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Appendices A, B, and C contain all proofs for the results in Sections 3, 4, and 5,
respectively. Appendix D contains a description of a plausible alternative equi-
librium construction and a discussion of why this alternative cannot be used to
prove Theorems 1 and 2.

A. Proofs for Section 3

Proof of Proposition 1. Many parts of this proof follow similar arguments in RSV.
Suppose α ∈ Am ∪ AM is implemented in an unrestricted mechanism. Then player 1
optimally tells the truth in each period and the result follows immediately.

Suppose α ∈ AI \ {Am ∪ AM} is implemented in a T -period quota mechanism. For
player i �= 1,

lim
δ→1

v(δ�T)i (α) = lim
δ→1

Eθ∼π

[
1 − δ

1 − δT

T−1∑
t=0

δtui�t

∣∣∣σ
]

=
∑
θ∈�

Q(θ)

T
gi

(
α(θ)�θ

)

because gi is constant in θ. Moreover, limT→∞ Q(θ)
T = π(θ), which proves the claim for

i �= 1.
Only player 1 takes actions, so her payoff is continuous in δ and vT1 (α) is well de-

fined. Following RSV, define the set of copulas M ⊆ 	(� × �) as the set of distribu-
tions μ(m�θ) ∈ M such that

∑
m∈�μ(m�θ) = ∑

m∈�μ(θ�m) = π(θ) for all θ ∈ �. Let
μ̂t(m�θ) = Prob(mt =m�θt = θ|σ) for some strategy σ .

I first claim that for any χ1 > 0, there exists some T ∗ < ∞ such that for any T ≥ T ∗,
there exists a μσ ∈ M such that

∥∥∥∥∥ 1
T

T−1∑
t=0

μ̂t −μσ

∥∥∥∥∥<χ1� (S9)

Note that
∑

m∈M
∑T−1

t=0 Prob(mt = m�θt = θ|σ) = ∑T−1
t=0 Prob(θt = θ|σ) = ∑T−1

t=0 πt .

Because π is the stationary distribution of P(θt+1|θt), limT→∞ 1
T

∑T−1
t=0 πt = π. Moreover,
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∑
θ∈�

∑T−1
t=0 Prob(mt = m�θt = θ|σ) = ∑T−1

t=0 Prob(mt = m|σ) = Q(m). Since limT→∞ 1
T ×∑T−1

t=0 Q(m) = π(m), the marginals of the distribution Prob(mt = m�θt = θ|σ) converge
to π as T → ∞. It follows that there exists some copula μσ ∈ M satisfying (S9). Further,
the rate of convergence for each marginal is independent of the strategy σ .

In the limit as δ → 1, player 1’s utility can be written

1
T

T−1∑
t=0

∑
θ∈�

∑
m∈�

g1
(
α(m)�θ

)
μ̂t(m�θ) =

∑
θ∈�

∑
m∈�

g1
(
α(m)�θ

) ∗ 1
T

T−1∑
t=0

μ̂t(m�θ)

≤
∑
θ∈�

∑
m∈�

g1
(
α(m)�θ

)
μ(m�θ)+χ1|�|2

by (S9).
Define μtruth ∈ M to be the copula satisfying μtruth(θ�θ) = π(θ) for all θ ∈ �, and

μtruth(m�θ) = 0 otherwise. Lemma 1 from RSV can be slightly modified to show that an
allocation rule satisfies (1) if and only if for all μ ∈ M,∑

θ∈�

∑
m∈�

g1
(
α(m)�θ

)
μ(m�θ) ≤

∑
θ∈�

∑
m∈�

g1
(
α(θ)�θ

)
μtruth(m�θ)�

Plugging in μ= μσ and using (S9) yields

1
T

T−1∑
t=0

∑
θ∈�

∑
m∈�

g1
(
α(m)�θ

)
μ̂t(m�θ)≤

∑
θ∈�

∑
m∈�

g1
(
α(θ)�θ

)
μtruth(m�θ)+χ1|�|2�

A similar argument can be applied to μtruth to yield

∑
θ∈�

∑
m∈�

g1
(
α(θ)�θ

)
μtruth(m�θ) ≤ 1

T

T−1∑
t=0

∑
θ∈�

g1
(
α(θ)�θ

)
πt(θ)+χ1|�|2�

Let σ be an optimal strategy. Consider a strategy σ̃ that reports truthfully as long as
that message is available, and otherwise reports deterministically among the remaining
types. This strategy is feasible and as T → ∞, it can be shown that 1

T

∑T−1
t=0 μ̂t → μtruth.

Then there exists a T ∗ such that if T ≥ T ∗,

E

[
1
T

T−1∑
t=0

u1�t

∣∣∣σ
]

≤Eθ∼π
[
g1

(
α(θ)�θ

)] +χ1|�|2� (S10)

But limδ→1 E[ 1−δ
1−δT

∑T−1
t=0 δtu1�t |σ] =E[ 1

T

∑T−1
t=0 u1�t |σ], bounding vT1 (α) from above.

Player 1 plays optimally and σ̃ is always feasible. So there exists a T ∗ such that if
T ≥ T ∗,

E

[
1
T

T−1∑
t=0

u1�t

∣∣∣σ
]

≥Eθ∼π
[
g1

(
α(θ)�θ

)] − 2χ1|�|2� (S11)
�

Proof of Proposition 2. Fix a (d�T) perturbed game, α ∈ AI , and discount factor δ.
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Step 1. Suppose that α ∈ AI \ {Am ∪ AM} and so is implemented using a quota mecha-
nism. Given a (d�T)-perturbed game, let σ(d�T) be player 1’s optimal reporting strategy.
For player 1,

σ(d�T) ∈ arg max
σ∈�

E

[
1 − δ

1 − δT

T−1∑
t=0

δtu1�t + 1
T

∑
di(ht� θT )

∣∣∣σ
]
�

In any strategy σ , message m ∈� is sent Q(m) times. In particular,

E

[
1 − δ

1 − δT

T−1∑
t=0

δtu1�t + 1
T

∑
di(ht� θT )

∣∣∣σ
]

=E

[
1 − δ

1 − δT

T−1∑
t=0

δtu1�t

∣∣∣σ
]

+
∑
θ∈�

Q(θ)

T
Eyt�θT

[
di(ht� θT )|mt = θ

]
�

The second term in this expression is constant in σ . Hence, σ(d�T) is an optimal strategy
in the unperturbed game: σ(d�T) = σ∗

δ(α). Convergence to vT (α) follows immediately.
Now suppose α ∈ Am ∪AM is implemented using an unrestricted mechanism. Con-

sider a strategy σ that induces the same joint distribution over (θt� at)
T−1
t=0 as σ truth. Then

Definition 7 implies that for all t ≤ T , E[d(hP
t � θT )|σ] = E[d(hP

t � θT )|σ truth], so player 1
cannot profitably deviate to σ . In particular, if α min- or max-maxes player i �= 1, then
α(θ)= α(θ′) for all θ�θ′ ∈� and player 1 has no profitable distribution from σ truth.

Suppose α min- or max-maxes player 1, and suppose σ and σ truth induce different
joint distributions over (θt� at)

T−1
t=0 . Fix a history and type θt such that σ and σ truth lead

to different actions in period t for types θt . By Assumption 3, player 1 loses no less than
1−δ

1−δT
δtL in this period. She gains no more than 1

T max
ht�h̃t

{d(ht� θT ) − d(h̃t� θT )} ≤ d
T at

the end of the game by misreporting her type in period t. Continuation play is inde-
pendent of period t because the mechanism is unrestricted. Therefore, player 1 has no
incentive to lie in any period if

d ≤ 1 − δ

1 − δT
δtLT ≡ d(δ�T)�

Under this condition, σ(d�T) = σ∗
δ(α)= σ truth.

Step 2. If d < d(δ�T), then σ(d�T) = σ∗
δ(α). Player 1’s optimal strategy is independent of

the prior ν, so payoffs are continuous in ν. Since limδ→1 v
(δ�T)(α) = vT (α) by definition,

(3) holds for ‖ν −π‖ small and δ < 1 close to 1. �

Proof of Proposition 3. Define σ(k�j) = σ∗
δ(α

(k�j)) and let �(k�j) be the set of feasible
strategies in the T -period mechanism implementing α(k�j). Let ht be a history at the
beginning of block (k� j).

By Definition 8, only a single period t(k�j) chosen uniformly at random from T(k�j)

will affect continuation play. Define

d1(m�θ) ≡ 1

1 − δT

∞∑
t̂=t+T

δt̂−t(1 − δ)E
[
u1�t |σ∗�ht� θt+T = θ�mt(k�j) =m

]
� (S12)
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Given θt , the distribution of θT is independent of ht or any actions taken in block (k� j).
Thus, σ∗ is optimal if for any (k� j),

σ(k�j) ∈ arg max
σ∈�(k�j)

E

[ ∑
t ′∈T(k�j)

(
1 − δ

1 − δT
δt

′−tu1�t + 1
T
d1(mt ′� θT )

)∣∣∣σ�ht

]
� (S13)

By Proposition 2, σ(k�j) is an optimal strategy in any (d�T)-perturbed game with d <

d(δ�T). Hence, to show σ∗ optimal, it suffices to show that for any m�m̂�θ ∈�,∣∣d1(m�θ)− d1(m̂�θ)
∣∣< d(δ�T)� (S14)

Expression (S12) may be written

d1(m�θ) =
k∑

k′=1

∞∑
j′=j+1

∑
t ′∈T(k′�j′)

δt
′−t 1 − δ

1 − δT
E

[
u1�t |σ∗�ht� θt+T = θ�mt(k�j) =m

]

+
K∑

k′=k+1

∞∑
j′=j

∑
t ′∈T(k′�j′)

δt
′−t 1 − δ

1 − δT
E

[
u1�t |σ∗�ht� θt+T = θ�mt(k�j) =m

]
�

Property (iii) of Definition 8 implies that for all k′ �= k and j′ ≥ j, α(k′�j′) does not depend
on mt(k�j) . By definition of σ∗, actions in block (k′� j′) depend only on α(k′�j′). Hence, for
k′ �= k and j′ ≥ j, actions and payoffs in block (k′� j′) are independent of mt(k�j) . So (S14)
may be simplified to∣∣d1(m�θ)− d1(m̂�θ)

∣∣
=

∣∣∣∣∣
∞∑

j′=j+1

∑
t ′∈T(k�j′)

δt
′−t 1 − δ

1 − δT
(
E

[
u1�t |σ∗�ht� θt+T = θ�mt(k�j) =m

]

−E
[
u1�t |σ∗�ht� θt+T = θ�mt(k�j) = m̂

])∣∣∣∣∣�
(S15)

If α(m)= α(m̂), then |d1(m�θ)− d1(m̂�θ)| = 0 by property (iii) of Definition 8.
Suppose α(m) �= α(m̂). An irreducible and aperiodic Markov chain converges to the

invariant distribution at an exponential rate. So for any κ > 0 and ε > 0, there exists a
K∗ < ∞ such that for any K ≥K∗, j′ > j, and any prior ν ∈ 	(�),

‖πminT(k�j′)−maxT(k�j) −π‖< κεj
′−j�

Payoffs satisfy |u1| ≤ 1, so∣∣∣∣ ∑
t ′∈T(k�j′)

δt
′−t 1 − δ

1 − δT
(
E

[
u1�t |σ∗�ht� θT = θ�mt(k�j) =m

])

−
∑

t ′∈T(k�j′)
δt

′−t 1 − δ

1 − δT
(
E

[
u1�t |σ∗�ht�πminT(k�j′) = π�mt(k�j) = m

])∣∣∣∣ < κεj
′−j�
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Moreover, by Proposition 1, there exists δ∗ < 1 such that if δ≥ δ∗, then∣∣∣∣ ∑
t ′∈T(k�j′)

δt
′−t 1 − δ

1 − δT
(
E

[
u1�t |σ∗�ht�πminT(k�j′) = π�mt(k�j) =m

])

− δKTj′+kTE
[
vT1 (α)|σ∗�ht�mt(k�j) = m

]∣∣∣∣ < ε�

Combining these facts, for K ≥K∗ and δ≥ δ∗, gives∣∣∣∣ ∑
t ′∈T(k�j′)

δt
′−t 1 − δ

1 − δT
(
E

[
u1�t |σ∗�ht� θT = θ�mt(k�j) =m

])

− δKTj′+kTE
[
vT1 (α)|σ∗�ht�mt(k�j) = m

]∣∣∣∣ ≤ κ1ε
j′−j + ε�

(S16)

Combining (S16) with property (iv) of Definition 8, for any m�m̂ ∈ �, yields

∣∣d1(m�θ)− d1(m̂�θ)
∣∣ < δkT ε

∞∑
j′=0

δKTj′2
(
εj

′
κ+ 1

)
�

For any δ̄ < 1, if δTK < δ̄, then

∞∑
j′=0

δKTj′(εj′κ+ 1
) = 1

1 − δTKε
κ+ 1

1 − δTK
<

1

1 − δTKε
κ+ 1

1 − δ̄
�

By Proposition 2, σ(k�j) is an optimal strategy in block (k� j) as long as

δkT ε

(
1

1 − δTKε
κ+ 1

1 − δ̄

)
< d(δ�T)�

For any δ ∈ (0�1), d(δ�T) > δTL. So this inequality holds for ε > 0 sufficiently small. So
for any δ̄ < 1, there exists a δ∗ < 1 and K∗ <∞ such that for K ≥K∗, δ≥ δ∗, and δTK < δ̄,
σ∗ is an optimal equilibrium of the (T�K)-recurrent mechanism.

At history ht in block (k� j) and j′ > j, (S16) implies (4). The inequality ε > 0 may be
made arbitrarily small by choosing δ∗, K∗, and δ̄ appropriately, proving the claim. �

B. Proofs for Section 4

Proof of Proposition 4. If v is (T�ζ�W �δ)-decomposable for some ζ > 0, then it is
(T�ζ′�W �δ)-decomposable for any ζ′ < ζ.

Fix ε > 0, let W ⊆ R
N be a closed, convex, and bounded set, and consider w ∈ W .

I construct an equilibrium with payoff v ∈ B(w�ε). From Proposition 3, choose δ < 1
and K̄ > 0 such that W is (T�ζ�δTK̄)-decomposable and (4) holds for the chosen ε > 0.

Define δ̄ = δ
K̄

K̄+1 and ζ̄ = minδ∈[δ�δ̄] ζ(δTK̄). Since ζ is continuous and strictly positive,

ζ̄ > 0. Then W is (T� ζ̄� δTK̄)-decomposable for any δ ∈ [δ� δ̄]. For any δ ≥ δ̄, there exists
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some K ≥ K̄ such that δTK ∈ [δTK̄� δ̄T K̄] and (4) holds for a (T�K) mechanism and the
given ε. So W is (T� ζ̄� δTK)-decomposable.

Given δ and K, define δ̂ = δTK . I construct a (T�K)-recurrent mechanism with pay-
offs that approximate w. For any k ∈ {0� � � � �K − 1}, denote w̄(k�0) ≡ w, and let α(k�0) and
w(k�0)(y�θ) be the allocation rule and the continuation payoff that (T�ζ� δ̂)-decompose
w̄(k�0).

Step 1. In block (k� j), implement an allocation rule α(k�j) that (T�ζ� δ̂)-decomposes
w̄(k�j).1 Let w(k�j)(y�θ) be the corresponding continuation payoffs.

Step 2. At the end of block (k� j), choose one period t(k�j) ∈ T(k�j) uniformly at random
(using the public randomization device).

Step 3. In block (k� j + 1), set w̄(k�j+1) ≡ w(k�j)(yt(k�j) � θt(k�j)).

I claim that the resulting mechanism is (T�K)-recurrent. Properties (i) and (ii) of Defi-
nition 8 follow immediately from the construction; property (iii) follows by noting that
if α(θ) = α(θ̂), then w(y�θ) = w(y� θ̂) for all y. Thus, w(y�θ) and w(y� θ̂) can be im-
plemented by the same sequence of allocation rules. For property (iv), given a pub-
lic history ht

pub at the beginning of block (k� j) and any mt(k�j) ∈ �, (5) implies that

E[w̄(k�j+1)|σ∗�ht
pub�mt(k�j)] = w̄(ht

pub) is independent of mt(k�j) . Written nonrecursively,

1 − δT

1 − δTK
w̄

(
ht

pub

) = (
1 − δT

) ∞∑
j′=1

(
δTK

)j′−1
E

[
vT

(
α(k�j+j′))|σ∗�ht

pub�mt(k�j)
]

for any mt(k�j) ∈�. So property (iv) of Definition 8 is also satisfied and this mechanism is
(T�K)-recurrent.

If players commit to actions, then by Proposition 3, σ∗ is an optimal strategy for
player 1 and (4) holds. By definition,

∞∑
j=0

δ̂j
′
(1 − δ̂)E

[
vT

(
α(k�j)

)|σ∗] ∈ B
(
w�(1 − δ̂)vT

(
α(0�0)))

since vT (α(k�0)) = vT (α(0�0)) for any k ∈ {0� � � � �K − 1}. Because vTi (α
(0�0)) ∈ [−1�1],

∞∑
j=0

K−1∑
k=0

δKTj+kT
(
1 − δT

)
E

[
vT

(
α(k�j)

)|σ∗] ∈ B
(
w�(1 − δ̂)

)
� (S17)

Suppose δTK̄ satisfies 1 − δTK̄ < ε. Then for each player i,

∞∑
t=0

δt(1 − δ)E
[
ui�t |σ∗] =

∞∑
j=0

K−1∑
k=0

∑
t∈T(k�j)

δt(1 − δ)E
[
ui�t |σ∗]

≤
∞∑
j=0

δKTj
K−1∑
k=0

(
1 − δT

)
δkTE

[
vT

(
α(k�j)

) + ε|σ∗]

1Using the public randomization device ξ to randomize among allocation rules, when appropriate.
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≤w + (1 − δ̂)+
∞∑
j=0

δKTj
(
1 − δKT

)
ε

=w + (1 − δ̂)+ ε≤w + 2ε�

where the first equality follows from rewriting the sum, the first inequality applies the
upper bound from (4), the second inequality follows from (S17), and the final line fol-
lows immediately. A similar bound can be derived from below. Hence, the vector of
equilibrium payoffs in the mechanism satisfies v ∈ B(w�2ε), as desired.

It remains to show that players have no incentive to deviate from the actions spec-
ified by the mechanism. Suppose that α(k�j) /∈ AM ∪ Am. A deviation at history ht in
block (k� j) affects payoffs in other blocks with probability 1

T . Let (1 − δ)B ∈ [0�1] be the
maximum of 0 and the largest myopic gain for any type deviating from his equilibrium
action.

By choice of K and δ, the gain from deviating to at = a′ at ht is no more than

(1 − δ)B + 1
T

∑
j′>j

∑
t ′∈T(k�j′)

δt
′
(1 − δ)

(
E

[
u1�t |σ∗�ht� t(k�j) = t� at = a′]

−E
[
u1�t |σ∗�ht� t(k�j) = t� at = α(k�j)(mt)

])
�

Deviations are not profitable if this expression is weakly negative. Using (3), we can
replace payoffs with invariant payoffs, plus an approximation error:

(1 − δ)B + 1
T

∑
j′>j

δKT(j′−j)
(
1 − δT

)((
E

[
vT1

(
α(k�j′))|σ∗�ht� t(k�j) = t� at = a′]

−E
[
vT1

(
α(k�j′))|σ∗�ht� t(k�j) = t� at = α(k�j)(mt)

]) + 2ε
) ≤ 0�

Since B ≥ 0, multiplying both sides by 1−δKT

1−δT
and applying the definition of w̄ and

wi(y�m) yields the sufficient condition

(
1 − δTK

)
B + δTK

T

(
Ey

[
wi(y�m)|ai�α(k�j)

−i (m)
] − w̄i

) + 2
δTK

T
ε≤ 0�

For ε > 0 sufficiently small, this inequality is implied by property (iii) of enforceabil-
ity. Thus, for δ ≥ δ̄ and K ≥ K̄, player i has no profitable deviation from α(k�j) ∈ AI \
{AM ∪Am}.

If α(k�j) ∈ AM ∪Am min- or max-maxes player i �= 1, then the same argument proves
the claim. If α(k�j) min- or max-maxes player 1, then Proposition 3 proves that player
1 cannot profitably deviate by lying. I show that it is not profitable for player 1 either
(a) to tell the truth and then deviate in action or (b) to misreport type and then deviate
in action.

Consider the deviation (a). Property (iv) of enforceability implies that conditional on
reporting truthfully, player 1 has no incentive to deviate in action.
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Consider the deviation (b). Such a deviation does not change payoffs in subsequent
periods of block (k� j), since the mechanism in that block is unconstrained. Therefore,
the gain from such a deviation is bounded above by

max
m�a1

(
(1 − δ)

(
g1

(
a1�α−1(m)�θ

) − g1
(
α(θ)�θ

)) + δTK

T

(
Ey

[
w1(y�m)|a1�α−1(m)

] − w̄
))

+ 2
1
T
ε�

By definition of min-max and max-max, the first term in this expression is weakly neg-
ative. The value of the second term is independent of θ. Because (7) holds when θ = m,
δTK

T Ey [w1(y�m)|a1�α−1(m)] − w̄ ≤ −2 1
T ε. So player 1 has no profitable deviation.

I have shown that for all δ ≥ δ, there exists a (T�K)-recurrent mechanism with pay-
offs satisfying v ∈ B(w�ε) that is also an equilibrium in the game without commitment.
This proves the claim. �

Proof of Proposition 5. This proof proceeds in three steps: First, I define several key
concepts; second, I prove a lemma that is a building block for the proposition; finally, I
prove the proposition itself.

Definition S.1. For any k ∈ R and λ ∈ R
N such that ‖λ‖ = 1, define H(λ�k) =

{v|λ · v ≤ k} as a half-space in direction λ. For fixed (T�ζ�δ), define the maximal score
attainable by allocation rule α ∈ AI in direction λ, denoted kT (α�λ�ζ�δ), as the maxi-
mum k = λ · v with v ∈ R

N such that v is (T�ζ�H(λ�k)�δ)-decomposable with action α.
Define HT(α�λ�ζ�δ)= H(λ�kT (α�λ�ζ�δ)).

Definition S.2. For a unit normal λ, define kT (λ) = maxα∈AI λ · vT (α). Let HT(λ) =
H(λ�kT (λ)) and QT = ⋂

λH
T (λ).

Lemma S.1. (i) There exists a continuous and decreasing function ζ(δ) such that
kT (α�λ�ζ(δ)�δ) is independent of δ.

(ii) Suppose λ is non-coordinate2 and let α ∈ AI .Then for any ζ > 0 and δ ∈ (0�1),
kT (α�λ�ζ�δ)= λ · vT (α).

(iii) Let λ be coordinate with λi = 1 and α ∈ Am ∪ AM . Fix δ < 1. For all ε > 0, there
exists a ζ̄ > 0 such that if ζ ≤ ζ̄, kT (α�λ�ζ�δ)≥ λ · vT (α)− ε.

Proof. (i) Fix a half-space H, and suppose v ∈ H is (T�ζ�H�δ)-decomposable by allo-
cation rule α and continuation payoffs w(y�θ). For any δ′ ∈ (0�1), define

w′(y�θ)= δ′ − δ

δ′(1 − δ)
v + δ

(
1 − δ′)

δ′(1 − δ)
w(y�θ)

2A vector λ ∈ R
N is coordinate if exactly one element of λ is nonzero, and is otherwise non-coordinate.
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and

ζ′ = 1 − δ

1 − δ′ ζ�

The half-space H is convex and v�w(y�θ) ∈ H, so w′(y�θ) ∈ H. One can check that (6)
and (7) hold for discount δ′, so α and w′(y�θ) (T�ζ′�H�δ′)-decompose v.

(ii) This result is a natural modification of Lemma 5.4 in Fudenberg et al. (1994), with
the sole difference that continuation payoffs satisfy (7).

(iii) Suppose λ is coordinate to the ith axis, so that for all j �= i, λj = 0 and λi = 1.
Let α min- or max-max player i. Fix δ < 1. For ε > 0, define Hε = H(λ�λ · vT (α) − ε).
I would like to show that for all ε > 0, there exists a ζ̄ > 0 such that if ζ ≤ ζ̄, then there
exist {w(y�θ)}y�θ ⊆Hε such that

λ · ((1 − δ)vT (α)+ δEy�θ
[
w(y�θ)|α(θ)]) ≥ λ · vT (α)− ε� (S18)

(7) holds for j �= i, and for all θ ∈�,

δ

T
w̄i − ζ ≥ max

ai∈Ai\αi(θ)

{
δ

T
Ey

[
wi(y�θ)|ai�α−i(θ)

]}
�

For all q ≥ 0, define the hyperplane hq = {x ∈ R
N |xi = vTi (α) − q}. For all j �= i, let

{wj(y�θ)}y�θ satisfy (7) such that for all θ, Ey [ŵj(y�θ)|α(θ)] = vTj (α). For any ζ > 0, define

qζ : Y ×�→R such that qζ(y�θ)≥ 0 and for all θ, . Ey [qζ(y�θ)|α(θ)] = q̄ζ with

− δ

T
q̄ζ − ζ ≥ − max

ai∈Ai\αi(θ)

{
δ

T
Ey

[
qζ(y�θ)

]∣∣∣ai�α−i(θ)

}
�

By pairwise full rank, such a qζ exists for any ζ > 0. Moreover, qζ
′
(y�θ) = ζ′

ζ q
ζ(y�θ). Let

wi(y�θ)= vTi (α)− ε− qζ(y�θ).
As defined above, {w(y�θ)}y�θ ∈ Hε. Noting that λj = 0 and λi = 1, (S18) may be

rewritten

(1 − δ)vTi (α)+ δEy�θ
[
vTi (a)− ε− qζ(y�θ)|α(θ)] ≥ vTi (α)− ε

or Ey�θ[qζ(y�θ)|α(θ)] ≤ 1−δ
δ ε. But limζ→0 maxy�θ qζ(y�θ) = 0 because qζ

′
(y�θ) =

ζ′
ζ q

ζ(y�θ). Therefore, for any ε > 0, there exists a ζ̄ > 0 such that this inequality holds if

ζ ≤ ζ̄. This proves the claim. �

Completing the Proof of Proposition 5. Let W ⊆ QT be smooth. By Proposition 4,
it suffices to show that for any δ ≥ δ̂, there exists a continuous function ζ(δ) > 0 such
that W is (T�ζ(δ)�δ)-decomposable.

First, I claim that it suffices to show that for each v ∈ W , there exists a open set Uv

with v ∈ Uv , a δv < 1, and a continuous function ζv(δ) > 0 such that for any δ ≥ δv,
all u ∈ Uv are (T�ζv(δ)�W �δ)-decomposable. Suppose for all v ∈ W there exists such
a δv and ζv(δ). Then the set {Uv}v∈W is a open cover of W . Given that W is com-
pact, there exists some finite subcover {Uvr }Rr=1. Let δ̄ = maxr δvr and for all δ ≥ δ̄, let
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ζ(δ) = minr ζvr (δ). Since R < ∞, δ̄ < 1 and ζ(δ) > 0. Since each ζvr (δ) is continuous,

ζ(δ) is continuous. Then for all δ ≥ δ̄ and each ζ < ζ(δ), each Uvr is (T�ζ(δ)�W �δ)-

decomposable. Thus, W ⊆ ⋃R
r=1 Uvr is (T�ζ(δ)�δ)-decomposable for continuous func-

tion ζ(·).

Next, suppose that for each point on the boundary of W , v ∈ bd(W ), there exists

such an open set Uv with v ∈ Uv, δv < 1, and continuous function ζv(δ) > 0. Then I

claim that such Uv, δv < 1, and ζv(δ) > 0 exist for every point v ∈ W . Because W is

compact and convex, for all v ∈ W , there exist a finite number of points {v1� � � � � vZ} ∈
bd(W ) and weights {γ1� � � � � γZ} such that

∑
γz = 1 and

∑
γzvz = v. Take δv = maxz δvz ,

ζv(δ) = minz ζvz (δ), and Uv = {x|x = ∑
z γzxz for xz ∈ Uvz }. Then Uv is an open set with

v ∈ Uv, and for δ ≥ δv, Uv is (T�ζv(δ)�W �δ)-decomposable as a convex combination of

decomposable points.

Finally, let v ∈ bd(W ). I need to find an open set Uv with v ∈ Uv, a δv, and a con-

tinuous function ζv(δ) such that Uv is (T�ζv(δ)�W �δ)-decomposable. Let λ be the

unit normal to W at v, let k = λ · v, and let H = HT(λ�k). Then HT(λ�k) ⊆ HT(λ)

holds strictly, since W ⊆ int(QT ). Suppose λ is non-coordinate and let u be a bound-

ary point of HT(λ). By Lemma S.1, for any ζ > 0 and δ ∈ (0�1), u is (T�ζ�HT (λ)�δ)-

decomposable into allocation rule α and continuation payoffs w(y�θ) ∈ HT(λ). Since

v is a boundary point of H, which is a proper subset of HT(λ), there exists some δ < 1,

ζ > 0, and ε > 0 such that v can be (T�ζ�HT (λ�k− ε)�δ)-decomposed using allocation

rule α.

For δ′ > δ, define ζ(δ′) = 1−δ′
1−δ ζ. Note that ζ(·) is continuous. Using (7), it can

be shown that v can be (T�ζ(δ′)�HT (λ�k − δ(1−δ′)
δ′(1−δ)ε)�δ

′)-decomposed using allocation

rule α. Moreover, the continuation payoffs w′(y�θ) satisfy |w′(y�θ) − v| ≤ κ̄(1 − δ′) for

some κ̄.

Define U(δ′) as the ball around v of radius 2κ̄(10δ′). Since W is smooth, for δ′ suffi-

ciently close to 1 there exists a κ̃ > 0 such that the difference between H and W is at most

κ̃(1 − δ′)2. Hence, there exists some δ̄ < 1 such that for all δ ≥ δ̄, there exists a ζ(δ) > 0
such that if ζ ≤ ζ(δ), then v can be (T�ζ� int(W )�δ)-decomposed. Because continuation

payoffs are in int(W ), they can be translated by a constant independent of y to generate

a neighborhood Uv about v that can be (T�ζ�W �δ)-decomposed.

Suppose now that λ is coordinate to the ith axis. As before, HT(λ�k) ⊆HT(λ) strictly.

In particular, there exists some ε > 0 such that HT(λ�k) ⊆ HT(λ�vTi (α) − ε) strictly,

where α ∈ {αm�i�αM�i}. By Lemma S.1, for some δ < 1 and ζ > 0, a point on the bound-

ary of HT(λ�vTi (α)− ε
2) can be (T�ζ�HT (λ�vTi (α)− ε

2)�δ)-decomposed using allocation

rule α. But then v can be (T�ζ�HT (λ�vTi (α)−ε)�δ)-decomposed using allocation rule a.

The rest of the proof proceeds as in the previous case.

Fix α ∈ AI and suppose there exists some λ such that vT (α) /∈ H(λ). Then by defini-

tion, λ · vT (α) > maxα′∈AI λ · vT (α′), a contradiction. The set QT is convex, so V T∗ ⊆ QT .

Hence, any smooth W ⊆ int(V T∗) can be approximated by a set of equilibrium payoffs

for sufficiently high δ. �
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C. Proofs for Section 5

For the purposes of this proof, assume without loss that Eθ∼π[τtruth(θ)] = 0 and define
L̂= min{L̃� L̄}> 0.

Definition S.3. Let α ∈ {α̂M�i� α̂m�i}Ni=2. Define the invariant payoff for α as

v̂T (α) = E

[
T−1∑
t=0

δt(1 − δ)g
(
α(θ)�θ

)]
�

For all other allocation rules α ∈ ÂI , let v̂T (α)= vT (α). Define V̂ T∗ analogously to V T∗:

V̂ T∗ = co
{
v̂T (α)|α ∈ ÂI� for all i : v̂Ti (α) ≥ v̂Ti

(
αm�i

)}
�

Lemma S.2. Suppose either of the following statements:

(i) The allocation rule α ∈ ÂI \ {Âm ∪ ÂM} is implemented by a T -period quota
mechanism.

(ii) The allocation rule α ∈ {α̂M�1� α̂m�1} is implemented by a T -period unrestricted
mechanism.

Define d̂(δ�T) = 2 1−δ
1−δT

δTT L̂. There exists a δ̄ < 1 such that for any δ≥ δ̄ and d < d̂(δ�T),
player 1’s optimal strategy equals σ∗

δ(α). Moreover, for all ε > 0, there exists χ > 0 and

δ∗ < 1 such that if ‖ν −π‖<χ, δ > δ∗, and d < d̂(δ�T), then

E

[
1 − δ

1 − δT

T−1∑
t=0

δtut

∣∣∣σ(d�T)

]
∈ B

(
v̂T (α)� ε

)
� (S19)

Let σ truth be the strategy in which mt = θt for all t ≥ 0. Then σ∗
δ(α) = σ truth for α ∈

{α̂m�1� α̂M�1}.

Proof. Suppose α ∈ {α̂M�1� α̂m�1}. As in Lemma S.2, σ(d�T) = σ truth if d < d(δ�T). The
inclusion (S19) follows immediately.

Suppose α ∈ ÂI \ {Âm ∪ ÂM} is implemented by a T -period quota mechanism. By
definition,

σ(d�T)(δ) ∈ arg max
σ

E

[
1 − δ

1 − δT

T−1∑
t=0

δtg
(
α(θt)� θt

) + 1
T

T−1∑
t=0

d
(
hP
t � θT

)∣∣∣σ
]
�

As in Lemma S.2, each m ∈ � is sent exactly Q(m) times. Therefore, σ∗
δ(α) maximizes

player 1’s payoff. The unperturbed game may be written as a Markov decision problem,
so there exists a Blackwell optimal strategy σ∗(α) and a threshold δ∗ < 1 such that for
any δ > δ∗, σ∗

δ(α) = σ∗(α). It follows that

lim
δ→1

E

[
1 − δ

1 − δT

T−1∑
t=0

δtut

∣∣∣σ(d�T)

]
= vT (α)�

�
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Definition S.4. For τ : � → R, d ∈ R+, and T ∈ N, a (d�T)-perturbed game simulating
transfers τ is a T -period game with payoffs (2). For any mt� m̂t� θT ∈ �,

Eyt

[
d1

(
(mt� yt)� θT

)|α(mt)
] −Eyt

[
d1

(
(m̂t� yt)� θT

)|α(m̂t)
] ∈ B

(
τ(mt)− τ(m̂t)�d

)
�

For any mt = m̂t such that α(m)= α(m̂) and y = ŷ, d((mt� yt)� θT ) = d((m̂t� yt)� θT ).

Lemma S.3. Suppose α ∈ {α̂M�i� α̂m�i}Ni=2. Then player 1’s optimal reporting strategy

equals σ truth in any (d�T)-perturbed game simulating transfers τtruth with d < d̂(δ�T).
For any ε > 0, there exists a δ̄ < 1 and χ> 0 such that if δ≥ δ̄ and ‖ν −π‖<χ,

E

[
1 − δ

1 − δT

T−1∑
t=0

δtut

∣∣∣σ(d�T)

]
∈ B

(
v̂T (α)� ε

)
�

Proof. By Assumption 4, for any θ�θ′ ∈ � such that α(θ) �= α(θ′), g1(α(θ)�θ) −
τtruth(θ) − L̂ > g1(α(θ

′)�θ) − τtruth(θ′). Consider a (d�T)-perturbed game with trans-
fers τtruth satisfying d < d̂(δ�T), and let σ(d�T) be player 1’s optimal reporting strat-
egy. Continuation payoffs are independent of history in an unrestricted mechanism,
so σ(d�T) = σ truth if for any t ≤ T , for all m�m′� θ�θT ∈�,

1 − δ

1 − δT
δtg1

(
α(m)�θ

) + 1
T
Ey

[
d
(
(m�y)�θT

)|α(m)
]

≥ 1 − δ

1 − δT
δtg1

(
α
(
m′)� θ) + 1

T
Ey

[
d
((
m′� y

)
� θT

)|α(
m′)]�

This condition trivially holds if α(θ) = α(θ′). If α(θ) �= α(θ′), then Ey [d((m�y)�θT )|
α(m)] −Eyt [d((m′� y)�θT )|α(m′)] ≥ τ(θ)− τ(θ′)− 2d̂. So player 1 reports truthfully if

1 − δ

1 − δT
δtg1

(
α(θ)�θ

) − 2d̂
T

+ 1
T
τ(θ)≥ 1 − δ

1 − δT
δtg1

(
α
(
θ′)� θ) + 1

T
τ
(
θ′)�

This inequality holds strictly as δ → 1 because limδ→1
1−δ

1−δT
δt = 1

T . So there exists δ̄ < 1
such that for all δ≥ δ̄, player 1 reports truthfully in each period. Hence,

lim
δ→1

E

[
1 − δ

1 − δT

T−1∑
t=0

δtut

∣∣∣σ(d�T)(δ)

]
= vT (α)

as desired. �

Lemma S.4. For any α ∈ ÂI ,

lim
T→∞

v̂T (α) =Eθ∼π
[
g
(
α(θ)�θ

)]
�

Proof. Suppose first that α ∈ {α̂M�i� α̂m�i}Ni=1. If i = 1, then σ∗
δ(α) = σ truth by Lemma S.2

and the result follows immediately. If i �= 1, the result follows immediately by
Definition S.3.
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Suppose instead that α ∈ ÂI \ {α̂M�i� α̂m�i}Ni=1. This argument borrows heavily from
the analogous argument by RSV. I claim that player 1 reports truthfully “with high prob-
ability in each period.” Formally, for any χ> 0, there exists a T ∗ <∞ such that if T ≥ T ∗,
for all θ ∈�,

lim
δ→1

1
T

T−1∑
t=0

Prob
{
α(mt)= α(θt)|σ

}
> 1 −χ� (S20)

Toward contradiction, suppose there exists χ> 0 such that for all T ∗, (S20) does not
hold. Recall the set of copulas M ⊆ 	(� × �) from Proposition 1. Define μ as the cop-
ula that player 1’s optimal strategy σ approximates. For both (S10) and (S11) to hold
simultaneously, it must be that

4χ1|�|2 ≥
∑
θ∈�

∑
m∈�

g1
(
α(m)�θ

)(
μtruth(m�θ)−μ(m�θ)

)
� (S21)

I seek to bound ‖μtruth −μ‖ using this statement.
Given α ∈ ÂCM, Lemma 1 from RSV can be slightly modified to show that∑

θ∈�

∑
m∈�

μ(m�θ)g1
(
α(m)�θ

)
<

∑
θ∈�

∑
m∈�

μtruth(m�θ)g1
(
α(θ)�θ

)

for any μ that assigns positive weight to (m�θ) combinations for which α(m) �= α(θ).
The variable μ0 is one of the finite number of extremal points {μ0� � � � �μR} ⊆ M. For
each r ≤R, either μr(m�θ) > 0 for m�θ ∈ � only if a(m) = a(θ), or there exists c > 0 such
that for any m�θ ∈�,∑

θ∈�

∑
m∈�

μtruth(m�θ)g1
(
α(θ)�θ

) −
∑
θ∈�

∑
m∈�

μr(m�θ)g1
(
α(m)�θ

)
> c�

Let RT = {r ≤ R|μr(m�θ) > 0 only if α(m) = α(θ)}. There exist βr ≥ 0 that sum to 1
such that μ= ∑

r βrμr . Therefore, (S21) may be written

4χ1|�|2 ≥
∑
θ∈�

∑
m∈�

g1
(
α(m)�θ

)(
μtruth(m�θ)−

∑
r≤R

βrμr(m�θ)

)

=
∑
θ∈�

∑
m∈�

g1
(
α(m)�θ

)(
(1 −β0)μ

truth(m�θ)−
R∑
r=1

βrμr(m�θ)

)

=
∑
θ∈�

∑
m∈�

g1
(
α(m)�θ

) R∑
r=1

βr
(
μtruth(m�θ)−μr(m�θ)

)

=
∑
r /∈RT

βr

(∑
θ∈�

∑
m∈�

(
g1

(
α(m)�θ

)(
μtruth(m�θ)−μr(m�θ)

)))
> c

∑
r /∈RT

βr�

So (S21) implies

4χ1|�|2 > c
∑
r /∈RT

βr�
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For any χ2 > 0, there exists T ∗ < ∞ such that for all T ≥ T ∗, there exists δ∗ < 1 such that
for all δ≥ δ∗, χ1|�|2 <χ2 and, thus,

∑
r /∈RT

βr <
χ2
c .

For any μ : � × � → R, define λ(μ) = ∑
(m�θ)|a(m)=a(θ) μ(m�θ). Then λ(μ) ≥ 1 −∑

r /∈RT
βr > 1 − χ2

c . By (S9), for any (m�θ) ∈ � × �, 1
T

∑T−1
t=0 μ̂t(m�θ) − μ(m�θ) < χ1.

Therefore, |λ( 1
T

∑T−1
t=0 μ̂t)− λ(μ)|<χ1|�|2 and so

1
T

T−1∑
t=0

Prob
{
α(mt) = α(θt)|σ

}
> 1 − χ2

c
−χ1|�|2�

As δ→ 1, choosing χ1�χ2 > 0 so that χ2
c +χ1|�|2 <χ proves the contradiction.

For any ε > 0, choose T ∗ < ∞ such that for any T ≥ T ∗, there exists δ∗ < 1 such that
if δ≥ δ∗,

1 − δ

1 − δT

T−1∑
t=0

δt Prob
{
α(mt) = α(θt)|σ(0�T )} > 1 − ε�

The claim follows. �

Definition S.5. Consider the infinite-horizon dynamic game and fix T�K ∈ N and δ ∈
(0�1). A (T�K)-recurrent mechanism in the game with an expert satisfies the properties
of Definition 8, with the following changes:

• The allocation implemented in block (k� j) is α(k�j) ∈ ÂI .

• For any public history ht
pub at the beginning of block (k� j), property (iv) is re-

placed by the following conditions:

(i) If α(k�j) ∈ ÂI \ {α̂m�i� α̂M�i}Ni=2, then there exists w̄
(k�j)
1 (ht

pub) such that for all

t(k�j) ∈ T(k�j)�mt(k�j) ∈ �,

∞∑
j′=j+1

δTK(j′−j)
(
1 − δTK

)
E

[
vT1

(
α(k�j′))|σ∗�ht

pub�mt(k�j) �πminT(k�j) = π
]

= w̄
(k�j)
1

(
ht

pub

)
�

(ii) If α(k�j) ∈ {α̂m�i� α̂M�i}Ni=2, then define τ(k�j) : �→ R as the transfers satisfying

(4) for the allocation rule α(k�j). Then there exists w̄(k�j)
1 (ht

pub) ∈ R such that
for all θ ∈�,

∞∑
j′=j+1

δTK(j′−j)
(
1 − δTK

)
E

[
vT1

(
α(k�j′))|σ∗�ht

pub�mt(k�j) = θ�πminT(k�j) = π
]

= w̄
(k�j)
1

(
ht

pub

) + 1 − δTK

δTK
τ(k�j)(θ)�

Lemma S.5. For any ε > 0, there exists a K̄ < ∞ and δ̄ < 1 such that if K ≥ K̄, δ ≥ δ̄, and
δTK ≤ 1 − ε, then in any (T�K)-recurrent mechanism in the game with an expert, σ∗is an
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optimal strategy. For any history ht at the start of block (k� j) and any j′ > j,∑
t ′∈T(k�j′)

(1 − δ)δt
′
E

[
ut ′ |σ∗�ht

]

∈ B
(
E

[(
1 − δT

)
δKTj′+kT vT

(
α(k�j′))|σ∗�ht

]
�
(
1 − δT

)
δKTj′+kT ε

)
�

(S22)

Proof. For ε1 > 0, let K1 < ∞ be such that for any prior, ‖πT(K1−1) −π‖< ε1. Fix δ1 < 1
and ε1 > 0 such that if δ≥ δ1 and ‖ν−π‖ < ε1, then Lemmas S.2 and S.3 hold with bound
ε > 0.

Let ht be a history in block (k� j) and let �(k�j) be the set of feasible strategies in the
T -period mechanism implementing α(k�j). Lemmas S.2 and S.3 imply that for all j′ > j,∥∥∥∥ ∑

t ′∈T(k�j′)
δt

′−min{T(k�j′)}(1 − δ)E
[
ut ′ |σ∗�ht

] − (
1 − δT

)
E

[
vT

(
α(k�j′))|σ∗�ht

]∥∥∥∥ ≤ (
1 − δT

)
ε�

which in turn implies (S22).
It remains to show that σ∗ is optimal for player 1. Consider a history ht at the be-

ginning of block (k� j) and define d1(m�θ) as in (S12). Conditional on history ht , θT is
independent of σ . Thus, σ∗ is optimal if (S13) holds.

If α(k�j) ∈ AI \ {α̂M�i� α̂m�i}Ni=2, then (S13) holds by substituting d̂ for d in the proof of

Proposition 3. If α(k�j) ∈ {α̂M�i� α̂m�i}Ni=2, note that (S15) holds. By Lemma S.3 it suffices
to show that d1 satisfies

d1(m�θ)− d1(m̂�θ) ∈ B
(
τ(k�j)(m)− τ(k�j)(m̂)� d̂(δ�T)

)
�

Following the same steps as Proposition 3, for any χ > 0, ε1 and ε2 may be chosen
sufficiently small that

d1(m�θ)− d1(m̂�θ) ≤
∞∑

j′=j+1

δTK(j′−j)
(
E

[
vT

(
α(k�j′))|σ∗�hmin{T(k�j)}�mt(k�j) =m

]

−E
[
vT

(
α(k�j′))|σ∗�hmin{T(k�j)}�mt(k�j) = m̂

] + 2χ
)

with a similar bound from below. By property (ii) of Definition S.5, this bound may be
written

d1(m�θ)− d1(m̂�θ) ≤ δTK

1 − δTK

(
1 − δTK

δTK
(
τ(k�j)(m)− τ(k�j)(m̂)

) + 2χ
)

= (
τ(k�j)(m)− τ(k�j)(m̂)

) + 2δTKχ

1 − δTK
�

and similarly from below.
As long as δTK ≤ 1 − ε, χ > 0 may be chosen sufficiently small (by choosing large

δ̄ < 1 and K̄ < 1) that 2χ
1−δTK

is arbitrarily small. In particular, they can be chosen so that

d1(m�θ) ≤ d̂. Therefore, σ∗ is an optimal strategy by Lemma S.3. �
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Definition S.6. A payoff v ∈ R
N is (T�ζ�W �δ)-decomposable in the game with an ex-

pert if there exists some α ∈ ÂI and vectors w(y�θ) ∈ R
N such that the following state-

ments hold:

(i) If α /∈ {α̂M�i� α̂m�i}i∈{2�����N}, there exists w̄ ∈ R
N such that for all θ ∈ �, Ey [w(y�θ)|

α(θ)] = w̄. If α ∈ {α̂M�i� α̂m�i}i∈{2�����N}, there exists w̄ ∈ R
N such that Eπ�y [w(y�θ)|

α(θ)] = w̄.

(ii) The adding up constraint (6) holds.

(iii) Allocation rule α is (T�ζ�W �δ)-enforceable as follows:

(a) If α /∈ {α̂M�l� α̂m�l}Nl=1, then for all i, m, and θ, (7) holds.

(b) If α ∈ {α̂M�1� α̂m�1}, then for all m, θ, and i �= 1, (7) holds. For i = 1, (7) holds if

m= θ.

(c) If α ∈ {α̂M�l� α̂m�l}Nl=2, then for all θ ∈ �, Ey [w1(y�θ)|α(θ)] = w̄1 + (1 − δ)×
τtruth(θ), where τtruth(θ) satisfies Assumption 4 for α. For all i �= l�m�θ, (7)

holds. For i = l, (7) holds if m= θ.

(iv) For any θ�θ′ ∈� such that α(θ) = α(θ′), for all y ∈ Y , w(y�θ)= w(y�θ′).

A set W is (T�ζ�δ)-decomposable if every w ∈ W is (T�ζ�W �δ)-decomposable.

Lemma S.6. Let W ⊆ R
N be a closed, convex, bounded set. Suppose there exists some

δ̂ < 1 such that for all δ ≥ δ̂, there exists a continuous function ζ(δ) > 0 such that W is

(T�ζ(δ)�δ) strictly self-decomposable. Then for all ε > 0, there exists δ∗ such that for all

δ ≥ δ∗ and w ∈ W , there exists an equilibrium of the infinite-horizon game with payoff

v ∈ B(w�ε).

Proof. Fix ε > 0, let W ⊆ R
N be such a set, and consider w ∈ W . As in Proposition 3,

there exists ζ̄ > 0 such that if ζ < ζ̄, there exists a δ̄ < 1 such that for all δ ≥ δ̄, K can be

chosen so that W is (T� ζ̄� δTK)-decomposable

Given δ and K, define δ̂ = δTK . Construct a mechanism as in the proof of Proposi-

tion 4. I claim this mechanism is (T�K)-recurrent in the game with an expert. Properties

(i), (ii), and (iii) of Definition 8 follow immediately from the construction.

Consider properties (i) and (ii) of Definition S.5. Fix block (k� j). If α(k�j) ∈
{α̂M�i� α̂m�i}Ni=2, then by definition of σ∗, player 1 reports truthfully in each period of

T(k�j). Therefore,

E
[
w
(k�j)
1 (yt(k�j) �mt(k�j))|σ∗�hmin{T(k�j)}�πminT(k�j) = π

]
= w̄

(k�j)
1 + 1 − δ

δ
Eθ∼π

[
τ(θ)

] = w̄
(k�j)
1
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becauseEθ∼π[τ(θ)] = 0. Applying (6) and noting that if πminT(k�j′) = π, thenπminT(k�j′+1) =
π, I conclude

δTKw̄
(k�j)
1

(
ht

) =
∞∑
j′=1

δTKj
′(

1 − δTK
)
E

[
vT

(
α(k�j+j′))|σ∗�hminT(k�j+1)

�πminT(k�j+j′) = π
]
�

Therefore, property (ii) of Definition S.5 holds. If α(k�j) /∈ {α̂M�i� α̂m�i}Ni=2, then a very sim-
ilar argument shows that property (i) of Definition S.5 holds. So property (iv) holds and
the constructed mechanism is (T�K)-recurrent.

Suppose that players can commit to actions as a function of messages. Lemma S.5
applies if δ < 1 and K < ∞ are sufficiently large. Hence, there exist δ1 < 1 and K1 < ∞
such that if δ ≥ δ1, K ≥ K1, and δTK < 1 − ε, then σ∗ (from Definition S.5) is an opti-
mal reporting strategy. If α(k�0) /∈ {α̂M�i� α̂m�i}Ni=2, then v ∈ B(w�2(1 − δTK) + δTKζ) as
in Proposition 4. If α(k�0) ∈ {α̂M�i� α̂m�i}Ni=2, then consider a modified (T�K)-recurrent

mechanism with α(k�0) ∈ ÂI \ {α̂M�i� α̂m�i}Ni=2 and w̄(k�1) = w. The payoff v in this

modified mechanism satisfies ‖v − w‖ < 2(1 − δTK) + δTKζ by construction. So v ∈
B(w�2(1 − δTK)+ δTKζ).

It remains to show that players have no incentive to deviate from the actions spec-
ified by the mechanism. If α(k�j) /∈ {α̂M�i� α̂m�i}Ni=2, then the argument in Proposition 4
applies.3 If α(k�j) ∈ {α̂M�i� α̂m�i}Ni=2, then player 1 may deviate in three ways. First, she
could report truthfully but choose an incorrect action. Second, she could report falsely
and play the correct action for her reported type. Third, she could report falsely and
play the wrong action. The first and third types of deviation are not profitable because
(7) holds for i = 1 and all (m�θ). The second type of deviation is not profitable because
truth-telling is an optimal strategy in the mechanism. Thus, player 1 has no profitable
deviation.

Player i /∈ {l�1} likewise has no profitable deviation because (7) holds for all (m�θ).
Player l believes that player 1 reports truthfully in each period and, hence, believes m= θ

with probability 1. Therefore, player l has no profitable deviation because (7) holds for
m= θ.4 This proves the result for δ∗ > 0 and ζ > 0 such that 2(1 − δ∗)+ δ∗ζ < ε. �

Completing the Proof of Theorem 2. Statement (i) of Lemma S.1 goes through
without change. For statements (ii) and (iii), the proof holds without change for α /∈
{α̂M�i� α̂m�i}Ni=2. If α ∈ {α̂M�i� α̂m�i}Ni=2 and λ �= ±(1�0� � � � �0), then Lemma S.1 goes through
if the targeted continuation payoff is vT1 (α(θ))+ 1−δ

δ τ(θ) for player 1 and vTi (α) for play-
ers i ∈ {2� � � � �N}. If λ = ±(1�0� � � � �0), then no bonus scheme makes α enforceable and

3Note that this argument applies regardless of players’ prior over θt at the start of the period. Therefore,
it holds regardless of whether players observe their own payoffs.

4Consider the setting in which players observe their own payoffs. Suppose that in period t − 1, player l’s
payoff was inconsistent with player 1’s reported type, even though player 1 was supposed to report truth-
fully with probability 1. So player l knows that player 1 has deviated. In that case, player 1 still has a strict
incentive to report truthfully in the current period. Thus, define player l’s beliefs following the deviation as
any distribution with full support over types that are consistent with her observed payoff. Then incentives
in the continuation game are identical to the case where l does not observe her payoff.
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so k∗(α�λ�ζ�δ) = ∓∞. Note, however, that k∗(α�λ�ζ�δ) is the same as in Lemma S.1 if
λ = ±(1�0� � � � �0) and α ∈ {α̂M�1� α̂m�1}.

For a unit normal λ, define k̂T (λ) = max
α∈ÂI λ · vT (α). Let ĤT (λ) = HT(λ� k̂T (λ))

and Q̂T = ⋂
λ Ĥ

T (λ). If λ = ±(1�0� � � � �0), then the proof of Proposition 5 uses
k∗(α�λ�ζ�δ) only for α ∈ {α̂M�1� α̂m�1}. Thus, the relevant k∗ continues to be well de-
fined and the proposition holds for Q̂T . But V̂ T∗ ⊆ Q̂T as in Theorem 1, so applying
Lemma S.4 proves Theorem 2. �

D. Discussion of alternative mechanisms

This appendix discusses a natural alternative to (T�K)-recurrent mechanisms, and
highlights why such a natural construction would not work in the proofs of Theorems 1
and 2. Consider the following alternative construction: separate the infinite-horizon
game in blocks of T periods, each of which is followed by another block of TA periods
in which play is arbitrary. Fix TA > 0 large. From the perspective of the last period in
one block, the distribution after TA periods is close to the invariant distribution (though
not vanishingly close), so expected payoffs in that block are within some fixed ε > 0 of
invariant payoffs. In much of what follows, I ignore the TA periods of arbitrary play and
instead directly assume that expected payoffs in future blocks are no more than ε from
invariant payoffs.

Let B > 0 be player i’s myopic gain from a deviation in period t, and let Dj be the
change in invariant payoffs in the block that is j blocks in the future from t (with j ≥ 1)
as a result of that deviation. For simplicity, assume expected payoffs in each future block
are no more than ε away from invariant payoffs.5 Then player i will not deviate if

(1 − δ)B +
∞∑
j=1

δTj
(
1 − δT

)(
Dj + 2ε

) ≤ 0

(2ε because both the on- and off-path expected payoffs could differ by ε from their re-
spective invariant payoffs). Rewriting yields

(1 − δ)B +
∞∑
j=1

δTj
(
1 − δT

)
Dj ≤ −2δT ε�

To adapt the proof technique in FLM, it must be that
∑∞

j=1 δ
Tj(1 − δT )Dj → 0 as δ → 1;

otherwise, continuation payoffs would not be in the set W of payoffs to be approximated
in equilibrium, since continuation invariant payoffs are drawn from a hyperplane that
approaches the tangent hyperplane as δ → 1.

If ε = 0 (as it does in FLM), then this limit poses no problems because (1 − δ)B → 0.
However, for any fixed ε > 0, player i will prefer to deviate as δ → 1. Intuitively, player
i cares much more about continuation payoffs than stage-game payoffs as δ → 1, so in
particular cares about the possible gain in these continuation payoffs that arises due to

5This is a very loose bound because private information continues to deteriorate over time, but it is
useful for illustrative purposes.
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private information. In the limit, the potential gain from private information is larger
than the incentives provided by continuation play, so player i cannot be deterred from
deviating. To decrease ε, the construction must increase the number of inefficient pe-
riods TA. But then TA → ∞ as δ → 1, so substantial inefficiencies might persist even in
the limit. The (T�K)-recurrent mechanism avoids this problem because increasing K

does not affect the efficiency of the resulting equilibrium.
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