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Appendix S.A: Further bounds on the length of direct paths

We first prove two lemmas.

Lemma S.1. For 0<C < 1 and tF ≥ 0, we have
∑∞
ts=0 ts(1 −CtF )�ts/tF � ≤ 3t2F/C

2tF .

Proof. We have

∞∑
ts=0

ts(1 −CtF )�ts/tF � =
∞∑
k=0

tF∑
h=1

(ktF + h)(1 −CtF )k

=
tF∑
h=1

(
tF

∞∑
k=0

k(1 −CtF )k + h
∞∑
k=0

(1 −CtF )k
)

=
tF (A)∑
h=1

(tF(1 −CtF )/C2tF + h/CtF )

= (t2F(1 −CtF )/C2tF + (t2F + tF )/(2CtF ))
≤ 3t2F/C

2tF �

giving the desired result. �

Lemma S.2. IfA⊆AxBW is not empty andW is comprehensive, then for t ≥ 0, we have

Pε(t(a)= t + 1� a ∈A|x)≤ (1 −CtF(A))�(t+1)/tF (A)��

and if B is a singleton, then

Pε(t(a)= t + 1� a ∈A|x)≤ max
(x�z1�z2�����zt−1�zt )∈A

Pε(zt(a)|zt−1(a))(1 −CtF(A))�t/tF (A)��
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Proof. The first inequality was proven in Lemma 7 in Appendix A. The second inequal-
ity makes use of the fact that in the course of proving that lemma, we used only the fact
that all the loops ended at the same target and that all had the same transition proba-
bility at the end. If we replace the unique final transition probability with the maximum
over all final transition probabilities, the same argument goes through. �

In Appendix A to the paper, a better bound is given for least resistance paths that
exploits the fact that they have a special structure. The idea is that long least resistance
paths are not likely to be very long, because to be long they must contain long loops,
and long loops are not very likely. For least resistance paths, these loops must have
zero resistance; however, in a large state space, we could have zero resistance pieces of
least resistance paths that are “unnecessarily” long but do not in fact loop. Our goal
is to show that these too are unlikely. To do so, we introduce the idea of a waypoint
of a path a = (z0� z1� � � � � zt). Let (zτ−1� zτ) be the first transition in the path that has
positive resistance. The first waypoint is defined as zτ . Similarly, the second waypoint
is defined to be the end of the second transition in the path that has positive resistance
and so forth. We say that two paths a, a′ are equivalent, written a ∼ a′, if they have the
same waypoints. The idea is now to give conditions for least resistance paths under
which the amount of time between waypoints is bounded independent of the size of the
state space, and, consequently, to get a bound on the expected length of least resistance
paths of order equal to the number of waypoints. Let Y(A) be the set of sequences of
waypoints derived from paths in A and, for any given sequence of waypoints y ∈ Y(A),
letAτ−1(y) be the set of least resistance paths from zτ−1 to zτ .

Theorem S.1. If W is comprehensive and A⊆AxBW not empty is the set of all least re-
sistance paths, then

Eε(t(a)|x�A) ≤ max
y=(z0�z1�����zt−1)∈Y(A)

t
[

max
0≤s≤t−1

3DtF(As(y))2/C2tF (As(y))+t(AS(y))
]
�

Proof. Pick y = (z0� z1� � � � � zt−1) ∈ Y(A), that is, a sequence of waypoints, and let Ay
be the paths with those waypoints. Notice these sets form a partition of A. If aτ is a
sequence of states (indexed starting with 1), let zs(τ) be the sth element of the sequence
and let s(τ) be the length of the sequence. Since the paths in question are least resistance
paths, they are exactly paths of the form (a0� a1� � � � � at−1), where

• z1(0)= x
• either zs(t−1)(t − 1) ∈ B or zt−1 ∈ B, at−1 = ∅
• any transitions in aτ have zero resistance

• transitions zs(τ−1)(τ−1), z1(τ) have positive resistance rτ−1 that depends only on τ

• (aτ−1� z1(τ)) is a least resistance path from z1(τ − 1) to z1(τ) (with forbidden
setW ).
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Put differently, setting Aτ−1 = Aτ−1(y) (the set of least resistance paths from zτ−1

to zτ), then a path is a least resistance path if and only if aτ−1 ∈Aτ−1 and aτ ∈Aτ imply
that any transitions in aτ have zero resistance, and the transition zs(τ−1)(τ − 1)� z1(τ)

has positive resistance equal to rτ−1 independent of which path in Aτ−1 is chosen. Let
Pτ(t)≡ Pε(t((a� zτ+1))= t + 1, a ∈Aτ|x). Then (using the same algebra as in the paper)
we have

E(t(a)|x�Ay) =
∑∞
t0=0

∑∞
t1=0 · · ·∑∞

tt−1=0(
∑t−1
s=0 ts)

∏t−1
τ=0 Pτ(tτ)∏t(a)−1

τ=0
∑∞
t=0 Pτ(t)

=
t−1∑
s=0

∑∞
t=0 tsPs(t)∑∞
t=0 Ps(t)

�

As in Lemma 7 in Appendix A, by using Lemma S.2 and Lemma S.1, we find

∞∑
t=0

tsPs(t) ≤
∞∑
ts=0

tsDε
rs (1 −CtF(As))�ts/tF (As)�

≤Dεrs3tF (As)2/C2tF (As)�

Since,
∑∞
t=0 Ps(t)≥ Ct(As)εrs , the desired bound holds. �

As we move away from a recurrent communicating class along a least resistance
path, initially we are in the basin of the class and we encounter resistance. This gives
a natural monotonicity to this part of the path: each time we encounter resistance, we
cannot go back and do it again because to do so would add unnecessary resistance. The
bounds in Theorem S.1 exploit this monotonicity and so are useful in bounding the time
it takes to get out of the basin. However, once we leave the basin there will be zero re-
sistance paths to other recurrent communicating classes, and so there will be no more
waypoints and the bound is not useful. Indeed, as Appendix S.B shows, the length of
time in this region may not scale. However, in applications such as the model of hege-
mony, once we get close enough to the recurrent communicating class that will be the
end of the least resistance path, there may be a form of monotonicity: in the example
there is a point at which the eventual hegemon can only gain land (along a least re-
sistance path) and not lose it. If, in place of the natural monotonicity of Theorem S.1,
we assume monotonicity, then we can get a bound for this final segment of the least
resistance path.

To formalize this, we first give a bound on the probability of zero resistance paths
in the basin. Suppose that for comprehensive W , the set A ⊆ AxBW of least resis-
tance paths is not null. Define rxBW ≡ min{r(Ax(W \B)W )� r(AxBW \ A)} and txBW ≡
max{t(Ax(W \B)W )� t(AxBW \A)}. Notice that rxBW > 0 means that r(A) = 0, since there
must be some zero resistance path from x to W , and that x is in the basin of B, since all
0 resistance direct routes from x to B are inA.

Theorem S.2. If rxBW > 0, then Pε(A|x)≥ 1 − 2G(txBW )εrxBW .
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Proof. Since W is comprehensive, with probability 1 every path originating at x hits
W with probability 1. Hence Pε(Ax(W \B)W |x) + Pε(AxBW \A|x) + Pε(A|x) = 1. How-
ever, by the bound proven in Appendix A of the paper, we have Pε(Ax(W \B)W |x)�
Pε(AxBW \A|x)≤G(txBW )εrxBW , giving the desired result. �

Now consider a sequence of targets B1�B2� � � � �Bt , where Bt = B. Also set B0 = {x}.
For any a starting at x, we may consider t1(a) the first time B1 is hit before hitting W ,
possibly infinite, and if B1 is hit beforeW , we may consider t2(a) the additional amount
of time from first hitting B1 until B2 is hit before hitting W , again infinite if either tar-
get is not hit before reaching W , and so forth. We say that the sequence is a Liapunoff
sequence for A if for every a we have tτ(a) < ∞. In this case, the sequence of states
(z1� z2� � � � � zt) that are hit are similar to waypoints. For y ∈ Bτ , letAτ(y)≡ A(y�Bτ+1�W ).
Let tFF(A)≡ max0≤τ<t tF(Aτ). Then we can state the following theorem.

Theorem S.3. If B1�B2� � � � �Bt is a Liapunoff sequence for least resistance pathsA, then

Eε(t(a)|x�A)≤ t 1
Pε(A|x)

3tFF(A)2

C2tFF (A)
�

Proof. Define tτ(a) to be tτ(a) if it is finite and zero otherwise, and observe that for
a ∈A, we have tτ(a)= tτ(a). Hence we may write

Eε(t(a)|x�A) =
t−1∑
τ=0

Eε(tτ(a)|x�A)

=
t−1∑
τ=0

Eε(tτ(a)|x�A)Pε(A|x)
Pε(A|x)

≤ 1
Pε(A|x)

t−1∑
τ=0

Eε(tτ(a)|x)�

Moreover, Eε(tτ(a)|x)≤ maxy∈Bτ Eε(tτ(a)|y), as either tτ(a) is zero or a hits some y ∈ Bτ
before hitting Bτ+1 by definition. The desired bound now follows from Lemma S.2 and
the summation formula Lemma S.1. �

Appendix S.B: Expected passage time bounds

Let Vt a standard Weiner process with 0 drift and instantaneous variance 1 that starts
at 0. Now let T be the first time that Vt leaves the region [−A�+A]. As usual, � is the
standard normal. First we prove the next lemma.

Lemma S.3. We have ET ≥A2/(2[�−1( 1
8)]2).

Proof. Let τ+ be the first passage time for A> 0. We first establish a standard result:
Pr(Vt > A)= Pr(Vt > A&τ+ < t) = 1

2 Pr(τ+ < t). The first equality follows from the fact
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that if Vt > A, then certainly τ+ < t. The second follows from the reflection principle:
starting at Vτ+ =A, there is an equal probability of 1

2 that Vt > A and Vt < A; hence if
τ+ < t, the probability that Vt >A also is half the probability that τ+ < t.

Our goal is to establish a lower bound on the expectation of T . Let τ− be the first
passage time of −A. First we observe that

Pr(τ+ < t)= Pr(τ+ < t&τ− > t)+ Pr(τ+ < t&τ+ < τ− < t)+ Pr(τ+ < t&τ− < τ+)�

Using the reflection principle, we have

Pr(τ+ < t&τ− < τ+)= Pr(τ− < t&τ+ < τ−)= Pr(τ+ < t&τ+ < τ− < t)

so that

Pr(τ+ < t) = Pr(τ+ < t&τ− > t)+ 2 Pr(τ+ < t&τ+ < τ− < t)

≥ Pr(τ+ < t&τ− > t)+ Pr(τ+ < t&τ+ < τ− < t)�

Moreover,

Pr(T < t) = 2 Pr(τ+ < t&τ− > t)+ 2 Pr(τ+ < t&τ+ < τ− < t)

≤ 2 Pr(τ+ < t)= 4 Pr(Vt >A)= 4�(−A/√t)�
Finally, ET ≥ t(1 − Pr(T < t)) ≥ t(1 − 4�(−A/√t)) for all t and, in particular, for

t =A2/[�−1( 1
8)]2, which gives ET ≥A2/(2[�−1( 1

8)]2). �

Now we consider a random walk with probability β of moving up or down by 1 and
passage timeK to ±θL.

Theorem S.4. The expected hitting time is bounded below by

Eκ≥ (θ/(2β))2

6[�−1(1/8)]2L
2�

Proof. Let Lk be the random walk and consider the sums SL(t) = ∑t/L2

k=1 (Lk − Lk−1)/

(2βL) as L→ ∞ converges weakly to a Weiner process with instantaneous variance 1.
The random walk passes ±θLwhen SL(t) passes ±θ/(2β). Considering the T truncated
hitting time T̃ , we have

EST ≥EST̃ ≥EW T − |EW T −EW T̃ | − |EW T̃ −EST̃ |�
where the final inequality is just the triangle inequality. However, limL→∞EST̃ = EW T̃

and limT→∞EW T̃ = EW T . So for all sufficiently large L, T , we can make |EW T −EW T̃ |,
|EW T̃ −EST̃ | both less than or equal to 1

3 the bound in Lemma S.3, giving the bound

EST ≥
(

1 − 1
3

− 1
3

)
(θ/(2β))2

2[�−1(1/8)] �

Finally, observe that the number of periods corresponding to T is L2T . �
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Appendix S.C: Length of the fall, rise, and warring states

Here we prove the following proposition.

Proposition S.1. For any K, there exists an L such that for all L ≥ L, there exists an
ε such that for all ε ≤ ε, the expected length of the warring states period exceeds that of
either the fall or the rise byK periods.

Proof. First the fall. From Appendix S.A, we see that the waypoints are where the hege-
mon loses a unit of land to opponents that consist entirely of a single society of zealots.
Hence there are no more than θLwaypoints. The time to failure is 1, since the hegemon
can gain a unit of land with zero resistance and game over, and the least length of a least
resistance path from the state after a waypoint to the next waypoint is 2: one transition
to replace the society that initially gained the land with the zealots and one transition
for the zealots to take a unit of land from the hegemon. Hence from Theorem S.1, we
have the bound

Eε(t(a)|x�A)≤ θLD3/C6�

Turning to the rise, fix x such that a would be hegemon j has enough land θ0L to resist
an opponent consisting entirely of zealots. Let rz be that resistance. By Theorem S.2, we
have the bound Pε(A|x) ≥ 1 − 2G(txBW )εrz . Moreover, the sets Bτ such that the hege-
mon has θ0L+ τ units of land form a Liapunoff sequence. Notice that for this sequence
tFF(A)= 1, since there is always zero resistance to the hegemon gaining a single unit of
land, and along a least resistance path starting at x, he can never lose any land. Hence
by Theorem S.3, we also have the bound

Eε(t(a)|x�A) ≤ (1 − θ0)L
1

Pε(A|x)
3
C2

≤ (1 − θ0)L
1

1 − 2G(txBW )εrz
3
C2

during the rise.
Recall that at some point during the warring states period, there is a society with Ljτ

units of land that follows a random walk with β chance of increasing by 1 or decreasing
by 1 at least until either Ljτ ≥ θL or Ljτ ≤ (1 − θ)L. From Theorem S.4, we have the
expected passage time bound

Eεκ≥ (θ/(2β))2

6[�−1(1/8)]2L
2�

Hence for L sufficiently large the expected amount of time in the warring states is 3K
larger than an upper bound θLD3/C6 on the expected amount of time during a least
resistance path during the fall and larger than (1−θ0)L3/C2, which is not quite an upper
bound on the expected amount of time during the rise. This is not quite the end of
the story, since it is the expected amount of time of all paths during the rise or the fall
that matters, and because we must account for dividing by the probability of the rise.
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However, the expected length of all non-least-resistance paths is bounded above by the
bound in Appendix A to the paper as is G(txBW ), and while that bound increases quite
rapidly with L, it is also weighted according to that theorem by a probability that goes
to zero with ε. Hence once we fix L, we can choose a small enough ε that the expected
length of all paths (during the rise or the fall) is at most K larger than that of the length
of least resistance paths; that is, of total length at most 2K. Hence the expected amount
of time in the warring states period is at leastK larger than during the rise or fall. �

Appendix S.D: Ergodic probabilities and circuits

We are given a finite set of nodes
k and forψ�φ ∈
k, a resistance function rk(ψ�φ). For
any ψ ∈
k, we define the least resistance rk(ψ)= minφ∈
k\ψ rk(ψ�φ). We are interested

in trees T on
k. For any such tree and anyψ, let T(ψ) denote the unique predecessor of
ψ on the tree (which is null for the unique root). Note that we follow the standard game
theory terminology that the predecessor is closer to the root—in contrast to Young, who
follows the logic of the Markov process in imagining that the node closer to the root is the
successor node. The resistance of the tree T is defined to be rk(T)= ∑

ψ∈
k rk(ψ�T(ψ)),
where rk(ψ�∅)≡ 0.

Our goal is to characterize least resistance trees by showing how they are constructed
out of groups of nodes that we call circuits. As in the text, 
k+1

x ⊆ 
k is a circuit if for

each pair ψ1�ψy ∈ 
k+1
x , there is a path ψ1�ψ2� � � � �ψn ∈ 
k+1

x with ψn = ψy such that
for τ = 2�3� � � � � n we have rk(ψτ−1�ψτ)= rk(ψτ−1), that is, there is a path from ψ1 to ψy
within the circuit such that each connection has least resistance.

Definition S.1 (Consolidation). A circuit
k+1
x is consolidated within the tree T if there

is aφ ∈
k+1
x that precedes all otherψ ∈
k+1

x , and for these otherψ �=φ, we have T(ψ) ∈

k+1
x and rk(ψ�T(ψ))= rk(ψ).

In other words, in the consolidated tree, the circuit 
k+1
x forms a subtree with root

φ, and each connection within the circuit has least resistance. We refer to φ as the top
of the circuit.

Intuitively, if we think of the circuit as a circle of least resistance connections, then
we will break that circle after φ to make a subtree and use φ to connect this subtree to
the rest of the tree. Breaking the connection saves at least rk(φ), while making the new
connection costs rk(φ�T(φ)); hence we define the modified resistance from φ to ψ as
Rk(φ�ψ)= rk(φ�ψ)− rk(φ).

In the next lemma, we consolidate a circuit within a tree by breaking it after the node
that minimizes modified resistance. By so doing, the resistance of the tree cannot in-
crease.

Lemma S.4. Suppose that T on 
k has root ψ and that 
k+1
x is a circuit on 
k. Then

there is a tree T ′ with root ψ such that rk(T ′)≤ rk(T) and
k+1
x is consolidated in T ′ with

the additional properties that (i) if φ′ /∈
k+1
x , then T ′(φ′)= T(φ′), and (ii) if φ is the top

of 
k+1
x in T ′, then Rk(φ�T ′(φ))= min{Rk(φ′�T ′(φ)) |φ′ ∈
k+1

x }.
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Proof. Let T have rootψ and letφ∗ ∈
k+1
x be such that the unique path fromφ∗ to the

root ψ contains no element of 
k+1
x . If φ∗ = ψ, take φ = φ∗. Otherwise, choose as the

top aφ ∈
k+1
x such that rk(φ�T(φ∗))− rk(φ)= min{rk(φ′�T (φ∗))− rk(φ′) |φ′ ∈
k+1

x }.
We now use tree surgery to create a sequence of new trees ending in the desired tree T ′.
As we proceed, we never cut a connection originating in any set other than
k+1

x , so that
property (i) will be satisfied.

At each step, 
k+1
x will be divided into two sets �φ��∼φ = 
k+1

x \�φ. The first set
�φ will contain at least φ, and consists of those elements of 
k+1

x that are already con-
solidated withφ at the top and such that no element of�∼φ appears betweenφ and the
root. We will proceed constructing new trees by moving one element from�∼φ to�φ at
a time, making sure that all properties are preserved.

We start the process. If φ= ψ or φ= φ∗, we do nothing. Otherwise, cut φ from the
tree and paste it to T(φ∗). Observe that this increases the resistance of the tree by at
most rk(φ�T(φ∗))− rk(φ). Let �φ be the maximal set consolidated with φ at the top:
this set now contains at least φ.

We now continue the process until�∼φ is empty. Pick an elementφ′ ∈�∼φ. Because

k+1
x is a circuit, there is a least resistance path in 
k+1

x from φ′ to φ. Let φτ be the last
element in �∼φ that is reached on this path. Then cut φτ from the tree and paste it to
φτ+1. Notice that this cannot increase the resistance of the tree, since the connection
fromφτ toφτ+1 has least resistance. Moreover, ifφ �=φ∗, then at some stepφτ =φ∗ and
at this step the resistance of the tree is decreased by exactly rk(φ∗�T (φ∗))−rk(φ∗). Once
again let �φ be the maximal set consolidated with φ at the top: this set now contains at
least one more element φτ .

When we are finished we end up with the new tree T ′. Now observe that either
φ = φ∗ or the resistance over the original tree was increased only in the first step, by
at most rk(φ�T(φ∗))− rk(φ), and it was decreased by rk(φ∗�T (φ∗))− rk(φ∗) when we
pasted φ∗. By the choice of φ we have rk(φ�T(φ∗))− rk(φ) ≤ rk(φ∗�T (φ∗))− rk(φ∗),
and in all other cases, the resistance did not increase. Therefore, rk(T ′) ≤ rk(T).
Since, by construction, T ′(φ) = T(φ∗), we have Rk(φ�T ′(φ)) = min{Rk(φ′�T ′(φ)) |
φ′ ∈
k+1

x }. �

We now focus on least resistance trees. Let T (ψ) be the set of trees with root ψ,
let rkψ = minT∈T (ψ) r

k(T) be the least resistance of any tree with root ψ, and let T k
ψ =

arg minT∈T (ψ) r
k(T) be the set of least resistance trees with root ψ. First we prove a sim-

ple relation between least resistance of trees and of their roots.

Lemma S.5. If ψ and φ are in the same circuit on
k, then rkψ − rkφ = rk(φ)− rk(ψ).

Proof. Suppose ψ�φ ∈ 
k+1
x , where 
k+1

x is a circuit. Then we can choose a path
φ1� � � � �φν� � � � �φn ∈
k+1

x with φ1 = ψ, φν = φ, and φn = ψ such that for τ = 2�3� � � � � n,
we have rk(φτ−1�φτ) = rk(φτ−1). Choose T1 ∈ Tφ1 and, supposing that Tτ−1 has root
φτ−1, define Tτ as the tree in which we cut φτ from Tτ−1, make it the root of Tτ , and
paste the root of Tτ−1 to φτ . This tree has root φτ and resistance rk(Tτ) ≤ rk(Tτ−1) +
rk(φτ−1�φτ)− rk(φτ)= rk(Tτ−1)+ rk(φτ−1)− rk(φτ). Hence rk(Tτ)≤ rk(T1)+ rk(φ1)−
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rk(φτ). Since φn = φ1, we conclude that rk(Tn) ≤ rk(T1), and since T1 had least re-
sistance, it must be that rk(Tn) = rk(T1). Hence all the inequalities must hold with
equality, that is, rk(Tτ) = rk(T1) + rk(φ1) − rk(φτ). Choosing τ = ν, we then have
rk(Tτ) = rkψ + rk(ψ) − rk(φ), whence rkφ ≤ rkψ + rk(ψ) − rk(φ); but by interchanging φ

and ψ, and rearranging, we get rkφ ≥ rkψ + rk(ψ)− rk(φ). This gives the conclusion. �

We now assume that for ε > 0, Pε is ergodic so that there is a unique ergodic prob-
ability distribution με on the state space Z. Let TS(x) denote all trees over a set S with
root x and set

Mε(x)=
∑

T∈TZ(x)

∏
z∈Z

Pε(T(z)|z)�

Following Young (1993) and Friedlin and Wentzell (2012), we observe that

με(x)= Mε(x)∑
z∈Z Mε(z)

�

Let the resistance r(x� y) on Z be the ordinary resistance. Let rx be the least resistance
of trees on Z with root x. Observing from Cayley’s formula that NN−2 is the number of
trees with the same root overN nodes, Theorem S.5 follows.

Theorem S.5. The ratio of ergodic probabilities satisfies the bounds

CN

NN−2DN
εrx−ry ≤ με(x)

με(y)
≤ NN−2DN

CN
εrx−ry �

Proof. We may rearrange the Friedlin and Wentzell (2012) result to get

με(x)
∑
z∈Z

Mε(z)= Mε(x)

so that

με(x)

με(y)
= Mε(x)

Mε(y)
�

Recall the bounds Cεr(x�z) ≤ Pε(z|x)≤Dεr(x�z) on transition probabilities. Hence we
have

CNεrx ≤
∑

T∈TZ(x)

CN
∏
x∈Z

εr(x�z) ≤ Mε(x)≤
∑

T∈TZ(x)

DN
∏
x∈Z

εr(x�z) ≤DNεrxNN−2�

Dividing by Mε(y) and using the corresponding bounds then gives the result. �

These bounds are in terms of resistances of least resistance trees. The next goal is to
translate them in terms of appropriate resistances of least resistance paths.

Applying Lemma S.5 gives as an immediate corollary the following result, where re-
call that r0(
x) is defined in terms of direct routes.
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Theorem S.6. If the recurrent communicating classes 
x and 
y are in the same circuit
on 
0 ≡
 then

CN

NN−2DN
εr

0(
y)−r0(
x) ≤ με(x)

με(y)
≤ NN−2DN

CN
εr

0(
y)−r0(
x)�

This goes one step in the desired direction but applies only to elements of a given
circuit. In general, we can find the least resistance of trees in Z by finding the least
resistance of trees in 
. Recall that r0


x
is the least resistance of trees on 
 with root 
x,

and rx is the least resistance of trees on Z with root x. We next show that they are equal:

Lemma S.6. If x ∈
x ∈
 then rx = r0

x

.

Proof. Young (1993) proves this lemma (Lemma 2 in his Appendix) for the case where
the resistance, call it r∗(
x�
y), is the least resistance of any path from
x to
y ; that is,
he allows the path to pass through recurrent communicating classes 
z , which are nei-
ther 
x nor 
z (Ellison 2000 does the same in his definition of the modified co-radius).
Our resistance is, in general, larger than Young’s, since we do not allow paths to pass
through these other recurrent communicating classes. However, his proof requires only
minor modification to yield the stronger result. Young first shows that the least resis-
tance r∗
x of any tree on 
 with root 
x is greater than or equal to rx. Since r0


x
≥ r∗
x , we

have the immediate implication that r0

x

≥ rx.
The second part of Young’s proof shows that r∗
x ≤ rx. Following Young, we show

how to transform a least resistance tree T ∈ Tx on Z into a tree T ′ ∈ T (
x) over 
 such
that r0(T ′) ≤ r0(T). The easiest way to do this would be by simply taking one point
from each irreducible class and using the resistance between those states to get a tree
over 
. However, this does not work because there can be double-counting if paths
in T join between irreducible classes. Young shows how to avoid double-counting by
reorganizing the tree. We can use his construction if we can avoid having or creating
paths between irreducible classes that contain elements of a third irreducible class. This
is the case if we start by choosing the “right” least resistance tree and the “right” point
from each irreducible class before we apply Young’s method.

Observe that each φ ∈ 
 is a circuit, so by consolidating where needed as from
Lemma S.4, we can assume that each φ ∈
 is already consolidated in T . The first step
of Young’s proof is to choose one point y ′ ∈φ for each φ ∈
: these are what Young calls
special vertices. We do this by choosing for each φ ∈
, the top of φ in the tree. Observe
that because the tree is consolidated, the path from any special vertex to the next spe-
cial vertex y in the direction of the root cannot contain elements of any irreducible class
other than 
y .

Now apply Young’s construction to eliminate junctions (a junction in a tree T is any
vertex y with at least two incoming T edges). Observe that when Young cuts a subtree T ∗
from a vertex y that is not in a recurrent communicating class, this preserves the consoli-
dated structure, because thoseφ′ ∈
 that lie farther from the root than y are necessarily
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entirely contained in T ∗. Consequently, we never need to cut junctions at y that are in
recurrent communicating classes, for T is consolidated and, therefore, the path from y

to the top of the circuit has zero resistance and no double-counting is involved.
Finally, when Young pastes cuts T ∗ from the junction y back into the tree T , he im-

plicitly introduces new paths a = (y� z1� � � � � zt−1� z) from y to a special vertex z with
r(a)= 0. However, these implicit paths cannot contain elements of any recurrent com-
municating class 
y other than 
z . If they did, the path could not have zero resistance,
since there is no path from 
y �=
z to 
z that has zero resistance. Hence at the end of
Young’s procedure, we find that the paths along which resistance is computed—those
from one special vertex to the next special vertex in the direction of the root—do not
contain a vertex from a third recurrent communicating class. By this procedure, we then
obtain a tree in T (
x) with resistance not larger than T , whence r0


x
≤ rx. �

Our next goal is to recursively compute rk and by doing so find bounds on
με(x)/με(y) without the restriction that
x and 
y be in the same circuit.

We take 
0 = 
, so an element ψ1 ∈ 
1 will be a circuit of recurrent commu-
nicating classes and for ψ�φ ∈ 
0, the resistance r0(ψ�φ) is just the least resistance
along a direct route. We recursively define on 
k−1 the modified resistance function
Rk−1(ψk−1�φk−1)= rk−1(ψk−1�φk−1)− rk−1(ψk−1), and we define a resistance function
on 
k by the least modified resistance:

rk(ψk�φk)= min
ψk−1∈ψk�φk−1∈φk

Rk−1(ψk−1�φk−1)�

Then the following formula holds, where we notice that the term
∑
φk−1∈
k−1 rk−1(φk−1)

is a constant independent of the tree in question.

Lemma S.7. If ψk−1 ∈ψk, then rk−1
ψk−1 = rk

ψk
− rk−1(ψk−1)+ ∑

φk−1∈
k−1 rk−1(φk−1).

Proof. Suppose we have a tree Tk−1 on 
k−1 that is consolidated with respect to
all the circuits in 
k, and let ψk−1 be its root. The fact that Tk−1 is consolidated
means that the top of each circuit has a predecessor that belongs to a different cir-
cuit. For ψk ∈ 
k, denote by �(Tk−1�ψk) ∈ 
k−1 the top of circuit ψk in Tk−1. Then
if Tk−1(�(Tk−1�ψk))=φk−1 ∈φk �=ψk (where if φk−1 is null, we set φk = ∅ as well), we
may define Tk(ψk) = φk. In this way we define a tree on 
k. We have rk−1(Tk−1) =∑
φk−1∈
k−1 rk−1(φk−1�Tk−1(φk−1)). However, since the tree is consolidated, for any

φk−1 not at the top of the corresponding circuit φk, we have rk−1(φk−1�Tk−1(φk−1))=
rk−1(φk−1); hence we may write

rk−1(Tk−1)=
∑

φk−1∈�k−1

rk−1(φk−1)− rk−1(ψk−1)

+
∑
φk∈�k

ρk−1(�(Tk−1�φk)�Tk−1(�(Tk−1�φk))
)
�
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Now start with a least resistance tree Tk−1 ∈ Tψk−1 . By Lemma S.4, we may consol-

idate this tree Tk−1 with respect to all the circuits in 
k to get another least resistance
tree T̃ k−1 ∈ Tψk−1 . By the previous computation and the definition of rk, we see that

rk−1
ψk−1 = rk−1(T̃ k−1)

=
∑

φk−1∈�k−1

rk−1(φk−1)− rk−1(ψk−1)

+
∑
φk∈�k

ρk−1(�(Tk−1�φk)�Tk−1(�(Tk−1�φk))
)

≥
∑

φk−1∈�k−1

rk−1(φk−1)− rk−1(ψk−1)+
∑
φk∈�k

rk(φk�Tk(φk))

≥
∑

φk−1∈�k−1

rk−1(φk−1)− rk−1(ψk−1)+ rk
ψk
�

Next start with a least resistance tree Tk ∈ T
kx , whereψk−1 ∈ψk, and construct a tree

on 
k−1 as follows. For the root φk = ψk, define φk−1 = ψk−1. For given non-root φk

and Tk(φk) there are points φk−1 ∈ φk and φ̃k−1 ∈ Tk(φk) such that rk(φk�Tk(φk))=
r(φk−1� φ̃k−1)− r(φk−1). For eachφk, consolidate the tree over φk with rootφk−1 to get
a tree T [φk�φk−1]. Now define a tree on 
k−1 by putting together these subtrees as fol-

lows: if φ̂k−1 is in T [φk�φk−1] but is not the root, set Tk−1(φ̂k−1)= T [φk�φk−1](φ̂k−1).
For the root φk−1, set Tk−1(φ̂k−1) = φ̃k−1. This is clearly a tree with root ψk−1, and we
see that the resistance is

rk−1
ψk−1 ≤ rk−1(Tk−1)

=
∑

φk−1∈�k−1

rk−1(φk−1)− rk−1(ψk−1)+
∑
φk∈
k

rk(φk�Tk(φk))

=
∑

φk−1∈
k−1

rk−1(φk−1)− rk−1(ψk−1)+ rk
ψk
�

Putting together the two inequalities gives the desired result. �

Lemma S.8. If 
k has at least two elements, it has at least one nontrivial circuit.

Proof. Starting at an arbitrary point ψk ∈ 
k, choose a path of least resistance. Since

k is finite, this must eventually have a loop and that loop is necessarily a circuit. �

We can now recursively define a class of reverse filtrations with resistances over the
set 
0 =
 of recurrent communicating classes for P0; assume 
 hasN
 elements, with
N
 ≥ 2. Starting with 
k−1, we observe that there is at least one nontrivial circuit and
that every singleton element is trivially a circuit. Hence we can form a nontrivial parti-
tion of 
k−1 into circuits and denote this partition 
k. All the resistances are defined as
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before. Note that since each partition is nontrivial, this construction has at most k≤N

layers before the partition has a single element and the construction stops.

The modified radius of x ∈
x of order k is defined by

R
k
(x)=

k∑
κ=0

rκ(
κx)�

where 
0
x = 
x and for each κ > 0, the element 
κx � 
κ−1

x . Then we can state another
theorem.

Theorem S.7. Let k be such that 
kx =
ky . Then rx − ry = R
k−1

(y)−Rk−1
(x) and, con-

sequently,

CN

NN−2DN
εR

k−1
(y)−Rk−1

(x) ≤ με(x)

με(y)
≤ NN−2DN

CN
εR

k−1
(y)−Rk−1

(x)�

Proof. From Lemma S.6, we know that rx − ry = r0
ψ0(x)

− r0
ψ0(y)

. Applying Lemma S.7

iteratively, we see that if ψk−1 ∈ψk, then

r0
ψ0 = rk


kx
+
k−1∑
κ=0

[ ∑
φκ∈
κ

rκ(φκ)

]
−
k−1∑
κ=0

rκ(ψκ)�

from which

r0
ψ0(x)

− r0
ψ0(y)

= −
k−1∑
κ=0

rκ(ψκ(x))+
k−1∑
κ=0

rκ(ψκ(y))=Rk−1
(y)−Rk−1

(x)�
�
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