that ij ∈ g and ij /∈ g′. But ij ∈ g and (α) in part (i)(a) of this proof imply
b(d(i� j))− c1 ≥ 0, while ij /∈ g′ and (β) in part (i)(a) of this proof imply b(d(i� j))− c1 < 0.
Contradiction.

(c) Efficiency of the Pairwise Stable Network. Suppose, to the contrary, that the pair-
wise stable network g is not efficient. That is, suppose that there is another network g′ in
which the sum of utilities of all the agents is strictly larger in g′ than in g. Let L1 = g \ g′
and L2 = g′ \ g. That is, g′ is obtained from g by deleting all the links in L1 and adding
all the links in L2. Note that the order of deletion and addition of links does not mat-
ter for the efficiency from the resulting networks by the definition of efficient networks.
Now, for all ij ∈ L1, we have b(d(i� j))− c1 ≥ 0 from part (i)(a) of this proof, so the sum
of utilities strictly decreases by deletion of links in L1 unless L1 consists only of links
ij such that d(i� j) = c1. Next, for all ij ∈ L2, we have b(d(i� j)) − c1 < 0 from part (i)(a)
of this proof, so the sum of utilities strictly decreases by addition of links in L2 if L2 is
not empty, and stays constant if it is empty. Hence, the only way that g′ can be efficient
is that L1’s only elements are the links ij such that d(i� j) = c1, and L2 is empty. But as
deleting the links ij such that d(i� j)= c1 does not change the utility of either i or j, and
hence, it does not change the sum of utilities, g′ has the same sum of utilities as g. But
this contradicts our starting assumption that g′ is such that the sum of utilities of all the
agents is strictly larger in g′ than in g. This completes the proof.

(d) Existence of a Homogeneous Cutoff Value Profile. In parts (i)(a) and (i)(b) of this
proof, we have shown that the unique pairwise stable network is g = {ij : d(i� j) ≤ d̂}.
Let a cutoff value profile be such that d̂i = d̂ for all i ∈ N . This cutoff value profile is
homogeneous by definition, and clearly generates network g.

Part (ii): Existence of pair (b� c). Fix a network g that is generated by a cutoff rule
with a homogeneous cutoff value profile. It suffices to provide one example of (b� c) pair
such that g is pairwise stable with respect to the pair (b� c). Uniqueness and efficiency
follow directly from parts (i)(b) and (i)(c), respectively.

Let the homogeneous cutoff value be d̂. Consider a pair of functions b(d)= a · d̂d and
c(q)= a · q for some a > 0. These functions satisfy the assumptions made in Section 3.1.
Notice that the benefit from forming links when the distance is very short decreases fast
if a is small, and the marginal cost of forming an additional link is large if a is large.

Now notice that ij ∈ g implies d(i� j) ≤ d̂, which implies b(d(i� j)) − a = a · d̂
d(i�j) −

a ≥ 0, which in turn implies that the marginal benefit for each of agents i and j from
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link ij is no less than the marginal cost. Also, ij /∈ g implies d(i� j) > d̂, which implies

b(d(i� j))− a= a · d̂
d(i�j) − a < 0, which in turn implies that the marginal benefit for each

of agents i and j from link ij is strictly less than the marginal cost. Hence g is pairwise
stable. Thus the proof is complete. �

C.2 Proof of Corollary 1

Part (i) is straightforward from the formula in Theorem 1.
We consider part (ii). From the formula in Theorem 1,

Cl∗(k+ 1�m)=
(
m

k+ 1

)−1 (
3
4

)k+1
= (k+ 1)!(m− k− 1)!

m!
(

3
4

)k+1
= Cl∗(k�m) 3(k+ 1)

4(m− k)�

Taking logs, we get

log
(
Cl∗(k+ 1�m)

) − log
(
Cl∗(k�m)

) = log
(

3(k+ 1)
4(m− k)

)
�

Hence, Cl∗(k+ 1�m)≥ Cl∗(k�m) is equivalent to 3(k+1)
4(m−k) ≥ 1, or k≥ 4

7m− 3
7 , completing

the proof. �

Appendix D: Omitted proofs for other sections

D.1 Proof of Proposition 4

Throughout this proof, we denote distance by d(i� j) instead of d(xi�xj) to lighten the
notation. Fix the types of agents, (x1� � � � � xn). We ignore the possibility that there ex-
ist h� i� j�∈ N such that d(i� j) = d(i�h) or that there exist i� j ∈ N and q ∈ N such that
b(d(i� j))= �c(q− 1), because almost surely such events do not occur. This in particular
implies that Ni(g) �= Ni(g

′)⇒ ui(g) �= ui(g
′). We consider the following algorithm that

generates a unique network. We will show in the sequel that the algorithm stops in fi-
nite steps, and the generated network is pairwise stable and is generated by a cutoff rule.
Moreover, we will show that the generated network is strongly stable if the cost function
is concave or linear.

Algorithm. Step 1. Each player i ∈N(1) :=N proposes a “request”:

ri(1)= arg max
r′i1⊆N(1)\{i}

ui
({
ij|j ∈ r ′i1

})
�

Generate a network g′ := g(0)∪ {ij|j ∈ ri(1) and i ∈ rj(1)} ∈G(N), where we set g(0)= ∅.
Delete k′l′ = arg maxi∈N�kl∈g′ {ui(g′ − kl)− ui(g

′)} if ui(g′ − k′l′) − ui(g
′) is positive. Let

g′′ = g′\{k′l′}. Then delete k′′l′′ = arg maxi∈N�kl{ui(g′′ − kl) − ui(g
′′)} if ui(g′′ − k′′l′′) −

ui(g
′′) is positive. Continue this procedure until the generated network ĝ satisfies the

property that each link ij satisfies ui(ĝ− ij) < ui(ĝ). Let the resulting network be g(1).
Step t. Each player i ∈N(t) :=N(t − 1)\{j : rj(t − 1)=∅} proposes a “request”:

ri(t)= arg max
r′it⊆N(t)\[{i}∪Ni(g(t−1))]

ui
({
ij|j ∈ r ′it

} ∪ g(t − 1)
)
�
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Generate a network g′ := g(t − 1) ∪ {ij|j ∈ ri(t) and i ∈ rj(t)}. Delete k′l′ =
arg maxi∈N�kl∈g′ {ui(g′ − kl)− ui(g′)} if ui(g′ − k′l′)− ui(g′) is positive. Let g′′ = g′\{k′l′}.
Then delete k′′l′′ = arg maxi∈N�kl∈g′′ {ui(g′′ − kl)− ui(g′′)} if ui(g′′ − k′′l′′)− ui(g′′) is pos-
itive. Continue this procedure until the generated network ĝ satisfies the property that
each link ij ∈ ĝ satisfies ui(ĝ− ij) < ui(ĝ). Let g(t) be the resulting network.

Let t̄ be the first period, if any, such that N(t̄) = ∅. If such a period does not exist,
then denote t̄ = ∞.

Let us give an intuitive explanation about the algorithm. For each Step t, N(t) is the
set of “remaining agents.” Each remaining agent makes a request to form links to some
of the remaining agents, which would make him better off than the current network if
it was accepted by all agents included in it. However, at each step, all the requests are
not necessarily satisfied. Instead, we require that only links that are requested by both
agents involved are actually formed. Hence, it is possible that some portion of a request
is satisfied while the other portion is not satisfied. In such cases, it may be that, after
the formation of links based on the requests, some agents have incentives to delete links
that currently exist. Such links are deleted in the “deletion procedure” in each step of
the algorithm. Step by step, links are gradually formed, and eventually some agents have
empty requests. Such agents are removed from the algorithm, and can never be made a
request or be able to make a request by themselves. Eventually, at some step, no agent
remains, and the algorithm stops at such a step.

We prove the following lemmas to complete the proof of Proposition 4.

Lemma A1. For every t ≤ t̄, if i ∈N(t), k ∈ ri(t), and l ∈N(t) \ ri(t), then d(i�k) < d(i� l).

That is, i’s request ri(t) is a set of agents who are closer to i than anyone who is in
N(t) but is not included in the request.

Lemma A2. The inequality t̄ <∞ holds, and g(t̄) is unique.

Hence, the algorithm stops in a finite number of steps, generating a unique network.

Lemma A3. We have that Network g(t̄) is pairwise stable.

Lemma A4. There exists d̂ = (d̂1� � � � � d̂n) such that g(t̄) is generated by a cutoff rule with d̂.

To establish Lemma A4, we first prove the following claim.

Claim 1. Suppose c is convex. If j ∈ ri(t), then ∀t ′ > t such that i� j ∈N(t ′), either j ∈ ri(t ′)
or ij ∈ g(t ′ − 1) holds.

Claim 1 implies the following claim.

Claim 2. Let g = g(t̄), and suppose ij /∈ g and d(i� j) <maxk∈Ni(g){d(i�k)}. Then uj(g +
ij) < uj(g) holds.
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Claim 2 implies Claim 3, which in turn implies Lemma A4.

Claim 3. Let g= g(t̄), and suppose ij /∈ g and d(i� j) <maxk∈Ni(g){d(i�k)}. Then d(i� j) >
maxl∈Nj(g){d(j� l)} holds.

Lemma A5. Suppose c is linear or convex. Then g(t̄) is strongly stable.

Lemma A6. Suppose c is linear or convex. Then a strongly stable network is unique.

Proof of Lemma A1. Note that ri(t) maximizes the sum of additional benefits that i
obtains minus that of additional costs that he incurs. Separability of u and the definition
of ri imply

ri(t)= arg max
r′it⊆N(t)\[{i}∪Ni(g(t−1))]

[∑
j∈r′it

b
(
d(i� j)

) −
	r′it−1∑
s=0

�c
(
qi

(
g(t − 1)

) + s)
]
�

Notice that the second term of the right hand side of the above equality depends only
on i’s degree but not on the identities of agents in r ′it .

Suppose, to the contrary, that there exist i�k� l ∈N(t) such that d(i�k) > d(i� l), k ∈
ri(t), and l ∈N(t)\ri(t). Then, depriving ri(t) of k and adding l to ri(t) strictly increases
i’s additional benefit (the first term of the right hand side of the above equality) with i’s
additional cost (the second term) unchanged. This contradicts the assumption that ri(t)
is the maximizer of the right hand side of the above equality. This completes the proof. �

Proof of Lemma A2. Since there is no tie in distances, for each t and each i ∈N , ri(t)
is uniquely determined. Therefore the algorithm generates a unique network, if it ends
in finite steps.

Now we prove that the algorithm ends in finite steps. The algorithm can be regarded
as a deterministic dynamic process over discrete time t = 1�2� � � � � defined on state space
G(N)×2N , where the state at t is (g(t−1)�N(t)). Note that the number of states is finite.

We first show that this process is monotone. To see this, notice that the set N(t) is
nonincreasing. Hence it suffices to show that g(t− 1) is nondecreasing. To show this, we
will prove that no link in g(t − 1) is not deleted in the “deletion procedure” at t (i) with a
convex or linear cost function, and (ii) with a concave cost function.

First, consider case (i). We show that there is no agent deleting his links in the algo-
rithm, when c is convex or linear. By the definition of the request, for each t, i ∈ N(t),
and j ∈ ri(t), we have

b
(
d(i� j)

)
>�c

(
qi

(
g(t − 1)

) + 	ri(t)− 1
)

≥ �c(qi(g(t − 1)
) + s)�

where 0 ≤ s < 	ri(t). This ensures that however i’s requested links are actually formed,
he cannot become better off by deleting his newly formed links.

Second, consider case (ii). At Step 1, the statement trivially holds, since g(0)= ∅. We
have, by the construction of the algorithm, �c(qi(g(t))− 1) < b(d(i� j)) for all ij ∈ g(t).
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Now consider Step t + 1 and suppose that i becomes better off by deleting links in g(t).
Let ij be the first link that is deleted from g(t). It must be the case that �c(qi(g(t)) +
r − 1) > b(d(i� j)) for some 0 ≤ r ≤ 	ri(t). But then we would have �c(qi(g(t))+ r − 1) >
�c(qi(g(t))− 1), which contradicts the assumption that �c is decreasing.

Hence, the process is monotone. Therefore, it suffices to show that there does not
exist an event in which the process remains in the same state such that N(t) �= ∅. This
event could happen only if all the remaining agents make nonempty requests, and any
of agents’ requests are not fulfilled in the step. That is,

∀i ∈N(t)� [
ri(t) �=∅

]
and

[∀k ∈ ri(t) i /∈ rk(t)
]
�

Suppose that this is true at Step t.
The simplest case is as follows: N(t)= {1�2�3}, r1(t)= {2}, r2(t)= {3}, and r3(t)= {1}.

However, Lemma A1 implies that d(1�2) < d(1�3), d(2�3) < d(2�1), and d(3�1) < d(3�2).
Contradiction.

Generally, there must exist a sequence of agents (1�2� � � � � n′) in N(t) (with an ap-
propriate renaming) such that 2 ∈ r1(t), 3 ∈ r2(t)� � � � � n′ ∈ rn′−1(t) and 1 ∈ rn′(t), while
1 /∈ r2(t)�2 /∈ r3(t)� � � � � n′ − 1 /∈ rn′(t), and n′ /∈ r1(t). By Lemma A1, we have d(1�2) <
d(1� n′)�d(2�3) < d(2�1)� � � � � d(n′ − 1� n′) < d(n′ − 1� n′ − 2), and d(n′�1) < d(n′� n′ − 1).
Contradiction. This completes the proof. �

Proof of Lemma A3. We need to show that in g(t̄), (i) no agent has a strict incentive to
delete a link and (ii) no pair has an incentive to add a link.

To show (i), note that we have constructed the network in a way that there is no
link to delete at the final step. Moreover, for agents who have left the algorithm in ear-
lier steps, deleting their links does not increase their payoffs. This is because the set of
neighbors of each agent who left earlier remains unchanged after the step at which her
request was empty, and (just as in the final step,) there is no link for her to delete at that
step.

To see (ii), partition the set of agents, (P1� � � � �PT ), so that in each cell Pt of the par-
tition, agents contained in it have empty requests at Step t. Consider an agent i in a
partition Pt . At Step t, there exists no agent j in

⋃T
l=t Pl such that i would be better off

by connecting with j at Step t. This is because otherwise j’s request would not be empty
at Step t. After Step t, his degree does not change until the algorithm stops; hence, i
does not have an incentive to form a link with agents in

⋃T
l=t Pl. Suppose that there

exists agent j′ ∈ Pl′ with l′ < t such that i has an incentive to form a link with j′. How-
ever, j′ does not have an incentive to form a link with agents in

⋃T
l=l′ Pl, in particular

with i ∈ Pt ⊆ ⋃T
l=l′ Pl. Hence, no agent has an incentive to form a link in the resulting

network. �

Proof of Claim 1. It suffices to show the statement in the case of t ′ = t+ 1. To see this,
first suppose that ij ∈ g(t + 1), given that j ∈ ri(t) and i� j ∈N(t + 1). Then this implies
ij ∈ g(t ′) for every t ′ > t, by the monotonicity of g(·), which is proved in the proof of
Lemma A2. Second, suppose that j ∈ ri(t + 1), given that j ∈ ri(t) and i� j ∈ N(t + 1).
Then, when i� j ∈ N(t + 2), we can show that either j ∈ ri(t + 2) or ij ∈ g(t + 1) holds,
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by repeating exactly the same argument as in the case of t ′ = t + 1, but by replacing t
with t + 1. We can repeat this argument to show that for any t ′ = t + k with k > 0, the
statement of the claim holds.

Now, suppose, to the contrary, that given that j ∈ ri(t) and i� j ∈ N(t + 1), both j /∈
ri(t+1) and ij /∈ g(t) hold. By Lemma A1, k ∈ ri(t+1) implies k ∈ ri(t), because of j ∈ ri(t)
and j /∈ ri(t + 1). That is, we have ri(t + 1) � ri(t), where the inclusion is strict because
of j.

Since the payoff function is separable, j ∈ ri(t) implies �c(qi(g(t − 1))+ 	ri(t)− 1) <
b(d(i� j)). Also, j /∈ ri(t + 1), ij /∈ g(t), and j ∈ N(t + 1) imply �c(qi(g(t))+ 	ri(t + 1)) >
b(d(i� j)). Therefore, we have qi(g(t − 1)) + 	ri(t) ≤ qi(g(t)) + 	ri(t + 1), because �c is
increasing.

At the same time, we have Ni(g(t)) ⊆Ni(g(t − 1)) ∪ ri(t) by construction. Together
with ri(t + 1) � ri(t), we obtain Ni(g(t)) ∪ ri(t + 1) � Ni(g(t − 1)) ∪ ri(t). This implies
that we have qi(g(t))+ 	ri(t + 1) < qi(g(t − 1))+ 	ri(t), becauseNi(g(t))∩ ri(t + 1)= ∅.
But this contradicts our earlier conclusion that qi(g(t−1))+ 	ri(t)≤ qi(g(t))+ 	ri(t+1).
This completes the proof. �

Proof of Claim 2. Denote k= arg maxk∈Ni(g){d(i�k)} and l= arg maxl∈Nj(g){d(j� l)}.
Suppose, to the contrary, that uj(g + ij) > uj(g) holds. But from ij /∈ g and the

pairwise stability of g, ui(g) > ui(g + ij) must hold. That is, we must have b(d(i� j)) <
�c(qi(g)). At the same time, by the pairwise stability of g, we have ui(g) > ui(g − ik).
That is, b(d(i�k)) > �c(qi(g) − 1) holds. When c is concave or linear, this contradicts
b(d(i� j)) < �c(qi(g)), since �c(q) is nonincreasing and b(d(i� j)) > b(d(i�k)).

Consider the case where c is convex. By Lemma A2, ri(t ′) = ∅ for some t ′. Since
k ∈ ri(t ′′) for some t ′′ < t ′, by Lemma A1, j ∈ ri(t ′′) holds. From Claim 1, we have j ∈ ri(t)
for any t > t ′′ such that j ∈N(t). This implies j ∈ ri(t ′), contradicting ri(t ′)=∅.

Therefore, for c that is either concave, convex, or linear, the statement is proved. �

Proof of Claim 3. Suppose, to the contrary, that d(i� j) < d(j� l) holds.
Consider the case in which c is linear or concave. From Claim 2, uj(g + ij) < uj(g),

it holds that b(d(i� j)) < �c(qj(g)). Since g is pairwise stable, uj(g − jl) < uj(g), so that
b(d(j� l)) > �c(qj(g)− 1) holds, where l is defined in the proof of Claim 2 (we define k in
the same way as in the proof of Claim 2 also). But this implies �c(qj(g)− 1) < �c(qj(g)),
because of b(d(i� j)) > b(d(j� l)). This contradicts that �c(q) is nonincreasing.

Consider the case of convex c. First, note that, as proved in the proof of Lemma A1,
there is no agent deleting his links in the algorithm, when c is convex. Then, from ik ∈ g,
at some t′, k ∈ ri(t ′) holds. Similarly, by jl ∈ g, at some t ′′, l ∈ rj(t ′′) holds. We have
j ∈ ri(t ′) and i ∈ rj(t ′′) by Lemma A1 if j ∈N(t ′) and i ∈N(t ′′). Thus, it cannot be the case
that t ′ = t ′′, as it would imply ij ∈ g.

Consider the case of t ′ < t ′′. Claim 1 implies that j ∈ ri(t) for all t > t ′ whenever
j ∈ N(t). But then j ∈ N(t ′′) implies j ∈ ri(t ′′), which would imply ij ∈ g as there is no
“deletion procedure” in the case of convex c as we have seen already. In a perfectly sym-
metric manner, we cannot have t ′ > t ′′. Thus the proof is complete. �
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Proof of Lemma A4. We claim that(
max
i∈N1(g)

{
d(1� i)

}
� max
i∈N2(g)

{
d(2� i)

}
� � � � � max

i∈Nn(g)
{
d(n� i)

})

is a cutoff value profile d̂ = (d̂1� d̂2� � � � � d̂n) generating g, where g= g(t̄).
By the definition of the cutoff rule, it suffices to show that we do not have the case

in which there exists ij /∈ g such that d(i� j)≤ min{d̂i� d̂j}. Suppose this holds. Then ij /∈ g
and d(i� j) <maxk∈Ni(g){d(i�k)} hold while d(i� j) <maxl∈Nj(g){d(j� l)}. This contradicts
Claim 3, so that the existence of a cutoff value profile is proved. �

Proof of Lemma A5. As shown in Lemma 1, with a linear cost function, the pairwise
stable network is unique, and hence, Lemma A3 implies that the generated network is
the network constructed in the proof of Lemma 1. Due to the separability of the payoff
function, it is straightforward to see that the network is also strongly stable. Hence, we
constrain our attention to the case in which c is convex: We prove that g= g(t̄) is strongly
stable when c is convex. Take g′ that is obtainable from g via deviations by a set of agents
S ⊆N . The statement of the lemma is true if

[∃s ∈ S us
(
g′)> us(g)] =⇒ [∃s′ ∈ S�u′

s

(
g′)< u′

s(g)
]
�

Hence, it suffices to show that it cannot be the case that us(g′) > us(g) for every s ∈ S. De-
fineD(s)= {j ∈N|sj ∈ g� sj /∈ g′} andA(s)= {j ∈N|sj /∈ g� sj ∈ g′}, that is,D(s) (resp.A(s))
is a set of agents whose link to s ∈ S is deleted (resp. added) in the deviations.

We are going to show that, for the profitable deviations by S to be possible, there
must exist an infinite sequence of agents, denoted by s1� s2� s3� � � � ∈ S, such that sl+1 ∈
A(sl)\{s1� s2� � � � � sl−1} for each sl. (Since S is finite, this is impossible.) To derive this
sequence, we also show that qsl (g) ≤ qsl+1(g) holds and either d(sl� n̄l) > d(sl+1� n̄l+1)

or qsl (g) < qsl+1(g) holds, where n̄i denotes an agent whose distance to si is the longest
among si’s neighbors, i.e., d(si� n̄i)= maxn∈Nsi (g){d(si� n)}. We prove them by the mathe-
matical induction.

First, take an agent denoted by s1 ∈ S. Since the rule of the final step of the algo-
rithm and the convexity of c ensures that there is no incentive to delete links, agents in S
cannot be better off by only deleting their links in the deviations, implying A(s) �= ∅ for
every s ∈ S. There are two cases concerning A(s1).

• Case 1: ∀si ∈A(s1)�us1(g) > us1(g+s1si). In this case, if we have d(s1� si) > d(s1� n̄1)

for every si ∈A(s1), then it would be impossible to satisfy us1(g) < us1(g
′). To see

this, we calculate s1’s net gain from the deviations as follows. When s1’s degree
increases in the deviations, i.e., 	A(s1) > 	D(s1), his net benefit is

∑
k∈A(s1)

b
(
d(s1�k)

) −
∑

l∈D(s1)
b
(
d(s1� l)

) −
	A(s1)−	D(s1)∑

j=1

�c
(
qs1(g)+ j − 1

)
�

Notice that �c(qs1(g)) > b(d(s1� si)) holds for all si ∈A(s1) in this case, and that �c
is increasing. Taking any subset Ā(s1)⊂A(s1) such that 	Ā(s1)= 	A(s1)− 	D(s1),
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the net benefit can be rearranged to( ∑
k∈A1\Ā(s1)

b
(
d(s1�k)

) −
∑

l∈D(s1)
b
(
d(s1� l)

))

+
( ∑
k∈Ā(s1)

b
(
d(s1�k)

) −
	A(s1)−	D(s1)∑

j=1

�c
(
qs1(g)+ j − 1

))
�

which is negative because ∀si ∈A(s1)�us1(g) > us1(g + s1si). The same argument
carries over to the situation where his degree does not increase in the deviations.

Hence, we can focus on the case where there exists si ∈ A(s1) such that
d(s1� si) < d(s1� n̄1) holds. Take such an agent si and denote him by s2. The in-
equality d(s1� s2) < d(s1� n̄1) and s1s2 /∈ g imply, by Claims 2 and 3 above, us2(g) >
usi(g+ s1s2) and d(s2� n̄2) < d(s1� s2).

Notice that we obtained the desired inequality d(s2� n̄2) < d(s1� n̄1).
Now we show that qs1(g) ≤ qs2(g): The pairwise stability of g implies b(d(s1�

n̄1)) > �c(qs1(g) − 1), and us2(g) > us2(g + s1s2) implies b(d(s1� s2)) < �c(qs2(g)).
By b(d(s1� s2))≥ b(d(s1� n̄1)), we have that �c(qs1(g)− 1) < �c(qs2(g)). Hence, we
also get inequality qs1(g)≤ qs2(g), since �c is increasing.

• Case 2: ∃si ∈ A(s1)�us1(g) < us1(g + s1si). Take si ∈ A(s1) such that us1(g) <
us1(g + s1si), and denote this agent by s2. By the pairwise stability of g, we have
us2(g) > us2(g+ s0s1). From �c(qs1(g)) < b(d(s1� s2)) < �c(qs2(g)), we get a desired
inequality qs1(g) < qs2(g).

Hence, we have shown the desired statements for the first step l= 1: There exists s2 ∈
A(s1) such that qs1(g)≤ qs2(g) holds, and either d(s1� n̄1) > d(s2� n̄2) (Case 1) or qs1(g) <
qs2(g) (Case 2) holds.

Next, let us suppose that we have shown the statements up to l = r: There exists a
sequence (s1� s2� � � � � sr) in S such that sl+1 ∈A(sl)\{s1� s2� � � � � sl−1} and qsl (g) ≤ qsl+1(g)

holds, and either d(sl� n̄l) > d(sl+1� n̄l+1) or qsl (g) < qsl+1(g) holds for each l= 1�2� � � � � r.
Suppose, to the contrary, that A(sr+1) ⊆ {s1� s2� � � � � sr}. We show this is impossible,

for both cases below.

• Case 1′: ∀si ∈A(sr+1)�usr+1(g) > usr+1(g+ sr+1si). Due to the same discussion as in
the Case 1 above, we can focus on the case where there exists si ∈A(sr+1) such that
d(sr+1� si) < d(sr+1� n̄r+1). Take such an agent si. As we have derived d(s2� n̄2) <

d(s1� n̄1) and qs1(g)≤ qs2(g) in the Case 1 above, we can get d(si� n̄i) < d(sr+1� n̄r+1)

and qsr+1(g) ≤ qsi(g). But because si ∈ {s1� s2� � � � � sr}, at least one of them contra-
dicts the assumed inequalities: qsl (g)≤ qsl+1(g) and either d(sl� n̄l) > d(sl+1� n̄l+1)

or qsl (g) < qsl+1(g) for each l= 1�2� � � � � r.

• Case 2′: ∃si ∈ A(sr+1)�usr+1(g) < usr+1(g + sr+1si). Take si ∈ A(sr+1) such that
usr+1(g) < usr+1(g + sr+1si). By the same logic with which we obtained qs1(g) <
qs2(g) in the Case 2 above, we can get inequality qsr+1(g) < qsi(g). But because
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si ∈ {s1� s2� � � � � sr}, this contradicts the assumed inequalities: qsl (g) ≤ qsl+1(g) for
each l= 1�2� � � � � r.

Hence, for both cases, it must be the case that A(sr+1) includes some si ∈ S\{s1� s2�
� � � � sr}, such that qsr+1(g) ≤ qsi(g) holds and either d(sr+1� n̄r+1) > d(si� n̄i) or qsr+1(g) <

qsi(g) holds. Denote this si by sr+2.
Therefore, the mathematical induction is complete.
Since it is impossible for all the elements in the infinite sequence s1� s2� � � � to be in-

cluded in finite S ⊆ N , we conclude that there is no profitable deviation by any set of
agents S ⊆N . Hence, g= g(t̄) is strongly stable. �

Proof of Lemma A6. Lemma 1 establishes the uniqueness for the case of linear cost
functions, so we concentrate on the case of convex cost functions.

Suppose, to the contrary, that a network g′ �= g = g(t̄) is also strongly stable. This
implies that no pair of agents can profitably deviate from g′. We will show that this con-
tradicts the finiteness ofN .

Notice first that there exists some i ∈N such that ui(g) > ui(g′), as otherwise gwould
not be strongly stable. Take such an agent arbitrarily and call him agent 1. Consider two
possible (exhaustive) cases.

• (i) q1(g) > q1(g
′). In this case, pairwise stability of g and the convexity of the

cost function imply that there exists some i ∈N1(g)\N1(g
′) such that u1(g

′ + 1i) >
u1(g

′).

• (ii) q1(g)≤ q1(g
′). In this case, we can find some i ∈N1(g)\N1(g

′) such that there
exists j ∈ N1(g

′) such that d(1� i) < d(1� j). Denote this j by 0. To see this, sup-
pose, to the contrary, that for all i ∈N1(g)\N1(g

′), for all j ∈N1(g
′), d(1� i) > d(1� j)

holds. Take an arbitrary network g′′ ⊂ g′ such that N1(g) ∩ N1(g
′) ⊂ N1(g

′′) and
q1(g) = q1(g

′′). Such g′′ exists because q1(g) ≤ q1(g
′). Then we have u1(g) ≤

u1(g
′′) ≤ u1(g

′), where the first inequality holds because we have, when g �= g′′,
∀i ∈ N1(g)\N1(g

′′)�∀j ∈ N1(g
′′)�d(1� i) > d(1� j), and the second inequality is due

to the pairwise stability of g′ and the convexity of c. But this contradicts our earlier
conclusion that u1(g) > u1(g

′).

In either case (i) or (ii), we take such i and call him agent 2.
To complete the proof, we construct a sequence of distinct agents, {1�2� � � �}, such

that 2k ∈N2k−1(g)\N2k−1(g
′), 2k+1 ∈N2k(g

′)\N2k(g), 2k+2 ∈N2k+1(g)\N2k+1(g
′), and

d(2k−1�2k) > d(2k�2k+1) > d(2k+1�2k+2) hold for each k= 1�2� � � � �We considered
a portion of the case with k = 1 in the previous paragraph. The rest of the first step
can be shown to be true by following exactly the same logic as we will have below (by
substituting k= 0), so we omit its proof.

Now, we start a mathematical induction argument to obtain the remaining parts of
the infinite sequence and inequalities.

First, suppose we have shown the claims up to Step k, and consider Step k+ 1. Then
we must have u2k+2(g

′ + (2k+ 1)(2k+ 2)) < u2k+2(g
′), as otherwise the pair 2k+ 1 and

2k+ 2 could profitably deviate from g′ by adding (2k+ 1)(2k+ 2) while simultaneously
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deleting 2k(2k+ 1). Hence, by the pairwise stability of g � (2k+ 1)(2k+ 2) and the cost
convexity, we have q2k+2(g) ≤ q2k+2(g

′). Notice that this implies there is an agent in
N2k+2(g

′) who is not in N2k+2(g), because (2k+ 1)(2k+ 2) ∈ g \ g′. Similarly, we must
have d(2k+ 2� i) < d(2k+ 1�2k+ 2) satisfied for all i ∈ N2k+2(g

′) to ensure that 2k+ 1
and 2k+ 2 do not profitably deviate from g′.

The two conclusions in the previous paragraph imply that we can find some i ∈
N2k+2(g

′)\N2k+2(g) such that d(2k+ 2� i) < d(2k+ 1�2k+ 2). If i = 2l − 1 (resp. 2l) for
some l= 1�2� � � � �k, then we would have d(2l−1�2k+2) < d(2k+1�2k+2) < d(2l−1�2l)
(resp. d(2l�2k + 2) < d(2k + 1�2k + 2) < d(2l − 1�2l)) by the inductive supposition.
But this contradicts Claim 3, because we have (2l − 1)2l� (2k + 1)(2k + 2) ∈ g and
(2l − 1)(2k + 2) /∈ g (resp. 2l(2k + 2) /∈ g ). Hence i /∈ {1�2� � � � �2k + 1}. Denote this i
by 2k+ 3.

Since we have (2k + 1)(2k + 2) ∈ g, (2k + 2)(2k + 3) /∈ g, and d(2k + 1�2k + 2) >
d(2k+2�2k+3), we can apply Claim 2 to get u2k+3(g+(2k+2)(2k+3)) < u2k+3(g). Then
this implies q2k+3(g) ≥ q2k+3(g

′), due to the cost convexity and the pairwise stability of
g′ � (2k+2)(2k+3). Again, this implies that we can find some i ∈N2k+3(g)\N2k+3(g

′), as
(2k+2)(2k+3) ∈ g′ \g. By applying Claim 3, we must have d(2k+3� i) < d(2k+2�2k+3).
If i ∈ {2�3� � � � �2k+ 1}, then we would have d(i�2k+ 3) < d(2k+ 2�2k+ 3) < d(i� i+ 1) <
d(i − 1� i) by the inductive supposition. But if i is odd (resp. even), then i and 2k + 3
could profitably deviate from g′ by adding i(2k+ 3)while deleting (i− 1)i (resp. i(i+ 1))
and (2k+ 2)(2k+ 3), respectively. Also, if i = 1, then the profitable deviation by 1 and
2k+ 3 from g′ is possible. This is because 1 would be better off by adding (2k+ 3)1 (as
(2k+ 3�1) < d(2k+ 2�2k+ 3) < d(1�2)) in case (i) and by adding (2k+ 3)1 and deleting
01 in case (ii), and (2k+ 3) would be better off by adding (2k+ 3)1 and deleting (2k+
2)(2k+ 3). Hence, it must be the case that i /∈ {1�2�3� � � � �2k+ 1}. Denoting such agent i
by 2k+ 4, we have shown the desired properties for Step k+ 1.

We have completed the induction. But sinceN is finite, it is impossible to have such
an infinite sequence of distinct agents. This completes the proof. �

D.2 Proof of Proposition 5

Consider a point x in the type space X , and a hypothetical agent i who is situated at x,
i.e., x= xi.

Let q(xi�δ) denote the number of agents in the δ-neighborhood of xi. Then, for any
δ > 0 and q′, q(xi�δ) > q′ holds almost surely as n → ∞. Also, limq→∞�c(q) = c1 > 0
implies that for all ε > 0, there exists q′ such that for all qi > q′, |�c(qi)− c1|< ε.

Now take a small enough ε′ and δ′ > 0 such that b(δ′) ≥ c1 + ε′. Such ε′ and δ′ exist
since limd→0 b(d) > c1.

If i is not connected with an agent in his δ′-neighborhood, the resulting network
would not be pairwise stable; hence, it is not strongly stable. Thus, i is connected with
all the agents in his δ′-neighborhood. Thus, for any ε > 0, we have |�c(qi) − c1| < ε
almost surely as n→ ∞.

Now consider links with agents outside of the δ′-neighborhood. Since strongly sta-
bility implies pairwise stability, c1 − ε < �c(qi) (implied by |�c(qi) − c1| < ε) implies
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that ij /∈ g if b(d(i� j)) ≤ c1 − ε or d̂ + ε′ ≤ d(i� j) for b−1(c1) = d̂ and some ε′ > 0. Also,
for the same reason, �c(qi) < c1 + ε (implied by |�c(qi) − c1| < ε) implies that ij ∈ g if
c1 + ε≤ b(d(i� j)) or d(i� j)≤ d̂− ε′′ for the same d̂ and for some ε′′ > 0.

Now, for any ε′ and ε′′, there exist agents j and k such that d̂+ε′ < d(i� j) < d̂+2ε′ and
d̂−2ε′′ < d(i�k) < d̂−ε′′ almost surely as n→ ∞. Also, these j and k have to satisfy ij /∈ g
and ik ∈ g because of the argument in the previous paragraph. Hence, agent i’s cutoff
value, denoted by d̂i, which we know exists from Proposition 4, has to satisfy d̂ − 2ε′′ ≤
d̂i < d̂ + 2ε′ almost surely as n→ ∞. Because ε′ and ε′′ go to zero as ε goes to zero by
the continuity and strict decreasingness of b, and because x can be arbitrary, the proof
is completed. �

D.3 Proof of Proposition 6

The procedure is almost the same as the proof for Theorem 1.
We only need to modify the expression in the proof of Theorem 1,

1

(d̂)k

∫ d̂

0

∫ d̂

0
· · ·

∫ d̂

0

(2d̂− y1)(2d̂− y2) · · · (2d̂− yk)
(2d̂)k

dy1 dy2 · · · dyk�

to take into account the heterogeneity of the cutoff values.
The expression has a lower bound when the node in consideration has the cutoff of

d̂+ ε, where all the other nodes have the cutoffs d̂− ε, which is larger than

1

(d̂+ ε)k
∫ d̂+ε

2ε

∫ d̂+ε

2ε
· · ·

∫ d̂+ε

2ε

(2d̂− y1)(2d̂− y2) · · · (2d̂− yk)
(2d̂+ 2ε)k

dy1 dy2 · · · dyk

=
⎛
⎜⎝

3
2
d̂2 − 2d̂ε− ε+ 3

2
ε2

2(d̂+ ε)2

⎞
⎟⎠
k

�

Also, it has an upper bound when the node in consideration has the cutoff of d̂−ε, where
all the other nodes have the cutoffs d̂+ ε, which is smaller than

1

(d̂− ε)k
∫ d̂−ε

0

∫ d̂−ε

0
· · ·

∫ d̂−ε

0

(2d̂− y1)(2d̂− y2) · · · (2d̂− yk)
(2d̂− 2ε)k

dy1 dy2 · · · dyk

=
⎛
⎜⎝

3
2
d̂+ 1

2
ε

2(d̂− ε)

⎞
⎟⎠
k

�

For any d̂ > 0, both bounds converges to the same desired limit, ( 3
4)
k as ε goes to

zero. This completes the proof. �
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Figure A1. Multiple pairwise stable networks.

Appendix E: Additional results

E.1 Examples for Section 5

With a nonlinear cost function, pairwise stability may not determine a unique network
structure. Moreover, a pairwise stable network is not necessarily generated by a cutoff
rule, as is illustrated by the following examples in Figure A1.

First, consider the composition of nodes in (a-1)–(a-3). There are four nodes, 1,
2, 3, and 4, located in the type space X = [0�1]2, with x1 = (0�9�0�1), x2 = (0�8�0�95),
x3 = (0�1�0�25), and x4 = (0�15�0�8). We consider the case with k =m = 2. Calculating
the distances, we get d(x1�x2) = 0�85, d(x1�x3) = 0�8, d(x1�x4) = 0�75, d(x2�x3) = 0�7,
d(x2�x4) = 0�65, and d(x3�x4) = 0�55. Suppose that b(d) = 1

d , c(0) = 0, c(1) = 2, c(2) =
2�2, and c(3) = 2�3. Notice that the cost function c is concave. In this case, there are
three types of pairwise stable network structures, depicted in (a-1), (a-2), and (a-3), re-
spectively. The network in (a-1) is pairwise stable because the cost to form the first link,
i.e., �c(0), is so high that no one wants to form a link. The network in (a-2) is pairwise
stable because, again, the cost for the node 4 to form the first link is so high that he does
not want to form a link even though each of the other three nodes has an incentive to
form a link with him. There are three other networks of this type, in each of which one
agent has degree 0 and other three agents have degree 2. The network in (a-3) is also
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pairwise stable because the fact that the marginal cost of forming a third link, �c(2), is
very low implies that the marginal benefit of deleting a third link is negative.

Next, in (b-1) and (b-2), we have four nodes, 1, 2, 3, and 4, located in the type space
X = [0�1]2, with x1 = (0�8�0�2), x2 = (0�75�0�95), x3 = (0�4�0�1), and x4 = (0�25�0�8).
Again, we consider the case with k = m = 2. Suppose that b(d) = 1

d , c(0) = 0, c(1) =
1, c(2) = 10, and c(3) = 30. Notice that c is convex. Distances between nodes are
d(x1�x2) = 0�75, d(x1�x3) = 0�4, d(x1�x4) = 0�6, d(x2�x3) = 0�85, d(x2�x4) = 0�5, and
d(x3�x4) = 0�7. In this case, there are at least two pairwise stable networks, depicted
in (b-1) and (b-2), respectively.4 Both networks in (b-1) and in (b-2) are pairwise stable
because the marginal cost for these nodes to have a second link is very high. But the
network in (b-2) is not generated by a cutoff rule. For, if it were, the cutoff value of node
1 has to be no less than 0�75 because it is connected to node 2 and d(x1�x2)= 0�75. The
cutoff value of node 3 has to be also no less than 0�7 because it is connected to node 4
and d(x3�x4)= 0�7. But then d(x1�x3)= 0�4< 0�7 implies that it has to be the case that
the link 13 is formed; a contradiction.

Although we have multiplicity of pairwise stable networks in both concave and con-
vex cost functions, the reasons for the multiplicity are quite different. Precisely, in the
case of convex cost functions, it is impossible that two networks g�g′ ∈G(N) are both
pairwise stable and g � g′, while it is possible in the case of concave cost functions, as
shown in the example in Figure A1(a).

A pairwise stable network is not necessarily generated by a cutoff rule if it is not
strongly stable. In the example in Figure A1, for instance, the network in (b-2) is pairwise
stable, but is not (uniquely) strongly stable. So the fact that it is not generated by a
cutoff rule is still consistent with the result in Proposition 4. But it is always the case
that there exists a pairwise stable network that is generated by a cutoff rule. Moreover,
using the notion of strong stability, we can select a smaller set (or even a singleton set
under certain circumstances) of networks in which players form links as if they are using
some cutoff values. Note that, as opposed to the case of linear cost functions, the cutoff
value profile, if any, in a pairwise stable network under a nonlinear cost function is not
necessarily homogeneous. An example is the network in Figure A1(a-2), where agents
1–3 and agent 4 cannot have a homogeneous cutoff value profile. Note that this network
is not strongly stable, as the network in Figure A1(a-3) is obtainable from the network in
Figure A1(a-2) via deviations by S = {1�2�3�4} and that all the agents would be better off
after such deviations.

A homogeneous cutoff value profile may not exist even in strongly stable networks.
Consider the composition of nodes in Figure A2. There are four nodes, 1, 2, 3, and 4,
located in the type spaceX = [0�1]2, with x1 = (0�7�0�1), x2 = (0�8�0�95), x3 = (0�2�0�05),
and x4 = (0�15�0�4). We consider the case with k = m = 2. Suppose that b(d) = 1

d ,
c(0)= 0, c(1)= 1, c(2)= 5, and c(3)= 10. Distances between nodes are d(x1�x2)= 0�85,
d(x1�x3) = 0�5, d(x1�x4) = 0�55, d(x2�x3) = 0�9, d(x2�x4) = 0�65, and d(x3�x4) = 0�35.
It is straightforward to see that there is a unique pairwise stable network, namely g =
{12�34}, as in the figure. This is also strongly stable.

4A network {14�23} is also pairwise stable.
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Figure A2. Heterogeneous cutoff values.

Now, because node 1 is connected with node 2, his cutoff value, if any, has to be
no less than 0�85. But because node 3 is not connected with node 1, his cutoff value,
if any, has to be strictly less than 0�5. This implies that we cannot find any homoge-
neous cutoff value profile. Hence, this example shows that even in a strongly stable
network, a homogeneous cutoff value profile may not exist. However, as Proposition 4
shows, a heterogeneous cutoff value profile must exist. For example, (d̂1� d̂2� d̂3� d̂4) =
(0�85�0�85�0�35�0�35) serves as a heterogeneous cutoff value profile.

E.2 Robustness of the main results against non-uniform type distribution

We examine the extent to which the comparative statics provided in Corollaries 1 and 2
go through even under non-uniform type distributions. As is clear from the intuition ex-
plained above, the clustering coefficient is higher if there is more asymmetry in the size
of various types of neighbors of a given agent. This means that the comparative-statics
results are likely to be robust if the type distribution is not too asymmetric. To make this
intuition precise, we formalize a measure of asymmetry of type distributions and derive
a bound such that if the level of asymmetry is below that bound, our comparative-statics
results go through.5

Given a distribution f on the m-dimensional space X , define the measure of asym-
metry of f 6 as

af = lim
d→0

max
w∈[0�1]m

max
S�T⊆{1�����m}�|S|=|T |=k

tf (w�d�T)

tf (w�d�S)
�

where

tf (w�d�S)= Proby∼f
(|yj −wj| ≤ d for all j ∈ S)

Proby∼f
(|yj −wj| for all j ∈ T such that T ⊆ {1� � � � �m} and |T | ≥ k)

5In the main model, agents are connected if there are at least k dimensions on which their types are

within cutoff d̂. More generally we could allow the cutoff to be different across dimensions. One can in-
terpret the results in this section as providing conditions under which the comparative statics of the main
model is applicable to such a more general model.

6The existence of the limit is guaranteed because of t’s continuity in d (implied by f ’s continuity) and
Berge’s theorem of maximum. The limit in the definition of sf below exists for the same reason.
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with the subscript y ∼ f expressing that the probability is computed assuming that the
point y is drawn according to the distribution f . Note that af ≥ 1 always holds and af = 1
if f is the uniform distribution. The number tf (w�d�S) is the probability that y is within
the distance of d fromw with respect to all the dimensions in S conditional on the event
that these two points are neighbors to each other. Thus af is the maximum with respect
to w of the ratio of the maximum of such tf (w�d�S) with respect to S to the minimum.

The measure af itself is difficult to handle, but it has an upper bound that is easier
to deal with,

af ≤ 1 − (mCk)sf
sf

:=Af �

where

sf = lim
d̂→0

min
w∈[0�1]m

min
S⊆{1�����m}�|S|=k

tf (w�d�S)�

Here, sf is the minimum share of neighbors that some collection of dimensions of
size k has. The formula follows because sf is the minimum, so given this value, the most
extreme case is that all but one collection of k dimensions have exactly this minimum
share, and that only that one dimension has the biggest share.7

Now we consider comparative statics with respect tom and k. Denote the limit clus-
tering coefficient as d̂→ 0 givenm, k, and a distribution f by Cl∗(m�k� f ). In the propo-
sition below, we denote

(m
k

)
by mCk.

Proposition A1. (i) Suppose that k < m′ < m. Let g ∈ �([0�1]m′
) and f ∈ �([0�1]m).

Then Cl∗(m′�k�g)≥ Cl∗(m�k� f ) if

Af ≤ 1 +
mCk

√
mCk − m′Ck

m′Ck(mCk − 1)

1 −
√

mCk − m′Ck

m′Ck(mCk − 1)

�

(ii) Suppose that under uniform distribution, Cl∗(m�k)≥ Cl∗(m�k′). Let g ∈ �([0�1]m′
)

and f ∈ �([0�1]m). Then Cl∗(m�k�g)≥ Cl∗(m�k′� f ) if k′ =m or

Af ≤ 1 +
mCk′

√√√√√√mCk′
(

3
4

)k−k′

−m Ck

(mCk′ − 1)mCk

1 −

√√√√√√mCk′
(

3
4

)k−k′

−m Ck

(mCk′ − 1)mCk

�

7If f is uniform, sf = 1
mCk

and so r(m�m′�k� sf ) reduces to 1
m′Ck·[1/mCk] = mCk/m′Ck, as expected.
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m

k= 1 2 3 4

m′ = 1 4 6�464 8�899
m′ = 2 − 3 4�450
m′ = 3 − − 2�667

m

k= 2 3 4

m′ = 2 5�346 10�658
m′ = 3 − 4�250

m

k= 3 4

m′ = 3 7�899

Table 1. Robustness of comparative statics with respect tom. Each entry is theAf value for the

given parameter values k,m′, andm that appear in part (i) of Proposition A1. Note that Cl∗(m�k)
is decreasing inm.

k

m= 2 2

k′ = 1 5�828

k

m= 3 1 3

k′ = 2 3�070 12�325
k′ = 1 − 5�252

k

m= 4 3 1 4

k′ = 2 2�127 5�854 14�305
k′ = 3 − 5�150 26�856
k′ = 1 − − 4�055

Table 2. Robustness of comparative statics with respect to k. Each entry is the

Af value for the given parameter values m, k′, and k that appear in part (ii) of

Proposition A1. Note that Cl∗(2�1) < Cl∗(2�2), Cl∗(3�2) < Cl∗(3�1) < Cl∗(3�3), and

Cl∗(4�2) < Cl∗(4�3) < Cl∗(4�1) < Cl∗(4�4).

That is, as long as the asymmetry measureAf is less than the threshold that depends
on k, m, and m′, the comparative-statics results in Corollary 1 are valid. The proof is
based on a straightforward modification of the proof for the main result and, hence, is
omitted. In Tables 1 and 2, we provide values of Af for various (m�m′) pairs and fixed
ks. As can be seen from the tables, the comparative statics go through as long as the
distribution is not too asymmetric.

Now we apply this result to compare the limit clustering coefficients under the Min
and Max norms. First, the comparative statics from the case with the uniform distribu-
tion always carry over if k′ =m.8 Thus, we concentrate on the case with m< 9, in which
k=m and k′ = 1 hold. Hence, the inequality in part (ii) of Proposition A1 becomes

Af ≤
1 +

√
m

(
3
4

)m−1
− 1

1 −

√√√√√m

(
3
4

)m−1
− 1

m− 1

�

8More generally, given some (k�m) pair, if it is true under the uniform distribution that the clustering is
above that given by the Max norm, then it is true for any other distribution. The reason is that under the
Max norm, for any small ε > 0, the set of the neighbors of any point x ∈X is a subset of the ε-neighborhood
of xwith respect to the Euclidean distance if d̂ > 0 is small enough. Since any distribution that has a density
function is locally uniform, changes in the distribution cannot affect the comparative-statics result.
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k=m
2 3 4 5 6 7 8

k′ = 1 3�414 3�560 3�033 2�487 2�037 1�663 1�294

Table 3. Robustness of comparative statics of the comparison of Min and Max norms. Each

entry is the Af value for the given parameter values m, k′ = 1 and k=m that appear in part (ii)

of Proposition A1. Note that whenm< 9, Cl∗(m�1) < Cl∗(m�m).

Table 3 summarizes the value of Af for various ms. It suggests that a broad range of
distributions is consistent with the comparison of the Min and Max norms under the
uniform distribution, especially whenm< 9 is small.

E.3 Clustering lower bound and triangle inequality

Define social distance by d(xi�xj) = ‖xi − xj‖, where ‖ · ‖ satisfies the standard norm
axioms in Rm. That is, for all α ∈ R and y� y ′ ∈ Rm, it satisfies (i) absolute homogeneity,
i.e., |α|‖y‖ = ‖αy‖, (ii) triangle inequality, i.e., ‖y + y ′‖ ≤ ‖y‖ + ‖y ′‖, and (iii) separates
points, i.e., if ‖y‖ = 0, then y is the zero vector. Below we show that under such so-
cial distance d, Cm := ∫ 1

0 mq
m−1(1 − q)m dq > 0 is a lower bound of the limit clustering

coefficient.
To see this, fix type xi of an agent i such that its d̂-neighborhood measured by so-

cial distance d(·� ·) is contained in the interior of X . Let xj and xk denote two ran-
domly chosen points in the neighborhood of xi by the uniform distribution. By the
triangle inequality, agents j and k with type xj and xk, respectively, are connected
if

d(xi�xj)+ d(xi�xk)≤ d̂� (A2)

We claim that the standard-norm axioms imply a strictly positive lower bound Cm of
the probability that this inequality (A2) is satisfied. To see this, first we note that, for
any r ∈ [0�1], the Lebesgue measure of the (rd̂)-neighborhood of xi is rm of the d̂-
neighborhood.9 This implies that, for each r ∈ [0�1], d(xi�xj)≤ rd̂ holds with probabil-

ity rm for small enough d̂ > 0. Hence, the probability density of the variable q := d(xi�xj)

d̂
,

conditional on xj being in the d̂-neighborhood of xi, is mqm−1. Therefore, (A2) is satis-

fied with probability
∫ 1

0 mq
m−1(1 − q)m dq = Cm. Hence, the limit clustering coefficient

9To see this, observe that d(x� (1 − r)x + rx′) = rd(x�x′) for any points x�x′ ∈ X by the absolute ho-

mogeneity axiom. This ensures that a boundary point of the (rd̂)-neighborhood of x can be written as
(1 − r)x+ rx′ for some boundary point x′ of the d̂-neighborhood. Geometrically, the (rd̂)-neighborhood is
equal to the d̂-neighborhood proportionally scaled by the factor of r. This implies that if x belongs to the
interior of X , then its d̂-neighborhood is contained in the interior of X for all sufficiently small d̂ > 0. This
is because otherwise there exists a point x′ �= x that belongs to the d̂-neighborhood of x for any d̂ > 0, which
implies ‖x− x′‖ = 0, a contradiction to separates points.
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Figure A3. The d̂-neighborhood of x whenm= 2 and T = 2 in Example 1.

is bounded byCm > 0 from below.10 However, such a lower bound cannot be established
if we relax the standard-norm axioms, and the clustering coefficient can be arbitrarily
close to 0 in general. The example below illustrates this point by using a generalized
version of the Min norm.

Example 4. Letm≥ 2. Fix a finite collection ofm×m regular matrices {A(1)�A(2)� � � � �
A(T)}. For each t = 1� � � � �T , the set of vectors {elA(t)}l=1�����m spans Rm, where each
el = (0� � � � �0�1�0� � � � �0) denotes the lth unit vector in Rm. Therefore, for any vector
y ∈ Rm and t = 1� � � � �T , there is a unique collection of coefficients {αyl (t)}l=1�����m that
satisfies y = ∑

l=1�����m α
y
l (t)elA(t).

Define social distance by

d
(
x�x′) = min

t=1�����T
min

l=1�����m

∣∣αx−x′
l (t)

∣∣�
For any number w > 0, the assumption that m ≥ 2 implies that we can choose T large
and appropriate matrices {A(t)}t=1�����T such that, for any t� t ′ = 1� � � � �T and l� l′ =
1� � � � �m, elA(t) and el′A(t ′) are not proportional to each other, and the limit cluster-
ing coefficient is below w. Intuitively, i’s neighborhood consists of m× T “stripes” and
the types of two neighbors j and k of agent i typically belong to different stripes in a
d̂-neighborhood of i’s type when m × T is large, and therefore, j and k are unlikely to
be connected. Figure A3 illustrates an example of the d̂-neighborhood when m= 2 and
T = 2, which consists of four stripes. This norm satisfies absolute homogeneity but vio-
lates triangle inequality and separates points. Note that the Min norm is a special case
of T = 1 whereA(t) is the identity matrix. ♦

10A better bound is given by (1 − (1/2)m)Cm + (1/2)m. This is because with probability ( 1
2 )
m, sgn(xil −

xjl)= sgn(xil − xkl) holds for every dimension l = 1� � � � �m. In such a case, j and k are connected indepen-
dently of the distances d(xi�xj) and d(xi�xk).
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E.4 Discrete type space model

In the main part of this paper we assumed that agents are distributed over the type space
[0�1]m, and that the distribution of agents on this space is given by some strictly positive
density function. In practice, it may be better to regard some dimensions, such as gen-
der, as taking discrete values. In this subsection, we consider a variant of the main model
in which the type space is discrete, to examine whether our main results are robust to
such modification of the model. We first discuss the subtleness in constructing a model
with discrete type space, and then show that our main qualitative results go through in
an appropriately defined model with discrete type space.

As we mentioned in Section 6, the limit analysis as d̂ → 0 enables us to implement
meaningful comparative statics under the main model, as we can take that limit with
keeping the expected degrees identical across two different networks with different k’s
andm’s. This argument does not go through when we have a discrete type space because
in a discrete model, when the cutoff is near zero, an agent’s only neighbors are those with
distance zero, and thus, without any additional assumptions, we cannot set the expected
degrees to be identical across two different networks with different k’s andm’s.

To highlight the effect of discreteness, we consider the simplest form of discrete type
space, X = {0�1}m, and a unit mass of agents distributed uniformly over X , so that at
each point in this space, measure 1

2m of agents exists. Given m and k, agent i at point
x ∈X is a potential neighbor of agent j at y ∈X if x and y have at least k common at-
tributes. For example, if m= 5, x= (0�0�1�0�1), and y = (1�0�1�1�0), they are potential
neighbors with each other if k≤ 2, but otherwise not. Let the size of potential neighbors
for each agent (which we assume is identical for all agents) beM . To overcome the diffi-
culty described in the previous paragraph, we assume that an agent can be linked with
only a subset of potential neighbors where the size of this subset may differ for differ-
ent (k�m) values. Specifically, we parameterize the model by size of neighbors, denoted
by p > 0. That is, an agent is linked to a potential neighbor independently with proba-
bility p

M and is not linked to anyone outside the set of potential neighbors, so that the
size of neighbors is p. For simplicity, we assume that p is sufficiently small so that the
probability p

M is well defined (i.e., no more than 1).
Let g be the network generated by the rule described above, and let Cl(m�k�p) and

APL(m�k�p) be the clustering coefficient and the average path length of g, respectively,
given m, k, and p. Denote the binomial coefficient

( a
b

)
by C(a�b). The next proposition

states the formulas for Cl(m�k�p) and APL(m�k�p).

Proposition A2. (i) The following equality holds:

Cl(m�k�p)=

⎛
⎜⎜⎜⎜⎜⎝

∑
0≤s�t≤m−k

PstC(m� s)C(m� t)( ∑
0≤i≤m−k

C(m� i)

)2

⎞
⎟⎟⎟⎟⎟⎠ · 2m∑

k≤l≤m
C(m� l)

p�
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where

Pst = Pts =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if s+ t ≤m− k�∑
0≤h≤m−k−s+t

2

C(s� t − h)C(m− s�h)

C(m� t)
if s+ t >m− k and s ≥ t.

(ii) The following equality holds:

APL(m�k�p)= −p+
m∑
l=1

C(m� l)

2m
max

[
2�D(l�m�k)

]
�

whereD(l�m�k)= min{a ∈N|a≥ l
m−k }.

The clustering coefficient is the product of two terms: The first is the term in the
parentheses, which is the probability that an agent’s two neighbors are potential neigh-
bors with each other. The second is the probability that they are actually connected
( pM ). Notice that for fixed m, as k becomes larger, the size of potential neighbors (M)
decreases, so p

M is increasing in k.

Proof of Proposition A2. Part (i). Take arbitrarily agents i, j, and k situated at points
x, y, and z in the type space X , respectively. First we compute the conditional proba-
bility of j and k being potential neighbors of each other, given ij ∈ g and ik ∈ g. This
probability depends on the type difference between i and j, as well as i and k. Let s
(resp. t) denote the number of different entries between x and y (resp. x and z). Note
that 0 ≤ s� t ≤ m − k, because ij ∈ g and ik ∈ g. Due to the uniform distribution as-
sumption, given ij ∈ g, conditional distribution of s follows probability mass function
h(s) := C(m�s)∑m−k

i=0 C(m�i)
. Conditional distribution of t follows the same probability mass func-

tion.
Let Pst denote the conditional probability of j and k being potential neighbors of

each other, given s and t. Since we have Pst = Pts, it is sufficient to focus on the case
s ≥ t. If s + t ≤m− k, then it is clear to see that the type difference between j and k is
always withinm− k entries, so that Pst = 1.

Consider the case where s+ t >m− k. It is without loss of generality to suppose x=
(0� � � � �0) and y = (1� � � � �1�0� � � � �0), where the first s entries are all 1 and the others are 0.
For each x′�x′′ ∈X , define ‖x′ − x′′‖ := ∑m

i=1 |x′
i − x′′

i |. Since the conditional distribution
of z is uniform in {x′ ∈X : ‖x′‖ = t}, we have

Pst =

m−k∑
r=0

	
{
z ∈X : ‖z‖ = t�‖z− y‖ = r}

C(m� t)
�
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We have that

	
{
z ∈X : ‖z‖ = t�‖z− y‖ = r}
=

{
0 if r < s− t or r = s− t + 2l+ 1 for some l= 0�1�2� � � � �

C(s� t − h)C(m− s�h) if r = s− t + 2l for some l= 0�1�2� � � � �

To see this, first consider the case z = z′ := (1� � � � �1�0� � � � �0), where the first t entries
are all 1 and the others are 0. Clearly this point belongs to arg min‖z‖=t{‖z − y‖}. Since
‖z′ − y‖ = s − t holds, ‖z − y‖ < s − t is not possible, given ‖z‖ = t. Next, starting from
k’s type being z′, modify his type arbitrarily, keeping at t the difference between 0 and
this type. Notice that ‖z − y‖ − (s − t) cannot be an odd number, given ‖z‖ = t. If there
exists a nonnegative integer l such that we can write ‖z − y‖ = s − t + 2l, we can find
C(s� t − l)C(m− s� l) patterns of k’s type z such that ‖z‖ = t.

Then, by aggregating Pst over every (s� t) pair with the probability mass function h(·),
we obtain the conditional probability of j and k being potential neighbors of each other,
given ij ∈ g and ik ∈ g.

Next we compute the probability of a link being formed between two agents who are
potential neighbors of each other. This probability p(k�m) has to be adjusted to keep
the size of neighbors p independent of k and m. Given k and m, the size of potential

neighbors is
∑
k≤l≤m C(m�l)

2m . Thus, we obtain p(k�m)= 2m∑
k≤l≤m C(m�l)

p.

Finally, the clustering coefficient is obtained by multiplying thep(k�m) and the con-
ditional probability of j and k being potential neighbors of each other, given ij ∈ g and
ik ∈ g, which yields the desired formula.

Part (ii). First note that if two agents are linked by path length 2 or more in the model
with p = 1 (i.e., they are not potential neighbors with each other), then they are linked
by the same path length in any model with p> 0. To see this, note that there is positive
mass of population of each type; thus, for any given sequence of types (x1�x2� � � � � xn),
there are some sequence of agents (i1� i2� � � � � in) such that each agent il is of type xl, and
il and il+1 are linked with each other for all l= 1� � � � � n− 1. Thus the average path length
is

APL(m�k�p)=M ·
[
p

M
· 1 +

(
1 − p

M

)
· 2

]
+

m∑
l=m−k+1

C(m� l)

2m
D(l�m�k)�

whereD(l�m�k)= min{a ∈N|a≥ l
m−k }. Here the first term is the size of potential neigh-

bors of an agent times the average path length from the agent in consideration to these
agents.

This is equal to

−p+ 2M +
m∑

l=m−k+1

C(m� l)

2m
D(l�m�k)

or

−p+
m∑
l=0

C(m� l)

2m
max

[
2�D(l�m�k)

]
�
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m \ k 1 2 3 4 5

1 p – – – –
2 1�037p 4p – – –
3 0�863p 1�625p 8p – –
4 0�811p 0�805p 2�688p 16p –
5 0�796p 0�539p 1�297p 2�370p 32p

Table 4. Cl(m�k�p).

m \ k 1 2 3 4 5

1 ∞ – – – –
2 2 −p ∞ – – –
3 2 −p 2�125 −p ∞ – –
4 2 −p 2 −p 2�375 −p ∞ –
5 2 −p 2 −p 2�031 −p 2�656 −p ∞

Table 5. APL(m�k�p).

This completes the proof. �

In Tables 4 and 5 we provide examples of values Cl(m�k�p) and APL(m�k�p) where
m ∈ {1�2�3�4�5}.

The results in the tables feature the key properties we obtained in Corollaries 1 and
2. That is, (i) the clustering coefficient under the Max norm is higher than under the Min
norm, (ii) the clustering coefficient is not monotonic in kwhile it is decreasing inm, and
(iii) the average path length is increasing in k while decreasing inm.

E.5 Approximation results

In this section, we consider the cutoff rule model where the number of agents n is finite
and the cutoff d̂ is positive. The following result gives bounds of the deviations of the
expected values of the clustering coefficient and the average path length from the limit
values obtained in the main section.

Proposition A3. (i) For n≥ 3, |Cl∗ −E[Cl]| =O(d̂) as d̂→ 0.

(ii) For k<m, −O(d̂)≤E[APL] − APL∗ ≤O(e−nd̂mn) as (n� d̂)→ (∞�0).

This result helps us to interpret the limit values Cl∗ and APL∗ in the main section.
That is, it bounds the orders of n and d that we need so as to approximate the limit val-
ues at a given precision. We note that the bound of clustering does not depend on n.
This is because the clustering coefficient is an expectation of independent probabili-
ties.
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Proof of Proposition A3. Part (i). Fix n ≥ 3. We consider the sequence of models

with varying d̂→ 0. First we have

E[Cl] = E[Cli]
= (

1 − (1 − 2d̂)m
)
E

[
Cli : xi /∈X(d̂)

] + (1 − 2d̂)mE
[
Cli : xi ∈X(d̂)

]
= O(d̂)+O(1 − d̂)E[

Cli : xi ∈X(d̂)
]
�

where X(d̂) is the set of types that are bounded away (for each dimension) from the

boundary by d̂. Let S(i� j)= {l : |xil − xjl| ≤ d̂} ⊆ {1�2� � � � �m} be the set of dimensions on

which i and j are close within the distance of d̂. We have

E
[
Cli : xi ∈X(d̂)

]
= Pr

[
jh ∈ g : xi ∈X(d̂)� {ij� ih} ⊆ g]

=: P̂r[jh ∈ g]

=
m∑
l=k

P̂r
[∣∣S(i� j)∣∣ = l]P̂r

[
jh ∈ g : ∣∣S(i� j)∣∣ = l]

= 1

μ
(
B
d̂
(xi)∩X(d̂))

m∑
l=k

m!
(m− l)!l!(2d̂)

l(1 − 4d̂)m−lP̂r
[
jh ∈ g : ∣∣S(i� j)∣∣ = l]

=O(1 − d̂)P̂r
[
jh ∈ g : ∣∣S(i� j)∣∣ = k] +O(d̂)�

where P̂r[·] denotes the probability measure conditional on xi ∈X(d̂) and {ij� ih} ⊆ g.

Then

P̂r
[
jh ∈ g : ∣∣S(i� j)∣∣ = k]
=

m∑
l=k

P̂r
[∣∣S(i�h)∣∣ = l : ∣∣S(i� j)∣∣ = k]

P̂r
[
jh ∈ g : ∣∣S(i� j)∣∣ = k� ∣∣S(i�h)∣∣ = l]

= 1

μ
(
B
d̂
(xi)∩X(d̂))

×
m∑
l=k

m!
(m− l)!l!(2d̂)

l(1 − 4d̂)m−lP̂r
[
jh ∈ g : ∣∣S(i� j)∣∣ = k� ∣∣S(i�h)∣∣ = l]

=O(1 − d̂)P̂r
[
jh ∈ g : ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k] +O(d̂)�
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Next

P̂r
[
jh ∈ g : ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k]
= P̂r

[
S(i� j)= S(i�h) : ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k]

× P̂r
[
jh ∈ g : S(i� j)= S(i�h)� ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k]

+ P̂r
[
S(i� j) �= S(i�h) : ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k]

× P̂r
[
jh ∈ g : S(i� j) �= S(i�h)� ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k]

= (m− k)!k!
m! P̂r

[
jh ∈ g : S(i� j)= S(i�h)� ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k]

+
(

1 − (m− k)!k!
m!

)
P̂r

[
jh ∈ g : S(i� j) �= S(i�h)� ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k]

�

Regarding the last line, we can get bounds:(
3
4

)k
≤ P̂r

[
jh ∈ g : S(i� j)= S(i�h)� ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k]

≤
(

3
4

)k
+

(
1 −

(
3
4

)k)(
1 −

(
1 − 4d̂

1 − 2d̂

)m−k)

=
(

3
4

)k
+O(d̂)�

where ( 3
4)
k represents the conditional probability that j and h are close to each other in

dimensions S(i� j). The second term on the second line gives a probability bound of the
other possibilities that j and h are linked. Also we have

P̂r
[
jh ∈ g : S(i� j) �= S(i�h)� ∣∣S(i� j)∣∣ = ∣∣S(i�h)∣∣ = k] ≤

(
1 −

(
1 − 4d̂

1 − 2d̂

)m−k)

=O(d̂)�
Therefore, what we have shown is the inequality of the form

αCl∗ ≤E[Cl] ≤ α(
Cl∗ +O(d̂))�

where coefficient α is such that 1 − α=O(d̂). This shows that |Cl∗ −E[Cli]| =O(d̂).
Part (ii). With fixed k < m, we look at a sequence of models with varying (n� d̂)→

(∞�0).
First we have

E[APL]
=E[PLij : PLij <∞]
= Pr

[∀l|xil − xjl|> d̂ : PLij <∞]
E

[
PLij : ∀l|xil − xjl|> d̂�PLij <∞]

+ Pr
[∃l|xil − xjl| ≤ d̂ : PLij <∞]

E
[
PLij : ∃l|xil − xjl| ≤ d̂�PLij <∞]
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Figure A4. Comparative statics underm= 2.

and

Pr
[∀l|xil − xjl|> d̂ : PLij <∞]

> (1 − 2d̂)m = 1 −O(d̂)�
E

[
PLij : ∃l|xil − xjl| ≤ d̂�PLij <∞] ≤ E

[
PLij : ∀l|xil − xjl|> d̂�PLij <∞]

�

Below we use Ẽ and P̃r to denote the expectation and probability conditional on
|xil − xjl| > d̂ for every l and PLij <∞. First note that P̃r[PLij < APL∗] = 0 because it is
impossible to find an indirect path that connects these two agents with steps less than
APL∗ when |xil − xjl| > d̂ for every l. Therefore, Ẽ[PLij] = ∑n

l=APL∗ P̃r[PLij = l]l. Here
P̃r[PLij = APL∗] is more than

α′ := (
1 − (

1 − (d̂)m)n−2)APL∗ = 1 −O[(
1 − d̂m)n]

�

which is a probability bound that an indirect path with lengthAPL∗ (i.e., β in the proof
of Theorem 2) exists. Note that this construction relies on the fact that k<m.

Hence, we have shown the inequality of the form

O(d̂)1 + (
1 −O(d̂))APL∗

≤E[APL]
≤ (
O(d̂)+ (

1 −O(d̂)))(α′APL∗ + (
1 − α′)n)�
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Figure A5. Comparative statics underm= 3.

This inequality, together with the fact that (1 − dm)1/d
m → e−1, results in the desired

formula. �

The extent to which our results regarding the limit values are economically mean-
ingful depends on the robustness of the comparative-statics results. Here we consider
the comparative statics of clustering coefficient and average path length when n is fi-
nite and d̂ is positive. Figures A4 and A5 plot the realizations of clustering coefficients
and average path lengths of 100 generations of networks for each parameter combina-
tion wherem ∈ {2�3} and n= 1000 under the uniform type distribution. For each profile
(m�k), we adjusted the cutoff level to generate five different levels of expected degrees,11

ED ∈ {10�20�30�40�50} and ran simulations. The x-axis of each figure corresponds to the
values of k. Each diagram shows the 0�25, 0�50, and 0�75 fractiles of the resulting distri-
bution, along with the outliers.

Our results in the main sections show that Cl∗(2�2) > Cl∗(1�2) and APL∗(2�2) >
APL∗(1�2) when m = 2, and Cl∗(3�3) > Cl∗(1�3) > Cl∗(2�3) and APL∗(3�3) >
APL∗(2�3) > APL∗(1�3) when m = 3. Under broad parameter combinations, the sim-
ulation results we ran are consistent with our comparative statics of the limit values.
In Figure A2, the simulation results on the clustering coefficients under m = 3 are in-
consistent with the comparative statics of the limit values when the expected degree is

11To be more precise, this is the expected degree of an agent whose type belongs to [d̂�1 − d̂]m ⊂X .
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relatively high. This is because the cutoff value is too high in such cases, so that there
can be significant deviations from the limit values of the clustering coefficients.12
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