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Optimal auctions with ambiguity
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A crucial assumption in the optimal auction literature is that each bidder’s valu-
ation is known to be drawn from a unique distribution. In this paper, we study
the optimal auction problem allowing for ambiguity about the distribution of val-
uations. Agents may be ambiguity averse (modeled using the maxmin expected
utility model of Gilboa and Schmeidler 1989). When the bidders face more am-
biguity than the seller we show that (i) given any auction, the seller can always
(weakly) increase revenue by switching to an auction providing full insurance to
all types of bidders, (ii) if the seller is ambiguity neutral and any prior that is close
enough to the seller’s prior is included in the bidders’ set of priors then the opti-
mal auction is a full insurance auction, and (iii) in general neither the first nor the
second price auction is optimal (even with suitably chosen reserve prices). When
the seller is ambiguity averse and the bidders are ambiguity neutral an auction
that fully insures the seller is in the set of optimal mechanisms.
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1. INTRODUCTION

Optimal auctions for an indivisible object with risk neutral bidders and independently
distributed valuations have been studied by Vickrey (1961), Myerson (1981), Harris and
Raviv (1981), Riley and Samuelson (1981), and others. These papers show that the set of
optimal mechanisms or auctions is quite large and contains both the first and second
price auctions with reserve prices. One of the assumptions in this literature is that each
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bidder’s valuation is known to be drawn from a unique distribution. In this paper we
relax this assumption and study how the design of the optimal auction is affected by
the presence of ambiguity about the distribution from which the bidders’ valuations are
drawn.

The assumption of a unique prior is based on the subjective expected utility mo-
del, which has been criticized by Ellsberg (1961), among others. Ellsberg shows that
lack of knowledge about the distribution over states, often referred to as ambiguity, can
affect choices in a fundamental way that cannot be captured within the subjective ex-
pected utility framework.1 Ellsberg and several subsequent researchers have demon-
strated that in many situations decision makers exhibit ambiguity averse behavior.2 Fol-
lowing Gilboa and Schmeidler (1989), we model ambiguity aversion using the maxmin
expected utility (MMEU) model. The MMEU model is a generalization of the subjective
expected utility model, and provides a natural and tractable framework to study ambi-
guity aversion. In MMEU agents have a set of priors (instead of a single prior) on the
underlying state space, and their payoff is the minimum expected utility over the set of
priors. Specifically, when an MMEU bidder is confronted with an auction, he evaluates
each bid on the basis of the minimum expected utility over the set of priors, and then
chooses the best bid. An MMEU seller evaluates each auction on the basis of its min-
imum expected revenue over the set of priors and chooses the best auction. In order
to better contrast our results with the case of risk, we assume that the bidders and the
seller are risk neutral (i.e. have linear utility functions).

Our main result, Proposition 1, is that when the bidders face more ambiguity than
the seller, an auction that provides full insurance to the bidders3 is always in the set of
optimal mechanisms. Moreover, given any incentive compatible and individually ra-
tional mechanism, the seller can strictly increase his revenue by switching to a full in-
surance mechanism if the minimum expected utility of a bidder over the seller’s set of
priors is strictly larger than his expected utility over the bidders’ set of priors for a posi-
tive measure of types.

To obtain some intuition for the main result, consider the special case where the
seller is ambiguity neutral, i.e., his set of priors is a singleton. In this case the main re-
sult says that if an incentive compatible and individually rational mechanism is optimal
for the seller then the minimizing set of distributions for all types of the bidders must
include the seller’s prior. Suppose this is not true for a positive measure of types and
consider some such type θ . In this case, the seller and type θ of the bidder are willing
to bet against each other. The seller recognizes that they have different beliefs about the

1In one version of Ellsberg’s experiment, a decision maker is offered two urns, one that has 50 black
and 50 red balls, and one that has 100 black and red balls in unknown proportions. Faced with these two
urns, the decision maker is offered a bet on black but can decide from which urn to draw the ball. Most
decision makers prefer the first urn. The same is true when the decision maker is offered the same bet on
red. This behavior is inconsistent with the expected utility model. Intuitively, decision makers do not like
betting on the second urn because they do not have enough information or, put differently, there is too
much ambiguity. Being averse to ambiguity, they prefer to bet on the first urn.

2For a survey see Camerer and Weber (1992).
3A full insurance auction keeps the bidders’ payoffs constant for all reports of the other bidders and

consequently keeps them indifferent between winning or losing the object.
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underlying state space and will offer “side bets” using transfers. The crucial issue is that
the modified mechanism has to maintain overall incentive compatibility. In our proof
we address this issue by explicitly constructing the additional transfers that continue to
satisfy incentive compatibility constraints while making the seller better off. Essentially,
we show that these additional transfers (to the seller) can be chosen so that in the new
mechanism, under truth telling type θ gets the minimum expected utility that he gets
in the original mechanism in every state, and thus is fully insured against the ambiguity.
Obviously then under truth telling, type θ is indifferent between the original mecha-
nism and the new mechanism since he gets the same minimum expected utility under
both. More interestingly, no other type wants to imitate type θ in the new mechanism.
This is because the additional transfers in the new mechanism are constructed so as
to have zero expected value under the minimizing set of distributions for type θ in the
original mechanism, but to have strictly positive expected value under any other distri-
bution. Therefore, if type θ ′ imitates type θ in the new mechanism, he gets at best what
he would get by imitating type θ in the original mechanism. Hence, since the original
mechanism is incentive compatible, the new mechanism is also incentive compatible.
Moreover, since by assumption the seller’s distribution is not in the minimizing set for
type θ in the original mechanism, the additional transfers (to the seller) have strictly
positive expected value under the seller’s distribution. Since the original mechanism
can be modified in this way for a positive measure of types, the seller strictly increases
his revenue. In fact, for any incentive compatible and individually rational mechanism,
by modifying the mechanism for all types as described above we can obtain a full insur-
ance auction that is weakly preferred by the seller. Therefore, a full insurance auction is
always in the set of optimal mechanisms.

There may be optimal selling mechanisms in addition to the full insurance mech-
anism, but in some cases the full insurance mechanism is the unique optimal mecha-
nism. In Proposition 3 we show that if the seller is ambiguity neutral and any prior that
is close enough to the seller’s prior is included in the bidders’ set of priors then the op-
timal auction must be a full insurance auction. In addition, we show in Proposition 5
that, in general, the first and the second price auctions are not optimal.

Some real life auctions resemble a full insurance auction.4 In general, though, full
insurance auctions are rarely observed in practice. Thus, the simplest incorporation of
ambiguity aversion in auctions yields a surprising and somewhat negative result. The
mismatch between theory and practice could be due to several reasons including the
use of maxmin preferences in the theory or the relevance of ambiguity in real life market
settings. As such the result presents a puzzle to the literature.

To highlight some of the economic implications of the above analysis, in Section 4
we explicitly derive the optimal mechanism when the seller is ambiguity neutral and
the bidders’ set of priors is the ε-contamination of the seller’s prior. We show that the
seller’s revenue and efficiency both increase as ambiguity increases. We also describe an
auction that implements the optimal mechanism.

4For example, in the Amsterdam Auction studied by Goeree and Offerman (2004), the losing bidder is
offered a premium.
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When the seller is ambiguity averse and the bidders are ambiguity neutral we show
that for every incentive compatible and individually rational selling mechanism there
exists an incentive compatible and individually rational mechanism that provides de-
terministically the same payoff to the seller. From this it follows that when an optimal
mechanism exists, an auction that fully insures the seller must be in the set of optimal
mechanisms. A similar result was first shown by Eső and Futó (1999) for auctions (in
independent private value environments) with a risk averse seller and risk (and ambigu-
ity) neutral bidders. Hence, as long as bidders are risk and ambiguity neutral, ambiguity
aversion on the part of the seller plays a similar role to that of risk aversion.

There is a small but growing literature on auction theory with non-expected utility
starting with a series of papers by Karni and Safra (1986, 1989a,b) and Karni (1988). Salo
and Weber (1995), Lo (1998), Volij (2002), and Ozdenoren (2001) study auctions with
ambiguity averse bidders, and thus are closer to this paper. These papers look at specific
auction mechanisms, such as the first and second price auctions, and not the optimal
auction.

Matthews (1983) and Maskin and Riley (1984) study auctions with risk averse bid-
ders. A more detailed comparison of our paper with Maskin and Riley (1984) is given in
Section 7.

Finally, a strand of literature studies robust mechanism design. (See for example
Bergemann and Morris 2005, Ely and Chung forthcoming, Jehiel et al. 2006, and Heifetz
and Neeman 2006.) Even though there is some similarity between that literature and our
work (as in that literature, we relax certain assumptions of the standard mechanism de-
sign framework), it is important to point out that our work differs significantly from this
literature. Standard mechanism design—in particular Bayesian implementation—relies
crucially on the underlying model being common knowledge. The focus of those papers
is to study mechanism design while relaxing (some of) the common knowledge assump-
tions. In contrast, we maintain throughout the standard methodological assumption of
considering the underlying model—which includes the modeling of the ambiguity—to
be common knowledge and we relax assumptions on the preferences of the agents, in
particular allowing the agents to exhibit ambiguity aversion.

2. THE OPTIMAL AUCTION PROBLEM

In this section we generalize the standard optimal auction problem by allowing the bid-
ders and the seller to have MMEU preferences (Gilboa and Schmeidler 1989). There are
two bidders (denoted as bidder 1 and bidder 2) and a seller. Bidders have one of a con-
tinuum of valuations θ ∈Θ= [0, 1]. Let Σ be the Borel algebra on Θ. Each bidder knows
his true valuation but not that of the other bidder. The set ∆m

B is a non-empty set of
probability measures on (Θ,Σ) with a corresponding set ∆B of distribution functions.
This set represents each bidder’s belief about the other bidder’s valuation. Bidders be-
lieve that valuations are generated independently, but they may not be confident about
the probabilistic process that generates the valuations. This possible vagueness in the
bidders’ information is captured by allowing for a set of priors rather than a single prior.

We assume that both the bidders and the seller have linear utility functions.
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The seller is also allowed to be ambiguity averse. The set ∆m
S is a nonempty set of

probability measures on (Θ,Σ) with a corresponding set ∆S of distribution functions.
This set represents the seller’s belief about the bidders’ valuations. That is, the seller be-
lieves that the bidders’ valuations are generated independently from some distribution
in∆S .5 Each bidder’s reservation utility is 0.

We consider a direct mechanism where bidders simultaneously report their types.6

The mechanism stipulates a probability for assigning the item and a transfer rule as a
function of reported types. Let x i (θ̃ ,θ ′) be the item assignment probability function
and t i (θ̃ ,θ ′) the transfer rule for bidder i ∈ {1, 2}.7 The first entry is i ’s report and the
second entry is the other bidder’s report. We assume that type θ of bidder i chooses a
report θ̃ to maximize infG∈∆B

∫

(x i (θ̃ ,θ ′)θ − t i (θ̃ ,θ ′))dG (θ ′).8

The seller’s problem is to find a mechanism {(x1, t1), (x2, t2)} that solves

sup
{(x1,t1),(x2,t2)}

�

inf
F∈∆S

∫∫

(t1(θ ,θ ′)+ t2(θ ′,θ ))d F (θ )d F (θ ′)

�

(1)

subject to

(IC) inf
G∈∆B

∫

(x i (θ ,θ ′)θ − t i (θ ,θ ′))dG (θ ′)

≥ inf
G∈∆B

∫

(x i (θ̃ ,θ ′)θ − t i (θ̃ ,θ ′))dG (θ ′) for all θ , θ̃ ∈Θ and i ∈ {1, 2}
(2)

and

(IR) inf
G∈∆B

∫

(x i (θ ,θ ′)θ − t i (θ ,θ ′))dG (θ ′)≥ 0 for all θ ∈Θ and i ∈ {1, 2} (3)

where x1(θ ,θ ′) + x2(θ ′,θ ) ≤ 1 for all θ ,θ ′ ∈ Θ. As is standard, we assume that all of the
above is common knowledge. The first inequality gives the incentive compatibility (IC)
constraints and the second inequality gives the individual rationality (IR) or participa-
tion constraint. These are the usual constraints except that the bidders compute their

5Formally the seller’s belief is the set of product measuresµ×µ on the product space (Θ×Θ,Σ×Σ)where
µ ∈∆m

S , even though for notational simplicity, throughout the paper we refer to the seller’s belief simply as
µ ∈ ∆m

S . It is important, however, to keep this in mind, especially for a later result (Proposition 2) which
talks about the seller’s belief being in the interior of the set of the bidders’ set of beliefs.

6The revelation principle holds in our setting.
7Note that we do not restrict attention to symmetric mechanisms. In the standard auction literature

with ambiguity neutral (but not necessarily risk neutral) bidders, the seller can restrict attention to sym-
metric auctions without loss of generality. To see this suppose an asymmetric auction is optimal. Since
bidders are ex ante symmetric, by exchanging the roles of the two bidders, the seller can obtain another
optimal auction. But then by randomizing between these two asymmetric auctions with equal probabil-
ity, the seller can obtain a symmetric and incentive compatible mechanism. This argument does not hold
when the bidders are ambiguity averse. The reason is that ambiguity averse bidders may strictly prefer
randomization. Therefore, even though they prefer truth-telling in the asymmetric mechanism, they may
prefer to misrepresent their types in the randomized mechanism.

8Since bidders’ preferences are linear in transfers, we consider only deterministic transfers.
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utilities in the mechanism using the MMEU rule. For example, the IC constraint requires
that the infimum expected utility a bidder of type θ gets reporting his type truthfully is
at least as much as the infimum expected utility that he gets reporting any other type θ̃ .

One interpretation of the set of priors in the above formulation is “subjective”: the
players’ preferences are common knowledge and the sets are subjective representations
of the uncertainty (as well as the aversion to this uncertainty) the players face about the
stochastic process that generates the valuations. Another interpretation is “objective”:
the players learn everything they can about the stochastic process that generates the
types, but there are hard-to-describe factors that prevent them from learning the pro-
cess completely. The objective interpretation is more restrictive than the subjective one
for two reasons. First, when the set of priors is objectively fixed, bidders’ attitudes to
ambiguity are represented by the minimum functional only, which may be viewed as
extreme. Second, the objective interpretation makes sense when both the seller and the
buyers have the same set of priors (which is covered in our framework), since the set of
priors is assumed to be common knowledge.

Note that our formulation differs slightly from that of Gilboa and Schmeidler since
we use the infimum (supremum) instead of the minimum (maximum). However, we
continue to refer to these preferences as maxmin since this terminology is standard. At
the end of the next section we provide conditions on preferences and mechanisms that
guarantee that the minimum over the sets of priors and an optimal auction exist.

3. FULL INSURANCE AUCTION

In this section we show that when ∆m
S ⊆ ∆

m
B ,9 a full insurance auction is always in the

set of optimal auctions and discuss when the seller can make strict gains by switching
to a full insurance auction. In what follows, for a given mechanism {(x1, t1), (x2, t2)}, it is
convenient to define

qi (θ ,θ ′)≡ x i (θ ,θ ′)θ − t i (θ ,θ ′)

for all θ ,θ ′ ∈ Θ. So qi (θ ,θ ′) is the ex post payoff to type θ of bidder i from truth telling
in the mechanism {(x1, t1), (x2, t2)}when the other bidder reports θ ′.10

We say that an event eΘ ⊆ Θ has positive measure if infµ∈∆m
S
µ(eΘ) > 0 and zero mea-

sure otherwise. Next, we formally define a full insurance auction.

DEFINITION 1. A full insurance mechanism is one where the (ex post) payoff of a given
type of a bidder does not vary with the report of the competing bidder. That is, {(x1, t1),
(x2, t2)} is a full insurance mechanism if, for almost all θ ∈ Θ, qi (θ ,θ ′) is constant as a
function of θ ′ ∈Θ.

Next, we give the formal statement of the main proposition. All proofs are in the
Appendix.

9In particular, this covers two interesting cases. If ∆m
S is a singleton set, then the seller is ambiguity

neutral and the bidders are (weakly) ambiguity averse. On the other hand, if∆m
S =∆

m
B , then both the seller

and the bidders are (weakly) ambiguity averse with a common set of priors.
10Formally qi should be indexed also by {(x1, t1), (x2, t2)}. Since the mechanism to which we are referring

is always clear from the context, we drop this index to simplify the notation.
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PROPOSITION 1. Suppose that the seller’s set of priors is ∆S and the bidders’ set of priors
is ∆B with ∆S ⊆∆B . Let {(x1, t1), (x2, t2)} be an arbitrary incentive compatible and indi-
vidually rational mechanism. There is always a full insurance mechanism, also satisfying
incentive compatibility and individual rationality, that generates at least as much min-
imum expected revenue over the set of priors ∆S for the seller. Moreover if there exists a
bidder i ∈ {1, 2} and some positive measure event eΘ⊆Θ such that, for all θ ∈ eΘ,

inf
G∈∆S

∫

Θ

qi (θ ,θ ′)dG (θ ′)> inf
H∈∆B

∫

Θ

qi (θ ,θ ′)d H (θ ′),

then {(x1, t1), (x2, t2)} is not optimal. In fact, the seller can strictly increase his minimum
expected revenue over the set of priors∆S by using a full insurance mechanism.

To understand this result consider the case where the seller is ambiguity neutral, i.e.,
∆S = {F }. Let

∆i (θ ) = arg min
H∈∆B

∫

Θ

qi (θ ,θ ′)d H (θ ′)

where for ease of exposition we assume that the minimum exists so that we write min
instead of inf.11 In this case Proposition 1 implies that if a mechanism {(x1, t1), (x2, t2)}
is optimal then F must be in ∆i (θ ) for almost all θ ∈ Θ and i ∈ {1, 2}. Suppose to the
contrary that for some i ∈ {1, 2} there exists a positive measure of types for which this
is not true. Consider some such type θ̃ for which F /∈ ∆i (θ̃ ). The seller can always ad-
just the transfers of type θ̃ so that, under truth telling, type θ̃ gets the same minimum
expected utility as he gets in the original mechanism in every state, and thus is fully in-
sured against ambiguity in the new mechanism. Furthermore, by construction, the dif-
ference between the transfers in the new mechanism and the original mechanism has
weakly positive expected value12 for any distribution in∆B . This is true because this dif-
ference has zero expected value under ∆i (θ̃ ), the minimizing set of distributions in the
original mechanism, and strictly positive expected value under any other distribution,
i.e., for distributions in ∆B −∆i (θ̃ ). Obviously, under truth telling, type θ̃ is indifferent
between the original mechanism and the new mechanism since he gets the same min-
imum expected utility under both. More interestingly, no other type wants to imitate
type θ̃ in the new mechanism. This is true since the original mechanism is incentive
compatible and imitation in the new mechanism is even worse given that the difference
in transfers has weakly positive expected value under any distribution in ∆B . More-
over, by assumption, the seller’s distribution is not in the minimizing set for the original
mechanism, which means the additional transfers (to the seller) must have strictly pos-
itive expected value under the seller’s distribution. Thus the seller is strictly better off in
the new mechanism, contradicting the optimality of the original mechanism.

When the infima and suprema in equations (1), (2), and (3) are replaced with minima
and maxima, we can prove a stronger version of Proposition 1. The next proposition
provides sufficient conditions for this.

11See Proposition 2 below for conditions that guarantee that this assumption holds.
12Recall that these are transfers to the seller.
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PROPOSITION 2. Suppose the seller can use only mechanisms such that transfers are uni-
formly bounded and suppose that ∆m

B ∪∆
m
S is weakly compact and convex and its ele-

ments are countably additive probability measures. Then the sets of minimizing priors in
equations (1), (2), and (3) and the set of optimal mechanisms are nonempty.

The following corollary strengthens Proposition 1 when the hypothesis of Proposi-
tion 2 holds.

COROLLARY 1. Suppose that the hypothesis of Proposition 2 holds. For a given mechanism
{(x1, t1), (x2, t2)}, let

∆min
S = arg min

G∈∆S

∫

Θ

∫

Θ

�

t1(θ ,θ ′)+ t2(θ ′,θ )
�

dG (θ )dG (θ ′).

If there exists a bidder i ∈ {1, 2} and some positive measure event eΘ ⊆ Θ such that for all
θ ∈ eΘ and for all G ∈∆min

S ,

∫

Θ

qi (θ ,θ ′)dG (θ ′)> min
H∈∆B

∫

Θ

qi (θ ,θ ′)d H (θ ′), (4)

then the seller can strictly increase his minimum expected revenue over the set of priors
∆S using a full insurance mechanism. Moreover, there is a full insurance mechanism that
is optimal for the seller.

Corollary 1 is stronger than Proposition 1 in two ways. First, the inequality in (4) is
checked only for the minimizing distributions for the seller (not all the distributions in
∆S). Second, since an optimal mechanism exists, a full insurance mechanism is always
optimal for the seller.13

In general there may be optimal selling mechanisms that differ from the full insur-
ance mechanism. But if the seller’s belief set is a singleton F with strictly positive density
and if any prior that is close enough to F is in∆B , then the set of distributions that give
the minimum expected utility does not include F unless the ex post payoffs are constant.
In this case the unique optimal auction is a full insurance auction. The next proposition
states this observation.

PROPOSITION 3. Suppose that the seller is ambiguity neutral with ∆S = {F } where F
has strictly positive density. If there exists ε > 0 such that for any distribution H on Θ,
(1− ε)F+εH ∈∆B , then the unique optimal auction is a full insurance auction.

The usual (independent and private values) auction model, where the bidders and
the seller are both risk and ambiguity neutral, corresponds in our model to the case
where ∆S and ∆B are both singleton sets. In the usual model, every bidder takes the
expectation of his payoffs (for different reports of his type) over his opponent’s types
and these interim expected payoffs are enough to characterize incentive compatibility

13In contrast, Proposition 1 says that the seller can get arbitrarily close to the supremum in equation (1)
using a full insurance mechanism.
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and individual rationality and hence optimal auctions. Thus, in the usual model the
dependence of bidders’ (ex post) payoffs on the types of his opponents is not pinned
down. In our model, when the buyers and the seller are possibly ambiguity averse, this
dependence on the opponent’s type is pinned down (uniquely under the conditions of
Proposition 3). The requirements imposed by this dependence eliminate many auctions
that are optimal in the usual model such as first and second price auctions (under the
conditions of Proposition 5).

In the next two sections we provide some applications of the results in this section.

4. FULL INSURANCE UNDER ε-CONTAMINATION

In this section we explicitly derive the optimal mechanism in the case of ε-contamina-
tion when the seller is ambiguity neutral with ∆S = {F }. We assume that the seller’s
distribution F is a focal point, and bidders allow for an ε-order amount of noise around
this focal distribution. We make the common assumptions that F has a strictly positive
density f and

L(θ ) = θ −
1− F (θ )

f (θ )

is strictly increasing in θ . We construct∆B as follows:

∆B = {G : G = (1− ε)F + εH for any distribution H on Θ}

where ε ∈ (0, 1]. By Proposition 3 we know that the unique optimal mechanism for the
ε-contamination case is a full insurance mechanism. This implies that we can restrict
ourselves to full insurance mechanisms in our search for the optimal mechanism.

Let {(x1, t1), (x2, t2)} be a full insurance mechanism. I.e., for a given θ , qi (θ ,θ ′) does
not vary with θ ′. Let u i (θ ) =qi (θ ,θ ′) for i ∈ {1, 2}. Next we define some useful notation.
Let

X i (θ ) =

∫

x i (θ ,θ ′)d F (θ ′)

X min
i (θ ) = inf

G∈∆B

∫

x i (θ ,θ ′)dG (θ ′)

X max
i (θ ) = sup

G∈∆B

∫

x i (θ ,θ ′)dG (θ ′).

Using the IC constraint we obtain

u i (θ ) = inf
G∈∆B

∫

(x i (θ ,θ ′)θ − t i (θ ,θ ′))dG (θ ′)

≥ inf
G∈∆B

∫

(x i (θ̃ ,θ ′)θ − t i (θ̃ ,θ ′))dG (θ ′)

≥ u i (θ̃ )+ inf
G∈∆B

∫

(θ − θ̃ )x i (θ̃ ,θ ′)dG (θ ′). (5)
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If θ > θ̃ then
u i (θ )≥ u i (θ̃ )+ (θ − θ̃ )X min

i (θ̃ ). (6)

Exchanging the roles of θ and θ̃ in (5) we obtain

u i (θ̃ )≥ u i (θ )+ inf
G∈∆B

∫

(θ̃ −θ )x i (θ ,θ ′)dG (θ ′).

Again if θ > θ̃ then
u i (θ̃ )≥ u i (θ )+ (θ̃ −θ )X max

i (θ ). (7)

Now observe that u is non-decreasing, since for θ > θ̃ by the IC constraint we have

u i (θ )≥ u i (θ̃ )+ (θ − θ̃ )X min
i (θ̃ )≥ u i (θ̃ ).

The next lemma is useful in characterizing the optimal auction.

LEMMA 1. The function u i is Lipschitz.

Since u i is Lipschitz, it is absolutely continuous and therefore is differentiable al-
most everywhere. For θ > θ̃ we use (6) and (7) to obtain

X max
i (θ )≥

u i (θ )−u i (θ̃ )

θ − θ̃
≥X min

i (θ̃ ).

We take the limit as θ̃ goes to θ to obtain for almost all θ that

X max
i (θ )≥

∂ u i

∂ θ
≥X min

i (θ ).

Since an absolutely continuous function is the definite integral of its derivative,

∫ θ

0

X max
i (y )d y ≥ u i (θ )−u i (0)≥

∫ θ

0

X min
i (y )d y . (8)

Inequality (8) suggests that the auctioneer may set

u i (θ ) =

∫ θ

0

X min
i (y )d y (9)

and

t i (θ ,θ ′) = x i (θ ,θ ′)θ −
∫ θ

0

X min
i (y )d y , (10)

since for a given allocation rule x i , transfers as in (10) are the highest transfers the auc-
tioneer can set without violating (8). Of course, (8) is only a necessary condition and for
given allocation rules x1 and x2, the resulting mechanism {(x1, t1), (x2, t2)} may not be
incentive compatible. Fortunately, this difficulty does not arise if the allocation rules x1

and x2 are chosen optimally for transfers given as in (10). In other words, our strategy
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is to find the optimal allocation rules x1 and x2 assuming that the transfers are given by
(10), and then show that the resulting mechanism {(x1, t1), (x2, t2)} is incentive compat-
ible.

For a transfer function given by (10), we can rewrite the seller’s revenue as

R =
2
∑

i=1





∫ 1

0

∫ 1

0

 

θx i (θ ,θ ′)−
∫ θ

0

X min
i (y )d y

!

d F (θ ′)d F (θ )



 .

Using integration by parts we obtain

R =
2
∑

i=1





∫ 1

0

θX i (θ ) f (θ )dθ −
∫ 1

0

(1− F (θ ))X min
i (θ )dθ



 . (11)

Define

Lε(θ ) = θ − (1− ε)
1− F (θ )

f (θ )

and let r ∈ (0, 1) be such that Lε(r ) = 0.
The following proposition characterizes the optimal allocation when the transfer

function is given by (10).

PROPOSITION 4. The unique optimal mechanism is symmetric and for any θ and θ ′ the
allocation rule x1 = x2 = x is given by

x (θ ,θ ′) =







1 if θ > θ ′ and θ ≥ r
1
2 if θ = θ ′ and θ ≥ r

0 otherwise

(12)

and the corresponding transfer function t = t1 = t2 is given by equation (10).

Note that the correspondence that maps ε to the set of optimal mechanisms is up-
per semicontinuous but not lower semicontinuous in ε at ε = 0. To see this note that
when ε = 0, we are in the standard (independent and private value) setting with risk
and ambiguity neutral bidders and seller. In this case, the set of optimal mechanisms
consists of all mechanisms {(x1, t1), (x2, t2)}where x1 = x2 = x satisfies (12), r is given by
r − (1− F (r ))/ f (r ) = 0, and the transfer functions satisfy

∫ 1

0

t i (θ ,θ ′)d F (θ ′) =X (θ )θ −
∫ θ

0

X (y )d y .

Note that transfers are pinned down only at the interim level. Notice that setting ε = 0
and integrating over (10), we immediately see that the mechanism in Proposition 4 is
optimal for the seller at ε = 0. Thus the correspondence that maps ε to the set of optimal
mechanisms is upper semicontinuous at ε = 0. Yet, as is well known there are many
other mechanisms (such as the second price auction with reserve price r ) that are in the
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set of optimal mechanisms at ε = 0. Obviously these mechanisms are not attained in the
limit, so the correspondence is not lower semicontinuous.

It is interesting to note economic implications of the above analysis for revenue and
efficiency. First, the seller’s revenue increases as ambiguity increases. To see this note
that under the above allocation rule X min(θ ) = (1− ε)X (θ ) for all θ < 1. Plugging this
into the revenue expression (11) we see that the revenue increases as ε increases. In
fact, when ambiguity becomes extreme, i.e., when ε equals one, the seller extracts all
the surplus.

Second, an increase in ambiguity helps efficiency. To see this note that Lε shifts up
as ε increases and since Lε(θ ) is an increasing function of θ , the cutoff type r decreases
as ε increases. Again in the case of extreme ambiguity the seller does not exclude any
types, and full efficiency is achieved.

Finally, a natural question to ask at this stage is how to implement the optimal mech-
anism described above. Several auctions implement the mechanism, and we describe
one such auction here. Consider an auction where bidders submit bids for the object
and the allocation rule is the usual one, namely, the highest bidder who bids above the
reservation value r obtains the object. The payment scheme is as follows: the winning
bidder pays to the auctioneer an amount equal to his bid, and all bidders (regardless
of having won or lost) who have bid above the reservation price receives a gift from the
seller. For a bidder who bids, say, b (where b is greater than r ), the amount of the gift is

S(b ) = (1− ε)
∫ b

r
F (y )d y . In this auction, the equilibrium strategy of a bidder with valu-

ation θ is to bid his valuation. To see this note that the allocation rule is the same as the
one in Proposition 4. Moreover, a bidder who bids θ pays θ−(1−ε)

∫ θ

r
F (y )d y if he wins

the auction and −(1− ε)
∫ θ

r
F (y )d y if he loses the auction, and these transfers are also

the ones in Proposition 4. Since reporting one’s true value is incentive compatible in the
optimal mechanism, it is also optimal to bid one’s true value in this auction as well.

5. THE FIRST AND SECOND PRICE AUCTIONS

Lo (1998) shows that the revenue equivalence result does not hold when bidders are
ambiguity averse. In particular, the first price auction may generate more revenue than
the second price auction. In this section we show that the first price auction is in gen-
eral not optimal either.14 In fact under rather general conditions, the first and second
price auctions, as well as many other standard auctions are not optimal in this setting.
The following proposition gives a weak condition on ∆B that is sufficient for the non-
optimality of a large class of auctions including the first and second price auctions.

PROPOSITION 5. Suppose that ∆S and ∆B are weakly compact and convex with elements
that are countably additive probability measures. Suppose that for any G ∈∆S there exists
some distribution H ∈ ∆B such that H first-order stochastically dominates G . Now, if
under some mechanism {(x1, t1), (x2, t2)} with uniformly bounded transfers there exists a

14When the type space is discrete, neither the first nor the second price auction is the optimal auction for
reasons completely unrelated to the issues being studied in this paper.
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bidder i and a positive measure subset eΘ ⊆ Θ such that for all θ̃ ∈ eΘ, qi (θ̃ ,θ ) is weakly
decreasing in θ and qi (θ̃ ,θ ′) < qi (θ̃ ,θ ′′) for some θ ′,θ ′′ ∈ Θ, then {(x1, t1), (x2, t2)} is not
optimal.

To apply the above proposition to the first and second price auctions, we need to
show that in the direct mechanisms that correspond to these auction forms qi (θ̃ ,θ ) is
weakly decreasing in θ and qi (θ̃ ,θ ′) < qi (θ̃ ,θ ′′) for some θ ′,θ ′′ ∈ Θ for a positive mea-
sure subset eΘ ⊆ Θ. First note that the payoff qi (θ̃ ,θ ) of all types of a bidder is weakly
decreasing in the report of the other bidder. Next consider a type θ̃ that is greater than
the reserve price and less than one, which is the highest possible valuation. The payoff
of θ̃ is strictly larger if the other bidder reports a type θ ′ that is less than θ̃ as opposed
to a type θ ′′ greater than θ̃ . This is because in both of these auctions if the other bidder
reports more than θ̃ the payoff of θ̃ is zero, but if the other bidder reports less than θ̃ the
payoff of θ̃ is strictly positive. This shows that qi (θ̃ ,θ ′)< qi (θ̃ ,θ ′′). Therefore under the
hypothesis of Proposition 5 the first and second price auctions are not optimal.

6. AMBIGUITY AVERSE SELLER

Next, we consider the case where the seller is ambiguity averse and the bidders are am-
biguity neutral. We restrict attention to symmetric mechanisms.15 Our next result com-
plements Proposition 1.

PROPOSITION 6. Suppose that the seller is ambiguity averse, with a set of priors ∆S , and
the bidders are ambiguity neutral, with a prior F ∈ ∆S . For every incentive compatible
and individually rational selling mechanism (x , t ) there exists an incentive compatible
and individually rational mechanism (x , t̃ ) that provides deterministically the same rev-
enue to the seller, i.e. t̃ (θ ,θ ′)+ t̃ (θ ′,θ ) is constant for all θ ,θ ′ ∈Θ. Moreover, if

inf
G∈∆S

∫∫

�

t (θ ,θ ′)+ t (θ ′,θ )
�

dG (θ )dG (θ ′)<

∫∫

�

t (θ ,θ ′)+ t (θ ′,θ )
�

d F (θ )d F (θ ′)

then (x , t̃ ) strictly increases the minimum expected revenue of the seller over the set of
priors∆S .

When an optimal mechanism exists, Proposition 6 implies that an auction that fully
insures the seller must be in the set of optimal mechanisms. Eső and Futó (1999) prove
a similar result for auctions with a risk averse seller in independent private values envi-
ronments with risk (and ambiguity) neutral bidders.

15Since bidders are ambiguity neutral, we can now restrict attention to symmetric mechanisms without
loss of generality. The argument is very similar to the standard one. If an asymmetric auction is optimal
than by exchanging the roles of the bidders the seller obtains another optimal auction. Randomizing be-
tween these two asymmetric mechanisms generates a symmetric mechanism. Since bidders are ambiguity
neutral, this symmetric mechanism is individually rational and incentive compatible. Moreover, it is easy
to see that an ambiguity averse seller weakly prefers the symmetric mechanism.
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The basic idea of the proof is simple. For any individually rational and incentive
compatible mechanism (x , t ), one can define a new mechanism (x̃ , t̃ ) where the alloca-
tion rule x̃ is the same as x , but with the following transfers:

t̃ (θ ,θ ′) = T (θ )−T (θ ′)+

∫

T (i )d F (i )

where

T (θ ) =

∫

t (θ ,θ ′)d F (θ ′).

Note that in the new mechanism t̃ (θ ,θ ′)+ t̃ (θ ′,θ ) is always 2
∫

T (i )d F (i ), which is con-
stant. It is straightforward to check that this mechanism is incentive compatible and
individually rational as well. The reason this mechanism works in both risk and ambi-
guity settings is that since the bidders are risk and ambiguity neutral (x̃ , t̃ ) is incentive
compatible in either setting (risk or ambiguity) and provides full insurance to the seller
against both risk and ambiguity.

7. COMPARISON OF OPTIMAL AUCTIONS WITH RISK AVERSE

VS. AMBIGUITY AVERSE BIDDERS

Matthews (1983) and Maskin and Riley (1984), henceforth, MR, relax the assumption
that bidders are risk neutral and replace it with risk aversion. Even though there is some
similarity between risk aversion and ambiguity aversion, the two are distinct concepts.
In particular, an environment with risk-averse bidders gives rise to optimal auctions that
differ from the optimal auctions when bidders are ambiguity averse. In this section we
contrast our results with those in MR, to highlight this distinction. To facilitate compar-
ison, we assume, like MR, that the seller is risk and ambiguity neutral. Bidders, on the
other hand, are risk averse and ambiguity neutral in MR and risk neutral and ambiguity
averse in this paper.

MR define u (−t ,θ ) as the utility of a bidder of type θ when he wins and pays t , and
w (−t ) as the utility when the bidder loses the auction (and pays t ). Assuming u and w to
be concave functions, they note that if the auction mechanism is such that the marginal
utility u 1 is different from w1, then keeping other things constant, a seller can gain by
rearranging the payments in such a way that the bidder’s expected utility remains the
same while the expected value of the revenue increases. They note, however, that pro-
viding this insurance can change the incentives of the bidders; in particular when the
marginal utility u 1 varies with θ , the seller can exploit this to earn higher revenue by
exposing all but the highest type to some risk, thus, in effect, screening types better. MR
define a mechanism called a perfect insurance auction where the marginal utility u 1 is
equal to marginal utility w1 for all types. Their results show that in general the optimal
auction is not perfect insurance, the exception being the situation when bidders’ prefer-
ences satisfy the condition u 12 = 0, i.e. when the marginal utility u 1 does not vary with
θ . (See their discussion following their Theorem 11.)

To contrast their result with ours, notice first that in our model (using their nota-
tion), u (−t ,θ ) = θ − t and w (−t ) = −t , so that u 12 = 0, and more importantly, the
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marginal utilities when a bidder wins and when he loses are equal to each other in all sit-
uations. (This is just restating the fact that we assume risk-neutral bidders in our model.)
With ambiguity averse bidders, our results show that a full insurance auction is always
within the set of optimal auctions and in some situations it is the uniquely optimal one.
With risk-averse bidders, MR show that for the special case when u (−t ,θ ) = θ − v (t )
and w (−t ) = −v (t ), so that u 12 = 0, the optimal auction is a perfect insurance auc-
tion (given that v is a convex function).16 Notice however, that our full insurance auc-
tion is different from their perfect insurance auction, since in a full insurance auction
x i (θ ,θ ′)θ − t i (θ ,θ ′) is a function of θ only (i.e., does not vary with θ ′), which means
that the realized payoff when the bidder wins, θ − t i (θ ,θ ′), is the same as the realized
payoff when he loses, −t i (θ ,θ ′). Hence, the optimal auctions under the two situations
are different mechanisms even when preferences in their model satisfy the restriction
u 12 = 0.17

Finally, note that in their framework, perfect insurance auctions do become full in-
surance auctions when preferences satisfy what they call Case 1. This is when u (−t ,θ ) =
U (θ−t ) and w (−t ) =U (−t ) (with U a concave function), so that equating marginal util-
ities implies equating utilities. However, in this situation, the perfect insurance auction
(and hence the full insurance auction) is revenue equivalent to the second price auc-
tion (MR, Theorem 6). When U is strictly concave, both full insurance and second price
auctions generate expected revenue that is strictly less than the expected revenue from
the high bid auction (MR, Theorem 4 and Theorem 6; see in particular, the discussion at
the bottom of page 1491). Hence the full insurance auction, which is the optimal (and
in some cases, as mentioned above, the uniquely optimal) mechanism under ambiguity
aversion is not the optimal mechanism under risk aversion.

8. CONCLUSION

We have analyzed the auctions that maximize a seller’s profit when agents may not know
the distribution from which the bidders’ valuations are drawn. We have shown that
when the bidders face more ambiguity than the seller, an auction that provides full in-
surance to the bidders is optimal and sometimes uniquely optimal. We have shown
also that standard auctions such as the first and the second price auctions with reserve
prices are not optimal in this setting. In addition, we have shown that when the bidders
are ambiguity neutral but the seller is ambiguity averse, it is the seller who is perfectly
insured.

The methods developed here maybe be used in other mechanism design problems
with incomplete information in which agents are ambiguity averse. We believe that the
results in this paper will naturally extend to these situations, especially in environments
where the payoffs are quasilinear. For example in a bargaining problem (see Myerson
1979) we conjecture that the most efficient (from the mechanism designer’s point of

16Put differently, letting a and b be the payments when a bidder wins and loses the auction respectively,
MR show that convexity of v implies that a =b under the optimal mechanism.

17A further difference is that in our setting optimal mechanism may be asymmetric. See the discussion
in footnote 6.
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view) mechanism will require that some agent be fully insured against the ambiguity. In
any case, and unlike the standard unique prior environment, the transfer and not just
the allocation rule will play a crucial role in the design of the optimal mechanism in the
presence of ambiguity. We hope to explore these extensions in future research.

APPENDIX

A. PROOF OF PROPOSITION 1

Fix a mechanism {(x1, t1), (x2, t2)}. Let

K i (θ ) = inf
G∈∆B

∫

Θ

qi (θ ,θ ′)dG (θ ′),

so that K i (θ ) is the maxmin expected payoff of type θ of bidder i . For any θ ∈Θ, define
the function δi (θ , ·) :Θ→R by

δi (θ ,θ ′) =qi (θ ,θ ′)−K i (θ ) for all θ ′ ∈Θ.

Let t ′i (θ ,θ ′) = t i (θ ,θ ′)+δi (θ ,θ ′) and consider the mechanism {(x1, t ′1), (x2, t ′2)}.
We prove the proposition in several steps. In the first step we show that {(x1, t ′1),

(x2, t ′2)} is a full insurance mechanism. Furthermore, it leaves the bidders’ payoffs un-
changed under truth-telling and therefore is individually rational.

To see that {(x1, t ′1), (x2, t ′2)} is a full insurance mechanism consider an arbitrary type
θ ∈Θ of bidder i and note that

x i (θ ,θ ′)θ − t ′i (θ ,θ ′) = x i (θ ,θ ′)θ − t i (θ ,θ ′)−δi (θ ,θ ′)

=qi (θ ,θ ′)−qi (θ ,θ ′)+K i (θ )

= K i (θ ).

Thus bidders’ payoffs under truth telling are unchanged since

inf
G∈∆B

∫

Θ

�

x i (θ ,θ ′)θ − t ′i (θ ,θ ′)
�

dG (θ ′) = K i (θ ).

In the second step of the proof we show that {(x1, t ′1), (x2, t ′2)} is incentive compatible.
The payoff for θ ∈Θ to deviate to an arbitrary θ̃ ∈Θ, θ 6= θ̃ , is

inf
G∈∆B

∫

Θ

�

x i (θ̃ ,θ ′)θ − t ′i (θ̃ ,θ ′)
�

dG (θ ′)

= inf
G∈∆B

∫

Θ

�

x i (θ̃ ,θ ′)θ − t i (θ̃ ,θ ′)−δi (θ̃ ,θ ′)
�

dG (θ ′)

≤ inf
G∈∆B

∫

Θ

�

x i (θ̃ ,θ ′)θ − t i (θ̃ ,θ ′)
�

dG (θ ′)− inf
G∈∆B

∫

Θ

δi (θ̃ ,θ ′)dG (θ ′). (13)
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The inequality above follows since the sum of the infimum of two functions is (weakly)
less than the infimum of the sum of the functions. But note that

inf
G∈∆B

∫

Θ

δi (θ̃ ,θ ′)dG (θ ′) = inf
G∈∆B

∫

Θ

�

qi (θ̃ ,θ ′)−K i (θ̃ )
�

dG (θ ′) = 0.

Combining this with (13) implies that

inf
G∈∆B

∫

Θ

�

x i (θ̃ ,θ ′)θ − t ′i (θ̃ ,θ ′)
�

dG (θ ′)≤ inf
G∈∆B

∫

Θ

�

x i (θ̃ ,θ ′)θ − t i (θ̃ ,θ ′)
�

dG (θ ′).

Now the payoff for type θ of bidder i from truth-telling in {(x1, t ′1), (x2, t ′2)} must be
weakly larger than the last expression, because the mechanism {(x1, t1), (x2, t2)} was as-
sumed to be incentive compatible, and by the first step the truth telling payoffs are un-
changed. Thus {(x1, t ′1), (x2, t ′2)} is incentive compatible.

In the third step we show that the seller is weakly better off using {(x1, t ′1), (x2, t ′2)}. To
see this first note

inf
G∈∆S

∫

Θ

∫

Θ

�

t ′1(θ ,θ ′)+ t ′2(θ
′,θ )

�

dG (θ )dG (θ ′)

= inf
G∈∆S

�∫

Θ

∫

Θ

�

t1(θ ,θ ′)+ t2(θ ,θ ′)
�

dG (θ )dG (θ ′)

+

∫

Θ

∫

Θ

δ1(θ ,θ ′)dG (θ )dG (θ ′)+

∫

Θ

∫

Θ

δ2(θ ,θ ′)dG (θ )dG (θ ′)

�

≥ inf
G∈∆S

∫

Θ

∫

Θ

�

t1(θ ,θ ′)+ t2(θ ,θ ′)
�

dG (θ )dG (θ ′)

+ inf
G∈∆S

∫

Θ

∫

Θ

δ1(θ̃ ,θ ′)dG (θ ′)dG (θ̃ )+ inf
G∈∆S

∫

Θ

∫

Θ

δ2(θ̃ ,θ ′)dG (θ ′)dG (θ̃ ) (14)

Moreover for any G ∈∆S ,
∫

Θ

∫

Θ

δi (θ ,θ ′)dG (θ ′)dG (θ )

=

∫

Θ

∫

Θ

�

qi (θ ,θ ′
�

dG (θ ′)−K i (θ ))dG (θ )

=

∫

Θ

�∫

Θ

qi (θ ,θ ′)dG (θ ′)− inf
G ′∈∆B

∫

Θ

qi (θ ,θ ′)dG ′(θ ′)

�

dG (θ )≥ 0 (15)

where the inequality holds since by assumption ∆S ⊆∆B and thus G ∈∆B . Combining
equations (14) and (15) we see that the seller is weakly better off using {(x1, t ′1), (x2, t ′2)}.

Finally we show that if there exists a bidder i and some positive measure eΘ⊆Θ such
that for any θ̃ ∈ eΘ

inf
G∈∆S

∫

Θ

qi (θ̃ ,θ ′)dG (θ ′)> inf
H∈∆B

∫

Θ

qi (θ̃ ,θ ′)d H (θ ′)
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then the seller strictly prefers {(x1, t ′1), (x2, t ′2)} to {(x1, t1), (x2, t2)}. To see this note that

inf
G∈∆S

∫

Θ

∫

Θ

δi (θ̃ ,θ ′)dG (θ ′)dG (θ̃ )

= inf
G∈∆S

∫

Θ

�∫

Θ

qi (θ̃ ,θ ′)dG (θ ′)− inf
H∈∆B

∫

qi (θ̃ ,θ ′)d H (θ ′)

�

dG (θ̃ )> 0. (16)

The strict inequality follows because for all G ∈ ∆S the expression inside the integral
is greater than zero for all θ̃ ∈ eΘ and, by assumption, the event eΘ gets strictly positive
weight for all distributions in ∆S . Combining equations (14) and (16) we conclude that
the seller strictly prefers the mechanism {(x1, t ′1), (x2, t ′2)}.

This completes the proof.

B. PROOF OF PROPOSITION 2

Note that since in this paper we deal in environments where the bidders’ valuations
are drawn independently, restricting attention to mechanisms where the transfers are
uniformly bounded is without any loss of generality as far as a search for an optimal
selling mechanism is concerned.

In our proof we use the following definitions and results. Suppose that p and q are
conjugate indices, i.e. 1/p +1/q = 1. If p = 1 then the conjugate is q =∞. Suppose that
f n ∈ L p (Θ,Σ, µ̃) for n ∈ {1, 2, . . .}. (From now on we will write L p instead of L p (Θ,Σ, µ̃) for
notational simplicity.) We say that f n converges weakly to f ∈ L p if

∫

g f n d µ̃ converges

to
∫

g f d µ̃ for all g ∈ Lq .
Denote by ca(Σ) the set of countably additive probability measures on (Θ,Σ).

Chateauneuf et al. (2005) prove that when∆⊂ ca(Σ) is weakly compact and convex then
there is a measure µ̃ ∈∆ such that all measures in ∆ are absolutely continuous with re-
spect to µ̃. Using this result we fix µ̃ to be a measure such that µ� µ̃ for all µ∈∆m

B ∪∆
m
S .

For each µ ∈ ∆m
B ∪∆

m
S there exists a Radon–Nikodym derivative f ∈ L 1(µ̃). By the

Radon–Nikodym Theorem, there is an isometric isomorphism between ca(µ̃) and L 1(µ̃)
determined by the formula µ(A) =

∫

A
f d µ̃ (see Dunford and Schwartz 1958, p. 306 and

Marinacci and Montrucchio 2004, Corollary 11). Hence, a subset is weakly compact in
ca(µ̃) if and only if it is in L 1(µ̃) as well.

Let ∆̃B and ∆̃S be the set of Radon–Nikodym derivatives of measures in∆m
B and∆m

S
with respect to µ̃ respectively.

Finally, let
B r
∞ = {g ∈ L∞ : ‖g ‖∞ ≤ r }.

By Theorem 19.4 in Billingsley (1995),B r
∞ is weakly compact.

Now we turn to the proof.

PROOF OF PROPOSITION 2. In this proof, to simplify notation, we drop the bidder sub-
script i . It is clear that all the arguments go through for asymmetric mechanisms as well.
First we show that the minimizing set of priors in (1) is nonempty. Let

g θ̃ θ (θ
′) = x (θ̃ ,θ ′)θ − t (θ̃ ,θ ′).
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Recall that we assume |t (θ ,θ ′)| ≤ K for some K > 0. In other words transfers are uni-
formly bounded. Therefore by assumption g θ̃ θ ∈ L∞.

Now suppose that f n ∈ ∆̃B is such that

∫

g θ̃ θ f n d µ̃

converges to

inf
f ∈∆̃B

∫

g θ̃ θ f d µ̃.

Since ∆̃B is weakly compact, by passing to a subsequence we can find f̄ ∈ ∆̃B such that
f n weakly converges to f̄ . Thus

f̄ ∈ arg min
f ∈∆̃B

∫

g θ̃ θ f d µ̃,

proving that the minimizing set of priors in the IC and IR constraints is nonempty.
Now, we show that the minimizing set of priors in the seller’s objective function is

nonempty. Suppose f n ∈ ∆̃S is such that

∫∫

t (θ ,θ ′) f n (θ ) f n (θ ′)d µ̃(θ )d µ̃(θ ′)

approaches

inf
f ∈∆̃S

∫∫

t (θ ,θ ′) f (θ ) f (θ ′)d µ̃(θ )d µ̃(θ ′).

Since ∆̃S is weakly compact, by passing to a subsequence we can find f̄ ∈ ∆̃S such that
f n weakly converges to f̄ . Thus

∫

t (θ ,θ ′) f n (θ )d µ̃(θ ) converges to
∫

t (θ ,θ ′) f̄ (θ )d µ̃(θ ).
Let

g n (θ ′) =

∫

t (θ ,θ ′) f n (θ )d µ̃(θ ) and g (θ ′) =

∫

t (θ ,θ ′) f̄ (θ )d µ̃(θ ).

Consider
∫

g n (θ ′) f n (θ ′)d µ̃(θ ′). Note that

�

�

�

�

∫

g n (θ ′) f n (θ ′)d µ̃(θ ′)−
∫

g (θ ′) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

≤
�

�

�

�

∫

g n (θ ′) f n (θ ′)d µ̃(θ ′)−
∫

g n (θ ′) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

+

�

�

�

�

∫

g n (θ ′) f̄ (θ ′)d µ̃(θ ′)−
∫

g (θ ′) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

≤ |K +1|
�

�

�

�

∫

( f n (θ ′)− f̄ (θ ′))d µ̃(θ ′)

�

�

�

�

+

�

�

�

�

∫

(g n (θ ′)− g (θ ′)) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

.
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The first term goes to zero. To see that the second term also goes to zero note
�

�

�

�

∫

(g n (θ ′)− g (θ ′)) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

=

�

�

�

�

�

∫ �∫

t (θ ,θ ′) f n (θ )d µ̃(θ )−
∫

t (θ ,θ ′) f̄ (θ )d µ̃(θ )

�

f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

�

=

�

�

�

�

�

∫ �∫

t (θ ,θ ′) f̄ (θ ′)d µ̃(θ ′)

�

f n (θ )d µ̃(θ )−
∫ �∫

t (θ ,θ ′) f̄ (θ ′)d µ̃(θ ′)

�

f̄ (θ )d µ̃(θ )

�

�

�

�

�

.

Thus

f̄ ∈ arg min
f ∈∆̃S

∫∫

t (θ ,θ ′) f (θ ) f (θ ′)d µ̃(θ )d µ̃(θ ′),

proving that the minimizing set of priors in the seller’s objective function is nonempty.
Next, we show that there exists a mechanism (x , t ) that satisfies the IC and IR con-

straints and achieves the optimal revenue for the seller. Since transfers are bounded, the
seller’s revenue is bounded. Suppose that the value of the seller’s problem (1) is R . This
means that there exist a sequence of mechanisms {(x n , t n )} such that (x n , t n ) satisfies
the IC and IR constraints for each n , and if we let

Rn = min
µ∈∆m

S

∫∫

�

t n (θ ,θ ′)+ t n (θ ′,θ )
�

dµ(θ )dµ(θ ′),

then Rn →R .
Note that x n ∈B 1

∞ and t n ∈B K
∞ . Therefore passing to subsequences, x n converges

weakly to x and t n converges weakly to t . Clearly x (θ ,θ ′)+x (θ ′,θ )≤ 1 for all θ ,θ ′ ∈Θ.
Next, we show that (x , t ) satisfies the IC and IR constraints. Note that it is sufficient

to show that for any θ , θ̃ ∈Θ,

lim
n→∞

min
µ∈∆m

B

∫

�

x n (θ̃ ,θ ′)θ − t n (θ̃ ,θ ′)
�

dµ(θ ′) = min
µ∈∆m

B

∫

�

x (θ̃ ,θ ′)θ − t (θ̃ ,θ ′)
�

dµ(θ ′).

To simplify notation let

g n
θ̃ θ
(θ ′) = x n (θ̃ ,θ ′)θ − t n (θ̃ ,θ ′) and g θ̃ θ (θ

′) = x (θ̃ ,θ ′)θ − t (θ̃ ,θ ′)

for all θ , θ̃ ∈Θ. Observe that g n
θ̃ θ

and g θ̃ θ are both bounded by K +1 and thus are both
in L∞. Moreover since x n and t n converge weakly to x and t , g n

θ̃ θ
converges weakly to

g θ̃ θ .
Now note that for all µ̂∈∆m

B ,

lim
n→∞

min
µ∈∆m

B

∫

g n
θ̃ θ
(θ ′)dµ(θ ′)≤ lim

n→∞

∫

g n
θ̃ θ
(θ ′)d µ̂(θ ′) =

∫

g θ̃ θ (θ
′)d µ̂(θ ′), (17)

where the equality follows since g n
θ̃ θ

converges weakly to g θ̃ θ (θ ′). Thus

lim
n→∞

min
µ∈∆m

B

∫

g n
θ̃ θ
(θ ′)dµ(θ ′)≤ min

µ∈∆m
B

∫

g θ̃ θ (θ
′)dµ(θ ′). (18)
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On the other hand, for each n let f n ∈ ∆̃B be such that
∫

g n
θ̃ θ
(θ ′) f n (θ ′)d µ̃(θ ′) = min

f ∈∆̃B

∫

g n
θ̃ θ
(θ ′) f (θ ′)d µ̃(θ ′). (19)

(We know such an f n exists since the minimizing set of priors is nonempty.) Since ∆̃B

is weakly compact again by passing to a subsequence, f n converges weakly to f̄ ∈ ∆̃B .
Note that
�

�

�

�

∫

g n
θ̃ θ
(θ ′) f n (θ ′)d µ̃(θ ′)−

∫

g θ̃ θ (θ
′) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

≤
�

�

�

�

∫

g n
θ̃ θ
(θ ′) f n (θ ′)d µ̃(θ ′)−

∫

g n
θ̃ θ
(θ ′) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

+

�

�

�

�

∫

g n
θ̃ θ
(θ ′) f̄ (θ ′)d µ̃(θ ′)−

∫

g θ̃ θ (θ
′) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

≤ |K +1|
�

�

�

�

∫

( f n (θ ′)− f̄ (θ ′))d µ̃(θ ′)

�

�

�

�

+

�

�

�

�

∫

g n
θ̃ θ
(θ ′) f̄ (θ ′)d µ̃(θ ′)−

∫

g θ̃ θ (θ
′) f̄ (θ ′)d µ̃(θ ′)

�

�

�

�

.

The last inequality follows from the fact that |g n
θ̃ θ
(θ ′)| ≤ K + 1. Since f n weakly

converges to f̄ ∈ ∆̃B and g n
θ̃ θ

converges weakly to g θ̃ θ both terms on the right hand side
of the last inequality approach 0. This implies that by taking limits in equation (19),

∫

g θ̃ θ (θ
′) f̄ (θ ′)d µ̃(θ ′) = lim

n→∞
min
f ∈∆̃B

∫

�

x n (θ̃ ,θ ′)θ − t n (θ̃ ,θ ′)
�

f (θ ′)d µ̃(θ ′),

which in turn implies that

min
f ∈∆̃B

∫

g θ̃ θ (θ
′) f (θ ′)d µ̃(θ ′)≤ lim

n→∞
min
f ∈∆̃B

∫

�

x n (θ̃ ,θ ′)θ − t n (θ̃ ,θ ′)
�

f (θ ′)d µ̃(θ ′).

The previous inequality together with (18) implies (17), which concludes the proof. �

C. PROOF OF COROLLARY 1

Suppose that for some mechanism {(x1, t1), (x2, t2)}, there exists a bidder i and some
positive measure event eΘ⊆Θ such that for all θ ∈ eΘ and for all G ∈∆min

S ,
∫

Θ

qi (θ ,θ ′)dG (θ ′)> min
H∈∆B

∫

Θ

qi (θ ,θ ′)d H (θ ′). (20)

We need to show that there exists a full insurance auction that is strictly preferred by the
seller. Let {(x1, t ′1), (x2, t ′2)} be defined as in the proof of Proposition 1. We know that

inf
G∈∆S

∫

Θ

∫

Θ

�

t ′1(θ ,θ ′)+ t ′2(θ
′,θ )

�

dG (θ )dG (θ ′)

≥ inf
G∈∆S

∫

Θ

∫

Θ

�

t1(θ ,θ ′)+ t2(θ ,θ ′)
�

dG (θ )dG (θ ′)

+ inf
G∈∆S

∫

Θ

∫

Θ

δ1(θ̃ ,θ ′)dG (θ ′)dG (θ̃ )+ inf
G∈∆S

∫

Θ

∫

Θ

δ2(θ̃ ,θ ′)dG (θ ′)dG (θ̃ ). (21)
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Let G̃ ∈ arg minG∈∆m
S

∫∫ �

t ′1(θ ,θ ′)+ t ′2(θ
′,θ )

�

dG (θ )dG (θ ′). We show the claim by con-
sidering two cases.

The first case is G̃ ∈∆min
S . In this case for all θ ∈ eΘ equation (20) holds. Therefore

∫

Θ

∫

Θ

δi (θ ,θ ′)dG̃ (θ ′)dG̃ (θ )

=

∫

Θ

�∫

Θ

qi (θ ,θ ′)dG̃ (θ ′)− min
H∈∆B

∫

Θ

qi (θ ,θ ′)d H (θ ′)

�

dG̃ (θ )> 0.

Using equations (14) and (15) we conclude that the seller strictly prefers the mechanism
{(x1, t ′1), (x2, t ′2)}.

The second case is G̃ /∈∆min
S . In this case by definition of∆min

s ,

∫

Θ

∫

Θ

�

t1(θ ,θ ′)+ t2(θ ′,θ )
�

dG̃ (θ )dG̃ (θ ′)

> min
H∈∆S

∫

Θ

∫

Θ

�

t1(θ ,θ ′)+ t2(θ ′,θ )
�

d H (θ )d H (θ ′).

Again from equations (14) and (15) we observe that

min
G∈∆S

∫

Θ

∫

Θ

�

t ′1(θ ,θ ′)+ t ′2(θ
′,θ )

�

dG (θ )dG (θ ′)

=

∫

Θ

∫

Θ

�

t1(θ ,θ ′)+ t2(θ ′,θ )
�

dG̃ (θ )dG̃ (θ ′)

+

∫

Θ

∫

Θ

δ1(θ̃ ,θ ′)dG̃ (θ ′)dG̃ (θ̃ )+

∫

Θ

∫

Θ

δ2(θ̃ ,θ ′)dG̃ (θ ′)dG̃ (θ̃ )

> min
H∈∆S

∫

Θ

∫

Θ

�

t1(θ ,θ ′)+ t2(θ ′,θ )
�

d H (θ )d H (θ ′),

and the seller strictly prefers {(x1, t ′1), (x2, t ′2)}.

D. PROOF OF PROPOSITION 3

To obtain a contradiction, suppose that {(x1, t1), (x2, t2)} is optimal but for bidder i and
for a positive measure set of θ̄ , qi (θ̄ ,θ ) is not constant. Since F has strictly positive
density we have

∫

qi (θ̄ ,θ ′)d F (θ ′)> infθ ′∈Θqi (θ̄ ,θ ′). So

∫

qi (θ̄ ,θ ′)d F (θ ′)> (1−ε)
∫

Θ

qi (θ̄ ,θ ′)d F (θ ′)+ε inf
θ ′∈Θ

qi (θ̄ ,θ ′)

= inf
H∈∆B

∫

Θ

qi (θ̄ ,θ ′)d H (θ ′).

By Proposition 1, {(x1, t1), (x2, t2)} is not optimal.
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E. PROOF OF LEMMA 1

We need to show that there exists M > 0 such that

�

�u i (θ )−u i (θ̃ )
�

�≤M
�

�θ − θ̃
�

� .

We know that

(θ − θ̃ )X min
i (θ̃ )≤ u i (θ )−u i (θ̃ )≤ (θ − θ̃ )X max

i (θ̃ ).

So if θ > θ̃ , using the fact that u i is increasing we can conclude that

u i (θ )−u i (θ̃ )≤ (θ − θ̃ )X max
i (θ̃ )≤

�

�θ − θ̃
�

� .

Similarly if θ < θ̃ , then

−(u i (θ )−u i (θ̃ ))≤−(θ − θ̃ )X min
i (θ̃ )≤

�

�θ − θ̃
�

� .

Together these imply that the Lipschitz condition holds with M = 1.

F. PROOF OF PROPOSITION 4

First note that Lε is increasing in θ if L is increasing in θ . To see this note that

θ −
1− F (θ )

f (θ )
>θ ′−

1− F (θ ′)
f (θ ′)

⇒ θ −θ ′ >
1− F (θ )

f (θ )
−

1− F (θ ′)
f (θ ′)

⇒ θ −θ ′ > (1− ε)
�

1− F (θ )
f (θ )

−
1− F (θ ′)

f (θ ′)

�

⇒ θ − (1− ε)
1− F (θ )

f (θ )
>θ ′− (1− ε)

1− F (θ ′)
f (θ ′)

.

Note that X min
i (θ ) ≤ X i (θ ). Therefore if X i (θ ) = 0, X min

i (θ ) = 0 as well. Letting
X min

i (θ )/X i (θ ) = 1 whenever X i (θ ) = 0, we define

M i (θ ) = θ −
X min

i (θ )
X i (θ )

·
1− F (θ )

f (θ )
.

We can rewrite R as

R =
2
∑

i=1

�∫

Θ

∫

Θ

M i (θ )x i (θ ,θ ′) f (θ ′) f (θ )dθ ′dθ

�

. (22)
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Now we can show that the optimal allocation rule is given by x i (θ ,θ ′) = 1 if θ > θ ′ and
θ ≥ r , x i (θ ,θ ′) = 1

2 if θ = θ ′ and θ ≥ r , and x (θ ,θ ′) = 0 otherwise. First note that, in the
ε-contamination case, X min

i (θ )≥ (1− ε)X i (θ ) for all θ such that X i (θ )< 1.18

Under the above allocation rule X min
i (θ ) = (1− ε)X i (θ ) for all θ such that X i (θ ) < 1.

Therefore this allocation rule maximizes M i (θ ). By construction x i (θ ,θ ′) = 1 if and only
if M i (θ ) >M i (θ ′) and M i (θ ) ≥ 0 therefore maximizing (22). Since the allocation rule is
the same for both bidders, the optimal mechanism is symmetric and we drop the bidder
subscripts in the rest of the proof.

Finally we show that (x , t ) is incentive compatible. To this end first we show that if
X min is non-decreasing, selecting u as in (9) satisfies IC. We check two cases.

If θ > θ̃ ,

u (θ )−u (θ̃ ) =

∫ θ

θ̃

X min(y )d y ≥X min(θ̃ )(θ − θ̃ )

and if θ < θ̃ ,

u (θ̃ )−u (θ ) =

∫ θ̃

θ

X min(y )d y ≤X min(θ̃ )(θ̃ −θ ).

So in either case,

u (θ )≥ u (θ̃ )+ inf
G∈∆B

∫

Θ

(θ − θ̃ )x (θ̃ ,θ ′)dG (θ ′)

= inf
G∈∆B

∫

Θ

(x (θ̃ ,θ ′)θ − t (θ̃ ,θ ′))dG (θ ′).

which is the IC constraint.
Now, note that for the allocation rule in the statement of Proposition 4, X min is non-

decreasing, and thus the mechanism (x , t ) is incentive compatible.

G. PROOF OF PROPOSITION 5

Suppose that given a mechanism {(x1, t1), (x2, t2)}, there exists a bidder i and a positive
measure subset eΘ ⊆ Θ such that for all θ̃ ∈ eΘ, qi (θ̃ ,θ ) is weakly decreasing in θ and
qi (θ̃ ,θ ′) < qi (θ̃ ,θ ′′) for some θ ′,θ ′′ ∈ Θ. First note that if H ∈ ∆B first-order stochasti-
cally dominates G ∈∆S then

∫

Θ

qi (θ̃ ,θ ′)d H (θ ′)<

∫

Θ

qi (θ̃ ,θ ′)dG (θ ′).

18This is true since

X min
i (θ ) = inf

G∈∆b

∫

Θ

x i (θ ,θ ′)dG (θ ′)

= (1− ε)
∫

Θ

x i (θ ,θ ′)d µ̃(θ ′)+ ε inf
µ̂�µ

∫

Θ

x i (θ ,θ ′)d µ̂(θ ′)

≥ (1− ε)
∫

Θ

x i (θ ,θ ′)d F (θ ′).
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So there exists H ∈∆B such that
∫

Θ

qi (θ ,θ ′)d H (θ ′)<min
G∈∆S

∫

Θ

qi (θ ,θ ′)dG (θ ′)

which in turn implies that

min
H∈∆B

∫

Θ

qi (θ ,θ ′)d H (θ ′)<min
G∈∆S

∫

Θ

qi (θ ,θ ′)dG (θ ′).

Note that since∆S and∆B are weakly compact and convex with elements that are count-
ably additive probability measures and the transfers are uniformly bounded, the min-
imums above exist by Proposition 2. Finally, by Proposition 1, {(x1, t1), (x2, t2)} is not
optimal.

H. PROOF OF PROPOSITION 6

Let (x , t ) be an arbitrary symmetric, incentive compatible, and individually rational
mechanism. Define T (θ ) as bidder θ ’s expected transfer under F , that is,

T (θ ) =

∫

Θ

t (θ ,θ ′)d F (θ ′).

Now let

t̃ (θ ,θ ′) = T (θ )−T (θ ′)+

∫

Θ

T (i )d F (i ).

First, we show that the mechanism (x , t̃ )makes the seller (weakly) better off, leaves the
bidders’ payoffs unchanged under truthtelling, and is incentive compatible.

To see that the seller is (weakly) better off under (x , t̃ ), note that the seller’s payoff in
the mechanism (x , t̃ ) is

inf
G∈∆S

∫

Θ

∫

Θ

�

t̃ (θ ,θ ′)+ t̃ (θ ′,θ )
�

dG (θ )dG (θ ′)

= inf
G∈∆S

∫

Θ

∫

Θ

�

T (θ )−T (θ ′)+

∫

T (i )d F (i )

+T (θ ′)−T (θ )+

∫

Θ

T (j )d F (j )

�

dG (θ )dG (θ ′)

= inf
G∈∆S

∫

Θ

∫

Θ

�

2

∫

T (i )d F (i )

�

dG (θ )dG (θ ′)

= 2

∫

Θ

T (i )d F (i )

=

∫

Θ

∫

Θ

�

t (θ ,θ ′)+ t (θ ′,θ )
�

d F (θ )d F (θ ′)

≥ inf
G∈∆S

∫

Θ

∫

Θ

�

t (θ ,θ ′)+ t (θ ′,θ )
�

dG (θ )dG (θ ′) (23)
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where the last inequality follows since F ∈∆S . Hence the seller weakly prefers (x , t̃ ).
Next we show that (x , t̃ ) leaves the bidders’ payoffs unchanged under truth-telling.

By construction,

∫

Θ

t̃ (θ ,θ ′)d F (θ ′) =

∫

Θ

�

T (θ )−T (θ ′)+

∫

Θ

T (i )d F (i )

�

d F (θ ′)

= T (θ )−
∫

Θ

T (θ ′)d F (θ ′)+

∫

Θ

T (i )d F (i )

= T (θ )

=

∫

Θ

t (θ ,θ ′)d F (θ ′).

Finally we show that (x , t̃ ) is incentive compatible. Note that,

∫

�

θx (θ̃ ,θ ′)− t (θ̃ ,θ ′)
�

d F (θ ′) =

∫

θx (θ̃ ,θ ′)d F (θ ′)−
∫

t (θ̃ ,θ ′)d F (θ ′)

=

∫

θx (θ̃ ,θ ′)d F (θ ′)−T (θ̃ )

=

∫

θx (θ̃ ,θ ′)d F (θ ′)−
∫

t̃ (θ̃ ,θ ′)d F (θ ′).

So the payoff for type θ to pretend to be θ̃ is the same in both the mechanisms (x , t )
and (x , t̃ ) and since (x , t ) is incentive compatible, (x , t̃ ) is as well. Since, by construction,
t̃ (θ ,θ ′)+ t̃ (θ ′,θ ) is constant for all θ ,θ ′ ∈Θ, the first part of the proof is complete. Next
suppose

inf
G∈∆S

∫

Θ

∫

Θ

�

t (θ ,θ ′)+ t (θ ′,θ )
�

dG (θ )dG (θ ′)<

∫

Θ

∫

Θ

�

t (θ ,θ ′)+ t (θ ′,θ )
�

d F (θ )d F (θ ′).

Then the weak inequality in (23) is strict and the seller is strictly better off.
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