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Valuation equilibrium
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We introduce a new solution concept for games in extensive form with perfect in-
formation, valuation equilibrium, which is based on a partition of each player’s
moves into similarity classes. A valuation of a player is a real-valued function on
the set of her similarity classes. In this equilibrium each player’s strategy is opti-
mal in the sense that at each of her nodes, a player chooses a move that belongs
to a class with maximum valuation. The valuation of each player is consistent
with the strategy profile in the sense that the valuation of a similarity class is the
player’s expected payoff, given that the path (induced by the strategy profile) in-
tersects the similarity class. The solution concept is applied to decision problems
and multi-player extensive form games. It is contrasted with existing solution
concepts. The valuation approach is next applied to stopping games, in which
non-terminal moves form a single similarity class, and we note that the behav-
iors obtained echo some biases observed experimentally. Finally, we tentatively
suggest a way of endogenizing the similarity partitions in which moves are cate-
gorized according to how well they perform relative to the expected equilibrium
value, interpreted as the aspiration level.

KEYWORDS. Game theory, bounded rationality, valuation, similarity, aspiration.

JEL CLASSIFICATION. C72, D81.

1. INTRODUCTION

“Buy low, sell high” is obviously an oversimplified rule for investors. It disregards many
aspects of the market that could be taken into account when one makes investment
decisions. Still, this popular wisdom captures an essential aspect of decision making
in complex situations where a decision maker finds it impossible to evaluate the fu-
ture consequences of her move precisely. This simple rule groups together many such
moves. Indeed, it suggests that one should disregard all aspects of the market other than
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the price. In all states of the market in which the price is high, the investor evaluates all
“buy” moves as superior to “sell” moves, and the opposite is true in all states of the mar-
ket in which the price is low.

More generally, the difficulty of evaluating different moves is a feature of most com-
plex games. The strategic form of such games may be so big that it cannot be consid-
ered by real players. In such cases, the task of choosing the right move at each node
is too hard as one has a limited understanding of the future consequences associated
with each possible move. Instead, players can group several moves together, at differ-
ent decision nodes, consider them similar, and evaluate the whole group rather than
each move individually. Where does the similarity of moves come from? It may depend
on some conventional wisdom, either derived from a “narrative” behind the game or
possibly gleaned from the experience of previous players, which contributes to our un-
derstanding of what could possibly be more desirable. Thus, in the investment game we
know enough economic theory (or at least believe that we do) to tell that the price level
should be an important ingredient in making our investment decision. When we think
of a complex game like chess, the similarity of moves can be deduced from the structure
of the game (the board and the rules of the game, which can hardly be seen in the game
tree), which helps us to compare certain moves in different configurations of the board
(for example, by assessing the strength of a position by the profile of pieces rather than
the board position itself). Having this picture in mind, our premise is that the grouping
of moves into similarity classes is given to players externally, and that it is not a matter
of choice by individual players.

Our analysis is only a first step in the study of the grouping of moves. A complete
study should endogenize the formation of this grouping. Here we study mainly the im-
plications of the grouping of moves (assumed to be exogenously given) on the equi-
librium analysis. We illustrate how the solutions obtained differ from other equilib-
rium approaches and explore whether interesting phenomena can be explained by the
approach.

We consider games in extensive form with perfect information and assume that each
player has a partition of her nodes into similarity classes. A valuation of a player assigns
a numerical value to each of her similarity classes.

We introduce two solution concepts for extensive games based on similarity classes
and their valuation: valuation equilibrium and sequential valuation equilibrium.1 A
valuation equilibrium (VE) is a profile of behavioral strategies for which players have
valuations that satisfy two conditions.

• Each player’s strategy is optimal for her valuation. By this we mean that at each
node where she plays she chooses one of the moves that belongs to a class with
maximum valuation.

1Steiner and Stewart (2006) study a learning model applied to coordination games in which the payoffs
obtained with the same strategy are aggregated over nearby states. They show how such a learning process
may select among several equilibria of the underlying coordination games using the techniques of global
games. While such a learning process is related in spirit to our approach (in their model as in ours the no-
tion of similarity is exogenously given), their limiting outcome does not however correspond to a valuation
equilibrium because their model of similarity is not in terms of partition of moves.
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• Each player’s valuation is consistent with the strategy profile. That is, the valuation
attached to a player’s similarity class is the expected payoff of the player given that
the path (induced by the strategy profile) intersects this class.

We think of the consistency requirement as resulting from a learning process in
which similarity classes are kept fixed (they are externally given) and players keep up-
dating the valuations assigned to similarity classes along the learning process.2 Observe
that the consistency requirement imposes constraints only on the valuations of simi-
larity classes that are reached with positive probability in equilibrium. Our second and
main solution concept, the sequential valuation equilibrium, imposes a stronger no-
tion of consistency that also applies to unreached similarity classes. Very much like se-
quential equilibrium (Kreps and Wilson 1982), sequential consistency requires that the
valuations of unreached similarity classes be consistent with small perturbations of the
strategy profile.

In Section 2 we formally define the concepts. In Section 3, we discuss the motivation
for our approach and review some simple ideas in chess (like the values assigned to
pieces) in light of our solution concept.

Sections 4 and 5 make a number of observations regarding valuation equilibrium
and its link to other approaches. We first show that in finite environments a sequen-
tial valuation equilibrium (SVE) always exists, for any given similarity partitions. We
also note that for maximal similarity partitions (i.e., when each move forms a similarity
class), an SVE coincides with a subgame perfect Nash equilibrium.

In Section 5 valuation equilibria are related to, and contrasted with, other solutions.
The examples in this section are deliberately simple and serve to illustrate a number of
theoretical insights. We first consider decision problems. In sharp contrast with stan-
dard notions of equilibrium, we provide a one-agent decision problem involving chance
moves such that in equilibrium the agent makes the worst possible decision at every de-
cision node. In another one-agent setup, the decision maker must make a binary deci-
sion in either problem a or problem b as selected by nature. For a similarity grouping
involving three classes (one class contains one move in each problem a and b , and the
other classes are singletons), we find that there are two strict SVEs,3 thus showing that it
is not possible to interpret SVE as a standard solution of a different game possibly with
different final payoffs and different information structures but the same move structure.
We next move on to multi-player games. We first observe that any sequential equilib-
rium of games with incomplete information and perfect recall can be represented as
an SVE by natural choices of similarity partitions. Thus, the valuation approach covers
the usual information treatment while allowing for more flexibility (as can be inferred
from the one-agent decision problem described above).4 We also contrast the valuation
approach with the imperfect recall approach (Piccione and Rubinstein 1997).

2From the more general perspective in which similarity classes can also be adjusted along the learning
process, our approach implicitly requires that similarity classes are adjusted much more slowly than the
valuations attached to them. The case in which the adjustments of the similarity classes and of their corre-
sponding valuations take place at the same pace may require another solution concept to be considered.

3An SVE is strict if for every player only one strategy is optimal for the valuation.
4The valuation approach allows for grouping that would not even make sense in the incomplete
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In Section 6 we apply the valuation approach to stopping decision problems and
games where we consider the grouping of all non-terminal moves into one similarity
class while terminal moves are singleton similarity classes. We observe that a decision
maker facing several stopping decision problems of length T must either stop imme-
diately in all but one of these problems or go on till the very end, i.e., period T (with
positive probability) in at least one of these problems. This holds irrespective of the
payoffs chosen, which illustrates a systematic timing bias implied by the valuation ap-
proach in such decision problems. Such biases are further explored in more structured
situations in which a positive correlation is assumed between the payoffs obtained with
an immediate stop and the payoffs obtained when the decision maker goes ahead (in
this case we assume that T = 2). In stopping games, we observe that the grouping of
non-terminal moves may allow players to sustain threats that would not otherwise be
credible.

Finally, in Section 7 we briefly suggest a way to endogenize the similarity partitions
based on the idea of an aspiration level. Moves are categorized according to whether
they deliver less, more, or the same level of payoff as a benchmark payoff, referred to
as the aspiration level, which is assumed to be the equilibrium payoff. We refer to such
an equilibrium as an aspiration-based sequential valuation equilibrium (ASVE). After
briefly providing a learning motivation for the aspiration approach, we observe that the
subgame perfect Nash equilibrium is always an ASVE, but other strategy profiles may
be ASVEs as well. Still, in zero-sum two-player games without chance moves, a player
must get her value in any ASVE. This provides an interesting class of games in which the
aspiration grouping delivers good outcomes.

2. VALUATION EQUILIBRIUM

2.1 Games and strategies

Consider a finite extensive game with perfect information. It is specified by (1) a finite
set of players I , (2) a tree (Z , N , r, A), where Z and N are the (finite) sets of terminal and
non-terminal nodes, respectively, r ∈N is the root of the tree, and A the set of arcs, (3) a
non-intersecting collection of subsets (Ni )i∈I of N where Ni is the set of nodes at which
it is i ’s turn to play, and (4) a collection ( f i )i∈I of functions where f i : Z −→R is i ’s payoff
function defined over the set of terminal nodes Z .

Elements of A are ordered pairs (n , m ), where m ∈Z ∪N is the immediate successor
of n ∈N . The moves of player i at node n ∈Ni are the nodes in M i (n ) = {m | (n , m )∈ A}.
The set of moves of player i is denoted M i =

⋃

n∈Ni
M i (n ).

A (behavioral) strategy for player i is a function σi defined on Ni such that for each
n ∈ Ni , σi (n ) is a probability distribution on M i (n ), where σi (n )(m ) should be inter-
preted as the probability that move m ∈M i (n ) is selected at n according toσi (n ).

The nodes in N \ ∪i∈I Ni belong to nature, which has a fixed strategy. We assume
without loss of generality that at each of its nodes n , nature assigns a positive probability
to each of the moves at n .

information treatment. Two moves at two different nodes may be members of the same similarity class
even though the number of moves available at the nodes differ.



Theoretical Economics 2 (2007) Valuation equilibrium 167

For a strategy profile σ = (σi )i∈I , we let Pσ be the probability over Z induced by σ
and nature’s strategy. That is, for each z ∈ Z , Pσ(z ) is the probability that z is reached
whenσ is played.

2.2 Similarity and valuation

Player i has a relation of similarity on M i , her set of moves. We assume that it is an
equivalence relationship and denote by Λi the partition of M i into similarity classes.
For m ∈M i , λ(m ) denotes the similarity class in Λi that contains m . For each similarity
class λ ∈ Λi , we let Z (λ) be the set of all terminal nodes that are descendants of some
node in λ.

A valuation for player i is a function vi :Λi −→R .

2.3 Equilibria

We say that the strategy σi is optimal for the valuation vi if for each n ∈ Ni and m ∈
M i (n ), σi (n )(m ) = 0 whenever m /∈ arg maxm ′∈M i (n ) vi (λ(m ′)). That is, at each of her
nodes, with probability 1 player i chooses only moves that belong to similarity classes
with maximal valuation.

In equilibrium we require the valuations to be consistent with the strategy profile
used by the players. Formally, we say that the valuation vi is consistent with the profile
σ if for each λ∈Λi such that Pσ(Z (λ))> 0, we have

vi (λ) = Eσ( f i |Z (λ)), (1)

or equivalently,

vi (λ) =
∑

z∈Z (λ)
Pσ(z ) f i (z )/Pσ(Z (λ)).

We think of the consistency requirement as resulting from a learning process in
which each player i keeps track only of the average value of picking a move in λ, for
every λ ∈ Λi . More precisely, assume that strategies have settled down at σ, and that at
least one m ∈ λ is played with positive probability according to σ (i.e., Pσ(Z (λ)) > 0).
By keeping track of the average payoff she obtained whenever she played a move in the
various similarity classes in Λi , player i will (eventually) value λ according to (1), as this
valuation corresponds to the expected payoff obtained by player i given that (at least)
one of the moves in λ was played (and that the strategy profile is σ). She will next pick
a strategy that is optimal for her valuation, which gives rise to the following solution
concept.

DEFINITION 1. A strategy profile σ = (σi )i∈I is a valuation equilibrium (VE) if there ex-
ists a valuation profile v = (vi )i∈I such that for each i ,

• σi is optimal for vi

• vi is consistent withσ.
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Note that being consistent with σ does not impose any restriction on the valuation
of similarity classes that are not reached under σ. Thus, it is possible that a strategy
profile is supported by a valuation even though the valuations of unreached classes bear
no relation to the true payoffs of the game. Specifically, a player may avoid all moves in a
certain similarity class because it has a low valuation. This low valuation, in turn, may be
arbitrarily small, and bear no relation to the payoffs at terminal nodes that are reached
from the class. Still, consistency is maintained because the class is never reached.5

To avoid such equilibria we refine the notion of VE in a way that parallels the notion
of sequential equilibrium. We require that the valuation v reflects possible payoffs at
nodes that are not reached, much the same as beliefs in sequential equilibrium reflect
possible beliefs at nodes that are not reached.

We say that a strategyσ is positive on similarity classes if Pσ(Z (λ))> 0 for each i and
each λ∈Λi . We say thatσ is positive (or completely mixed) if Pσ(z )> 0 for each terminal
node z . Clearly, if σ is positive it is positive on similarity classes. The following claim is
obvious.

CLAIM 1. If σ is positive on similarity classes then there exists a unique valuation v that
is consistent withσ.

We say that a valuation vi is sequentially consistent with the strategy profileσ if there
exists a sequence of strategy profiles (σk )∞k=1 that are positive on similarity classes and
such that σk converges to σ and v k

i converges to vi , where v k
i is the unique valuation

consistent withσk .

DEFINITION 2. A strategy profile σ is a sequential valuation equilibrium (SVE) if there
exists a valuation profile v = (vi )i∈I such that for each i ,

• σi is optimal for vi

• vi is sequentially consistent withσ.

It is easy to see that sequential consistency implies consistency, and thus an SVE is
also a VE.

We could possibly strengthen the notion of sequential consistency by requiring that
the strategies (σk )∞k=1 are not only positive on similarity classes but also completely
mixed. But as the following claim shows these requirements are equivalent.

CLAIM 2. A valuation vi is sequentially consistent with the strategy profile σ if and only
if there exists a sequence of positive strategy profiles (σk )∞k=1 such that σk converges to σ
and v k

i converges to vi , where v k
i is the unique valuation consistent withσk .

PROOF. Obviously if the condition in the claim is satisfied, then in particular the strate-
gies (σk )∞k=1 are positive on similarity classes, and therefore vi is sequentially consistent
withσ.

5This is similar in spirit to the theme developed in the notion of self-confirming equilibrium (Fudenberg
and Levine 1993).
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Conversely, suppose that vi is sequentially consistent with σ, and let (σk )∞k=1 be
a sequence of strategies that are positive on similarity classes such that σk → σ and
v k

i → vi , where v k
i is the unique valuation consistent withσk . Let ν be a positive strategy

profile. For each k let γk be the minimum of Pσk (Z (λ)) over all λ (γk > 0 because σk

is positive on similarity classes and there are finitely many similarity classes). Define
σ̂k = (1−γk 2−k )σk +γk 2−kν . Then σ̂k →σ and v̂ k

i → vi , while σ̂k is positive for each
k . �

3. MOTIVATION AND INTERPRETATION

The valuation approach is closely related to the familiar notion of evaluating board po-
sitions in chess, checkers, and many other games by a few simple criteria such as the
profile of pieces on each side or the position around the center (see Samuel 1959 for an
early investigation of the game of checkers). Adopting the valuation approach, the set of
moves leading to positions with the same features can be viewed as one similarity class.
The optimality condition means that players always choose moves that lead to board
positions with the highest valuations (as determined by the criteria). The consistency
condition endogenizes the valuation assigned to clusters of moves that form a similarity
class. This is in line with the popular view in chess that a queen is worth twice as much
as rook, which we interpret as saying that the chance of winning is roughly the same on
average over all board positions where the queen is replaced by two rooks (whenever
applicable).6

But, the valuation approach is in our view broadly applicable to many interactions
other than chess or checkers. When we are told that it pays to be tough, we attach a
single valuation to a big cluster of moves (as there are many different contexts where
one can be tough). Since being tough may have very different consequences in different
contexts (in bargaining being tough may be good when the other party has no outside
option but not otherwise), attaching a single valuation to being tough introduces a form
of bounded rationality that the valuation approach is designed to capture. Similarly,
when financial advisers suggest selling when the market price is high and buying when
it is low they do not make their advice contingent on whether the market is in a bubble
or not, even though this information may obviously affect the true assessment of sell-
ing or buying at the current market price. Again, attaching a single valuation to selling
when the price is high or when it is low induces an oversimplification that the valuation
approach is designed to capture.

More generally, the valuation approach is aimed at modeling the interaction of play-
ers in complex environments in which it is too hard to assess the strength of every single
move separately. While most (if not all) of the applications considered below have a
small number of nodes (designed to illustrate theoretical properties), one must bear in
mind that they should be considered as complex situations from the viewpoint of the
players. For example, in the stopping decision problems considered in Section 6, the

6The idea of a criterion obtained by linearly adding the values of pieces introduces an extra element (of
additive separability) that is not present in the valuation approach. Yet, the spirit is clearly related.
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potential duration of the interaction should be thought of as large from the viewpoint of
the players.

4. GENERAL PROPERTIES

4.1 Existence

Since each SVE is also a VE it is enough to prove the existence of an SVE.

PROPOSITION 1. Each game has at least one sequential valuation equilibrium.

PROOF. The strategy of proof is the same as that for the existence of sequential equilib-
ria (Kreps and Wilson 1982). Consider the set Σε of strategy profilesσε withσεi (n )(m )>
ε for all n ∈ Ni and m ∈ M i (n ). For any strategy profile σε ∈ Σε there exists a unique
valuation v (σε) such that for each i , vi (σε) is consistent with σε . By the equations that
define valuations, v (σε) depends continuously onσε in Σε .

We say that player i ’s strategy σi is ε-optimal for the valuation vi , if for each n ∈Ni

and m ∈ M i (n ), σi (n )(m ) = ε whenever m /∈ arg maxm∈M i (n ) vi (λ(m )). Consider the
correspondence that associates with each σε ∈ Σε the set of all strategy profiles σ̂ε ∈
Σε such that for each i , σ̂εi is ε-optimal for the valuation vi (σε). It is easy to see that
this correspondence is upper hemicontinuous with non-empty closed convex values. It
follows by Kakutani’s fixed-point theorem that there existsσε such that for each i ,σεi is
ε-optimal for the valuation v εi , which is the unique valuation of i consistent withσε .

By compactness, there existσ and v and a subsequence ofσεk with εk → 0 such that
bothσεk →σ and v (σεk )→ v . By continuity,σ is optimal for v and hence is a sequential
valuation equilibrium. �

4.2 The trivial similarity relations

For the two trivial similarity relations, the largest and the smallest, the characterization
of VEs and SVEs is simple enough.

PROPOSITION 2. (a) If for each player i all moves in M i are similar, then every strategy
profile is an SVE. (b) If for each player i no two different moves in M i are similar, then a
strategy profile is an SVE if and only if it is a subgame perfect Nash equilibrium.

5. LINK TO OTHER SOLUTION CONCEPTS

In this section we illustrate the working of the SVE concept in a variety of settings. We
first consider decision problems that illustrate that the SVE concept is new and cannot
be interpreted in general as a standard equilibrium even by varying the payoff and infor-
mation structures of the players. We next discuss the link of the approach to sequential
equilibrium in games with incomplete information, and to imperfect recall.
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FIGURE 1. A valuation equilibrium in a decision problem

5.1 Decision problems

Obviously, in a decision problem the grouping of moves into similarity classes cannot
benefit the agent. It can only prevent him from making optimal decisions in all circum-
stances. The following example illustrates a more dramatic case in which due to the
similarity grouping, making the worst decision is a valuation equilibrium, while making
the best one is not. This is somewhat surprising in light of the optimality requirement
in valuation equilibrium.

EXAMPLE 1. The decision tree is depicted by the solid lines in Figure 1. At the root r ,
nature chooses one of three nodes x , y , and z with equal probability. At each of these
nodes, the decision maker can choose between a good move or a bad one, where the
payoff is higher in the first. The payoffs are written next to these nodes. The three dotted
lines connect similar nodes. Thus, the set M is partitioned into the similarity classes
{g x , g z }, {bx ,by }, and {g y ,bz }.

The strategy σ that selects the bad move at each of the nodes x , y , and z is a VE. To
see this, consider the valuation v given in the figure. Obviously, it is consistent with σ,
andσ is optimal for v . Moreover,σ is also an SVE. Indeed, for each k letσk be the strat-
egy for which the good move at each node has probability 1/k and the bad one probabil-
ity 1−1/k . The unique valuation that is consistent with σk is given by v k ({g x , g z }) = 3,
v k ({bx ,by }) = 5, and v k ({g y ,bz }) = 4(1− 1/k ) + 12(1/k ). Obviously, σk → σ, and for
small enough k ,σ is optimal for v k .

Note, however, that the strategy τ that selects the good move at each node is not a
valuation equilibrium. Indeed, for a valuation u to be consistent with τ, it must satisfy
u ({g x , g z }) = 3 and u ({g y ,bz }) = 12. But τ is not optimal for such a valuation u (con-
sider node z ). ◊
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FIGURE 2. Two strict SVEs

COMMENT. In Example 1 the role of nature is crucial. In a decision problem (i.e., a game
with one player) without moves of nature, any strategy σ that guarantees the maximal
payoff is a sequential valuation equilibrium.

The next example illustrates the possibility of multiple equilibria in a one-agent de-
cision problem such that in each equilibrium there is a unique strategy that is optimal
for the valuation (incentives are strict). This simple example thereby illustrates that it is
not possible to interpret the set of SVEs as the set of sequential equilibria of a game with
modified payoff and information structures, since such modifications are incapable of
producing two strict Nash equilibria in a one-agent decision problem.7 Thus, SVE is a
new solution concept that cannot be reduced to existing ones.8

EXAMPLE 2. The decision tree is depicted by the solid lines in Figure 2. At the root r ,
nature chooses each of the nodes x and y with equal probability. At node x , the decision
maker can choose between nodes mx and lx , and at y between my and ry . The dotted
line connects similar nodes. Thus, the nodes are grouped according to their names.
That is, the set of moves is partitioned into three similarity classes, Left= {lx }, Middle=
{mx , my }, and Right= {ry }.

The strategy that selects the move in Middle at each of the nodes x and y is an SVE.
The corresponding valuation is v (Left) = 1, v (Middle) = 3.5, v (Right) = 3, and the strat-
egy is clearly optimal for this valuation.

The strategy that selects the moves in Middle at x and Right at y is also an SVE. The
corresponding valuation is v (Left) = 1, v (Middle) = 2, v (Right) = 3, and the strategy is
clearly optimal for the valuation.

There is no other pure strategy SVE. ◊

7If the decision maker does not observe whether she is at x or y and faces the choice between m and an
move other than m (in both x and y ), then the only equilibrium is that the decision maker chooses m .

8The psychological game approach of Geanakoplos et al. (1989), in which agents directly care about the
belief of others about their strategies, also allows for multiple equilibria in decision problems. Here there is
no dependence of the utility on the belief, and the multiplicity comes from the dependence of the valuation
on the strategy.
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5.2 Games with imperfect information

As noted above, in Example 2, the solution of an SVE cannot be reduced to that of a se-
quential equilibrium in some associated game. We now show how any sequential equi-
librium of a game with imperfect information can be interpreted as an SVE of a game
with perfect information and a similarity relation that is the partition of moves into ac-
tions in the former game.

Formally, consider an imperfect information game defined on the tree (Z , N , r, A)
with payoff function f i . LetΥi be the partition of i ’s nodes, Ni , into the information sets
I i of player i . For each I i ∈ Υi let L(I i ) be the set of labels of arcs (or actions) that start
at nodes in I i . The set of successors (i.e., moves) of nodes in I i can be partitioned by the
labels of the arcs in L(I i ) that lead to them. By partitioning the successors of the nodes
in each information set we obtain a partition Λi of all of i ’s moves.

PROPOSITION 3. Consider an extensive game with imperfect information and perfect re-
call defined on (Z , N , r, A) with players I , payoff functions ( f i )i∈I , and move partitions
(Λi )i∈I . Let an assessment (σ,µ) of this game (where µ denotes a belief system) be a se-
quential equilibrium. Then σ is a sequential valuation equilibrium of the game defined
over (Z , N , r, A)with payoff functions ( f i )i∈I and similarity relations (Λi )i∈I .

PROOF. Let (σk ) be the sequence of strategy profiles in the definition of the sequen-
tial equilibrium (σ,µ), such that σk > 0 for each k and σk → σ. For each σk , define
the valuation v k by (1). Because of the positivity of σk , v k is defined for each λ and is
consistent withσk .

Let v be the limit of (v k ). Since µ is the limit of the conditional probabilities of σk

on the information sets, it follows that for each player i and each similarity class λ ∈Λi ,
vi (λ) is i ’s expected payoff conditional on being at one of the nodes in λ. This expected
payoff is computed using the probability (given byµ) of the nodes in the information set
that lead to λ, and the probability of reaching each of the terminal nodes (given by σ).
By the very definition of sequential rationality,σi is optimal for vi . �

The converse of this proposition does not hold. That is, an SVE σ of the game with
the similarity classes (Λi )i∈I need not be the strategy profile σ of a sequential equilib-
rium (σ,µ) of the original game with incomplete information. This is so becauseσmay
not even be a strategy in the original game. Indeed, suppose that in a given information
set {n 1, . . . , n k } ∈Υi , there are two moves that maximize i ’s expected payoff. In that case,
the strategyσmay assign one move at some nodes and the other move at other nodes.

5.3 Imperfect recall

The bundling of a player’s moves into similarity classes resembles the bundling of a
player’s decision nodes into information sets in games with imperfect memory. How-
ever, the two bundlings are very different. Information sets reflect the inability of a
player to distinguish between different pasts, while similarity classes reflect her inability
to distinguish between different futures, and in particular the payoffs that result from
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FIGURE 3. The absent-minded driver game

these futures. Thus valuation equilibrium can differ very much from imperfect recall in
its modeling and predictions. To illustrate this, we consider the absent-minded driver
game analyzed by Piccione and Rubinstein (1997).

At the intersection r , the driver may either exit to e1 (turn left) and get a payoff of a
or go straight ahead to the next intersection s1. At s1 he may either exit to e2 (turn right)
and get a payoff of b or go straight ahead to s2 and get a payoff of c . It is assumed that b is
greater than a and c so that ideally the driver wants to continue to the next intersection
and exit there.

The imperfect recall approach assumes that, being unable to distinguish between
the two decision nodes, the driver mixes the decision of exiting at both of them and the
decision of going straight at each of them.

There is no imposition in the valuation approach that if the moves of going straight
are bundled into a single similarity class the moves of exiting must be bundled too.
For example, suppose the driver distinguishes between the turn left and the turn right
moves but bundles together the go straight moves. His similarity partition is thus
straight = {s1, s2}, left= {e1} and right= {e2}. The only SVE is that the driver goes straight
first and exits at the second intersection node, resulting in the maximal payoff of b . (This
is, of course, very different from the outcome of the imperfect recall approach, in which
the probability of exit should be the same at the two decision nodes.)

To see this we first check that exiting at the second intersection is an SVE. The cor-
responding valuations are v (straight) = b , v (left) = a , v (right) = b and the assumed
strategy is optimal given the valuation. No other equilibrium can arise, as sequential
consistency implies that v (left) = a , v (right) = b and it is readily verified that one can-
not sustain an equilibrium with v (straight)<b (since optimality requires that the driver
turns right at the second decision node and sequential consistency in turn requires that
v (straight) = b , leading to a contradiction). Thus, one should have v (straight) = b , im-
plying that the driver goes straight first and turns right at the second intersection (if he
were to mix at the second intersection this would induce a valuation for straight strictly
less than b ).

Our setup permits a bundling similar to that of imperfect recall. But, as we now
observe, the consistency requirement in the valuation approach does not give rise to
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either of the solutions proposed in Piccione and Rubinstein (1997). To see this, assume
now that the driver bundles the exit moves on the one hand (exit = {e1, e2}) and the
straight moves on the other (straight = {s1, s2}).

A first observation is that our solution concept does not force the driver to exit with
the same probability at nodes r and s1. (This is similar to the observation made above
for games with incomplete information.) However, in order to highlight another (more
interesting) difference from the imperfect recall approach, we restrict ourselves to equi-
libria in which the behavioral strategies are the same at r and s1. We assume that c <
(a +b )/2 so that always going straight is not an equilibrium of the imperfect recall kind
(whatever the approach considered in Piccione–Rubinstein).

Let α be the probability that the driver goes straight at his two decision nodes r and
s1. Under the assumed similarity partition, the valuations consistent with such a strat-
egy should be v (exit) = (a+αb )/(1+α) and v (straight) = (1−α)b+αc . For such a strategy
to be an equilibrium, we need v (exit) = v (straight) or9

αV E =
−(b − c )+
p

(b − c )2+4(b −a )(b − c )
2(b − c )

.

This probability of going straight does not correspond to that arising from either the
modified multi-self approach10 (or the ex ante optimal approach), which yields α∗ =
(b −a )/(2(b −c )), or the multi-self approach11 proposed by Piccione–Rubinstein, which
yields αPR = (b −a )(3(b − c )).

Note that αV E > α∗ (whereas for some parameter values, say a = 0, b = 4, c = 1,
we have α∗ > αPR ). Interestingly, had we considered a notion of consistency so that
vi (λ) =
∑

z∈Z (λ)P
σ(z )h(z ,λ) f i (z )/

�
∑

z∈Z (λ)P
σ(z )h((z ,λ)
�

where h(z ,λ) is the number
of times the path leading to z intersects the similarity class λ, we would have obtained
the probability α∗ of going straight with the valuation approach. We obtain αV E > α∗

because our notion of consistency makes the valuation of straight higher for a given
probability of going straight (our notion of consistency attaches more weight to b than
to c and b > c ).

REMARK. Whether our notion of consistency or the one just described is preferable
should be the subject of further investigation. It is immaterial for most of our discus-
sion here. From a psychological viewpoint, our notion corresponds to a situation in
which after each round of the learning stage resulting say in the final node z the player

9Observe that α lies in (0, 1)whenever c < (a +b )/2.
10This is obtained as a solution to

a +α∗b
1+α∗

=
1

1+α∗
[α∗c +(1−α∗)b ]+

α∗

1+α∗
c .

11This is obtained as a solution to

αPR = arg max
α
{λ[(1−α)a +α(1−α)b +α2c ]+ (1−λ)[(1−α)b +αc ]}

where λ= 1/(1+αPR ).
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only remembers that he played a move in λ at least once (as opposed to the number of
times he chose a move in λ) and the payoff attached to it.

6. APPLICATION TO STOPPING GAMES

In this section we study games in which each player in turn can choose either to con-
tinue to play—choose a “go-ahead” move—or stop the game. We are interested in the
effect of bundling all go-ahead moves into one similarity class. The motivation behind
such a grouping is that it may be hard to assess the strength of moves that do not lead
to an immediate end, thus forcing some grouping for such moves. We take the extreme
view that all such moves are bundled into one similarity class. We start with decision
problems and then move on to two-person stopping games.

6.1 Multiple timing decision problems

To start with, nature chooses among finitely many timing decision problems indexed by
k = 1, . . . , K . The probability that nature selects problem k is denoted pk and is assumed
to be strictly positive.12 Each k -decision problem has the following structure. Non-
terminal nodes are indexed by dates t = 1, . . . , T . We write (k , t ) for a non-terminal node
at date t and decision problem k . At each (k , t ), t = 1, . . . , T − 1 the decision maker
may either stop or go ahead. Stopping at (k , t ) leads to the terminal node stop (k , t )
with payoff a t

k . Go ahead at (k , t ) leads to the node (k , t + 1). At (k , T ), the decision
maker must choose between l k , yielding payoff bk , and rk , yielding payoff ck . We let
a T

k =max(bk , ck ). We assume generic values of a t
k such that a t

k 6= a t ′

k
′ whenever (k , t ) 6=

(k ′, t ′). A multiple timing decision problem is depicted in Figure 4 for the case K = 2 and
T = 3.

When the decision maker is fully rational, he should go till date tk = arg maxt a t
k in

problem k and stop if tk < T or choose whatever is best among l k or rk if tk = T .
Assume now that the decision maker bundles all non-terminal moves into one sim-

ilarity class called go while all other moves are singleton similarity classes.13 That is,
go = {(k , t + 1) | k = 1, . . . , K and t = 1, . . . , T − 1} and {go,{stop (k , t )}k ,t ,{l k }k ,{rk }k } is
the similarity partition.

Our main observation follows.

PROPOSITION 4. Consider an SVE in the above setting. Either the decision maker stops
immediately with probability 1 (i.e., he chooses stop (k , 1) with probability 1) in at least
K −1 decision problems or there is a number k ∗ such that the probability that node (k ∗, T )
is reached is positive.

12In line with our learning narrative (see Section 2.3), one may alternatively view our decision maker
as facing each of the decision problems k in sequence where the frequency of occurrence of problem k
coincides with pk

13This idea of grouping is a bit reminiscent of the model of limited foresight (Jehiel 1995) in that the
decision maker has a coarse forecast about the effect of going on. Yet, the forecast is about one own’s future
play in Jehiel (1995) whereas it is about the average value of going on over several k -problems here. In
Jehiel’s (1995) model, the decision maker never goes till node (k , T )whenever a T

k < a T−1
k .
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FIGURE 4. A multiple timing decision problem for K = 2 and T = 3

PROOF. Let K be the set of k ∈ {1, . . . , K } such that the decision maker goes ahead at
(k , 1) with positive probability and assume that K > 1. Since for k /∈ K the player does
not go ahead, it follows by consistency that v (go) is computed only by the payoffs for
games k ∈ K .

Suppose now by contradiction that there is no k ∗ as claimed by the proposition.
Then for each k ∈ K , the decision maker reaches with probability 1 the set of nodes
{stop (t , k )} such that t < T . Reaching such a node, stop (t , k ), with positive probability,
rather than going ahead with probability 1 at (t , k ), means that a k

t ≥ v (go). Therefore,
v (go) is a weighted average of payoffs a t

k ≥ v (go) with k ∈ K and t < T . As |K |> 1, there
are at least two such payoffs, and by the genericity assumption all of them are different.
Thus, this weighted average must be strictly greater than v (go), which is impossible. �

To illustrate Proposition 4 consider the following example. Let k = 1, 2 and T = 3
with p1 = p2 = 0.5 and a 1

1 = a 1
2 =−1, a 2

1 = 1, a 2
2 = 1.1, b1 = b2 =−2, and c1 = c2 =−3.14

In this setting, there is a unique SVE. It is such that v (go) = 1, the decision maker goes on
till node (1, 3)with probability 1

30 in problem 1 and goes to stop (2, 2)with probability 1 in
problem 2. In problem 1, the decision maker goes till the end with positive probability
because otherwise if he were to stop with probability 1 earlier, the high payoff obtained
by going on in problem k = 2 would lead the decision maker not to prefer stopping
before the last node (1, 3) in problem 1. Observe that even though the payoffs b1 and c1

are quite low, the expected payoff obtained by the decision maker is 1 under the SVE.
Applied to multiple investment decision problems played in sequence (see foot-

note 12), Proposition 4 means that a decision maker who invests in more than one

14These payoffs are non-generic in the sense defined above. Yet, the same conclusion as in Proposition 4
applies to this specification as well.
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enterprise and follows the valuation approach will keep investing till the very end (with
positive probability) in at least one of his enterprises, no matter what payoffs are at-
tached to long-term investments. This obviously implies some suboptimality if keeping
investing till the end is a bad option in all enterprises, but the magnitude of the loss need
not necessarily be large as illustrated in the previous example.

We now consider a modified version of the above timing decision problem, but in-
stead of a finite number of problems we consider a density of problems indexed by
a ∈ [0, 1] and assume that each problem is drawn according to a uniform distribution
on [0, 1]. We also simplify by assuming that T = 2 in each problem and we assume that
a is the payoff obtained by the decision maker in problem a if he stops immediately,
i.e., if he reaches node stop (a , 1). We also let h(a ) =max(ba , ca ) be the payoff obtained
in problem a if the decision maker reaches nodes (a , 2). The similarity structure is the
same as before, with go= {(a , 2) | a ∈ [0, 1]} and all other moves equal to singleton simi-
larity classes.

The structure of the SVE is very simple. Assume v (go) = x ∈ (0, 1). The decision
maker will choose stop (a , 1) in problem a when a > x and he will choose (a , 2) when
x > a (what he does when x = a is irrelevant for the fixed-point calculation). Assuming
that x 6= 0, 1, consistency then boils down to

v (go) =

∫ x

0
h(a )da

x

or

x 2 =

∫ x

0

h(a )da (2)

We wish to compare the resulting decision rule with the efficient decision rule when h
is a smooth increasing function that satisfies h ′(a )> 1 for all a ∈ [0, 1]. This means that
the difference of payoffs obtained when the decision maker goes ahead in two situations
a and b is magnified as compared with the difference of payoffs obtained after an im-

mediate stop |h(a )− h(b )| > |a −b |. We assume also that h(0) < 0, and
∫ 1

0
h(a )da > 1

(which implies h(1)> 1 because h ′ > 0), which ensures the existence of x V satisfying (2),
and which also guarantees that there is a unique x F B ∈ (0, 1) satisfying x F B = h(x F B ).
This x F B characterizes the first-best decision rule: at the optimum, the decision maker
should go when a > x F B (i.e., when h(a ) > a ), and he should stop when a < x F B (i.e.,
when a > h(a )).

Since
∫ x

0
h(a )da/x < h(x ) (because h ′ > 0), we have x V < h(x V ), which implies that

x V > x F B (because h ′ > 1). Thus, under the valuation approach, the decision maker
goes ahead when a < x V and stops when a > x V , which leads to an erroneous stopping
decision i) when a < x F B —the decision maker chooses to go when he should stop and
ii) when a > x V —the decision maker stops when he should go. For intermediate values
of a ∈ (x F B ,x V ), the optimal decision is made.

Interpreting our decision problem in terms of investment decisions, the valuation
approach highlights two types of biases: sometimes returns are being taken too quickly
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FIGURE 5. A finite horizon stopping game
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FIGURE 6. A sequential valuation equilibrium in a two-player game

in favorable markets (where it would pay staying longer) and sometimes positions are
being kept too long in unfavorable markets (where it would pay liquidating earlier).

6.2 Finite horizon stopping games

We now consider two-player stopping games, and comment on some notable differ-
ences between the valuation approach and the analogy-based expectation approach
(Jehiel 2005). Two players A and B move alternately. At all turns pk except the last, a
player decides whether to go ahead (play pk+1) or to stop the game (play tk ). The player
at the last turn pn chooses between down (tn ) or straight (tn+1). Figure 5 illustrates such
a game.

We are interested in the effect of the grouping of non-terminal nodes. The following
example shows that such a similarity grouping may sometimes allow a player to sustain
threats that would otherwise not be credible, thereby making the player better off.

EXAMPLE 3. Consider the stopping game in Figure 6. In the subgame perfect Nash equi-
librium of this game players A and B go ahead in the first two moves, and A stops in the
third with a payoff of 1.

Assume now that player A bundles the non-terminal moves p1 and p3 into a single
similarity class denoted go, while all other similarity classes are singletons.15 Consider
the following strategy profile σ: player A goes ahead at nodes p0 and p2; player B stops

15Observe that the two moves p1 and p3 are such that the average payoff obtained by player A over the
terminal nodes in the corresponding subgames are the same, which may provide another rationale for the
grouping.
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at node p1 and chooses t4 at node p3. To see that σ is an SVE, consider the valuations
vA and vB that assign to each of the moves t i the payoff of the player at this node, while
vA (go) = 2 and vB ({p2}) = 0. It is readily verified thatσi , for i = A, B , is optimal for vi . At
this SVE player A’s payoff is 2, which is more than he gets in the SPNE.

While the grouping of non-terminal moves may explain some non-standard behav-
ior, as illustrated above, we note that in Rosenthal’s (1982) centipede game such a group-
ing gives rise to the same outcome as in the standard case: players stop as soon as they
can.16

To see this, consider the following payoff functions f A and f B in the stopping game
depicted in Figure 5. If player X makes the choice at pk for 0≤ k < n , then for all k ≥ j ≥
1, f X (tk−j )< f X (tk )> f X (tk+1). For such payoffs, the backward induction strategies stop
the game at each node. Moreover, in any Nash equilibrium or correlated equilibrium
player A stops at p0.

Consider the grouping of all non-terminal moves while all terminal moves are
treated separately. Thus, player A bundles goA = {p1, p3, . . .} and player B bundles
goB = {p2, p4, . . .}, while all other similarity classes are the singletons {t i }.

There is only one SVE: players stop at all the nodes. The proof is by backward in-
duction. Obviously this is true at pn in which the player has no other choice. Suppose
that we have shown this for all the nodes pn , . . . , pk+1, and consider node pk . Obvi-
ously, vX (tk ) = f X (tk ). Suppose to the contrary that player X plays pk+1 with some pos-
itive probability. Then, either there is a positive probability that the game reaches node
tk+1, where by the induction hypothesis it ends, or the game never reaches pk . In either
case vX (goA ) is a convex combination of the payoffs f X (tk+1), f X (tk ), . . . , f X (t0)where the
weight of f X (tk ) is less than 1. Thus, vX (goA )< vX (tk ), and player X must choose tk with
probability 1, which is a contradiction. ◊

7. AN ASPIRATION APPROACH TO SIMILARITY CLASSES

It is beyond the scope of this paper to propose a general theory that accounts for the
emergence of similarity partitions, as many factors (outside the interaction itself) may
have an influence. However, in this section we suggest a narrative that may be of rele-
vance to the endogenizing of the similarity partitions in contexts in which players have
no preconceived view about how to bundle moves.

Specifically, we look at a situation in which moves are partitioned based on their
performance relative to the equilibrium payoff, thus implying an additional link be-
tween the strategy profile and the similarity partitions. We refer to the idea of aspira-
tion level because the classification of a move in these similarity relations depends only
on whether the move performs better than, worse than, or similarly to the benchmark
equilibrium payoff. After formally defining the idea we suggest a learning narrative to
motivate it.

16By contrast, the analogy-based expectation equilibrium approach, which studies an alternative form
of grouping based on the idea that players have a coarse understanding of the reaction function of their
opponents, explains why players need not stop immediately in the centipede game (see Jehiel 2005).
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Formally, for a strategy profile σ and a node n ∈ N ∪Z , we denote by u i (n ,σ) the
expected payoff of player i in the subgame G n with root n , with the strategyσn induced
on G n byσ. That is, denoting by Z (n ) the terminal nodes of G n ,

u i (n ,σ) =
∑

z∈Z (n )
Pσ

n
(z ) f i (z ).

We denote the expected payoff of player i in the game u i (r,σ) by u i (σ). This expected
payoff is interpreted as the aspiration level of player i induced byσ.

Given a strategy profileσ, we define for each player i the aspiration-based similarity
partition Λi (σ) = {λ+i (σ),λ

0
i (σ),λ

−
i (σ)} by

λ+i (σ) = {m ∈M i | u i (m ,σ)> u i (σ)}
λ0

i (σ) = {m ∈M i | u i (m ,σ) = u i (σ)}
λ−i (σ) = {m ∈M i | u i (m ,σ)< u i (σ)}.

Note that one or two of these three sets may be empty.

DEFINITION 3. A strategy profile σ is an aspiration-based sequential valuation equilib-
rium (ASVE) if σ is a sequential valuation equilibrium with respect to the aspiration-
based similarity partitions Λ(σ) = (Λi (σ))i∈I induced by it.

7.1 Learning to play an ASVE

The concept of an ASVE has a simple interpretation in terms of learning. We sketch here
a learning process the (asymptotic) properties of which should be the subject of future
research. Suppose that players repeatedly play game G . Each player i starts with an
arbitrary grouping of moves into three similarity classes λ+i , λ0

i , λ−i some of which may
be empty, and updates them after each history. After history h t the classes are λ+i (h t ),
λ0

i (h t ), λ−i (h t ). Given history h t , player i chooses with probability 1− ε(h t , i ) at node
n ∈ Ni a move m ∈ M i (n ) that belongs to λ+i if this set is not empty. Otherwise she
selects a move in λ0

i if it is not empty, or else a move in λ−i . She chooses with probability
ε(h t , i ) > 0 any move in M i (n ). We assume that ε(h t , i ) goes to 0 when t tends to ∞.
At each stage, players observe their payoffs and update their aspiration levels by taking
the average payoff obtained over all previous stages. After a given move has been played
a sufficient number of times (the number of times should be increasing with t ), the
average payoff resulting from the move is compared with the aspiration level. If it is
sufficiently above the aspiration level the move is assigned toλ+; if it is sufficiently below
the aspiration level, it is assigned to λ−; otherwise it is assigned to λ0. If the strategies
converge along such a learning process, they must converge to an ASVE.

Compared to our initial learning motivation for the SVE, the above narrative as-
sumes that the similarity partition varies along the learning process (as moves may be
reassigned to different similarity partitions at different rounds of the learning process).
However, the change in the similarity partition is slow compared to the change in the
valuations (this can be seen from our assumption that the valuations of moves are com-
pared to the aspiration level only after the move has been played a sufficient number
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of times), which ensures that given a similarity relation the game has enough time to
converge to a SVE of the corresponding grouping.

7.2 Analysis

We show that a subgame perfect Nash equilibrium is always an ASVE, thereby proving
a constructive argument for why an ASVE always exists. To establish this it is useful to
note that sequential consistency withσ of a valuation vi onΛi (σ) implies that vi reflects
the objective differences of utility in the three elements of the partition.

LEMMA 1. Suppose that a valuation vi on the aspiration-based similarity partition Λi (σ)
is sequentially consistent withσ. Then,

• if λ+i (σ) 6= ;, then vi (λ+i (σ))> u i (σ)

• if λ0
i (σ) 6= ;, then vi (λ0

i (σ)) = u i (σ)

• if λ−i (σ) 6= ;, then vi (λ−i (σ))< u i (σ).

PROOF. To see the first inequality, let M = {m 1, . . . , m k } be a maximal set of points in
λ+i (σ) such that each point in M is not a descendant of any other point in λ+i (σ), and let
Z (m j ) be the set of terminal nodes in the subgame starting at m j . We have Z (λ+i (σ)) =
∪k

j=1Z (m j ), where the latter set is a disjoint union. Choose ε > 0 such that u i (m j ,σ) >
u i (σ)+ ε for j = 1, . . . , k . For a strategy profile ν which is close enough toσ, u i (m j ,ν )>
u i (ν ) + ε for j = 1, . . . , k . Let ν be such a completely mixed strategy profile and let v ′i
be i ’s valuation for ν . Note that for a descendant z of m j , Pνm j

(z ) = Pν (z )/Pν (Z (m j )).
Thus,

v ′i (λ
+
i (σ)) =
∑

z∈Z (λ+i (σ))

Pν (z ) f i (z )/Pν (Z (λ+i (σ)))

=
k
∑

j=1

h ∑

z∈Z (m j )

Pν (z ) f i (z )/Pν (Z (m j ))
i

Pν (Z (m j ))/Pν (Z (λ+i (σ)))

=
k
∑

j=1

u i (m j ,ν )Pν (Z (m j ))/Pν (Z (λ+i (σ)))> u i (ν )+ ε.

By the sequential consistency of vi withσ it follows that vi (λ+i (σ))≥ u i (σ)+ ε > u i (σ).
The last inequality is similarly proved. To show the equality we choose a subset M

of λ0
i (σ) as above. For each m j , u i (m j ,σ) = u i (σ). Let ε > 0. Then for a strategy profile

ν which is close enough to σ, |u i (m j ,ν )−u i (ν )| < ε. For a completely mixed ν and its
corresponding valuation v ′i we conclude by the above equations that

|v ′i (λ
0
i (σ))−u i (ν )|=

�

�

�

k
∑

j=1

u i (m j ,ν )−u i (ν )Pν (Z (m j ))/Pν (Z (λ0
i (σ)))
�

�

�

≤
k
∑

j=1

|u i (m j ,ν )−u i (ν )|Pν (Z (m j ))/Pν (Z (λ0
i (σ)))|< ε.
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FIGURE 7. An ASVE that is not an equilibrium

Since this is true for any ν close enough to σ it follows that |vi (λ0
i (σ))−u i (σ)| ≤ ε, and

since this is true for any ε it follows that vi (λ0
i (σ)) = u i (σ). �

We can now show the following result.

PROPOSITION 5. A subgame perfect Nash Equilibrium is an ASVE.

PROOF. Letσ be a subgame perfect equilibrium of G . Using completely mixed strategy
profiles that converge toσwe can define for each player i a valuation vi on Λi (σ) that is
sequentially consistent withσ. At each node n ∈Ni ,σi selects with probability 1 nodes
m ∈M i that maximize u i (m ,σ). By Lemma 1, σ selects with probability 1 nodes with
the highest valuation at n . Thus,σi is optimal for vi . �

Even though the subgame perfect Nash equilibrium is always an ASVE, an ASVE is
not necessarily an equilibrium, as demonstrated by the game in Figure 7. Consider the
strategy profile σ where player A plays t1 and p1 with probability 1

2 each, and player B

plays t2 and p2 with probability 1
2 each. Obviously, σ is not an equilibrium. However,

player B ’s expected payoff is 5
4 and therefore λ−2 (σ) = {t2, p2}. Thus,σ2 is optimal for v2.

It is easy to see that the rest of the requirements for an ASVE are satisfied forσ.
In zero-sum games without moves of nature, the aspiration grouping results in the

value of the game no matter what ASVE is considered, thus suggesting an interesting
class of games in which the aspiration grouping leads to nice properties.

PROPOSITION 6. Let σ be an ASVE of a two-person zero-sum game without moves of na-
ture. Then the players’ equilibrium payoffs inσ correspond to the value of the game.

We prove this result as a corollary of the next result.

PROPOSITION 7. Suppose that G is a game without moves of nature. Let ρi be the indi-
vidually rational payoff of player i in the game G . If σ is an ASVE, then for each i , its
expected payoff in G under σ, u i (σ), is at least ρi .

PROOF. Assume to the contrary that u i (σ) < ρi . We show that for each n ∈ N ∪Z , if
i ’s individually rational payoff in the subgame G n , ρi (G n ), is at least ρi , then u i (n ,σ)>
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u i (σ). The proof is by induction on the depth of the subgame. The claim trivially holds
for n ∈ Z . Suppose now that ρi (G n ) ≥ ρi and the claim holds for all the subgames of
G n . If n ∈ N j for j 6= i , then it must be the case that for each m ∈ M j (n ), ρi (G m ) ≥
ρi . Thus by the induction hypothesis, for all m ∈ M i (n ), u i (m ,σ) > u i (σ). Therefore
also u i (n ,σ) > u i (σ). Suppose now that n ∈ Ni . Then there exists at least one m ∈
M i (n ) such that ρi (G m )≥ ρi . By the induction hypothesis, u i (m ,σ)> u i (σ). It follows
that m ∈ λ+i (σ). Since the latter set is not empty, and σi is optimal for vi , it follows by
Lemma 1 thatσi selects nodes inλ+i (σ) at n , with probability 1. Hence, by the definition
of this set, u i (n ,σ)> u i (σ). In particular, since ρi (G r ) =ρi , we derive the contradiction
u i (r,σ)> u i (σ). �

REMARK. Another corollary of the above proposition is that in a decision problem with-
out moves of nature, an ASVE is an optimal decision.

8. CONCLUDING REMARKS

We have introduced in this paper a new solution concept in which players know/learn
only the average performance of playing over bundles of moves. We have suggested a
learning narrative to motivate the consistency requirement imposed on equilibrium val-
uations. This learning narrative belongs to the family of reinforcement learning models
such as those considered in AI in the tradition of Samuel (1959) (see Sutton and Barto
1998 for a recent textbook on this literature). Note that in contrast to how reinforcement
learning is modeled in game theory (see Fudenberg and Levine 1998 for an exposition)
our underlying reinforcement learning does not consider the reinforcement of strate-
gies (but rather the reinforcement of similarity classes). In Jehiel and Samet (2005) we
consider the case where moves rather than strategies are reinforced and we showed the
convergence to the subgame perfect Nash equilibrium in extensive form games with
complete information. In this paper, we have gone one step further by assuming that
moves are bundled together into similarity classes and that reinforcement bears on the
similarity classes rather than on the moves separately. The convergence properties of
the corresponding learning models should be studied.17

It should be stressed that our solution concept, valuation equilibrium, assumes that
the similarity classes are exogenously given and do not vary along the learning process
(see however Section 7). In some cases though, it may be argued that as players learn
they also adjust their way of forming similarity classes, thereby leading to potentially
more complex learning dynamics. Clearly, more work is required to analyze such dy-
namics and their corresponding limit points.
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