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S.1. Indistinguishability of testable predictions

The strategic equivalence in Section 5 implies that the testable predictions with or
without commitment types are nearly indistinguishable. Imagine that an empirical or
experimental researcher observes outcomes of games that essentially look like a fixed
repeated game, as in g∗, but she does not know the players’ beliefs about possible com-
mitments or payoff variations. Using the data, she can obtain an empirical distribution
on outcome paths. Because of sampling variation, there is some noise regarding the ac-
tual equilibrium distribution of the outcomes. The above strategic equivalence implies
that the equilibrium distributions for elaborations with or without commitment types
can be arbitrarily close, making it impossible to rule out one model without ruling out
the other given the sampling noise.

Toward stating this result formally, let �∗ be the set of solution concepts that are
(1) invariant to the elimination of nonrationalizable plans, (2) invariant to trivial enrich-
ments of the type spaces, and (3) include all solutions generated by the sequential equi-
libria that satisfy Assumption 1. Given any solution concept � ∈ �∗ and any Bayesian
game G, a solution σ leads to a probability distribution z(· | σ) ∈ �(Z) on the set Z of
outcome paths, such that

z(z | σ) =
∑
τ∈T

∑
s∈Sz

σ(s | τ)π(τ) (∀z ∈Z)�

where T is the sets of type profiles in G, Sz = {s ∈ S | z(s) = z} is the set of profiles of ac-
tion plans that lead to z, π is the (induced) common prior on T , and σ(s | τ) is the prob-
ability of action plan s in equilibrium σ when the type profile is τ. A solution concept �
yields a set

Z(��G) = {z(· | σ) | σ ∈ �(G)}
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of probability distributions on outcome paths. Toward comparing the distance between
such sets, we endow the set 2�(Z) of such subsets with the Hausdorff metric d, the stan-
dard metric for sets.1 For any X�Y ∈ 2�(Z),

d(X�Y) ≤ λ

if and only if for each x ∈ X , there exist y ∈ Y and p ∈ �(Z) with x = (1 − λ)y + λp, and
for each y ∈ Y , there exist x ∈X and p ∈ �(Z) with x= (1 − λ)y + λp.

Our first corollary states that the set of distributions on the outcome paths are nearly
identical with or without commitment types.

Corollary S.1. For any � ∈ �∗, any ε-elaboration G with commitment types, and
any ε′ ∈ (ε�1), there exists an ε′-elaboration G′ without commitment types such that
d(Z(��G)�Z(��G′)) ≤ (ε′ − ε)/(1 − ε).

Proof. Define λ = (ε′ − ε)/(1 − ε). Consider the ε′-elaboration G′ in Propositions 1–4
of our main paper. Recall that any type profile (τ1� τ

∗
2) in G has identical solutions to a

type profile (f (τ1)� τ
∗
2) in G′, where f (τ∗

1) = τ∗
1 and f (c) = τc1. Moreover, π ′(f (τ1)� τ

∗
2) =

(1 − λ)π(τ1� τ
∗
2). Hence, y ∈ Z(��G′) if and only if there exists σ ′ ∈ �(G′) such that y =

(1 − λ)x+ λp for x and p, where

x(z) =
∑
τ∈T

∑
{s∈S|z(s)=z}

σ ′(s | f (τ1)� τ
∗
2)π(f (τ1)� τ

∗
2)

and p(z) = ∑
τ2 �=τ∗

2

∑
{s∈S|z(s)=z} σ ′(s | τ)π ′(τ). Since the sets of solutions for (τ1� τ

∗
2) and

(f (τ1)� τ
∗
2) are identical, x ∈ Z(��G), and the converse is also true in that there exists a

σ ′ ∈ �(G′) as above for every x ∈ Z(��G). �

Suppose that one wants to restrict G′ to be an ε-elaboration, so that the prior prob-
abilities of rational types are identical. The results in the reputation literature are often
continuous with respect to ε when the set and the relative probability of the commit-
ment types are fixed. In that case, such a restriction would not make a difference, as
established in the next corollary.

Corollary S.2. Consider any ε-elaboration G with commitment types (C�π) and a so-
lution concept � ∈ �∗ such that �(Gα) is continuous with respect to α, where Gα is an αε-
elaboration with commitment types (C�π/α) for α ≥ 1. Then, for any λ > 0, there exists
an ε-elaboration G′ without commitment types such that d(Z(��G)�Z(��G′)) ≤ λ.

Proof. Apply the previous result starting from Gα for some α > 1 that is sufficiently
close to 1—in particular, where αε ≤ λ(1 − ε)+ ε—and then apply continuity. �

1More specifically, we use the Hausdorff metric induced by the “total variation” metric on �(Z), but since
we only use the metric on sets, we will simply define the Hausdorff metric directly.
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S.2. Proof of Lemma 3

We first introduce a more general notion of equivalence. Recall that z(s) denotes the
outcome of a profile s of action plans. In line with our notation for histories, we will
write z(s)t for the truncation of z(s) at the beginning date t; i.e., if z(s) = (a0� a1� � � � � at̄),
then z(s)t = (a0� a1� � � � � at−1). Recall also that action plans si and s′i are equivalent if
z(si� s−i) = z(s′i� s−i) for all action plans s−i ∈ S−i, i.e., they lead to the same outcome no
matter what strategy the other player plays. Note that si and s′i are equivalent if and only
if si(ht) = s′i(h

t) for every history ht in which i played according to si throughout; they
may differ only in their prescriptions for histories that they preclude. Hence, in reduced
form, action plans can be represented as mappings that map the history of other play-
ers’ play into own stage-game actions. Similarly, action plans si and s′i are said to be
t-equivalent if z(si� s−i)

t = z(s′i� s−i)
t for all action plans s−i ∈ S−i, i.e., they lead to the

same history up to date t no matter what strategy the other player plays. Because we
have a finite horizon t̄, equivalence is the same as t̄ + 1 equivalence. Given any two sets
X , Y of action plans, we write X 	t Y if for every x ∈ X , there exists y ∈ Y that is equiv-
alent to x, and for every y ∈ Y , there exists x ∈ X that is t-equivalent to y. We prove the
following more general version of Lemma 3 for t equivalence. Note that the construction
in this proof relies on the fact that players do not know their own stage-game payoffs and
do not observe them at each stage, but can learn them from other players’ actions.

Lemma S.1 (Weinstein and Yildiz 2013). For any sure-thing compliant action plan si
and any t ∈ T , there exists a game G̃ = (N�A�(G̃� T̃ � π̃(· | ·))) with a type τ

si�t
i such that

S∞
i [τsi�ti | G̃] 	t {si}. (The type space does not necessarily have a common prior.)

Proof. We will induct on t. When t = 1, it suffices to consider a type τsi�t who is certain
that in the stage game, si(∅) yields payoff 1 while all other actions yield payoff 0. Now fix
t, si and assume the result is true for all players and for t − 1. In outline, the type we con-
struct will have payoffs that are completely insensitive to the actions of the other players,
but will find those actions informative about his own payoffs. He also will believe that
if he ever deviates from si, the other players’ subsequent actions are uninformative: this
ensures that he always chooses the myopically best action.

Formally, let Ĥ be the set of histories of length t − 1 in which player i always follows
the plan si, so that |Ĥ| = |A−i|t−1, where A−i is the set of profiles of static moves for the
other players. For each history h ∈ Ĥ, we construct a pair (τh−i� g

h), and our constructed

type τsi�t assigns equal weight to each of |A−i|t−1 such pairs. Each type τh−i is constructed

by applying the inductive hypothesis to a plan sh−i, which plays according to history h as
long as i follows si and simply repeats the previous move forever if player i deviates. Such
plans are sure-thing compliant for the player −i because at every history, the current
action is repeated on at least one branch.

To define the payoff functions θh for all h ∈ Ĥ, we will need to define an auxiliary
function f : H̃ ×Ai → R, where H̃ is the set of prefixes of histories in Ĥ. The motive be-
hind the construction is that f (h� ·) represents i’s expected value of his stage-game pay-
offs conditional on reaching the history h. The function f is defined iteratively on histo-
ries of increasing length. Specifically, define f as follows: Fix ε > 0. Let f (∅� si(∅)) = 1
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and f (∅� a) = 0 for all a �= si(∅), where ∅ is the empty history. Next, assume f (h� ·) has
been defined and proceed for the relevant one-step continuations of h as follows.

Case 1. If si(h� (si(h)�a−i)) = si(h) for all a−i, then let f ((h�a)� ·) = f (h� ·) for every a.
Case 2. Otherwise, by sure-thing compliance, at least two different actions are pre-

scribed for continuations (h� (si(h)�a−i)) as we vary a−i. For each action ai ∈ Ai, let
Sai = {a−i : si(h� (si(h)�a−i)) = ai} be the set of continuations where ai is prescribed.
Then let

f ((h� (si(h)�a−i))� ai) =
⎧⎨
⎩
f (h� si(h))+ ε if a−i ∈ Sai
|A−i|f (h�ai)−|Sai |(f (h�si(h))+ε)

|A−i|−|Sai | if a−i /∈ Sai �

where the last denominator is nonzero by the observation that at least two different ac-
tions are prescribed.

These payoffs were chosen to satisfy the constraints

f (h�ai) = 1
|A−i|

∑
a−i

f ((h� (si(h)�a−i))� ai) (S.1)

f (h� si(h)) ≥ f (h�ai)+ ε (∀h�ai �= si(h))�

as can be verified algebraically.
For each history h ∈ Ĥ, define the stage-game payoff function gh : A → [0�1]n by

setting ghi (a) = f (h�ai) and ghj (a) = 0 at each a and j �= i. Define τsi�t as mentioned

above, by assigning equal weight to each pair (τh−i� θ
h).

We claim that under rationalizable play, from the perspective of type τsi�t , when he
has followed si and reaches history h ∈ H̃, f (h� ·) is his expected value of the stage-game
payoff gi. We show this by backward induction on the length of histories. When a history
h ∈ Ĥ is reached, player i knows (assuming rationalizable play) the opposing types must
be τh−i and thus the stage-game payoff function must be gh, which is the desired result

for this case. Suppose the claim is true for all histories in H̃ of length M . Note that type
τsi�t puts equal weight on all sequences of play for his opponent. Therefore, for a history
h ∈ H̃ of length M − 1, the expected payoffs are given by the right-hand side of (S.1),
which proves the claim.

Note also that if he follows si through period t, player i always learns his true payoff.
Let s̄i be the plan that follows si through period t and then plays the known optimal
action from period t + 1 onward. We claim that s̄i strictly outperforms any plan that
deviates by period t. The intuitive argument is as follows. Because type τsi�t has stage-
game payoffs that are insensitive to the other players’ moves, he only has two possible
incentives at each date: the myopic goal of maximizing his average stage-game payoffs
at the current date and the desire to receive further information about his payoffs. The
former goal is strictly satisfied by the move prescribed by s̄i, and the latter is at least
weakly satisfied by this move, since after a deviation he receives no further information.

Formally, we must show that for any fixed plan s′i not t-equivalent to si and any ratio-
nalizable belief of τsi�t , the plan s̄i gives a better expected payoff. Given a rationalizable
belief on opponents’ actions, player i has a uniform belief on the other players’ actions
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as long as he follows si. Let ĥ be a random variable equal to the shortest realized history
at which s′i differs from si before period t, or ∞ if they do not differ by period t. Note

that the uniform belief on others’ actions implies that ĥ �= ∞ with positive probability.
We show that conditional on any non-infinite value of ĥ, s̄i strictly outperforms s′i on
average. In fact, this is weakly true date by date and strictly true at the first deviation, as
shown by the following observations:

• At dates 1� � � � � |ĥ|, the plans are identical.

• At date |ĥ| + 1, the average payoff f (ĥ� ai) is strictly optimized by s̄i(ĥ).

• At dates |ĥ| + 2� � � � � t, along the path observed by a player following s′i, the other

players are known to repeat their date-|ĥ| + 1 move at dates |ĥ| + 2� � � � � t. So at
these dates, the plan s′i cannot do better than to optimize with respect to the his-

tory truncated at length |ĥ| + 1. The plan s̄i optimizes the expected stage-game
payoffs with respect to a longer history, under which opposing moves are identical
through date |ĥ|+ 1. Since he is, therefore, solving a less constrained optimization
problem, he must perform better than s′i at each date |ĥ| + 2� � � � � t.

• At dates t + 1� � � � , under plan s̄i, player i now has complete information about his
payoff and optimizes perfectly, so s′i cannot do better.

If ĥ = ∞, again s̄i cannot be outperformed because he optimizes based on complete
information after t, and s̄i and s′i prescribe the same behavior before t.

Finally, since there are only finitely many histories and types in the construction, all
payoffs are bounded and so can be normalized to lie in [0�1]. �
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