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Coordination failure in repeated games
with almost-public monitoring
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Some private-monitoring games, that is, games with no public histories, have his-
tories that are almost public. These games are the natural result of perturbing
public-monitoring games towards private monitoring. We explore the extent to
which it is possible to coordinate continuation play in such games. It is always
possible to coordinate continuation play by requiring behavior to have bounded
recall (i.e., there is a bound L such that in any period, the last L signals are suffi-
cient to determine behavior). We show that, in games with general almost-public
private monitoring, this is essentially the only behavior that can coordinate con-
tinuation play.
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1. INTRODUCTION

Intertemporal incentives often allow players to achieve payoffs that are inconsistent
with myopic incentives. For repeated games with public histories, the construction of
sequentially rational equilibria with nontrivial intertemporal incentives is straightfor-
ward. Since continuation play in a public strategy profile is a function of public histories
only, the requirement that continuation play induced by any public history constitute a
Nash equilibrium of the original game is both the natural notion of sequential rational-
ity and relatively easy to check (Abreu et al. 1990). These perfect public equilibria (or
PPE) use public histories to coordinate continuation play.
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While games with private monitoring (where actions and signals are private) have no
public histories to coordinate continuation play, some do have histories that are almost
public. We explore the extent to which perfect public equilibrium strategies continue to
be equilibria when histories are only almost public. We show that it is always possible to
coordinate continuation play by requiring behavior to have bounded recall (i.e., there is
a bound L such that in any period, the last L signals are sufficient to determine behav-
ior).1 But we also show a partial converse: in games with general almost-public private
monitoring, this is the only behavior that can coordinate continuation play under an ap-
parently mild restriction on strategies. To make this precise, we must describe “general
but almost-public private monitoring” and characterize the restriction on strategies

When is a general private-monitoring technology close to some public monitoring
technology? To be close, there must be a signaling function for each player that assigns
to each private signal either some value of the public signal or a dummy signal (with
the interpretation that that private signal cannot be related to any public signal). Using
these signaling functions (one for each player), the private monitoring is close to the
public monitoring if the probability of private signals mapping to a given public signal,
under the private-monitoring technology, is close to the probability of that public signal
under the public monitoring (for any given action profile). If there exist such signaling
functions satisfying this condition, we say there is almost-public monitoring. If every
private signal is mapped to a public signal, we say the almost-public-monitoring game
is strongly close to the public-monitoring game.

Using the signaling functions, any strategy profile of the public-monitoring game
induces behavior in strongly-close-by almost-public-monitoring games. Given a se-
quence of private signals for a player, that player’s private state is determined by the
induced sequence of public signals that are the result of applying his signaling func-
tion. We show that every strict PPE with bounded recall induces equilibrium in every
strongly-close-by almost-public-monitoring game; and even if the private-monitoring
games are not strongly close to the public-monitoring game, there is still a natural sense
in which every strict PPE with bounded recall induces equilibrium behavior in every
close-by almost-public-monitoring game (Theorem 1). The idea is that with bounded
recall we can always restrict posterior beliefs to be sufficiently close to the public mon-
itoring by requiring the private-monitoring technology to be sufficiently close to the
public-monitoring technology. This result generalizes the main result in Mailath and
Morris (2002), where the private signal set was assumed to equal the public signal set.2

When a strategy profile of the public-monitoring game does not have bounded re-
call, realizations of the signal in early periods can have long-run implications for be-
havior. We call profiles with this property separating. While the properties of bounded

1Thus when we refer to strategy profiles that coordinate continuation play in games with private moni-
toring, we mean strategy profiles where players’ choices are best responses if histories are sufficiently close
to being public.

2The extension is nontrivial because the richness of the private signals is important for the formation of
that player’s beliefs about the other players’ private states. It turns out that the requirement that the private-
monitoring distribution be close to the public-monitoring distribution places essentially no restriction on
the manner in which private signals enter into the formation of posterior beliefs.
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recall and separation do not exhaust possible behavior, they do appear to cover most
behaviors of interest.3 When the space of private signals is sufficiently rich for some
player i in the values of posterior-odds ratios (this is what we mean by “general almost
public”), and the profile is separating, it is possible to manipulate that player’s updating
over other players’ private states through an appropriate choice of private history. This
suggests that it should be possible to choose a private history with the property that
player i is in one private state and assigns arbitrarily high probability to all the other
players being in a different common private state.

A significant difficulty needs to be addressed in order to make this argument: The
history needs to have the property that player i is very confident of the other players’
state transitions for any given initial state. This, of course, requires the monitoring to be
almost-public. At the same time, monitoring must be sufficiently imprecise that player
i , after an appropriate initial segment of the history, assigns positive probability to the
other players being in a common state different from i ’s private state. This is the source
of the difficulty: Fix a period t . For any T -length history (T > t ), there is an ε (decreas-
ing in T ) such that for private monitoring ε-close to the public monitoring, player i is
sufficiently confident of the period T private states of players j 6= i as a function of their
period t private states (and the history). However, this ε puts an upper bound on the
prior probability that player i can assign in period t to the players j 6= i being in a com-
mon state different from i ’s private state. Since the choice of T is decreasing in this prior
(i.e., larger T is required for smaller priors), there is a tension in the determination of T
and ε.

We show, however, that this tension can be resolved for separating profiles imple-
mentable using a finite number of states. For such profiles the history can be chosen so
that not only do the relevant states cycle, but every other state transits under the cycle
to a cycling state. The cycle allows us to effectively choose the T above independently
of the prior, and gives us our main result (Theorem 3): Separating strict PPE profiles of
public-monitoring games implementable using a finite number of states do not induce
Nash equilibria in any strongly-close-by games with rich private monitoring.

Thus, separating strict PPE of public-monitoring games are not robust to the in-
troduction of even a minimal amount of private monitoring. Consequently, separating
behavior in private-monitoring games typically cannot coordinate continuation play
(Corollary 1). On the other hand, bounded recall profiles are robust to the introduction
of private monitoring. The extent to which bounded recall is a substantive restriction
on the set of payoffs is unknown.4 Our results do suggest, even for public-monitoring
games, that bounded recall profiles are particularly attractive (since they are robust to
the introduction of private monitoring). Moreover, other apparently simple strategy
profiles are problematic.

3We provide one example of a non-separating profile without bounded recall in Section 4 (Example 3).
This profile is not robust to the introduction of private monitoring. We do not know if there exist non-
separating profiles without bounded recall that are robust to private monitoring.

4Cole and Kocherlakota (2005) show that for some parameterizations of the repeated prisoners’
dilemma, the restriction to strongly symmetric bounded recall PPE results in a dramatic collapse of the
set of equilibrium payoffs.
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We have analyzed the robustness of fixed strategy profiles to private monitoring. Our
results do not say anything about the set of all equilibrium payoffs in private-monitoring
games.5 While this classic question is important, we believe that there are at least three
reasons why it is nonetheless also interesting to focus on a fixed strategy profile. First,
researchers using repeated game theory to understand economic phenomena are inter-
ested in hypothesizing and testing particular strategy profiles.6 Second, understanding
properties of particular strategy profiles may turn out to be an important step in charac-
terizing the set of all equilibrium payoffs. Finally, one of our findings is that fine details of
strategy profiles, such as history dependence, that are irrelevant for the classic recursive
characterization of the PPE payoff set are very important for the robustness question we
consider, and such fine details might turn out to be significant for other questions as
well.

Both our positive and negative results restrict attention to strict PPE, and the as-
sumption is important for both kinds of results. In such equilibria, players are not indif-
ferent between alternative actions and are thus coordinated in their continuation play.
Such strategy profiles capture basic intuitions about how cooperation can be sustained
in repeated games by the threat of coordinated deviation to punishment paths; they
form the basis of empirical applications of repeated game theory (see the references in
footnote 6); and we believe they are interesting objects of study. However, as noted in
footnote 5, the most permissive results in the private-monitoring literature have used
strategies with a significant amount of randomization and indifference. The results in
this paper do not have anything to say about the robustness of such strategies.7

This paper introduces a useful representation of finite state strategies for private-
monitoring games. Each player has a finite set of private states, a transition function
mapping private signals and states into new states, and decision rules for the players,
specifying behavior in each state. The transition function and decision rules define a
Markov process on vectors of private states. This representation is sufficient to describe
behavior under the given strategies, but is not sufficient to verify that the strategies are

5Mailath and Samuelson (2006, Chapter 12) introduces the main issues and concepts. See Kandori
(2002) for a brief survey of this literature, as well as the accompanying symposium issue of the Journal
of Economic Theory on “Repeated Games with Private Monitoring.” For the repeated prisoners’ dilemma
with almost-perfect private monitoring, folk theorems have been proved using both equilibria with a co-
ordination interpretation (for example, Sekiguchi 1997 and Bhaskar and Obara 2002) and those that are
“belief-free” (for example, Piccione 2002, Ely and Välimäki 2002, and Matsushima 2004), where equilib-
rium strategies are constructed using randomization to ensure that players are indifferent between some
actions at all histories. While folk theorems cannot be proved using belief-free strategies for general payoff
matrices (Ely et al. 2005), variations on belief-free strategy profiles have been used to prove general folk
theorems (Hörner and Olszewski 2005).

6See, for example, Axelrod (1984), Ellison (1994), and Greif (2005).
7Bhaskar and van Damme (2002) and Ely (2002) show that trigger strategy profiles, which are strict PPE

of a repeated prisoners’ dilemma with imperfect public public monitoring, can be approximated in nearby
games with private monitoring with a strategy profile with strict mixing. This possibility suggests that allow-
ing non-strict equilibria may greatly assist in establishing robustness results. On the other hand, the equi-
libria with mixing require players to randomize differently at different payoff-equivalent histories, which
is arguably implausible. Bhaskar (1998) and Bhaskar and van Damme (2002) suggest that such strategies
often do not survive extensive form purification perturbations.
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optimal. It is also necessary to know how each player’s beliefs over the other players’ pri-
vate states evolve. This is at the heart of the question of whether histories can coordinate
continuation play, since, given a strategy profile, a player’s private state determines that
player’s continuation play. The crux of our analysis concerns how to track the evolution
of beliefs over other players’ private states during the course of play. In this paper, we
use this representation to analyze private-monitoring profiles constructed from a PPE.
However, the method is more general and we believe that it may be of more general use.
Examples can be found in Mailath and Samuelson (2006, Section 12.4 and Chapter 14),
where the method is used to analyze the mixed strategy employed in the classic analysis
of Sekiguchi (1997) and define belief-free equilibria.

Finally, we note that we have not allowed any communication beyond that con-
tained in the equilibrium strategies. We view our findings as underlining the importance
of public communication in private-monitoring games as a mechanism to facilitate co-
ordination. For some recent work on communication in private-monitoring games, see
Compte (1998), Kandori and Matsushima (1998), Fudenberg and Levine (2004), and
McLean et al. (2002).

2. GAMES WITH IMPERFECT MONITORING

2.1 Private-monitoring games

The infinitely-repeated game with private monitoring is the infinite repetition of a stage
game in which at the end of each period, each player learns only the realized value of
a private signal. There are n players, with the finite stage-game action set for player
i ∈N ≡ {1, . . . , n} denoted A i . At the end of each period, each player i observes a private
signal, denotedωi , drawn from a finite set Ωi . The signal vector ω ≡ (ω1, . . . ,ωn ) ∈ Ω ≡
Ω1 × · · · ×Ωn occurs with probability π(ω | a ) when the action profile a ∈ A ≡

∏

i A i is
chosen. Player i does not receive any information other than ωi about the behavior of
the other players. All players use the same discount factor, δ.

Since ωi is the only signal a player observes about opponents’ play, we assume
(as usual) that player i ’s payoff after the realization (ω, a ) depends only on (ωi , a i ).
We denote this payoff by u ∗i (ωi , a i ). Stage game payoffs are then given by u i (a ) ≡
∑

ωu ∗i (ωi , a i )π(ω | a ). It is convenient to index games by the monitoring technology
(Ω,π), fixing the set of players and action sets.

A pure strategy for player i in the private-monitoring game is a function s i :Hi → A i ,
where

Hi ≡∪∞t=1(A i ×Ωi )t−1

is the set of private histories for player i .

2.2 Public-monitoring games

We turn now to the benchmark public-monitoring game for our games with private
monitoring. The finite action set for player i ∈ N is again A i . The public signal is de-
noted y and is drawn from a finite set Y . The probability that the signal y occurs when
the action profile a ∈ A ≡

∏

i A i is chosen is denoted ρ(y | a ). We refer to (Y ,ρ) as



316 Mailath and Morris Theoretical Economics 1 (2006)

the public-monitoring distribution. Player i ’s payoff after the realization (y , a ) is given
by eu ∗i (y , a i ). Stage game payoffs are then given by eu i (a ) ≡

∑

y eu
∗
i (y , a i )ρ(y | a ). The

infinitely repeated game with public monitoring is the infinite repetition of this stage
game in which at the end of each period each player learns only the realized value of the
signal y . Players do not receive any other information about the behavior of the other
players. All players use the same discount factor, δ.

A strategy for player i is public if, in every period t , the action it prescribes depends
only on the public history h t ∈ Y t−1, and not on i ’s private history. Henceforth, by the
term public profile, we always mean a strategy profile for the public-monitoring game
that is itself public. A perfect public equilibrium (PPE) is a profile of public strategies
that, after any public history h t , specifies a Nash equilibrium for the repeated game.
Under imperfect full-support public monitoring, every public history arises with posi-
tive probability, and so every Nash equilibrium in public strategies is a PPE.

Any pure public strategy profile can be described as an automaton as follows: There
is a set of states, W , an initial state, w 1 ∈ W , a transition function σ : W × Y → W ,
and a collection of decision rules, d i : W → A i . In the first period, each player i chooses
action a 1

i = d i (w 1). The vector of actions, a 1, then generates a signal y 1 according to the
distributionρ(· | a 1). In the second period, each player i chooses the action a 2

i = d i (w 2),
where w 2 = σ(w 1, y 1), and so on. Since we can take W to be the set of all histories of
the public signal, ∪t≥1Y t , W is at most countably infinite. A public profile is finite if W
is a finite set. Note that, given a pure strategy profile (and the associated automaton),
continuation play after any history is determined by the public state reached by that
history.

Denote the vector of average discounted expected values of following the public
profile (W, w ,σ, d ) (so that the initial state is w ) by φ(w ). Define a function g : A ×
W → W by g (a ; w ) ≡ (1 − δ)u (a ) + δ

∑

y φ(σ(w , y ))ρ(y | a ). We have (from Abreu
et al. 1990), that if the profile is an equilibrium, then, for all w ∈W , the action profile
(d 1(w ), . . . , d n (w ))≡ d (w ) is a pure strategy equilibrium of the static game with strategy
spaces A i and payoffs g i (·; w ) for each i and, moreover,φ(w ) = g (d (w ), w ). Conversely,
if (W, w 1,σ, d ) describes an equilibrium of the static game with payoffs g (·; w ) for all
w ∈W , then the induced pure strategy profile in the infinitely repeated game with pub-
lic monitoring is an equilibrium.8 A PPE (W, w 1,σ, d ) is strict if, for all w ∈W , d (w ) is a
strict Nash equilibrium of the static game g (·; w ).9

A maintained assumption throughout our analysis is that public monitoring has full
support.

ASSUMPTION 1. ρ(y | a )> 0 for all y ∈ Y and all a ∈ A.

8We have introduced a distinction between W and the set of continuation payoffs for convenience. Any
pure strategy equilibrium payoff can be supported by an equilibrium where W ⊂RI and φ(w ) =w (again,
see Abreu et al. 1990).

9Equivalently, a PPE is strict if each player strictly prefers his equilibrium strategy to every other public
strategy. For a large class of public-monitoring games, strictness is without loss of generality, in that a folk
theorem holds for strict PPE (Fudenberg et al. 1994, Theorem 6.4 and remark).
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We extend the domain of σ from W × Y to W × ∪∞t=1Y t by recursively defining
σ(w 1, h t ) =σ(σ(w 1, h t−1), y t ) for all h t ∈ Y t−1, where h t = (h t−1, y t ).

DEFINITION 1. An automaton (W, w 1,σ, d ) is minimal if for every state bw ∈ W there
exists a sequence of signals bh` such that bw = σ(w 1,bh`) and for every pair of states
w , bw ∈ W , there exists a sequence of signals hL such that for some i , d i (σ(w , hL)) 6=
d i (σ( bw , hL)).

The restriction to minimal automata is without loss of generality: every profile has
a minimal representing automaton. Moreover, this automaton is essentially unique.10

Accordingly, we treat a public strategy profile and its minimal representing automaton
interchangeably.

2.3 Almost-public monitoring

We now define what it means for a private-monitoring distribution to be close to a
public-monitoring distribution.

DEFINITION 2. The private-monitoring distribution (Ω,π) is ε-close under f to the
public-monitoring distribution (Y ,ρ), where f = ( f 1, . . . , f n ) is a vector of signaling func-
tions f i :Ωi → Y ∪{∅}, if

1. for each a ∈ A and y ∈ Y ,
�

�π({ω : f i (ωi ) = y for all i } | a )−ρ(y | a )
�

�≤ ε,

and

2. for all y ∈ Y ,ωi ∈ f −1
i (y ), and all a ∈ A, if π({ωi } | a )> 0, then

π({ω−i : f j (ωj ) = y for all j 6= i } | (a ,ωi ))≥ 1− ε.

The private-monitoring distribution (Ω,π) is strongly ε-close under f to the public-
monitoring distribution (Y ,ρ) if it is ε-close under f and, in addition, all the signaling
functions map into Y .

A private-monitoring distribution (Ω,π) is (strongly) ε-close to the public-monitor-
ing distribution (Y ,ρ) if there exists a vector of signaling functions f such that (Ω,π) is
(strongly) ε-close under f to (Y ,ρ).

If the private monitoring is ε-close under f , but not strongly ε-close under f , then
some private signals are not associated with any public signal: there is a signal ωi sat-
isfying f i (ωi ) =∅. Such an “uninterpretable” signal may contain no information about
the signals observed by the other players.

10Suppose (W, w 1,σ, d ) and (fW , ew 1, eσ, ed ) are two minimal automata representing the same public strat-
egy profile. Define a mapping ϕ : W → fW as follows: Set ϕ(w 1) = ew 1. For bw ∈W \ {w 1}, let bh` be a public
history reaching bw (i.e., bw = σ(w 1,bh`)), and set ϕ( bw ) = eσ( ew 1,bh`). Since both automata are minimal and
represent the same profile, ϕ does not depend on the choice of public history reaching bw . It is straightfor-
ward to verify that ϕ is one-to-one and onto. Moreover, eσ( ew , y ) =ϕ(σ(ϕ−1( ew ), y ), and d (w ) = ed (ϕ(w )).
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The condition of ε-closeness in Definition 2 can be restated as follows. Recall from
Monderer and Samet (1989) that an event is p -evident if, whenever it is true, everyone
assigns probability at least p to it being true. The following lemma is a straightforward
application of the definitions, and so we omit the proof.

LEMMA 1. Suppose f i : Ωi → Y ∪ {∅}, i = 1, . . . , n, is a collection of signaling functions.
The private-monitoring distribution (Ω,π) is ε-close under f to the public monitoring
distribution (Y ,ρ) if and only if for each public signal y , the set of private signal profiles
{ω : f i (ωi ) = y for all i } is (1− ε)-evident (conditional on any action profile) and has
probability within ε of the probability of y (conditional on that action profile).

DEFINITION 3. A private-monitoring game (u ∗, (Ω,π)) is ε-close (under f ) to the public-
monitoring game (eu ∗, (Y ,ρ)) if (Ω,π) is ε-close under f to (Y ,ρ) and

�

�

eu ∗i ( f i (ωi ), a i )−u ∗i (ωi , a i )
�

�< ε

for all i ∈N , a i ∈ A i , andωi ∈ f −1
i (Y ). We say also that such a private-monitoring game

has almost-public monitoring.

Note that because of our maintained assumption that public-monitoring games
have full support monitoring, a private-monitoring game that has almost-public moni-
toring relative to a fixed ρ does not have “almost perfect” monitoring in the sense usu-
ally assumed in the literature.11

The ex ante stage payoffs of any almost-public-monitoring game are close to the ex
ante stage payoffs of the benchmark public-monitoring game (the proof is in the Ap-
pendix).

LEMMA 2. For all η> 0, there is ε > 0 such that if (u ∗, (Ω,π)) is ε-close to (eu ∗, (Y ,ρ)), then

�

�

�

�

∑

ω1,...,ωn

u ∗i (ωi , a i )π(ω1, . . . ,ωn | a )−
∑

y

eu ∗i (y , a i )ρ(y | a )
�

�

�

�

<η.

Fix a public profile (W, w 1,σ, d ) of a full-support public-monitoring game (eu ∗,
(Y ,ρ)), and, under f , a strongly ε-close private-monitoring game (u ∗, (Ω,π)). The pub-
lic profile induces a private profile in the private-monitoring game in a natural way:
Player i ’s strategy is described by the automaton (W, w 1,σi , d i ), where σi (w ,ωi ) =
σ(w , f i (ωi )) for all ωi ∈ Ωi and w ∈ W . The set of states, initial state, and decision
function are from the public profile. The transition functionσi is well-defined, because
the signaling functions all map into Y , rather than Y ∪ {∅}. Note that by construction,
each player’s strategy is “action-free,” i.e., it depends only on past signals and not on past
actions of that player. (See Mailath and Samuelson 2006, Chapter 12 for more discussion
of “action-free.”)

11The order of quantifiers is important: We can construct almost-perfect almost-public monitor-
ing distributions by considering full-support public-monitoring distributions arbitrarily close to perfect
monitoring—see Mailath and Morris (2002, Section 6).
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e2 n 2

e1 2, 2 −1, 3

n 1 3,−1 0, 0

FIGURE 1. The prisoners’ dilemma.

If player i believes that the other players are following a strategy induced by a public
profile, a sufficient statistic of h t

i for the purposes of evaluating continuation strategies is
player i ’s private state and i ’s beliefs over the other players’ private states, i.e., (w t

i ,β t
i ),

where β t
i ∈ ∆(W N−1). With a slight abuse of notation, we write βi (w−i | h t

i ) for the
probability that player i assigns to his opponents being in private states w−i at history
h t

i . We can recursively calculate the private states of player i as w 2
i = σ(w

1, f i (ω1
i )) =

σi (w 1,ω1
i ), w 3

i =σi (w 2
i ,ω2

i ), and so on. For any private history h t
i , we write w t

i =σi (h t
i )

for the private state of the player in period t .

REMARK 1. In private-monitoring games that are ε-close, but not strongly so, a public
profile induces only that part of the private profile determined by histories of signals
ωi ∈ f −1

i (Y ), with the remaining specification of behavior not determined by the public
profile. For an example, see part (ii) of Theorem 1; see also footnote 15.

2.4 Prisoners’ dilemma examples

We illustrate our definitions and results using the repeated prisoners’ dilemma under
various monitoring assumptions. The ex ante stage game is given by the normal form in
Figure 1.12

First, consider the leading example from Mailath and Morris (2002, Section 3.3). The
example illustrates that without bounded recall, beliefs may vary in extreme ways to
prevent a strict PPE from being an equilibrium in nearby private monitoring games.

EXAMPLE 1. In the benchmark public-monitoring game, the set of public signals is Y =
{
¯
y , ȳ } and the public-monitoring distribution is

ρ(ȳ | a 1a 2) =







p if a 1a 2 = e1e2

q if a 1a 2 = e1n 2 or n 1e2

r if a 1a 2 = n 1n 2.

The grim trigger strategy profile for the public-monitoring game is described by the
automaton W = {w e , w n}, initial state w e , decision rules d i (w a ) = a i , and transition

12Here (and in other examples) we follow the literature in assuming the ex ante payoff matrix is inde-
pendent of the monitoring distribution. This simplifies the discussion and is without loss of generality: Ex
ante payoffs are close when the monitoring distributions are close (Lemma 2) and all relevant incentive
constraints are strict.
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a 1a 2
¯
y2 ȳ2

¯
y1 (1−α)(1−3ε) ε

ȳ ′1 ε α′(1−3ε)

ȳ ′′1 ε (α−α′)(1−3ε)

FIGURE 2. The probability distribution of the private signals for Example 2. The distribution is
given as a function of the action profile a 1a 2, where α = p if a 1a 2 = e1e2, q if a 1a 2 = e1n 2 or
n 1e2, and r if a 1a 2 = n 1n 2 (analogously, α′ is given by p ′, q ′, or r ′ as a function of a 1a 2). All
probabilities are strictly positive.

rule

σ(w , y ) =

(

w e if y = ȳ and w =w e

w n otherwise.

Grim trigger is a strict PPE if δ > (3p − 2q )−1 > 0 (a condition we maintain throughout
this example). We consider the ε-close private-monitoring technology where Ωi = Y
and the signaling functions are the identity functions. For ε small, grim trigger induces
a Nash equilibrium in such games if q < r , but not if q > r . Consider first the case
q > r and the private history (e1

¯
y1, n 1ȳ1, n 1ȳ1, . . . , n 1ȳ1). We now argue that, after a suffi-

ciently long such history, the grim trigger specification of n 1 is not optimal. Intuitively,
while player 1 has transited to the private state w n

1 , player 1 always puts strictly positive
(but perhaps small) probability on his opponent being in private state w e

2 . Since q > r
(and ε is small), the private signal ȳ1 after playing n 1 is an indication that player 2 has
played e2 (rather than n 2), and so player 1’s posterior that player 2 is still in w e

2 increases.
Eventually, player 1 is sufficiently confident of player 2 still being in w e

2 that he finds n 1

suboptimal. On the other hand, when q ≤ r , such a history is not problematic because
it reinforces 1’s belief that 2 is also in w n

2 . Two other histories are worthy of mention:
(e1

¯
y1, n 1

¯
y1, n 1

¯
y1, . . . , n 1

¯
y1) and (e1ȳ1, e1ȳ1, e1ȳ1, . . . , e1ȳ1). Under the first history, while

the signal
¯
y1 is now a signal that 2 had chosen e2 in the previous period, for ε small, 1 is

confident that 2 also observed
¯
y2 and so transits to w n

2 . For the final history, the signal ȳ1

continually reassures 1 that 2 is still playing e2, and so e1 remains optimal. (See Mailath
and Morris 2002, Section 3.3 for the calculations underlying this discussion.) ◊

We now consider a richer case where the private signal set is not equal to the public
signal set. The example illustrates that allowing richer signal sets may be important.

EXAMPLE 2. LetΩ1 = {
¯
y1, ȳ ′1, ȳ ′′1 } andΩ2 = {

¯
y2, ȳ2}. The probability distribution of the sig-

nals is given in Figure 2. This private-monitoring distribution is
p
ε-close to the public-

monitoring distribution of Example 1 under the signaling functions f i (
¯
yi ) =

¯
y and

f 2(ȳ2) = f 1(ȳ ′1) = f 1(ȳ ′′1 ) = ȳ , as long as ε is sufficiently small, relative to min{α′,α−α′}.
In Example 1, we argued that if q < r , grim trigger induces Nash equilibrium behav-
ior in close-by private-monitoring games with Ωi = Y . We now argue that under the
richer private-monitoring distribution of this example, even if q < r , grim trigger does
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not induce Nash equilibrium behavior in some close-by games. In particular, suppose
0 < r ′ < q ′ < q < r . Under this parameter restriction, the signal ȳ ′′1 after n 1 is in-
deed a signal that player 2 has also played n 2. However, the signal ȳ ′1 after n 1 is a
signal that player 2 has played e2 and so a sufficiently long private history of the form
(e1

¯
y1, n 1ȳ ′1, n 1ȳ ′1, . . . , n 1ȳ ′1) leads to a posterior for player 1 at which n 1 is not optimal. ◊

3. PPE WITH BOUNDED RECALL

As we saw in Examples 1 and 2, arbitrary public equilibria need not induce equilibria
of almost-public-monitoring games, because the public state in period t is determined,
in principle, by the entire history h t . For profiles that have bounded recall, the entire
history is not needed, and equilibria in bounded recall strategies induce equilibria in
almost-public-monitoring games.13

DEFINITION 4. A public profile s has L-bounded recall if for all h t = (y 1, . . . , y t−1) and
bh t = (by 1, . . . , by t−1), if t > L and y τ = by τ for τ= t − L, . . . , t −1, then

s (h t ) = s (bh t ).

Let Wt be the set of states reachable in period t , Wt ≡ {w ∈W : w = σ(w 1, h t ) for
some h t , where w 1 is the initial state}. The following characterization of bounded recall
is useful.

LEMMA 3. The public profile induced by the minimal automaton (W, w 1,σ, d ) has L-
bounded recall if and only if for all t , all w , w ′ ∈Wt , and all h ∈ Y∞,

σ(w , hL) =σ(w ′, hL).

If a public profile induced by a finite automaton (W, w 1,σ, d ), where W has K ele-
ments, does not have K (K −1)-bounded recall, then it has unbounded recall.

PROOF. The first claim is proved in the Appendix.
For the second claim, suppose that the profile induced by the finite automaton

(W, w 1,σ, d ), where W has K elements, does not have K (K − 1)-bounded recall. From
the first claim, for some t , there exist w , w ′ ∈Wt and history h ∈ Y∞ such that

σ(w , hτ) 6=σ(w ′, hτ),

for τ = 1, . . . , K (K − 1). The sequence {(σ(w , hτ),σ(w ′, hτ))}K (K−1)
τ=0 , where (σ(w , h0),

σ(w ′, h0)) = (w , w ′), consists of K (K −1)+1 terms of pairs of states. Since pairs of identi-
cal states cannot arise, some pair of nonidentical states must be repeated. That is, there

13Denote a dummy signal by ∗. Mailath and Morris (2002) use the term bounded memory for pub-
lic profiles with the property that there is an integer L such that a representing automaton is given by
W = (Y ∪ {∗})L , σ((y 2, . . . , y 2, y L), y ) = (y 2, . . . , y L , y ) for all y ∈ Y , and w 1 = (∗, . . . ,∗). Our earlier notion
implicitly imposes a time homogeneity condition, since the caveat in Lemma 3 that the two states should
be reachable in the same period is missing. The strategy profile in which play alternates between the same
two action profiles in odd and even periods has bounded recall, but not bounded memory.
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exist w ′′ 6=w ′′′ and periods 0≤τ1 <τ2 ≤ K (K −1) such that

(w ′′, w ′′′) = (σ(w , hτ1 ),σ(w ′, hτ1 )) = (σ(w , hτ2 ),σ(w ′, hτ2 )).

Now we have w ′′, reachable in the same period as w ′′′ infinitely often, such that letting eh
be the infinite repetition of the cycle of outcomes τ1 hτ2 , we have σ(w ′′,eh t ) 6=σ(w ′′′,eh t )
for all t . �

Fix a strict public equilibrium with bounded recall, (W, w 1,σ, d ). Fix a private-
monitoring technology (Ω,π) ε-close under f to (Y ,ρ). Following Monderer and Samet
(1989), we first consider a constrained game where behavior after “uninterpretable sig-
nals” is arbitrarily fixed. Define the set of “uninterpretable” private histories, H u

i = {h
t
i :

ωτi ∈ f −1
i (∅), some τ satisfying t − L ≤ τ ≤ t − 1}. This is the set of private histories for

which in any of the last L periods, a private signalωτi satisfying f i (ωτi ) =∅ is observed.
We fix arbitrarily player i ’s action after any private history h t

i ∈H u
i . For any private his-

tory that is not uninterpretable, each of the last L observations of the private signal can
be associated with a public signal by the function f i . Denote by w i (h t

i ) the private state
so obtained. That is,

w i (h t
i ) = ( f i (ωt−L

i ), . . . , f i (ωt−1
i )),

for all h t
i /∈ H u

i . We are then left with a game in which in period t ≥ 2 player i chooses
an action only after a signal ωt−1

i yields a private history not in H u
i . We claim that for

ε sufficiently small, the profile (bs1, . . . ,bsN ) is an equilibrium of this constrained game,
where bs i is the strategy for player i :

bs t
i (h

t
i ) =

(

d i (w 1
i ) if t = 1

d i (w i (h t
i )) if t > 1 and h t

i /∈H u
i .

But this follows from arguments almost identical to that in the proofs of Mailath and
Morris (2002, Theorems 4.2 and 4.3): since a player’s behavior depends only on the last
L signals, for small ε, after observing a history h t

i /∈H u
i , player i assigns a high probabil-

ity to player j observing a signal that leads to the same private state (recall Lemma 1).
The crucial point is that for ε small, the specification of behavior after signalsωi satisfy-
ing f i (ωi ) =∅ is irrelevant for behavior at signalsωi satisfying f i (ωi ) ∈ Y . It remains to
specify optimal behavior after signalsωi satisfying f i (ωi ) =∅. So, consider a new con-
strained game where player i is required to follow bs i where possible. This constrained
game has an equilibrium, and so by construction, we thus have an equilibrium of the
unconstrained game. We have thus proved:

THEOREM 1. Fix a full-support public-monitoring game (eu ∗, (Y ,ρ)) and a strict perfect
public equilibrium, es , with bounded recall L. There exists ε > 0 such that for all private-
monitoring games (u ∗, (Ω,π)) ε-close under f to (eu ∗, (Y ,ρ)),

(i) if f i (Ωi ) = Y for all i , the induced private profile is a Nash equilibrium; and
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(ii) if f i (Ωi ) 6= Y for some i , there is a Nash equilibrium of the private-monitoring game,
s , such that, for all ht = (y 1, . . . , y t−1) and h t

j = (ω
1
j , . . . ,ωt−1

j ), if t > L and y τ =
f j (ωτj ) for τ= t − L, . . . , t −1, then

s j (h t
j ) = es j (h t )

for all j . Moreover, for all κ> 0, ε can be chosen sufficiently small that the expected
payoff to each player under s is within κ of their public equilibrium payoff.

We could similarly extend our results on patiently-strict, connected, finite pub-
lic profiles (Mailath and Morris 2002, Theorem 5.1) and on the almost-public almost-
perfect mutual minmax folk theorem to this more general notion of nearby private-
monitoring distributions.14

4. FAILURE OF COORDINATION

Examples 1 and 2 illustrate that updating in almost-public-monitoring games can be
very different than would be expected from the underlying public-monitoring game.
In this section, we build on that example to show that when the set of signals is suffi-
ciently rich (in a sense to be defined), many profiles fail to induce equilibrium behavior
in almost-public-monitoring games.

Our negative results are based on the following converse to Theorem 1 (the proof is
in the Appendix). Since the theorem is negative, the assumption of strong ε-closeness
(rather than ε-closeness) does not limit its usefulness. The assumption clarifies the
source of the failure of the induced profile to be a Nash equilibrium, which is not due
to a difficulty with interpreting “uninterpretable” signals. Moreover, this failure arises in
any strongly ε-close game in which the belief hypothesis holds. Recall also that the pub-
lic profile completely determines a strategy profile in a private-monitoring game only
when the private-monitoring game is strongly ε-close (Section 2.3).15

THEOREM 2. Suppose the public profile (W, w 1,σ, d ) is a strict equilibrium of the full-
support public-monitoring game (eu ∗, (Y ,ρ)) for some δ and |W | <∞. There exists η > 0
and ε > 0 such that for any game with private monitoring (u ∗, (Ω,π)) strongly ε-close to
(eu ∗, (Y ,ρ)), if there exists a player i , a private history for that player h t

i , and a state w such
that d i (w ) 6= d i (σi (h t

i )) and βi (w 1 | h t
i )> 1−η, then the induced private profile is not a

Nash equilibrium of the game with private monitoring for the same δ.

14We incorrectly claimed that the profile described in the “proof” of the almost-public almost-perfect folk
theorem (Mailath and Morris 2002, Theorem 6.1) has bounded recall. See Mailath and Samuelson (2006,
Proposition 13.6.1) for a proof of the weaker result reported in the text.

15The result does extend to private-monitoring games that are ε-close, but not strongly so. Any pure
private strategy for i can be represented as an automaton (fWi , ew 1, eσi , ed i ), where eσi : fWi ×A i ×Ωi → fWi and
(as usual) ed i : fWi → A i . Say a private profile (fWi , ew 1, eσi , ed i )i reflects the public profile (W, w 1,σ, d ) if for
all i (perhaps after relabeling states, see footnote 10) W ⊂ fWi , ew 1 =w 1, eσi (w , a i ,ωi ) =σ(w , f i (ωi )) for all
(w , a i ,ωi )∈W ×A i × f −1

i (Y ), and finally, ed i (w ) = d i (w ) for all w ∈W .
Then, there exists η > 0 and ε > 0 such that for any close-by private-monitoring game and any private

profile reflecting the public profile, if there is a player and a private history, and a state w ∈W ⊂ fWi with
the specified properties, then the private profile is not a Nash equilibrium.
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We implicitly used this result in our discussions of the repeated prisoners’ dilemma.
For example, in Example 1, we argued that there was a private history for player 1 that
leaves him in the private state w n

1 , but his posterior after that history assigns probability
close to 1 that player 2’s private state is w e

2 .
Our approach is to ask when it is possible to so “manipulate” a player’s beliefs

through the selection of a private history that the hypotheses of Theorem 2 are sat-
isfied. In particular, we are interested in the weakest independent conditions on the
private-monitoring distributions and on the strategy profiles that would allow such
manipulation.

Fix a PPE of the public-monitoring game and a close-by almost-public-monitoring
game. The logic of Example 1 runs as follows: Consider a player i in a private state bw
who assigns strictly positive (albeit small) probability to all the other players being in
some other common private state w̄ 6= bw . (Full-support private monitoring ensures
that such an occurrence arises with positive probability.) Let ea = (d i ( bw ), d−i (w̄ )) be
the action profile that results when i is in state bw and all the other players are in state
w̄ . Suppose that if any other player is in a different private state w 6= w̄ , then the re-
sulting action profile differs from ea . Suppose, moreover, there is a signal y such that
bw = σ( bw , y ) and w̄ = σ(w̄ , y ), that is, any player in the state bw or w̄ observing a pri-

vate signal consistent with y stays in that private state (and so the profile cannot have
bounded recall, see Lemma 3). Suppose finally there is a private signal ωi for player i
consistent with y that is more likely to have come from ea than any other action profile,
i.e.,ωi ∈ f −1

i (y ) and

πi (ωi | ea )>πi (ωi | (d i ( bw ), a ′−i )) ∀a ′−i 6= d−i (w̄ )

(where πi (ωi | a ) is the probability that player i observes the signalωi under a ). Then,
after observing the private signal ωi , player i ’s posterior probability that all the other
players are in w̄ should increase (this is not immediate, however, since the monitoring
is private). Moreover, since players in bw and w̄ do not change their private states, we
can eventually make player i ’s posterior probability that all the other players are in w̄
as close to one as we like. If d i ( bw ) 6= d i (w̄ ), an application of Theorem 2 shows that the
induced private profile is not an equilibrium.

The suppositions in the above logic can be weakened in two ways. First, it is not
necessary that the same private signalωi be more likely to have come from ea than any
other action profile. It should be enough if for each action profile different from ea , there
is a private signal more likely to have come from ea than that profile, as long as that
signal does not mess up the other inferences too badly. In that case, realizations of the
other signals could undo any damage done without negatively impacting on the overall
inferences. For example, suppose there are two players, with player 1 the player whose
beliefs we are “manipulating,” and in addition to state w̄ , player 2 could be in state bw
or w †. Suppose also A2 = {ea 2, ba 2, a †

2}. As before, suppose there is a signal y such that
bw =σ( bw , y ), w̄ =σ(w̄ , y ), and w † =σ(w †, y ), that is, any player in the state bw , w̄ , or w †

observing a private signal consistent with y stays in that private state. We would like the
odds ratio Pr(w2 6= w̄ | h t

1)/Pr(w2 = w̄ | h t
1) to converge to zero as t →∞, for appropriate
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private histories. Let ea 1 = d 1( bw ), ea 2 = d 2(w̄ ), ba 2 = d 2( bw ), and a †
2 = d 2(w †), and suppose

there are two private signals,ω′1 andω′′1 consistent with y , satisfying

π1(ω′1 | ea 1, a †
2)>π1(ω′1 | ea )>π1(ω′1 | ea 1, ba 2)

and

π1(ω′′1 | ea 1, ba 2)>π1(ω′′1 | ea )>π1(ω′′1 | ea 1, a †
2).

Then, after observing the private signalω′1, we have

Pr(w2 = bw | h t
1,ω′1)

Pr(w2 = w̄ | h t
1,ω′1)

=
π1(ω′1 | ea 1, ba 2)
π1(ω′1 | ea )

Pr(w2 = bw | h t
1)

Pr(w2 = w̄ | h t
1)
<

Pr(w2 = bw | h t
1)

Pr(w2 = w̄ | h t
1)

as desired, but Pr(w2 = w † | h t
1,ω′1)/Pr(w2 = w̄ | h t

1,ω′1) increases. On the other hand,
after observing another private signal ω′′1 , also consistent with y , while the odds ratio
Pr(w2 = w † | h t

1,ω′′1 )/Pr(w2 = w̄ | h t
1,ω′′1 ) falls, Pr(w2 = bw | h t

1,ω′′1 )/Pr(w2 = w̄ | h t
1,ω′′1 )

increases. However, it may be that the increases can be offset by appropriate decreases,
so that, for example, ω′1 followed by two realizations ofω′′1 results in a decrease in both
odds ratios. If so, a sufficiently high number of realizations ofω′1ω

′′
1ω
′′
1 result in Pr(w2 6=

w̄ | h t
1)/Pr(w2 = w̄ | h t

1) being close to zero.
In terms of the odds ratios, the sequence of signalsω′1ω

′′
1ω
′′
1 lowers both odds ratios

if, and only if,

π1(ω′1 | ea 1, ba 2)
π1(ω′1 | ea )

�

π1(ω′′1 | ea 1, ba 2)
π1(ω′′1 | ea )

�2

< 1

and

π1(ω′1 | ea 1, a †
2)

π1(ω′1 | ea )

�

π1(ω′′1 | ea 1, a †
2)

π1(ω′′1 | ea )

�2

< 1.

Our richness condition on private-monitoring distributions captures this idea. For
a private-monitoring distribution (Ω,π), define

γa a ′−i
(ωi )≡ logπi (ωi | a i , a−i )− logπi (ωi | a i , a ′−i )

and let γa (ωi ) = (γa a ′−i
(ωi ))a ′−i∈A−i ,a ′−i 6=a−i

denote the vector in R|A−i |−1 of the log odds
ratios of the signal ωi associated with different action profiles. The last two displayed
equations can then be written as 1

3γea (ω
′
1)+

2
3γea (ω

′′
1 )> 0, where 0 is the 2×1 zero vector.16

DEFINITION 5. A private-monitoring distribution (Ω,π) is rich for player i , given his sig-
naling function f i , if for all a ∈ A and all y ∈ Y , the convex hull of the set of vectors
{γa (ωi ) :ωi ∈ f −1

i (y ) and πi (ωi | a i , a ′−i )> 0 for all a ′−i ∈ A−i } has a nonempty intersec-

tion with R|A−i |−1
++ .

16The convex combination is strictly positive (rather than negative) because the definition of γa a ′−i
inverts

the odds ratios from the displayed equations.
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Note that we require only that private monitoring be rich for one player.
It is useful to quantify the extent to which the conditions of Definition 5 are sat-

isfied. Since the spaces of signals and actions are finite, the number of constraints in
Definition 5 is finite, and so for any rich private-monitoring distribution, the set of ζ
over which the supremum is taken in the next definition is non-empty.17

DEFINITION 6. Given f , the richness of a rich private-monitoring distribution (Ω,π) for
i is the supremum of all ζ > 0 satisfying: for all a ∈ A and all y ∈ Y , the convex hull of
the set of vectors {γa (ωi ) : ωi ∈ f −1

i (y ) and πi (ωi | a i , a ′−i ) ≥ ζ for all a ′−i ∈ A−i } has a

nonempty intersection with R|A−i |−1
ζ ≡ {x ∈R|A−i |−1

++ : xk ≥ ζ for k = 1, . . . , |A−i | −1}.

The second weakening of the logic of Example 1 described above concerns the na-
ture of the strategy profile. The logic assumed that there is a signal y such that bw =
σ( bw , y ) and w̄ = σ(w̄ , y ). Thus along the history (y , y , . . .), if the player started out in
distinct states bw or w̄ , he would remain in those distinct states and would continue to
play in distinct ways. But the logic continues to hold if there exists an arbitrary history
h such that some distinct initial states lead to distinct states forever and if, from such
distinct states, play is distinct along that particular history infinitely often. This is the
idea behind the following definition of a separating strategy profile.

Define R( ew ) as the set of states that are repeatedly reachable in the same period
as ew (i.e., R( ew ) = {w ∈ W : {w , ew } ⊂ Wt infinitely often}). Given an outcome path
h ≡ (y 1, y 2, . . .) ∈ Y∞, let τh ≡ (y τ, y τ+1, . . .) ∈ Y∞ denote the outcome path from period
τ, so that h = (hτ,τh) and τhτ+t = (y τ, y τ+1, . . . , y τ+t−1). Consider a continuation path
( ew , h) consisting of an initial state ew followed by an outcome path h. The continuation
path ( ew , h) satisfies state-separation if there is another state w ∈R( ew ) such that starting
in state w instead of ew would lead to distinct states into the infinite future: formally,
there exists another state w ∈ R( ew ) that satisfies σ(w , h t ) 6= σ( ew , h t ) for all t . In this
case, state w is separated from ew along history h. Recall from the proof of the second
claim in Lemma 3 that every unbounded recall profile induced by a finite automaton
has a continuation path ( ew , h) satisfying state-separation.

The logic of our proof requires not only state-separation, but in addition distinct
behavior on the continuation path satisfying state-separation. The continuation path
( ew , h) satisfies behavior-separation if whenever state w ∈ R(σ( ew , hτ)) is separated from
σ( ew , hτ), then all players choose different actions along the outcome path τh infinitely
often. Formally, for all τ and w ∈ R(σ( ew , hτ)), if σ(w ,τhτ+t ) 6= σ( ew , hτ+t ) for all t ≥ 0,
then

d i (σ(w ,τhτ+t )) 6= d i (σ( ew , hτ+t )) infinitely often, for all i .

Notice that every continuation path satisfies behavior-separation if, for each player, dis-
tinct states always lead to distinct actions. The need to behavior-separate the state
ew from every other state that can be reached infinitely often is illustrated by our ear-

lier discussion: because private monitoring implies all such states are assigned positive

17The bound ζ appears twice in the definition. Its first appearance ensures that for all ζ > 0, there is
a uniform upper bound on the number of private signals satisfying πi (ωi | a i , a ′−i ) ≥ ζ in any private-
monitoring distribution with a richness of at least ζ.



Theoretical Economics 1 (2006) Coordination failure in repeated games 327

A B C

A 3, 3 0, 0 0, 0

B 0, 0 3, 3 0, 0

C 0, 0 0, 0 2, 2

FIGURE 3. The normal form for Example 3.

probability by a player’s beliefs, we need to have signals that are informative about these
states relative to ew . Now we have:

DEFINITION 7. The public strategy profile is separating if there is a state ew and an out-
come path h ∈ Y∞ such that ( ew , h) satisfies state-separation and behavior-separation.

Clearly, a separating profile cannot have bounded recall. The key question is how
much stronger is this property than having unbounded recall under the restriction to
finite state strategies. Since every finite unbounded recall profile has a state-separating
path, the only way a finite state strategy profile with unbounded recall can fail separa-
tion is if every continuation path satisfying state-separation fails behavior-separation.
The following example illustrates this possibility.

EXAMPLE 3. The stage game is given in Figure 3. In the public-monitoring game, there
are two public signals, y ′ and y ′′, with distribution (0<q < p < 1)

ρ(y ′′ | a 1a 2) =

(

p if a 1 = a 2

q otherwise.

Finally, the public profile is illustrated in Figure 4. Under any outcome path in which the
sequence y ′y ′ or y ′y ′′ occurs, all states transit to the same state. Under any outcome
path in which only y ′′ appears, the state eventually cycles between w A and bw A . Thus
continuation path (w , h) is state-separating only if h = (y ′′, y ′′, . . .). But this continuation
path is not behavior separating, since action A is then played forever. ◊

We think of this failure as pathological. In this example, it is easy to see that the pro-
file is not robust. After enough realizations of private signals corresponding to y ′′, beliefs
must assign roughly equal probability to w A and bw A ,18 and so after the first realization
of a private signal corresponding to y ′, B is the only best reply (even if the current state
is w C ).

We do not have an example of a finite state strategy profile with unbounded recall
that fails separation but is robust. Example 3 suggests an intuition why such an exam-
ple might be hard to find: a strategy profile with unbounded recall can fail separation
only if all state-separated states give rise to identical behavior most of the time. With the

18The details of this calculation can be found in Mailath and Samuelson (2006, Example 13.4.6).



328 Mailath and Morris Theoretical Economics 1 (2006)

Aw Aŵ

Bw Cw

y′

y′

y ′′
y ′′

y ′′

y ′′

y′

y′

FIGURE 4. The strategy profile for Example 3. In states w A and bw A the action A is played, while
in w B the action B and in w C , the action C is played.

possibility of belief drift, as in the example, it seems hard to make this consistent with
equilibrium. Moreover, this possibility of drift implies also that showing that these un-
bounded recall strategy profiles are not robust requires a quite different proof strategy
than that pursued in this paper.

It remains to ensure that, under private monitoring, players may transit to different
states. It suffices to assume the following, weaker than full-support, condition:19

DEFINITION 8. A private-monitoring distribution (Ω,π) that is ε-close to a public-moni-
toring distribution (Y ,ρ) has essentially full support if for all (y1, . . . , yn )∈ Y n ,

π{(ω1, . . . ,ωn )∈Ω : f i (ωi ) = yi , i = 1, . . . , n}> 0.

THEOREM 3. Fix a separating strict finite PPE of a full-support public-monitoring game
(eu ∗, (Y ,ρ)). For all ζ > 0, there exists ε′ > 0 such that for all ε < ε′, if (u , (Ω,π)) is a
private-monitoring game strongly ε-close under some signaling function f to (eu ∗, (Y ,ρ))
with (Ω,π) having richness, given f , for some player i of at least ζ and essentially full sup-
port, then the induced private profile is not a Nash equilibrium of the private-monitoring
game.

It is worth noting that the bound on ε is a function only of the richness of the private
monitoring. It is independent of the probability that a disagreement in private states
arises. By considering finite state profiles that are separating, not only is the difficulty
identified in the Introduction dealt with (as we discuss at the end of the next section),
but we can accommodate arbitrarily small probabilities of disagreement.

19If an essentially-full-support private monitoring distribution does not have full support, Nash equi-
libria of the private-monitoring game may not have realization-equivalent sequentially-rational strategy
profiles.
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Thus, separating strict PPE of public-monitoring games are not robust to the intro-
duction of private monitoring. It, of course, implies also that separating behavior in the
private-monitoring game typically cannot coordinate continuation play in the follow-
ing sense. Say a profile is ε-strict if all the incentive constraints are satisfied by at least ε.
(The result follows immediately from upperhemicontinuity and Theorem 3.)

COROLLARY 1. Fix a vector of signaling functions f , f i : Ωi → Y . Suppose {(u k , (Ω,πk ))}
is a sequence of private-monitoring games, with (u k , (Ω,πk )) strongly 1/k -close to some
public-monitoring game (eu ∗, (Y ,ρ)) and {(Ω,πk )} a rich (for some player i ) sequence of
distributions. Fix a pure strategy profile of the private-monitoring game in which each
player’s strategy respects his signaling function f j (i.e., σj (h j , a j ,ωj ) = σj (h j , a j , bωj ) if
f j (ωj ) = f j ( bωj ) 6= ∅). Suppose this profile is separating (when interpreted as a public
profile). For all ε > 0, there exists k ′ such that for k > k ′, this profile is not an ε-strict
Nash equilibrium.

Since the equilibrium failure of separating profiles seems to arise after private histo-
ries that have low probability, an attractive conjecture is that equilibrium can be restored
by appropriately modifying the profile at only the problematic histories. Unfortunately,
such a modification appears to require additional modifications to the profile, destroy-
ing the connection to the public-monitoring game.

5. THE PROOF OF THEOREM 3

Our proof exploits an alternative characterization of separation that holds for finite state
strategies, reported in the next lemma and corollary (proved in the Appendix).

LEMMA 4. A finite public strategy profile of the public-monitoring game is separating if,
and only if, there is a finite sequence of signals hm , a collection of states Wc , and a state
w̄ ∈Wc such that

(i) σ(w , hm ) =w for all w ∈Wc ,

(ii) σ(w , hm )∈Wc for all w ∈R(w̄ ),

(iii) ∀w ∈Wc \ {w̄ }, ∀i ∃`, 2≤ `≤m , such that

d i (σ(w , hk ) 6= d i (σ(w̄ , hk ),

and

(iv) |Wc | ≥ 2.

We emphasize that each state in the set of states Wc cycles under the given finite
sequence of signals and every state reachable (infinitely often) in the same period as w̄
is taken into Wc by one round of the cycle.
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COROLLARY 2. Suppose (W, w 1,σ, d ) is the minimal automaton of a separating finite
public strategy profile. For any player i , the history hm , set of states Wc , and state w̄ ∈Wc

can be chosen so that, in addition, d i ( bw ) 6= d i (w̄ ) for some bw ∈Wc \ {w̄ }.

The proof of Theorem 3 is by contradiction. Suppose there exists ζ> 0 such that for
all k there exists a private-monitoring game (u , (Ωk ,πk )) strongly 1/k -close under some
f to (eu ∗, (Y ,ρ)) with (Ωk ,πk ) having richness at least ζ, with the induced private profile
a Nash equilibrium of the private-monitoring game.

The basic argument is most easily seen if the space of signals for each player is inde-
pendent of k , so that Ωk

i =Ωi . Then, we can assume πk converges to a limit distribution
π∞ on Ω (by choosing a subsequence if necessary). The behavior of the beliefs of player
i over the private states of the other players under the limit private monitoring distribu-
tion (Ω,π∞) is significantly easier to describe. Since (Ω,πk ) is strongly 1/k -close to (Y ,ρ)
and πk → π∞, for each y ∈ Y the event {(ω1, . . . ,ωn ) : ωi ∈ f −1

i (y )} is common belief
under π∞. Moreover, if the other players start in the same state (such as w̄ ) then they
stay in the same state thereafter. We can thus initially focus on finding the appropriate
sequence of signals to manipulate i ’s updating about the current private states of the
other players, without being concerned about the possibility that subsequent realiza-
tions derail the process (we deal with that issue subsequently). The difficulty, of course,
is that Ωk

i depends on k , and moreover, that in principle as k gets large, so may Ωk
i .

We can however, proceed as follows: For each k and a i ∈ A i , let

Ωk ,a i
i = {ωi ∈Ωk

i :πk
i (ωi | a i , a ′−i )>ζ for all a ′−i ∈ A−i }.

Since (Ωk ,πk ) is strongly close to (Y ,ρ), every signal inΩk
i is associated with some public

signal, and so we can partition Ωk ,a i
i into subsets of private signals associated with the

same public signal, Ωk ,a i
i (y ). Order arbitrarily the signals in ∪a iΩ

k ,a i
i (y ), and give the

`-th signal in the order the label (y ,`). Let λi ,y ≡
�

�∪a iΩ
k ,a i
i (y )
�

�; note that λi ,y is (crudely)
bounded above by λ∗ ≡ |A i |/ζ for all k (recall footnote 17). With this relabeling, and
defining Ωi ≡∪y∈Y {(y , 1), (y , 2), . . . , (y ,λ∗)}, a finite set, we have, for all i and k ,

Ωk
i ⊂Ωi ∪
�

Ωk
i \
�

∪a i∈A iΩ
k ,a i
i

��

(1)

and
Ωk

i ∩Ωi 6=∅.

Without loss of generality, we can assume (1) holds with equality (simply include any
signalωi ∈Ωi \Ωk

i in Ωk
i , so that πk

i (ωi | a ) = 0).
We augment Ωi , for each y ∈ Y , by a new signal denoted ω

y
i , and define Ω∞i ≡ Ωi ∪

(∪y {ω
y
i }). We interpretω

y
i as the set of i ’s private signals associated with y that are not

in Ωi . For each k , we can interpret Ω∞i as a partition of Ωk
i (each ωi ∈ Ωi appears as a

singleton, while ω
y
i ≡ {ωi ∈ Ωk

i \ (∪a i∈A iΩ
k ,a i
i ) : f i (ωi ) = y } may be empty). For each

a ∈ A, denote by bπk (· | a ) the probability distribution on
∏

i Ω
∞
i induced by πk (· | a ).

Note that we now have a sequence of probability distributions {bπk (· | a )}k for each a ∈ A
on a common finite signal space

∏

i Ω
∞
i .
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By passing to a subsequence if necessary, we can assume {bπk (ω | a )}k is a convergent
sequence with limit π∞(ω | a ) for all a ∈ A, ω ∈

∏

i Ω
∞
i . Note that (Ω∞,π∞) is 0-close to

(Y ,ρ).
Because there are only a finite number of players, by passing to a further subse-

quence if necessary, we can assume that the private-monitoring distribution is rich for
the same player i ; we call this player the rich player. Moreover, by passing to yet a fur-
ther subsequence if necessary, we can assume also that, for the rich player i , a i ∈ A i ,
and y ∈ Y , the convex hull of the set of vectors {γ∞a (ωi ) :ωi ∈ f −1

i (y ),π
∞
i (ωi | a i , a ′−i )>ζ

for all a ′−i ∈ A−i } has a nonempty intersection with R|A−i |−1
ζ , where

γ∞a a ′−i
(ωi )≡ logπ∞i (ωi | a i , a−i )− logπ∞i (ωi | a i , a ′−i )

and γ∞a (ωi ) = (γ∞a a ′−i
(ωi ))a ′−i∈A−i ,a ′−i 6=a−i

.

In the following lemma, a private signalωj for player j is consistent with the private
signalωi for player i if f j (ωj ) = f i (ωi ), where f i and f j are the signaling functions from
Definition 2. It is an implication of this lemma that if player i assigns strictly positive
probability to all the other players being in the state w̄ , then after sufficient repetitions
of the cycle ~ωL

i (defined in Lemma 5), player i eventually assigns probability arbitrarily
close to 1 that at the end of a cycle, all the other players are in the state w̄ .

LEMMA 5. Fix a finite separating public profile of the public-monitoring game, and let w̄ ,
bw , Wc , be the states and set of states identified in Corollary 2 for the rich player i . Then,

there exists a finite sequence of private signals for player i , ~ωL
i ≡ (ω

1
i ,ω2

i , . . . ,ωL
i ), such

that

(i) σi ( bw , ~ωL
i ) = bw ,

(ii) for all sequences of private signals, ~ωL
j , for any player j 6= i consistent with ~ωL

i ,

σj (w , ~ωL
j ) =w for all w ∈Wc , and

(iii) for all w∈W n−1
c \ {w̄ 1},

A( ~ωL
i ; w)≡

Pr∞( ~ωL
i |w−i =w, w i = bw )

Pr∞( ~ωL
i |w−i = w̄ 1, w i = bw )

< 1,

where Pr∞ denotes probabilities calculated under π∞ and the assumption that all
players follow the private profile.

PROOF. The cycle ȳ 1, . . . , ȳ m from Lemma 4 induces a cycle in the states w̄ = w̄ 1, . . . ,
w̄ m+1 = w̄ 1 and bw = bw 1, . . . , bw m+1 = bw 1. We index the cycle by ` and write ā ` = d (w̄ `)
and ba `i = d i ( bw `). Let ea ` ≡ (ba `i , ā `−i ). Richness implies that for each `, there exists a vector
of nonnegative integers, (nωi )ωi∈ f −1

i (y
`), so that for all a ′−i 6= ā `−i ,

∑

ωi∈ f −1
i (ȳ

`)

γ∞
ea `,a ′−i

(ωi )nωi > 0.
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Since
γ∞
ea `,a ′−i

(ωi ) = logπ∞i (ωi | ea `)/π∞i (ωi | ba `i , a ′−i ),

we have, for all a ′−i 6= ā `−i ,

∏

ωi∈ f −1
i (ȳ

`)

�

π∞i (ωi | ea `)
π∞i (ωi | ba `i , a ′−i )

�nωi

> 1.

Letting n` =
∑

ωi∈ f −1
i (y

`)nωi for each `, denote by N ′ the lowest common multiple

of {n 1, . . . , n m }. Let ~ωL
i denote the cycle of private signals for player i consistent with

cycling N times through the public signals ȳ 1, ȳ 2, . . . , ȳ m and in which for each `, the
private signalωi ∈ f −1

i (y
`) appears (N ′/n`)nωi times. This cycle is of length L ≡m N ′.

Given a private state profile w ∈ W n−1
c , let ǎ `−i denote the action profile taken in

period ` of the cycle. Then,

A( ~ωL
i ; w)≡

Pr∞( ~ωL
i |w

t
−i =w, w i = bw )

Pr∞( ~ωL
i |w

t
−i = w̄ 1, w i = bw )

=
m
∏

`=1







∏

ωi∈ f −1
i (ȳ

`)

�

π∞i (ωi | ba `i , ǎ `−i )

π∞i (ωi | ea `)

�nωi







N /n`

.

For w 6= w̄ 1, in each period at least one player is in a private state different from w̄ . From
Lemma 4.2, ǎ `−i 6= ea

`
−i for at least one `, and so A(~hL

i ; w)must be strictly less than 1. �

We are, of course, primarily concerned with private monitoring under the distribu-
tion (Ωk ,πk ). In this situation, one must deal with the possibility that player j ’s private
signals may be inconsistent with player i ’s observations. However, by choosing k suf-
ficiently large, one can ensure that this possibility does not arise with large probability
along the cycle ~ωL

i . The subsequent lemma implies that this possibility never arises with
large probability.

LEMMA 6. Assume the hypotheses of Lemma 5, and let h t
i be a private history for player

i satisfying bw = σi (h t
i ). For all η > 0, there exist ξ > 0 and k ′ (independent of h t

i ) such
that, for all k > k ′, if η< Prk (w t

−i ∈W n−1
c \ {w̄ 1} | h t

i )< 1 and Prk (w t
−i /∈W n−1

c | h t
i )<ξ,

then
Prk (w t+L

−i 6= w̄ 1 | ~ωL
i , h t

i )

Prk (w t+L
−i = w̄ 1 | ~ωL

i , h t
i )
< (1−ξ)

Prk (w t
−i 6= w̄ 1 |h t

i )

Prk (w t
−i = w̄ 1 |h t

i )
, (2)

where Prk denotes probabilities calculated under πk and the assumption that all players
follow the private profile, and ~ωL

i is the sequence identified in Lemma 5.

PROOF. For clarity, we suppress the conditioning on h t
i . Denote the event that play-

ers other than i observe some sequence of private signals consistent with the cycle
(ȳ 1, . . . , ȳ m )N by ~y−i , and the complementary event by ¬~y−i . Then,

Prk (w t+L
−i 6= w̄ 1, ~ωL

i ) = Prk (w t+L
−i 6= w̄ 1, ~ωL

i , ~y−i )+Prk (w t+L
−i 6= w̄ 1, ~ωL

i , ¬~y−i )
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and

Prk (w t+L
−i 6= w̄ 1, ~ωL

i , ~y−i )

≤ Prk (w t
−i 6= w̄ 1, ~ωL

i , ~y−i )

= Prk (w t
−i ∈W n−1

c \ {w̄ 1}, ~ωL
i , ~y−i )+Prk (w t

−i /∈W n−1
c \ {w̄ 1}, ~ωL

i , ~y−i ),

where the inequality arises because a player j 6= i may be in a private state not in Wc .
Now,

Prk (w t
−i ∈W n−1

c \ {w̄ 1}, ~ωL
i , ~y−i )

= Prk ( ~ωL
i , ~y−i |w t

−i ∈W n−1
c \ {w̄ 1})Prk (w t

−i ∈W n−1
c \ {w̄ 1})

≤ Prk ( ~ωL
i , ~y−i |w t

−i ∈W n−1
c \ {w̄ 1})Prk (w t

−i 6= w̄ 1),

and if Prk (w t
−i /∈W n−1

c \ {w̄ 1})<ξ (where ξ is to be determined),

Prk (w t
−i /∈W n−1

c \ {w̄ 1}, ~ωL
i , ~y−i )+Prk (w t+L

−i 6= w̄ 1, ~ωL
i , ¬~y−i )

<ξ+Prk (w t+L
−i 6= w̄ 1, ~ωL

i , ¬~y−i )

≤ ξ+Prk ( ~ωL
i , ¬~y−i )

= ξ+Prk (¬~y−i | ~ωL
i )Prk ( ~ωL

i ).

Moreover,

Prk (w t+L
−i = w̄ 1, ~ωL

i )≥ Prk (w t
−i = w̄ 1, ~ωL

i , ~y−i )

= Prk ( ~ωL
i , ~y−i |w t

−i = w̄ 1)Prk (w t
−i = w̄ 1).

Defining

x t (k )≡
1

Prk (w t
−i 6= w̄ 1)

(ξ+Prk (¬~y−i | ~ωL
i )Prk ( ~ωL

i )),

we have,

Prk (w t+L
−i 6= w̄ 1 | ~ωL

i )

Prk (w t+L
−i = w̄ 1 | ~ωL

i )

<
Prk ( ~ωL

i , ~y−i |w t
−i ∈W n−1

c \ {w̄ 1})+x t (k )

Prk ( ~ωL
i , ~y−i |w t

−i = w̄ 1)
×

Prk (w t
−i 6= w̄ 1)

Prk (w t
−i = w̄ 1)

≤
maxw∈W n−1

c \{w̄ 1}Prk ( ~ωL
i , ~y−i |w t

−i =w)+x t (k )

Prk ( ~ωL
i , ~y−i |w t

−i = w̄ 1)
×

Prk (w t
−i 6= w̄ 1)

Prk (w t
−i = w̄ 1)

. (3)

From Lemma 5,

max
w∈W n−1

c \{w̄ 1}
A( ~ωL

i ; w) = max
w∈W n−1

c \{w̄ 1}
lim

k→∞

Prk ( ~ωL
i , ~y−i |w t

−i =w)

Prk ( ~ωL
i , ~y−i |w t

−i = w̄ 1)
< 1,

and so there is ξ′ > 0 sufficiently small so that (recall that the denominator has a strictly
positive limit)

max
w∈W n−1

c \{w̄ 1}
lim

k→∞

Prk ( ~ωL
i , ~y−i |w t

−i =w)+ξ′

Prk ( ~ωL
i , ~y−i |w t

−i = w̄ 1)
< 1−ξ′.
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The finiteness of the state space and the number of players allows us to interchange the
max and lim operations. Consequently, there exists k ′′ such that for all k ≥ k ′′,

maxw∈W n−1
c \{w̄ 1}Prk ( ~ωL

i , ~y−i |w t
−i =w)+ξ′

Prk ( ~ωL
i , ~y−i |w t

−i = w̄ 1)
< 1−ξ′. (4)

Since (Ω,πk ) is strongly 1/k -close to (Y ,ρ), limk→∞Prk (¬~y−i | ~ωL
i ) = 0, and so there

exists k ′′′ such that Prk (¬~y−i | ~ωL
i ) < ξ

′η/2 for all k ≥ k ′′′. Suppose ξ = ξ′η//2 and
k ′ = max{k ′′, k ′′′}. Since η < Prk (w t

−i ∈ W n−1
c \ {w̄ 1}) ≤ Prk (w t

−i 6= w̄ 1), x t (k ) ≤ ξ′.
Consequently (4), with (3), implies (2) (since ξ<ξ′). �

Lemma 4 guarantees that one round of the cycle of signals always takes a state not
in Wc into Wc , ensuring that the probability on states in W \Wc can be controlled.

LEMMA 7. Assume the hypotheses of Lemma 5, and let h t
i be a private history for player i

satisfying bw =σi (h t
i ). Fix η> 0 and let ξ and k ′ be the constants identified in Lemma 6 .

There exists T such that if t ≥ T , then for all k > k ′,

Prk (w t+L
−i /∈W n−1

c | ~ωL
i , h t

i )<ξ.

PROOF. Fix T large enough, so that if w̄ ∈Wt (the set of states reachable in period t ) for
t ≥ T , then Wt ⊂R(w̄ ). Separation then implies Prk (w t+L

−i /∈W n−1
c , ~y−i ) = 0, and so

Prk (w t+L
−i /∈W n−1

c | ~ωL
i )

= Prk (w t+L
−i /∈W n−1

c , ~y−i | ~ωL
i )+Prk (w t+L

−i /∈W n−1
c , ¬~y−i | ~ωL

i )

= Prk (w t+L
−i /∈W n−1

c , ¬~y−i | ~ωL
i )

≤ Prk (¬~y−i | ~ωL
i ),

which is less than ξ for k ≥ k ′. �

We are now in a position to complete the proof. Suppose bh t
i is a private history

for player i that leads to the private state bw with t ≥ T , and let η be the constant re-
quired by Theorem 2. Since bw and w̄ are both reachable in the same period, with pos-
itive probability player i observes a private history bh t

i that leads to the private state bw .

Moreover, at bh t
i his posterior belief that all the other players are in the private state w̄ ,

Prk (w t
−i = w̄ 1 |bh t

i ), is strictly positive for all k , though converging to 0 as k →∞ (where

Prk denotes probabilities under πk ). If Prk (w t
−i 6= w̄ 1 | bh t

i ) ≤ η, then Prk (w t
−i = w̄ 1 |

bh t
i )> 1−η, and since d i ( bw ) 6= d i (w̄ ), Theorem 2 yields the desired conclusion.

Suppose then that Prk (w t
−i 6= w̄ 1 | bh t

i ) > η and k > k ′, where k ′ is from Lemma 6.
Lemmas 6 and 7 immediately imply that, as long as Prk (w t+κL

−i 6= w̄ 1 | h t
i , ( ~ωL

i )
κ) > η,

after the first cycle, the odds ratio falls until eventually Prk (w t ′
−i 6= w̄ 1 | h t ′

i )≤η, at which
point we are in the first case (since bw cycles under ~ωL

i , i ’s private state continually re-
turns to bw ).
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REMARK 2. How is the difficulty identified in the Introduction dealt with? In the above
argument, the length of the cycle was determined by Lemma 5 from the limit distribu-
tion (Ω∞,π∞), independently of Prk (w t

−i = w̄ 1 | bh t
i ). Separation is critical here, since it

allows us to focus on a cycle, rather than an entire outcome path. We then considered
private-monitoring games sufficiently far out in the sequence, such that along the cy-
cle, state transitions occur as expected with high probability (Lemmas 6 and 7). Since
we can use a cycle to manipulate beliefs, the magnitude of the prior is irrelevant; all we
need is that Prk (w t

−i = w̄ 1 | bh t
i )> 0.

REMARK 3. The difficulty with extending Theorem 3 to private-monitoring games that
are ε-close, but not strongly so, to a public-monitoring game is that the public profile
does not uniquely determine a private profile (see Remark 1). Without further restric-
tions on the private profile, it is difficult to determine the evolution of beliefs. How-
ever, the proof of Theorem 3 (with essentially no changes) shows the following (see foot-
note 15 for automaton representations of private strategies and the notion of reflects):

THEOREM 4. Fix (W, w 1,σ, d ), a separating strict finite PPE of a full-support public-
monitoring game (eu ∗, (Y ,ρ)). For all ζ > 0, there exists ε′ > 0 such that for all ε < ε′,
if (u , (Ω,π)) is a private-monitoring game ε-close under some signaling function f to
(eu ∗, (Y ,ρ)) with (Ω,π) having richness, given f , for some player i of at least ζ and es-
sentially full support, and if the private profile (fWi , ew 1, eσi , ed i )i reflects the public profile
(W, w 1,σ, d ) with fWi =W for all i , then the private profile is not a Nash equilibrium of
the private-monitoring game.

The key observation is that under the assumption that the private profile not intro-
duce any new states (i.e., fWi =W ), the continuation play even after uninterpretable sig-
nals is still described by the public profile (conditional on the state). The logic described
in Remark 2 hence applies to this case as well.

The restriction that the private profile not introduce any new states is substantive.
It is easy to construct counterexamples to Part (ii) of Theorem 1 under this additional
restriction.

APPENDIX: REMAINING PROOFS

PROOF OF LEMMA 2. Suppose (u ∗, (Ω,π)) is ε-close to (eu ∗, (Y ,ρ))with associated signal-
ing functions ( f 1, . . . , f n ). Then, for all a ,
�

�

�

�

∑

ω1,...,ωn

u ∗i (ωi , a i )π(ω1, . . . ,ωn | a )−
∑

yi

eu ∗i (yi , a i )ρ(y | a )
�

�

�

�

≤
�

�

�

�

∑

y

∑

ω1∈ f −1
1 (y ),...,ωn∈ f −1

n (y )

u ∗i (ωi , a i )π(ω1, . . . ,ωn | a )− eu ∗i (y , a i )ρ(y | a )
�

�

�

�

+ |Y |εmax
ωi ,a i

�

�u ∗i (ωi , a i )
�

�



336 Mailath and Morris Theoretical Economics 1 (2006)

≤
�

�

�

�

∑

y

eu ∗i (y , a i )
�

∑

ω1∈ f −1
1 (y ),...,ωn∈ f −1

n (y )

π(ω1, . . . ,ωn | a )−ρ(y | a )
�

�

�

�

�

+ ε+ |Y |εmax
ωi ,a i

�

�u ∗i (ωi , a i )
�

�

≤ 2 |Y |εmax
ωi ,a i

�

�u ∗i (ωi , a i )
�

�+ ε+ ε2 |Y | ,

where the first inequality follows from
∑

y π({ω : f i (ωi ) = y for each i } | a ) > 1− ε |Y |
(an implication of part 1 of Definition 2), the second equality follows from

�

�

eu ∗i (y , a i )−
u ∗i (ωi , a i )
�

� < ε for all i ∈ N , a i ∈ A i , and ωi ∈ f −1
i (y ), and the third inequality follows

from part 1 of Definition 2 and maxy ,a i

�

�

eu ∗i (y , a i )
�

� ≤ maxωi ,a i

�

�u ∗i (ωi , a i )
�

�+ ε. The last
term can clearly be made smaller than η by appropriate choice of ε. �

PROOF OF THE FIRST CLAIM IN LEMMA 3. Suppose there exists L such that for all w , w ′ ∈
W reachable in the same period and for all h ∈ Y∞,

σ(w , hL) =σ(w ′, hL).

Then, for all w , w ′ ∈W reachable in the same period and for all h ∈ Y∞,

d (σ(w , h t )) = d (σ(w ′, h t )) ∀t ≥ L+1.

If w =σ(w 1, y 1, . . . , y t−L−1) and w ′ =σ(w 1, by 1, . . . , by t−L−1), then for h t and bh t as speci-
fied in Definition 4,

s (h t ) = d (σ(w , y t−L , . . . , y t−1))

= d (σ(w ′, y t−L , . . . , y t−1))

= d (σ(w ′, by t−L , . . . , by t−1)) = s (bh t ).

Suppose now the profile s has L-bounded recall. Let (W, w 1,σ, d ) be a representa-
tion of s . Suppose w and w ′ are two states reachable in the same period. Then there
exist hτ and bhτ such that w = σ(w 1, hτ) and w ′ = σ(w 1,bhτ). Then, for all h ∈ Y∞,
(hτ, h t ) and (bhτ, h t ) agree for the last t − 1 periods, and so if t ≥ L+ 1, they agree for at
least the last L periods, and so

d (σ(w , h t )) = s (hτ, h t )

= s (bhτ, h t ) = d (σ(w ′, h t )).

Minimality of the representing automaton then implies that for all h ∈ Y∞ and w , w ′ ∈
W reachable in the same period,σ(w , hL) =σ(w ′, hL). �

PROOF OF THEOREM 2. Let φi (w ) be player i ’s continuation value from the strategy
profile (W, w ,σ, d ) in the game with public monitoring (i.e., φi (w ) is the continuation
value of state w under the profile (W, w 1,σ, d )), and let φi (s i | w ) be the continuation
value to player i from following the strategy s i when all the other players follow the strat-
egy profile (W, w ,σ, d ). Since the public profile is a strict equilibrium and |W |<∞, there
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exists θ > 0 such that for all i , w ∈W and es i , for any deviation continuation strategy for
player i with es 1

i 6= d i (w ),
φi (es i |w )<φi (w )−θ .

Every strategy es i in the game with public monitoring induces a strategy s i in the
games with private monitoring that are strongly ε-close in the natural manner:

s i (a 1
i ,ω1

i ; a 2
i ,ω2

i ; . . . , a t−1
i ,ωt−1

i ) = es i (a 1
i , f i (ω1

i ); a 2
i , f i (ω2

i ); . . . , a t−1
i , f i (ωt−1

i )).

Denote by V πi (w ) the expected value to player i in the game with private monitoring
(u ∗, (Ω,π)) from the private profile induced by (W, w ,σ, d ). Let V πi (s i | h t

i ) denote player
i ’s continuation value of a strategy s i in the game with private monitoring, conditional
on the private history h t

i .
There exist ε and η > 0 such that for all strategies es i for player i in the game with

public monitoring, and all histories h t
i for i in the game with private monitoring, if the

game with private monitoring is strongly ε-close to the game with public monitoring
and βi (w 1 | h t

i ) > 1− η, then
�

�V πi (s i | h t
i )−φi (es i | w )
�

� < θ/3, where s i is the induced
strategy in the game with private monitoring. (The argument is essentially the same as
that of Mailath and Morris 2002, Lemma 3.)

Suppose there exists a player i , a private history h t
i , and a state w such that d i (w ) 6=

d i (σi (h t
i )) and βi (w 1 | h t

i ) > 1 − η. Denote by s ′i the private strategy described by
(W, w ,σi , d i ), es ′i the public strategy described by (W, w ,σ, d i ), s i the private strategy de-
scribed by (W,σi (h t

i ),σi , d i ), and es i the public strategy described by (W,σi (h t
i ),σ, d i ).

Then,

V πi (s
′
i | h

t
i )>φi (es ′i |w )−θ/3=φi (w )−θ/3
>φi (es i |w )+2θ/3

>V πi (s i | h t
i )+θ/3

=V πi (σi (h t
i ))+θ/3,

so that s ′i is a profitable deviation. �

PROOF OF LEMMA 4. It is immediate that if the profile satisfies the conditions in the
lemma, then it is separating. Suppose, then, that the profile is separating. Given the
outcome path h ∈ Y∞ and state ew from the definition of separation, σ(w , h t ) denotes
the state reached after the first t −1 signals in h from the state w .

The idea is to construct the set Wc by iteratively adding the states necessary to sat-
isfy parts (i) and (ii); parts (iii) and (iv) are then implications of separation. We start by
considering all states reached infinitely often from states in R( ew ) along h. While this
implies a cycle of those states, there is no guarantee that other states reachable in the
same period are mapped into the cycle. Accordingly, we include states that are reached
infinitely often from states that are reachable under any history in the same period as
the states just identified, and so on. Proceeding in this way, we construct a set of states
and a finite sequence of signals with the properties that the states cycle under the se-
quence, and every state that could arise is mapped under the finite sequence of signals
to a cycling state.
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We begin by denoting by w1(t ) the vector of states (σ(w , h t ))w∈R( ew ) ∈W R( ew ). Since
W is finite, so is W R( ew ), and there exists T 1

1 such that for all τ ≥ T 1
1 , w1(τ) appears in-

finitely often in the sequence {w1(t )}t . Let W 1 ≡ {σ(w , hT 1
1 ) : w ∈ R( ew )}, i.e., W 1 is the

collection of states that can be reached in period T 1
1 under h, starting from any state in

R( ew ). Separation implies
�

�W 1
�

� ≥ 2. By the definition of T 1
1 , there exists an increasing

sequence {T k
1 }
∞
k=2, with T k

1 →∞ as k →∞, satisfying, for all k ≥ 2,

w1(T k
1 ) =w1(T 1

1 ),

and for all t ≥ T 1
1 and k ≥ 1, there exists a period τwith T k

1 <τ≤ T k+1
1 such that

w1(t ) =w1(τ).

The first displayed equation implies that for all w ∈W 1, σ(w ,T 1
1 hT k

1 ) = w for all k . The
second implies that for any state w in R( ew ) and any t ≥ T 1

1 , the state w ′ = σ(w , h t )
appears at least once between each pair of dates T k

1 and T k+1
1 , for all k . For t ≥ T 1

1 , w1(t )
has |W 1| distinct states, and so is equivalent to (σ(w ,T 1

1 h t ))w∈W 1 ∈W W 1 .
The recursion is as follows: For a set of states W κ and a period T 1

κ , let wκ(t ) =
(σ(w ,T 1

κh t ))w∈W κ for t ≥ T 1
κ . The recursive step begins with a set of states W κ and an

increasing sequence {T k
κ }
∞
k=1, with T k

κ →∞ as k →∞, satisfying, for all k ≥ 2,

wκ(T k
κ ) =wκ(T 1

κ ),

and for all t ≥ T 1
κ and k ≥ 1, there exists a period τwith T k

κ <τ≤ T k+1
κ such that

wκ(t ) =wκ(τ).

Define R(W κ) ≡ ∪w∈W κR(w ); note that W κ ⊂ R(W κ). Let wκ+1(t ) denote the vector of
states (σ(w ,T 1

κhT 1
κ+t ))w∈R(W κ) ∈W R(W κ). There exists bt ≥ 1 such that for all τ≥ bt , wκ+1(τ)

appears infinitely often in the sequence {wκ+1(t )}t . Moreover, there exists T 1
κ+1 ≥ T 1

κ + bt
such that

σ(w ,T 1
κhT 1

κ+1 ) =w ∀w ∈W κ.

Now, define W κ+1 = {σ(w ,T 1
κhT 1

κ+1 ) : w ∈ R(W κ)}. By the definition of T 1
κ+1, W κ ⊂W κ+1.

Just as in the initial step, there is an increasing sequence {T k
κ+1}
∞
k=2, with T k

κ+1 →∞ as
k →∞, satisfying, for all k ≥ 2

wκ+1(T k
κ+1) =wκ+1(T 1

κ+1),

and for all t ≥ T 1
κ+1 and k ≥ 1, there exists a period τwith T k

κ+1 <τ≤ T k+1
κ+1 such that

wκ+1(t ) =wκ+1(τ),

concluding the recursive step.
Since W is finite, this process must eventually reach a point where W κ+1 = W κ.

We have thus identified a set of states W κ and two dates T 1
κ and T 2

κ , such that letting
(ȳ 1, . . . , ȳ m )≡T 1

κhT 2
κ and setting w̄ =σ( ew , hT 1

κ ) yields parts (i) and (ii) of the lemma.
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Separation implies that under h, for any state w ∈ R( ew ) \ { ew } and for all players i ,
there is some state reached infinitely often from w under h at which i plays differently
from the state reached in that period from ew . The dates T 1

κ and T 2
κ have been chosen

so that any state reached infinitely often under h from a state w ∈R( ew ) appears at least
once between T 1

κ and T 2
κ on the path starting in period T 1

κ from the state σ(w , hT 1
κ ).

Consequently, we have part (iii).
Finally, since |W 1| ≥ 2, |Wc | ≥ 2. �

PROOF OF COROLLARY 2. If d i ( bw ) 6= d i (w̄ ) for some bw ∈ Wc \ {w̄ } does not hold for
the current choice of cycle and states, by part (iii), it holds in some period of the cycle
hm = (ȳ 1, . . . , ȳ m−1), say period `. Start the cycle in period `, (ȳ `, . . . , ȳ m−1, ȳ 1, . . . , ȳ `−1),
and define the new w̄ by σ(w̄ , ȳ1, . . . , ȳ `−1). Finally, the set of cycling states is given by
{σ(w , ȳ 1, . . . , ȳ `−1) : w ∈Wc }. �
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