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Secure implementation
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Strategy-proofness, requiring that truth-telling be a dominant strategy, is a stan-
dard concept in social choice theory. However, this concept has serious draw-
backs. In particular, many strategy-proof mechanisms have multiple Nash equi-
libria, some of which produce the wrong outcome. A possible solution to this
problem is to require double implementation in Nash equilibrium and in dom-
inant strategies, i.e., secure implementation. We characterize securely imple-
mentable social choice functions and investigate the connections with domi-
nant strategy implementation and robust implementation. We show that in stan-
dard quasi-linear environments with divisible private or public goods, there exist
surplus-maximizing (non-dictatorial) social choice functions that can be securely
implemented.

KEYWORDS. Nash implementation, robust implementation, secure implementa-
tion, strategy-proofness.

JEL CLASSIFICATION. C92, D71, D78, H41.

1. INTRODUCTION

Strategy-proofness, requiring that truth-telling be a dominant strategy, is a standard
concept in social choice theory. Although it seems natural that an agent will tell the
truth if it is a dominant strategy to do so, there are some problems. First, announcing
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one’s true preference may not be a unique dominant strategy, and using the wrong dom-
inant strategy may lead to the wrong outcome. Second, many strategy-proof mecha-
nisms have multiple Nash equilibria, some of which produce the wrong outcome. Third,
experimental evidence shows that some strategy-proof mechanisms do not work well;
that is, very few subjects reveal their true valuations. For example, see Attiyeh et al.
(2000) and Kawagoe and Mori (2001) for pivotal mechanism experiments, and Kagel
et al. (1987) and Kagel and Levin (1993) for second-price auction experiments with in-
dependent private values.

The first problem can be solved by requiring “full” implementation in dominant
strategies. That is, all dominant strategy equilibria should yield a socially optimal out-
come. This may require the use of indirect mechanisms. However, Repullo (1985) shows
that if a social choice function f is dominant strategy implemented by some indirect
mechanism, but f is not dominant strategy implemented by its associated direct mech-
anism, then the indirect mechanism does not Nash implement f . This leads to the sec-
ond problem: mechanisms for dominant strategy implementation may have “bad” Nash
equilibria. For this reason, Repullo (1985) suggested that the concept of dominant strat-
egy implementation should be replaced by Nash or Bayesian–Nash implementation. We
agree that the existence of “bad” (Bayesian) Nash equilibria is problematic. However, in
the absence of a dominant strategy, a player’s best response depends on the other play-
ers’ choices, which may be hard to predict. This strategic uncertainty may lead to a
failure to coordinate on a (Bayesian) Nash equilibrium. Moreover, a problematic aspect
of Bayesian–Nash implementation is that it typically requires the mechanism designer
to know the common prior of the players.

It seems clear that the standard concepts—dominant strategy implementation and
(Bayesian) Nash implementation—cannot provide a robust foundation for practical im-
plementation. However, if a mechanism simultaneously implements a social choice
function in dominant strategies and in Nash equilibria, then we get dual advantages.
First, with dominant strategies, strategic uncertainty is not important. Second, the
mechanism “robustly” implements the social choice function in Bayesian–Nash equi-
libria, with no need to assume the mechanism designer knows the players’ prior beliefs.

A social choice function is securely implementable if there exists a game form that
simultaneously implements it in dominant strategy equilibria and in Nash equilibria.
Thus, all Nash equilibria should yield a socially optimal outcome. We characterize se-
curely implementable social choice functions: a social choice function is securely im-
plementable if and only if it satisfies strategy-proofness and a new property called the
rectangular property. We show that many quasi-linear economic environments with
continuous private or public goods admit securely implementable non-dictatorial so-
cial choice functions that maximize social surplus. However, in a standard single-
peaked voting model without side-payments, any securely implementable social choice
rule must be either dictatorial or Pareto inefficient. This negative result holds even for
multi-valued social choice correspondences. In a quasi-linear environment with a dis-
crete social decision, such as whether or not to implement an indivisible public project,
some interesting non-dictatorial social choice correspondences can be securely imple-
mented, but none of them maximizes the social surplus.
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Our hope is that secure implementation may lead to some progress on the third
problem mentioned above, the rather negative experimental evidence. We consider se-
cure implementation to be a benchmark: if secure mechanisms do not work well in
experiments, then there is very little hope that anything will work. But if a secure mech-
anism works well in experiments while implementation using less demanding equilib-
rium concepts fails, then we may be able to pinpoint the reason for the failure by com-
paring the failed experiment with the benchmark of secure implementation. The ques-
tion of whether secure mechanisms work well in experiments is investigated in a com-
panion paper (Cason et al. 2006).

The remainder of the paper is organized as follows. We give notation and definitions
in Section 2. We characterize secure implementability in Section 3. In Section 4 we dis-
cuss the relationship between non-bossiness, dominant strategy implementation, and
secure implementation. In Section 5, we consider “robust” Bayesian–Nash implemen-
tation. In Section 6, we show the possibility of secure implementation in economies
with quasi-linear preferences and divisible public and private goods. Sections 7 and 8
discuss the difficulty of secure implementation with discrete social decisions, and in the
absence of side-payments. Sections 2–8 focus on pure strategies. Section 9 extends the
analysis to mixed and correlated strategies. Concluding remarks are in Section 10.

2. NOTATION AND DEFINITIONS

Let A be an arbitrary set of alternatives and let I = {1, 2, . . . , n} be the set of agents, with
generic element i . We assume that n ≥ 2. Each agent i has a preference relation defined
over A which admits a numerical representation u i : A → R. For each i , let Ui be the
class of possible utility functions for agent i . Let u = (u 1, . . . , u n )∈U ≡×i∈I Ui .

A social choice function (SCF) is a function f : U → A that associates with every u ∈U
a unique alternative f (u ) in A.

A mechanism (or game form) is a function g : S → A that assigns to every s ∈ S a
unique element of A, where S =×i∈I Si and Si is the strategy space of agent i . The mech-
anism g is called the direct revelation mechanism associated with the SCF f if Si =Ui for
all i ∈ I and g (u ) = f (u ) for all u ∈U . We sometimes abuse terminology by not distin-
guishing between the SCF f and the direct revelation mechanism associated with f . The
list s ∈S is written as (s i , s−i ), where s−i = (s1, . . . , s i−1, s i+1, . . . , sn ) ∈S−i ≡×j 6=i S j . Given
s ∈ S and s ′i ∈ Si , (s ′i , s−i ) is the list (s1, . . . , s i−1, s ′i , s i+1, . . . , sn ) obtained by replacing the
i -th component of s by s ′i . Let g (Si , s−i ) be the attainable set of agent i at s−i , i.e., the set
of outcomes that agent i can induce when the other agents select s−i .

For i ∈ I , u i ∈Ui , and a ∈ A, let L(a , u i )≡ {b ∈ A | u i (a )≥ u i (b )} be the weak lower
contour set for agent i with u i at a . Given a mechanism g : S → A, the strategy profile
s ∈ S is a Nash equilibrium of g at u ∈ U if for all i ∈ I , g (Si , s−i ) ⊆ L(g (s ), u i ). Let
N g (u ) be the set of Nash equilibria of g at u . The mechanism g implements the SCF f
in Nash equilibria if for each u ∈U , (i) there exists s ∈N g (u ) such that g (s ) = f (u ) and
(ii) for any s ∈ N g (u ), g (s ) = f (u ). The SCF f is Nash implementable if there exists a
mechanism that implements f in Nash equilibria.
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Let a mechanism g : S → A be given. The strategy s i ∈ Si is a dominant strategy for
agent i ∈ I of g at u i ∈Ui if for all ŝ−i ∈ S−i , g (Si , ŝ−i )⊆ L(g (s i , ŝ−i ), u i ). Let DS

g
i (u i ) be

the set of dominant strategies for i of g at u i . The strategy profile s ∈ S is a dominant
strategy equilibrium of g at u ∈U if for all i ∈ I , s i ∈ DS

g
i (u i ). Let DSg (u ) be the set of

dominant strategy equilibria of g at u . The mechanism g implements the SCF f in domi-
nant strategy equilibria if for each u ∈U , (i) there exists s ∈DSg (u ) such that g (s ) = f (u )
and (ii) for any s ∈DSg (u ), g (s ) = f (u ). The SCF f is dominant strategy implementable
if there exists a mechanism that implements f in dominant strategy equilibria.

The SCF f is strategy-proof if for all i ∈ I , all u i , ũ i ∈ Ui , and all ũ−i ∈ U−i ,
u i ( f (u i , ũ−i )) ≥ u i ( f (ũ i , ũ−i )). The following result, due to Gibbard (1973), is well-
known.

PROPOSITION 1 (Revelation Principle for Dominant Strategy Implementation). If the
SCF f is dominant strategy implementable, then f is strategy-proof.

Strategy-proofness of the SCF f implies the existence of a mechanism, i.e., the direct
revelation mechanism, such that there exists at least one dominant-strategy equilibrium
whose outcome is f -optimal at each possible preference profile. On the other hand,
dominant strategy implementability requires that all dominant strategy equilibria pro-
duce the f -optimal outcome. Therefore, the converse of Proposition 1 is not true: some
strategy-proof SCF’s cannot be dominant strategy implemented (e.g., Dasgupta et al.
1979).

3. SECURE IMPLEMENTATION: A CHARACTERIZATION AND A REVELATION PRINCIPLE

We introduce the following new concept of implementation.

DEFINITION 1. The mechanism g securely implements the SCF f if for each u ∈ U , (i)
there exists s ∈DSg (u ) such that g (s ) = f (u ) and (ii) for any s ∈N g (u ), g (s ) = f (u ). The
SCF f is securely implementable if there exists a mechanism that securely implements f .

Secure implementation requires that for every possible preference profile, (i) there
exists at least one dominant strategy equilibrium whose outcome is f -optimal and (ii)
all Nash equilibria produce the f -optimal outcome.1

Next we characterize the class of securely implementable SCF’s. We use two con-
ditions. The first condition is strategy-proofness. As Proposition 1 indicates, strategy-
proofness is necessary for dominant strategy implementation, and so it is also neces-
sary for secure implementation. However, an additional condition is also necessary for
secure implementation. To see why intuitively, suppose that the direct revelation mech-
anism g = f securely implements the SCF f . See Figure 1 in which n = 2 and (u 1, u 2) is

1Secure implementation is identical with double implementation in dominant strategy equilibria and
Nash equilibria. It was Maskin (1979) who first introduced the concept of double implementation. (See
also Yamato 1993.) Note that secure implementation can be regarded as multiple (more than double)
implementation in dominant strategy equilibria, Nash equilibria, and all refinements of Nash equilibria
whose sets are larger than the set of dominant strategy equilibria.
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FIGURE 1. The rectangular property.

the true preference profile. Suppose

u 1( f (u 1, ũ 2)) = u 1( f (ũ 1, ũ 2)), (1)

that is, agent 1 is indifferent between reporting the true preference u 1 and another pref-
erence ũ 1 when agent 2’s report is ũ 2. Since reporting u 1 is a dominant strategy by
strategy-proofness, it follows from (1) that

u 1( f (ũ 1, ũ 2)) = u 1( f (u 1, ũ 2))≥ u 1( f (u ′1, ũ 2)) for all u ′1 ∈U1.

That is, reporting ũ 1 is one of agent 1’s best responses at u 1 when agent 2 reports ũ 2.
Next suppose that

u 2( f (ũ 1, u 2)) = u 2( f (ũ 1, ũ 2)). (2)

By using an argument similar to the one above, it is easy to see that u 2( f (ũ 1, ũ 2)) ≥
u 2( f (ũ 1, u ′2)) for all u ′2 ∈ U1, that is, reporting ũ 2 is one of agent 2’s best responses
when agent 1 reports ũ 1. Therefore, f (ũ 1, ũ 2) is a Nash equilibrium outcome. Moreover,
f (u 1, u 2) is a dominant strategy outcome, and by secure implementability, the domi-
nant strategy outcome coincides with the Nash equilibrium outcome. Accordingly we
conclude that f (u 1, u 2) = f (ũ 1, ũ 2) if (1) and (2) hold.

A formal definition of this condition, called the rectangular property, is given as fol-
lows.

DEFINITION 2. The SCF f satisfies the rectangular property if for all u , ũ ∈ U , if
u i ( f (ũ i , ũ−i )) = u i ( f (u i , ũ−i )) for all i ∈ I , then f (ũ ) = f (u ).

A formal proof of the claim that the rectangular property is necessary for secure im-
plementation is given as follows.
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LEMMA 1. If the SCF f is securely implementable, then f satisfies the rectangular prop-
erty.

PROOF. Let g : S→ A be a mechanism that securely implements f . Take any u , ũ ∈U .
Suppose that

u i ( f (ũ i , ũ−i )) = u i ( f (u i , ũ−i )) for all i ∈ I . (3)

Choose a dominant strategy profile at ũ , s (ũ ) = (s1(ũ 1), . . . , sn (ũ n )) ∈ DSg (ũ ). By domi-
nant implementability,

g (s1(ũ 1), . . . , sn (ũ n )) = f (ũ ). (4)

Let i ∈ I be given. Choose a dominant strategy for i at u i , s i (u i ) ∈ DS
g
i (u i ). Then

(s i (u i ), s−i (ũ−i )) ∈ DSg (u i , ũ−i ), where s−i (ũ−i ) = (s j (ũ j ))j 6=i . By dominant imple-
mentability,

g (s i (u i ), s−i (ũ−i )) = f (u i , ũ−i ). (5)

By (3), (4), and (5),

u i (g (s i (u i ), s−i (ũ−i ))) = u i (g (s1(ũ 1), . . . , sn (ũ n ))). (6)

Further, since s i (u i )∈DS
g
i (u i ),

g (Si , s−i (ũ−i ))⊆ L(g (s i (u i ), s−i (ũ−i )), u i ). (7)

By (6) and (7), g (Si , s−i (ũ−i )) ⊆ L(g (s i (ũ i ), s−i (ũ−i )), u i ). Since this holds for any i ∈
I , (s1(ũ 1), . . . , sn (ũ n )) ∈ N g (u ). By Nash implementability and (4), we have f (u ) =
g (s1(ũ 1), . . . , sn (ũ n )) = f (ũ ). �

Next we show that strategy-proofness and the rectangular property are not only nec-
essary, but also sufficient for secure implementability.

LEMMA 2. If the SCF f satisfies strategy-proofness and the rectangular property, then the
direct revelation mechanism associated with f securely implements f .

PROOF. Consider the direct revelation mechanism g = f . Let u ∈ U be given. By
strategy-proofness, u ∈DS f (u ), that is, the truthful strategy profile is a dominant strat-
egy equilibrium of the direct revelation mechanism. Next we prove that for any ũ ∈
N f (u ), f (ũ ) = f (u ), that is, any Nash equilibrium of the direct revelation mechanism
produces the f -optimal outcome. Since ũ ∈N f (u ),

u i ( f (ũ i , ũ−i ))≥ u i ( f (u i , ũ−i )) for all i ∈ I . (8)

Further, since u i ∈DS
f
i (u i ) by strategy-proofness,

u i ( f (u i , ũ−i ))≥ u i ( f (ũ i , ũ−i )) for all i ∈ I . (9)

By (8) and (9), u i ( f (ũ i , ũ−i )) = u i ( f (u i , ũ−i )) for all i ∈ I . By the rectangular property,
f (ũ ) = f (u ). �

By Proposition 1 and Lemmas 1 and 2, we have the following characterization of
securely implementable SCF’s.
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THEOREM 1. An SCF is securely implementable if and only if it satisfies strategy-proofness
and the rectangular property.

In the early literature on implementation, it was pointed out that even if an SCF f
is implementable in dominant strategies, it may not be implemented by its associated
direct revelation mechanism: it may be necessary to use more complicated “indirect”
mechanisms (Dasgupta et al. 1979, Repullo 1985). However, the same is not true for a
securely implementable mechanism. Suppose the SCF f is securely implemented by
some mechanism. Then by Proposition 1 and Lemma 1, f satisfies strategy-proofness
and the rectangular property. Hence by Lemma 2, f is securely implemented by its as-
sociated direct revelation mechanism. Thus, we have a revelation principle for secure
implementation.

THEOREM 2. An SCF is securely implementable if and only if it is securely implemented
by its associated direct revelation mechanism.

The implication of this revelation principle is that we can limit our attention to the
set of direct mechanisms. Direct mechanisms are somewhat natural and easy to explain
to experimental subjects, which may add to their appeal.

4. NON-BOSSINESS, DOMINANT STRATEGY IMPLEMENTATION,
AND SECURE IMPLEMENTATION

To further study the set of securely implementable social choice functions, we need the
idea of non-bossiness. Intuitively, non-bossiness implies that no one can change the
outcome without changing her own utility. Satterthwaite and Sonnenschein (1981) first
introduced a definition of non-bossiness for economic environments.2 For general en-
vironments, consider the following definition.

DEFINITION 3. The SCF f satisfies non-bossiness if for all u , u ′ ∈ U and all i ∈ I , if
f (u i , u−i ) 6= f (u ′i , u−i ), then u i ( f (u i , u−i )) 6= u i ( f (u ′i , u−i )).

PROPOSITION 2. If an SCF satisfies the rectangular property, then it satisfies non-
bossiness.

PROOF. Suppose the SCF f satisfies the rectangular property, and u j ( f (u ′j , u−j )) =
u j ( f (u j , u−j )) for some j . Let u ′′ be such that u ′′ = (u ′j , u−j ). We need to show
f (u ′′) = f (u ). Now u j ( f (u ′′)) = u j ( f (u ′j , u−j )) = u j ( f (u j , u−j )) = u j ( f (u j , u ′′−j )), and
(u ′′i , u ′′−i ) = (u i , u ′′−i ) for all i 6= j . So we have u i ( f (u ′′i , u ′′−i )) = u i ( f (u i , u ′′−i )) for all i ∈ I .
By the rectangular property, f (u ′′) = f (u ). �

2Our definition of non-bossiness is slightly stronger than Satterthwaite–Sonnenschein’s original con-
dition when applied to economic environments. Satterthwaite and Sonnenschein’s original definition is
that the SCF f satisfies non-bossiness if for all u , u ′ ∈ U and all i ∈ I , if f (u i , u−i ) 6= f (u ′i , u−i ), then
f i (u i , u−i ) 6= f i (u ′i , u−i ), where f i (u ) denotes the consumption bundle agent i receives at the allocation
f (u ) = ( f i (u ))i∈I recommended by the SCF f for the preference profile u . Mizukami and Wakayama (2007)
discuss the importance of non-bossiness for dominant strategy implementation in exchange economies.



210 Saijo, Sjöström, and Yamato Theoretical Economics 2 (2007)

The rectangular property is stronger than non-bossiness. However, the rectangular
property is equivalent to non-bossiness plus the following weak version of the rectan-
gular property.3

DEFINITION 4. The SCF f satisfies the outcome-rectangular-property (ORP) if for all u ,
u ′ ∈U , if f (u i , u ′−i ) = f (u ′) for all i ∈ I , then f (u ) = f (u ′).

PROPOSITION 3. An SCF satisfies the rectangular property if and only if it satisfies non-
bossiness and ORP.

PROOF. By Proposition 2, the rectangular property implies non-bossiness. It is also
clear that the rectangular property implies ORP. Next suppose the SCF f satisfies non-
bossiness and ORP, and u i ( f (u ′i , u−i )) = u i ( f (u i , u−i )) for all i . Then it follows from
non-bossiness that f (u ′i , u−i ) = f (u i , u−i ) for all i . By ORP, f (u ′) = f (u ). Therefore, f
satisfies the rectangular property. �

By Theorem 1 and Proposition 3, we have the following corollary.

COROLLARY 1. An SCF is securely implementable if and only if it satisfies strategy-
proofness, non-bossiness, and ORP.

Thus any securely implementable SCF must be non-bossy. On the other hand, there
are non-bossy and strategy-proof SCFs that violate ORP, hence cannot be securely im-
plemented (an example is provided in Section 6). However, it turns out that the following
condition of weak non-bossiness is enough to guarantee that a strategy-proof SCF can
be dominant strategy implemented.

DEFINITION 5. The SCF f satisfies weak non-bossiness if for all u , u ′ ∈U and all i ∈ I , if
f (u i , u−i ) 6= f (u ′i , u−i ), then there is some u ′′−i such that u i ( f (u i , u ′′−i )) 6= u i ( f (u ′i , u ′′−i )).

THEOREM 3. An SCF is dominant strategy implemented by its associated direct revelation
mechanism if and only if it satisfies strategy-proofness and weak non-bossiness.

PROOF. Suppose the SCF f satisfies strategy-proofness and weak non-bossiness. Con-
sider the associated direct revelation mechanism. Suppose agent i ’s true preference is
u i . By strategy proofness, it is dominant to announce the truth u i . Suppose announcing
a different preference u ′i is another dominant strategy. If f (u i , u−i ) 6= f (u ′i , u−i ) for some
u−i , then by weak non-bossiness there is u ′′−i such that u i ( f (u i , u ′′−i )) > u i ( f (u ′i , u ′′−i )).
Therefore, announcing u ′i is in fact dominated by announcing u i , which is a contradic-
tion. Hence, f (u i , u−i ) = f (u ′i , u−i ) for all u−i after all, so agent i ’s lie (i.e. to say u ′i )
cannot ever affect the outcome. Hence, f is dominant strategy implemented.

Suppose the SCF f is dominant strategy implemented by its associated direct reve-
lation mechanism. By Proposition 1, f is strategy-proof. It remains to show f satisfies
weak non-bossiness. Take any u , u ′ ∈ U and i ∈ I . Suppose f (u i , u−i ) 6= f (u ′i , u−i ).
Then announcing u ′i is dominated by announcing u i when agent i ’s true preference is
u i , so that there is u ′′−i such that u i ( f (u i , u ′′−i ))> u i ( f (u ′i , u ′′−i )). �

3We thank an anonymous referee for suggesting this condition.
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Non-bossiness is a stronger condition than weak non-bossiness, so secure imple-
mentation is more difficult to achieve than dominant strategy implementation. For ex-
ample, the Vickrey auction discussed in Section 7 satisfies weak non-bossiness, but vi-
olates non-bossiness. (Notice that in general, weak non-bossiness does not imply that
each player has a unique dominant strategy in the revelation mechanism.)

5. ROBUST BAYESIAN IMPLEMENTATION

The standard theory of Bayesian mechanism design makes the strong assumption that
the agents and the mechanism designer share a common prior over the possible states
of the world. The mechanism can depend directly on this prior, i.e., it can be “paramet-
ric.” For example, in Myerson’s (1981) optimal auction, the mechanism designer sets a
reserve price that depends on the prior distribution. In this section, we drop this strong
assumption and consider the possibility of “non-parametric” implementation.4

In a novel approach, Bergemann and Morris (2005a,b) allow each agent to have a
set of possible belief-types (as well as payoff types), and define equilibrium with re-
spect to these extended type-spaces. We assume also that, from the point of view of
the mechanism designer, each agent has a set of possible beliefs. But we define equilib-
rium with respect to the agents’ actual beliefs.5 We are interested mainly in the standard
case of a common prior, in which case the equilibrium is defined with respect to this
common prior. Our definitions are, however, more general, and allow beliefs to differ
across agents.

The set of possible utility functions for agent i is a measurable space Ui . Let U =
×i∈I Ui . A preference profile u ∈ U is referred to as a “state of the world.” Consider
a mechanism g : S → A. A strategy for player i is a measurable function σi : Ui →
Si , with the following interpretation: when player i ’s true preference relation is u i , he
plays σi (u i ). A strategy profile is a measurable function σ : U → S, where σ(u ) =
(σ1(u 1),σ2(u 2), . . . ,σn (u n )). Similarly, defineσ−i (u−i ) in the obvious way. Then a dom-
inant strategy equilibrium is a strategy profileσ such that for each i and each u ∈U ,

u i (g (σi (u i ),σ̃−i (u−i ))≥ u i (g (σ̃i (u i ),σ̃−i (u−i )))

for any σ̃i and σ̃−i . Notice that the notion of dominant strategy does not depend on
beliefs.

Let ∆ be the set of probability measures over U , and let ∆n = ∆× · · · ×∆. Agent i ’s
prior belief over U is denoted qi (i = 1, . . . , n ). A support for qi is any set C i such that
qi (C i ) = 1. Let D ⊆ ∆n be the set of prior belief profiles (q1,q2, . . . ,qn ) that the agents
could possibly have. (We allow the possibility that qi 6= qj for any agents i , j ∈ I .) The
mechanism designer does not know the agents’ true priors; she knows only that they
belong to the set D. Several special classes of priors are of interest. Let DC I be the class
of complete information priors:

DC I = {(q1,q2, . . . ,qn )∈∆n : ∃u s.t. q1(u ) =q2(u ) = · · ·=qn (u ) = 1}.

4The arguments in this section have benefited from suggestions from the co-editor.
5In addition, unlike Bergemann and Morris (2005a,b) we assume “private values.”
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Let DCOM be the class of common priors:

DCOM = {(q1,q2, . . . ,qn )∈∆n : q1 =q2 = · · ·=qn}.

Given priors (qi )i∈I , the strategy profile σ is a Bayesian–Nash equilibrium under (qi )i∈I

if for all i ,
∫

U

u i (g (σ(u )))d qi (u )≥
∫

U

u i (g (δi (u i ),σ−i (u−i )))d qi (u )

for any alternative strategy δi .
Our notion of robust implementation requires the outcome to be optimal in each

state in the support of all agents’ priors. Importantly, since the mechanism designer
does not know the agents’ true priors, the mechanism must be “non-parametric,” i.e.,
the same mechanism must achieve implementation for all priors in the set D.6

DEFINITION 6. The mechanism g securely and robustly implements the SCF f on the
domain D if for any collection of priors (q1,q2, . . . ,qn ) ∈ D, (i) there exists a dominant
strategy equilibrium σ such that g (σ(u )) = f (u ) for all u ∈U and (ii) for any Bayesian–
Nash equilibriumσ under (q1,q2, . . . ,qn ), there is a support C i for qi (i = 1, 2, . . . , n ) such
that g (σ(u )) = f (u ) for all u ∈∩i C i .

Consider, for example, the special case D =DC I . In this case, the agents have com-
plete information. Since the mechanism designer knows that the priors (q1,q2, . . . ,qn )
belong to DC I , she knows that q1(u ) = q2(u ) = · · · = qn (u ) = 1 for some u ∈ U . But
she does not know which u . According to her, any profile of priors in DC I is a priori
possible. Now if u ∈ U is such that q1(u ) = q2(u ) = · · · = qn (u ) = 1, then any support
C i must include this u , so part (ii) of Definition 6 requires that g (σ(u )) = f (u ) for any
Bayesian–Nash equilibriumσ. That is, if all agents agree that the true state is u , then the
outcome must be socially optimal for this u . Furthermore, σ is a Bayesian–Nash equi-
librium under (q1,q2, . . . ,qn ) if and only if σ(u ) is a Nash equilibrium at u . This implies
that Definition 6 generalizes Definition 1. Specifically, the mechanism g securely and
robustly implements the SCF f on the domain DC I (according to Definition 6) if and only
if g securely implements f (according to Definition 1).

Definition 6 is of course more general than Definition 1, since it covers cases where
D 6=DC I . For example, we may consider a polar opposite to the case of complete infor-
mation. Suppose U is finite and D contains only full support priors: (q1,q2, . . . ,qn ) ∈ D
implies qi (u ) > 0 for all u ∈U and all i ∈ I . In this case, C i =U for all i ∈ I , so part (ii)
of Definition 6 requires g (σ(u )) = f (u ) for all u ∈U . That is, if the agents’ priors do not

6Suppose the mechanism designer has her own prior qo on U , which may differ from the agents’ pri-
ors, but any event the mechanism designer considers possible is also considered possible by the agents.
Formally, qo is absolutely continuous with respect to all of the agents’ priors. If the mechanism designer
wants the outcome to be optimal with probability one according to qo , it suffices if the outcome is optimal
for states in ∩i C i , where C i is a support for qi . (If U is finite then C i ⊆U is a support for qi if and only if it
includes all u such that qi (u )> 0. In this case, the mechanism designer’s prior qo is absolutely continuous
with respect to (qi )i∈I if for any u ∈U , q0(u )> 0 implies qi (u )> 0 for all i ∈ I .)
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rule out any state as being impossible, then the outcome must be socially optimal for all
u ∈U .

A final example is the standard case of common priors, D =DCOM . In this case, part
(ii) of Definition 6 requires that the outcome be socially optimal with probability one
according to the common prior, whatever it may be.

Our main theorem in this section is the following result.

THEOREM 4. If the SCF f is strategy-proof and satisfies the rectangular property, then it
is securely and robustly implemented on any D by its associated direct revelation mecha-
nism.

PROOF. Suppose f satisfies strategy-proofness and the rectangular property, and con-
sider the associated direct revelation mechanism. Fix (q1,q2, . . . ,qn ) ∈ D. Strategy-
proofness implies that the truthful strategy profile, σ∗(u ) = u for any u ∈ U , is a
Bayesian–Nash equilibrium. Next consider any Bayesian–Nash equilibrium σ. By defi-
nition, for any i ∈ I ,

∫

U

u i ( f (σ(u )))d qi (u )≥
∫

U

u i ( f (u i ,σ−i (u−i )))d qi (u ).

That is, playing according to σi is at least good as always telling the truth. On the other
hand, by strategy-proofness,

u i ( f (u i ,σ−i (u−i )))≥ u i ( f (σ(u )))

for all u ∈U . These inequalities imply that there is a support C i for qi such that

u i ( f (u i ,σ−i (u−i ))) = u i ( f (σ(u )))

for all u ∈ C i . Then for any u ∈ ∩i∈I C i , the above equality holds for any agent i . By the
rectangular property, f (σ(u )) = f (u ) for all u ∈∩i C i . �

Thus, strategy-proofness (i.e. dominant-strategy incentive compatibility) and the
rectangular property are sufficient for secure and robust implementation. For a partial
converse, recall that secure and robust implementation on DC I is equivalent to secure
implementation. This observation and Theorem 2 regarding necessary conditions for
secure implementation immediately imply the following result.

THEOREM 5. Suppose DC I ⊆ D. If the SCF f can be securely and robustly implemented
on D, then f is strategy-proof and satisfies the rectangular property.

Equilibrium behavior requires agents to coordinate on a strategy profile. Since such
coordination may be difficult in practice, we impose part (i) of Definition 6. However,
for theoretical reasons it may be of interest to weaken Definition 6. We say that the
mechanism g robustly implements the SCF f in Bayesian–Nash equilibria if condition
(i) of secure and robust implementation is replaced by the following condition: (i′) there
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exist a Bayesian–Nash equilibrium σ and a support C i for qi (i = 1, 2, . . . , n ) such that
g (σ(u )) = f (u ) for all u ∈∩i C i .

Robust implementation is easier to achieve than secure and robust implementa-
tion. Consider, for example, the special case D = DC I . If (q1,q2, . . . ,qn ) ∈ DC I , then
q1(u ) =q2(u ) = · · ·=qn (u ) = 1 for some u ∈U , and C i is a support for qi (i = 1, 2, . . . , n ) if
and only if u ∈∩i C i . Moreover,σ is a Bayesian–Nash equilibrium under (q1,q2, . . . ,qn ) if
and only ifσ(u ) is a Nash equilibrium at u . Therefore, the mechanism g robustly imple-
ments the SCF f on the domain DC I if and only if g Nash implements f . Robust imple-
mentation for the set of all complete information priors is, naturally, logically equivalent
to Nash implementation. Given some U , let f be any Nash implementable SCF (for ex-
ample, one that satisfies Maskin-monotonicity and no-veto-power). Then, f is robustly
implementable on DC I . Yet, if f is not strategy-proof then f is not securely and robustly
implementable on DC I . In general, therefore, secure and robust implementation is a
more demanding notion than robust implementation. Of course, the bigger is the set
D, the less likely it is that an SCF that is not strategy-proof can be Bayesian–Nash imple-
mented by a “non-parametric” mechanism.

With very general type spaces, Bergemann and Morris (2005a) show that robust
implementation essentially boils down to iterated elimination of strictly dominated
strategies. More positive results have been obtained in less general settings. Choi and
Kim (1999) consider the case D = DCOM and find that a well-known SCF that is not
strategy-proof can be implemented in undominated Bayesian–Nash equilibria using a
non-parametric mechanism. This result cannot be directly translated into our setting,
because their notion of SCF is different from ours. According to their SCF, the socially
optimal outcome depends on the agents’ prior beliefs as well as their payoff functions.

A precise characterization of social choice rules that are robustly Bayesian–Nash im-
plementable, under various assumptions on D, is beyond the scope of this paper. How-
ever, we note that the mechanism used by Choi and Kim (1999) is quite complex. A key
aspect of their mechanism is that the agents announce their common prior. In any un-
dominated Bayesian–Nash equilibrium, the agents report their priors truthfully, which
allows the mechanism designer to extract information about the agents’ true prior be-
liefs. The extent to which such mechanisms can achieve Bayesian–Nash (as opposed
to undominated Bayesian–Nash) implementation is unclear, since ruling out Bayesian–
Nash equilibria where the agents all announce the “wrong” prior may be quite diffi-
cult. In any case, from the point of view of practical implementation, it is interesting
to see what can be achieved using simple “revelation mechanisms.”7 Thus, suppose
g : U → U , and replace condition (i) of Definition 6 by: (i′′) there exists a truthful
Bayesian–Nash equilibrium σ (i.e., σ(u ) = u ) and a support C i for qi (i = 1, 2, . . . , n )
such that g (σ(u )) = f (u ) for all u ∈ ∩i C i . The resulting concept of implementation is
called robust and truthful implementation.

Dasgupta et al. (1979, Theorem 5.1) show that if truth-telling is a Bayesian–Nash
equilibrium for all possible common priors, then it must be a dominant strategy. Their

7A broad interpretation of revelation mechanisms requires the agents to report all they know, including
their own prior beliefs, as in Choi and Kim (1999). Here we use a more narrow definition, where the agents
reveal only their “payoff types.”
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argument carries over to our setting. Consequently, robust and truthful implementation
on DC I implies secure implementation (because telling the truth must be a dominant
strategy). This observation, combined with Theorem 2, immediately implies the follow-
ing result.

THEOREM 6. Suppose DC I ⊆ D. If f can be robustly and truthfully implemented in
Bayesian–Nash equilibria, then f is strategy-proof and satisfies the rectangular property
(so f can be securely and robustly implemented on D).

Theorem 6 implies that weakening Definition 6 by replacing (i) by (i′′) does not really
impact the possibility of implementation. As remarked earlier, condition (i′) may yield
more permissive results (depending on the exact nature of D), but a full characterization
is left for future work.

6. QUASI-LINEAR ECONOMIC ENVIRONMENTS

Let the set of alternatives be

A = {(y , t1, . . . , tn ) | y ∈ Y , t i ∈R ∀i },

where y ∈ Y is a social decision and t i is a transfer to agent i of a private good called
“money.” The set of possible social decisions Y is a convex subset of Rk , for some k .
(In the next section, we consider the case where Y is a discrete set.) The cost of taking
decision y (in terms of “money”) is given by a differentiable and convex function c (y ).
Each agent i ∈ I has quasi-linear preferences:

u i (y , t1, . . . , tn ,θi ) = vi (y ,θi )+ t i .

Here vi is a valuation function that is differentiable and concave in y , and θi is a
real number representing agent i ’s “type.”8 For each i , the function vi is given once
and for all and only the type varies, so the preferences of the agents are represented by
the profile of types, θ = (θ1,θ2, . . . ,θn ). The set of possible types for agent i is Θi . Let
Θ ≡ ×i∈IΘi . An SCF f : Θ→ A recommends, for each profile θ , a social decision y f (θ )
and a set of transfers. Let t

f
i (θ ) denote the recommended transfer to agent i . Thus,

f (θ ) = (y f (θ ), t
f

1 (θ ), t
f

2 (θ ), . . . , t
f

n (θ )). The social surplus is defined as

∑

i∈I

vi (y ,θi )− c (y ). (10)

To avoid some technical issues, in this section we assume that for all θ ∈ Θ, a unique
y maximizes the social surplus (10). (This happens, for example, if each vi is strictly
concave in y .) A direct revelation mechanism f :Θ→ A is a Groves–Clarke mechanism if

8Notice that throughout this section, the functions u i and vi are held fixed, and the agent’s type is iden-
tified with θi . The mechanism designer knows the functions u i and vi but not the agent’s true type. More-
over, each agent i ’s valuation function vi depends only on his own type θi , and not the other agents’ types
(θj )j 6=i , since we consider private values environments.
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for all θ ∈ Θ, y f (θ )maximizes the social surplus, and the transfer function is given, for
all i ∈ I , by

t
f

i (θ ) =
∑

j 6=i

v j (y f (θ ),θj )− c (y f (θ ))+ϕi (θ−i ). (11)

Here ϕi is an arbitrary function that does not depend on θi . It is well-known that
Groves–Clarke mechanisms are strategy-proof (Clarke 1971, Groves 1973). In many
cases, for example if each vi is differentiable in θi and each Θi is a convex set, any
strategy-proof SCF that satisfies (10) must in fact also satisfy (11) (Holmström 1979).

If the social surplus maximizing decision always occurs in the interior of Y (denoted
int Y ) then the rectangular property is equivalent to non-bossiness. Both properties re-
duce to the following: no agent should be able to change the profile of transfers without
changing the social decision. This is shown in the following lemma.

LEMMA 3. Suppose for all θ ∈ Θ, y f (θ ) ∈ int Y maximizes the social surplus. For any
Groves–Clarke mechanism f : Θ→ A, the following three conditions are equivalent: (i) f
is non-bossy; (ii) for all θ ,θ ′ ∈Θ and i ∈ I , f (θ ) = f (θ ′i ,θ−i )whenever y f (θ ) = y f (θ ′i ,θ−i );
(iii) f satisfies the rectangular property.

PROOF. (i) implies (ii). Strategy proofness implies that if y f (θ ) = y f (θ ′i ,θ−i ), then

t
f

i (θ ) = t
f

i (θ
′
i ,θ−i ). Non-bossiness then implies f (θ ) = f (θ ′i ,θ−i ).

(ii) implies (iii). Suppose (ii) holds. Take any θ ,θ ′ ∈Θ, and let y ∗ = y f (θ ′). Suppose

u i ( f (θi ,θ ′−i ),θi ) = u i ( f (θ ′),θi ), i.e., vi (y f (θi ,θ ′−i ),θi )+t
f

i (θ ,θ ′−i ) = vi (y f (θ ′),θi )+t
f

i (θ
′)

for all i . Then, by (11), vi (y f (θi ,θ ′−i ),θi ) +
∑

j 6=i v j (y f (θi ,θ ′−i ),θ
′
j ) − c (y f (θi ,θ ′−i )) =

vi (y f (θ ′),θi ) +
∑

j 6=i v j (y f (θ ′),θ ′−j )− c (y f (θ ′)). That is, at state (θi ,θ ′−i ), y f (θi ,θ ′−i ) and

y f (θ ′) generate exactly the same social surplus. Since a unique y maximizes the so-
cial surplus (10) and y f (θi ,θ ′−i ) is the maximizer at (θi ,θ ′−i ), it follows from this equality
that y f (θi ,θ ′−i ) = y f (θ ′) = y ∗. By property (ii), f (θ ′) = f (θi ,θ ′−i ). Since y ∗ is interior
and v is differentiable and concave in y , y ∗ can be found by solving the first-order con-
dition for maximizing (10). Since y f (θi ,θ ′−i ) = y f (θ ′) = y ∗, we have ∂ vi (y ∗,θi )/∂ y =
∂ vi (y ∗,θ ′i )/∂ y for all i .

We know that f (θi ,θ ′−i ) = f (θ ′) for all i . For i = 1, this yields f (θ1,θ ′2, . . . ,θ ′n ) =
f (θ ′). The first-order condition for maximizing (10) must be satisfied at y ∗ for the pro-
file (θ1,θ ′2, . . . ,θ ′n ). Since ∂ v2(y ∗,θ2)/∂ y = ∂ v2(y ∗,θ ′2)/∂ y , the first-order condition is
also satisfied at y ∗ for the profile (θ1,θ2,θ ′3, . . . ,θ ′n ). Thus

y f (θ1,θ2,θ ′3, . . . ,θ ′n ) = y f (θ1,θ ′2,θ ′3, . . . ,θ ′n ) = y ∗.

Property (ii) now implies

f (θ1,θ2,θ ′3, . . . ,θ ′n ) = f (θ1,θ ′2,θ ′3, . . . ,θ ′n ) = f (θ ′).

By sequentially replacing each θ ′i by θi in this manner, we find that f (θ ) = f (θ ′). There-
fore, the rectangular property holds.

(iii) implies (i). This follows from Proposition 2. �

Example 1 shows that standard assumptions often guarantee non-bossiness.
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EXAMPLE 1 (Production of a divisible public good). The public good is one-dimensional,
Y =R+. Two leading cases have been studied in the literature. Case 1: vi (y ,θi ) = θi b (y ),
where b is a strictly concave function. To guarantee that the surplus maximizing y is
strictly positive, suppose b ′(0) > 0 and c ′(0) = 0. Case 2: Let g (x ) be a function that
is strictly concave, reaching a maximum at x = 0, and suppose vi (y ,θi ) = g (y − θi ).
There is no cost of producing the public good, c (y ) = 0. This is the case of single-peaked
preferences, where θi is agent i ’s “peak,” i.e., his most preferred level of the public good.
As long as all θi are strictly positive, the surplus maximizing level of the public good is
strictly positive.

In both case 1 and case 2, if y f (θ ) = y f (θ ′i ,θ−i ) then θ ′i = θi , so obviously f (θ ) =
f (θ ′i ,θ−i ). From Lemma 3 it follows that all Groves–Clarke mechanisms are non-bossy
and securely implement the social surplus maximizing decision. ◊

Example 2 shows that corner solutions do not necessarily mean that secure imple-
mentation is impossible.

EXAMPLE 2 (Allocation of a divisible private good in fixed supply). One unit of a divisi-
ble private good called “cake” is to be shared by the agents. (In addition, transfers of
“money” are possible.) The social decision is denoted y = (y1, y2, . . . , yn ), where yi is
agent i ’s share of the cake. Feasibility requires y ≥ 0 and

∑

i yi = 1. Valuation functions
are of the form vi (y ,θi ) = θi b (yi ), where b is a strictly increasing and strictly concave
function satisfying b (0) = 0. Suppose Θi = [θmin,θmax], where

θminb ′(0)>θmaxb ′(1). (12)

Inequality (12) guarantees that the social surplus is not maximized by giving all of the
cake to one agent. However, with three or more agents, it may be optimal to give no
cake to some agent, so Lemma 3 does not apply. The social surplus

∑

i θi b (yi ) is to be
maximized subject to y ≥ 0 and

∑

i yi = 1. Let λ > 0 denote the Lagrange multiplier for
the resource constraint. The maximum is found by solving the first-order condition,

θi b ′(yi )≤λ, yi ≥ 0, yi (λ−θi b ′(yi )) = 0 for all i . (13)

Suppose the function ϕi in (11) is a constant, so the transfer of money to agent i is

t
f

i (θ ) =
∑

j 6=i

θj b (y f
j (θ ))+ constant. (14)

We claim that in this case the Groves–Clarke mechanism satisfies the rectangular prop-
erty. Indeed, suppose u i ( f (θ )) = u i ( f (θ ′i ,θ−i )) for all i . This implies that for all i , either

θ ′i = θi or agent i gets no cake, y
f

i (θ
′
i ,θ−i ) = y

f
i (θ ) = 0. Therefore, the first-order condi-

tion (13) still holds when θ is replaced by θ ′, without changing λ or y , so y f (θ ′) = y f (θ ).
Moreover, (14) implies t f (θ ′) = t f (θ ), so f (θ ′) = f (θ ) (recall that b (0) = 0). Thus, the
rectangular property holds, and secure implementation is achieved. ◊
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Example 2 illustrates the difference between implementation in strictly dominant
strategies and secure implementation. In Example 2, telling the truth is not a strictly
dominant strategy, because an agent who gets no cake may still get no cake—and the
same transfer of money—after a small change in his type. However, this does not prevent
secure implementation, as long as the change in his type does not change anyone else’s
transfer. This is why ϕi must be constant. (If ϕi is not constant then it can happen that
t f (θ ′) 6= t f (θ ) even though y f (θ ′) = y f (θ ).)

If (12) does not hold, then the Groves–Clarke mechanism with constant ϕi is still
non-bossy. However, ORP is violated. Since one agent may consume all of the cake when

(12) is violated, u i ( f (θ )) = u i ( f (θ ′i ,θ−i )) implies either θ ′i = θi or y
f

i (θ
′
i ,θ−i ) = y

f
i (θ ) = 0

or y
f

i (θ
′
i ,θ−i ) = y

f
i (θ ) = 1. But this no longer ensures that the first-order condition (13)

holds when θ is replaced by θ ′. Therefore, f (θ ′) 6= f (θ ) is possible. Intuitively, there can
be bad Nash equilibria where one agent exaggerates his valuation of cake and receives
all of it, while all the other agents report very low valuations and receive no cake. Notice
that this example shows that, in general, non-bossiness and strategy-proofness together
do not imply the rectangular property.

EXAMPLE 3 (Serial cost sharing). The social decision is y = (y1, y2, . . . , yn ), where yi is
agent i ’s consumption of divisible “cake.” But in contrast to the assumption of Ex-
ample 2, cake can now be produced (using money as input). The cost function is
c (y ) = C
�
∑

i yi
�

, where C is strictly increasing, differentiable, and convex. Each val-
uation function vi is strictly increasing and strictly concave in yi (but does not de-
pend on y j for j 6= i ). Moulin and Shenker (1992) define serial cost sharing and show
that this SCF is strategy-proof and can be Nash implemented by an indirect mecha-
nism. In general, the two properties of Nash implementability and strategy-proofness
together do not imply the rectangular property (which requires double implementa-
tion by the same mechanism). However, serial cost sharing does satisfy the rectan-
gular property. Suppose u i ( f (θ ∗)) = u i ( f (θi ,θ ∗−i )) for all i ∈ I . The definition of se-

rial cost sharing implies f (θ ∗) = f (θi ,θ ∗−i ) for all i ∈ I . This implies that if y
f

i (θ
∗) > 0

then ∂ vi (y f (θ ∗),θi )/∂ yi = ∂ vi (y f (θ ∗),θ ∗i )/∂ yi . If y
f

i (θ
∗) = 0, then ∂ vi (y f (θ ∗),θi )/∂ yi ≤

C ′
�
∑

j y
f

j (θ
∗)
�

and ∂ vi (y f (θ ∗),θ ∗i )/∂ yi ≤C ′
�
∑

j y
f

j (θ
∗)
�

. In either case, f (θ ∗) = f (θ ), so
serial cost-sharing is securely implementable. Notice that in this example, there is no
need for any assumptions that rule out corner solutions. ◊

7. DISCRETE SOCIAL DECISIONS

The previous section shows that surplus-maximizing social choice functions can be se-
curely implemented in many quasi-linear environments with divisible public or private
goods. In this section, we show that secure implementation is more difficult if the set
of social decisions is discrete. Consider a quasi-linear environment as in Section 6, but
assume that Y is a finite set. For convenience, Y = {0, 1} and c (0) = c (1) = 0. (The ar-
guments can be adapted to any discrete Y .) We normalize so that vi (0,θi ) = 0 for all
θi . Thus, agent i ’s preferences are characterized by vi (1,θi ), the value to him of social
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decision y = 1. Without loss of generality we may suppose vi (1,θi ) = θi for all θi . We
assume θi can be any real number.

Notice that if by chance
∑

i∈I θi = 0, then both y = 0 and y = 1 are surplus maxi-
mizing. In this situation, it may be unreasonable to assume that the social choice rule is
single-valued. Thus, we allow f to be a multi-valued social choice correspondence (SCC).
The definition of secure implementation when f is an SCC is the same as the one in
Definition 1. (Thus, we require “full” implementation in dominant strategy equilibria
and Nash equilibria.) Notice that for implementation in strictly dominant strategies, the
issue of multi-valuedness would be moot because a strictly dominant strategy must be
unique. However, in this paper we consider domination in the weak sense, and a given
type of player may have several (weakly) dominant strategies. Moreover, even if each
player has a unique dominant strategy, there may be multiple Nash equilibria (some of
which are in dominated strategies). Secure implementation does not require a unique
Nash equilibrium, but it does require that all Nash equilibrium outcomes be socially
optimal (see Example 4 below).

We again use the notation f (θ ) = (y f (θ ), t
f

1 (θ ), t
f

2 (θ ), . . . , t
f

n (θ )), but now y f (θ ) and

t
f

i (θ ) are the sets of optimal decisions and transfers, respectively. The SCC f is surplus
maximizing if

∑

i∈I θi < 0 implies y f (θ ) = {0}, and
∑

i∈I θi > 0 implies y f (θ ) = {1}. No
restriction is imposed if

∑

i∈I θi = 0. For a mechanism g : S→ A, let g (s ) = (y g (s ), t g (s ))
denote the outcome, where y g (s ) is the chosen public project and t g (s ) the profile of
transfers.

To see that some interesting social choice correspondences can be securely imple-
mented, even with a discrete set of public decisions, consider the following “veto rule.”

EXAMPLE 4 (A veto rule). Consider the following SCC. There are no transfers. The public
decision y = 0 is always socially optimal. The public decision y = 1 is socially optimal if
and only if θi ≥ 0 for all i . Intuitively, y = 0 is a “status quo” outcome, which is always
socially acceptable, but the social project y = 1 is acceptable to society if and only if all
agents prefer it to the status quo. (With this interpretation, the SCC is the “individually
rational” correspondence.) This SCC is securely implemented by the following mecha-
nism. Each agent says 0 or 1. If all say 1, y = 1 is implemented. If at least one agent says
0, then y = 0 is implemented. Notice that the dominant strategy is to say 0 if θi < 0 and
1 if θi > 0. Both strategies are dominant if θi = 0. There are no “bad” Nash equilibria,
because each agent can “veto” the outcome y = 1. The “veto rule” is non-dictatorial: for
each agent i , there is a profile θ such that agent i strictly prefers y = 1, but the unique
socially optimal decision is y = 0. However, it does not maximize the surplus, because
y = 0 is socially acceptable even if θi > 0 for all i . ◊

We now show that in fact surplus maximization cannot be achieved in this environment.
Notice that this negative result holds, even though we do not require budget balance
(i.e.,
∑

i∈I t i 6= 0 is allowed).

THEOREM 7. Consider the quasi-linear environment with Y = {0, 1}. No SCC is both se-
curely implementable and surplus-maximizing.
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PROOF. Suppose f is surplus-maximizing. In order to obtain a contradiction, suppose
it is securely implemented by a mechanism g .

Fix a type profile θ and choose s j ∈ DS
g
j (θj ) for each j . Surplus maximization im-

plies that for any i , y g (s ) = 0 if θi satisfies

θi <−
∑

j 6=i

θj . (15)

If θi satisfies

θi >−
∑

j 6=i

θj (16)

then y g (s ) = 1. Moreover, if (15) holds, then any s i ∈DS
g
i (θi )must give agent i the same

transfer, say t
g
i (s ) = t 0

i (s−i ). (Otherwise, the strategy that gives the lowest transfer and
the same public decision y g (s ) = 0 is not a dominant strategy.) Similarly, if (16) holds,
then any s i ∈DS

g
i (θi )must give agent i the same transfer, say t

g
i (s ) = t 1

i (s−i ).
Suppose θ is such that

∑

i∈I θi > 0. Define a new profile θ ′ as follows. For i ∈ {1, 2},
define θ ′i = −
∑

j 6=i θj − ε < θi , where ε > 0. Let θ ′i = θi for all i > 2. For each i , choose

s ′i ∈ DS
g
i (θ
′
i ). Clearly,
∑

i∈I θ
′
i < 0. Moreover, for i ∈ {1, 2}, θi +

∑

j 6=i θ
′
j < 0. For all i ,

we have chosen s i ∈ DS
g
i (θi ) and s ′i ∈ DS

g
i (θ
′
i ). By surplus maximization, y g (s ′) = 0

and y g (s i , s ′−i ) = 0 for i ∈ {1, 2}. We now claim that, for i ∈ {1, 2}, if agent i ’s true type
is θi then s ′i ∈ DS

g
i (θ
′
i ) is a best response against s ′−i . Indeed, choosing s ′i would result

in payoff t 0
i (s
′
−i ), because the social decision would be y g (s ′) = 0. But this is also what

is obtained by choosing s i ∈ DS
g
i (θi ), because y g (s i , s ′−i ) = 0. Therefore, s ′i is indeed a

best response against s ′−i for i ∈ {1, 2} when his true type is θi . For all i > 2, θ ′i = θi and
s ′i ∈ DS

g
i (θ
′
i ) = DS

g
i (θi ). Therefore, s ′ ∈ N g (θ ). But y g (s ′) = 0 even though

∑

i∈I θi > 0,
which contradicts the definition of surplus maximization. �

Notice that the proof of Theorem 7 in effect replicates the proof that the rectangular
property is necessary for secure implementation, and then shows that the rectangular
property is violated.

To further illustrate the impossibility of combining secure implementation with sur-
plus maximization in the discrete environment, we consider a well-known example.

EXAMPLE 5 (Auctioning an indivisible object). Suppose the social decision is to allocate
a private indivisible object among two agents. Agent i ’s true value of the object is θi ≥ 0
if she receives it, and 0 otherwise (i = 1, 2). Consider the second-price auction (Vickrey
1961). Suppose θ1 > θ2 > 0. In order to maximize the surplus, agent 1 should win the
object. Figure 2 shows that the set of Nash equilibria is quite large. The lower-right part
of the set of Nash equilibria is the “good set” in the sense that agent 1 receives the object.
However, the upper-left part of the set of Nash equilibria is “bad” in the sense that agent
2 receives the object, so the social surplus is not maximized. ◊



Theoretical Economics 2 (2007) Secure implementation 221

Agent 2’s bid

Agent 1’s bid

true value

0 θ2 θ1

θ2

θ1

Good Nash area

Bad

Nash

area

FIGURE 2. Equilibria of the second-price auction.

8. SINGLE-PEAKED VOTING

Section 6 shows the possibility of secure implementation when the social decision is
concerned with continuous variables, such as divisible public or private goods. How-
ever, the mechanisms rely on the existence of “money” for side-payments. We now show
that if there are no side-payments, the results are negative, even if the social decision is
a continuous variable.

Consider a single-peaked voting environment. The set of alternatives is A = [0, 1],
and the set of possible preference relations consists of all those that are continuous
and single-peaked on A. Let p (u i ) denote the “peak” of u i , i.e., the top ranked al-
ternative in A, which is assumed to be unique. Single-peakedness implies that u i is
strictly increasing before p (u i ) and strictly decreasing afterwards.9 Let Range( f ) de-
note the range of f . By Lemma 1 in Barberà and Jackson (1994), Range( f ) is closed. Let
a =min{x | x ∈Range( f )} and b =max{x | x ∈Range( f )} denote the smallest and largest
elements in Range( f ), respectively. Notice that f is constant if and only if a =b .

In the single-peaked voting environment one can find dominant strategy imple-
mentable social choice functions with good properties, the leading example being the
median voter rule (see Barberà and Jackson 1994). Assuming n ≥ 3 is odd, the median
voter rule has many good properties: it is strategy-proof, non-dictatorial, Pareto effi-
cient, and non-bossy. However, it does not satisfy ORP. To see this, suppose u ′ is such
that each u ′i has the same peak, say p (u ′i ) = a for all i ∈ I . Then, f (u ′) = a . Now sup-
pose for each i , u i is such that p (u ) = b 6= a . Then, f (u i , u ′−i ) = f (u ′i , u ′−i ) = a for all
i , because starting at u ′, no single agent can change the median-voter outcome. But

9An impossibility result for secure implementation on domain U a fortiori implies the same impossi-
bility result on any larger domain U ′ ⊇U . Therefore, all impossibility results in this section hold also for
a weakly single-peaked voting environment, in which u i is weakly increasing before p (u i ) and weakly de-
creasing afterwards.
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f (u ) = b 6= f (u ′), so ORP is violated. Therefore, by Corollary 1, the median voter rule
cannot be securely implemented. The same argument applies verbatim to other well-
known social choice rules, such as the one that always picks the smallest of all peaks.
More generally, we show that if a Pareto efficient social choice rule can be securely im-
plemented, then it must be dictatorial. This is true even if we allow the social choice rule
to be multi-valued. Before proving these negative results for secure implementation, we
prove two lemmas.

LEMMA 4. Let f be a securely implementable non-constant SCF in the single-peaked vot-
ing environment. There is an agent i and an alternative y ∈ Range( f ), y > a , such that
f (u ) = y whenever p (u i )≥ y ≥ p (u j ) for all j 6= i .

PROOF. Let u ′ be any profile such that p (u ′i ) = a for all i , and let u ′′ be any profile
such that p (u ′′i ) = b for all i . Strategy-proofness implies f (u ′) = a and f (u ′′) = b , and
b 6= a since f is not constant. If f (u ′′i , u ′−i ) = a for all i , then ORP implies that f (u ′′) =
a , but this contradicts f (u ′′) = b . Thus, there is an agent, say agent i = 1, such that
f (u ′′1 , u ′−1)> a . Define y ≡ f (u ′′1 , u ′−1).

Now let u 1 be any utility function such that p (u 1) ≥ y . Consider f (u 1, u ′−1). If
f (u 1, u ′−1) > y , then u ′′1 ( f (u 1, u ′−1)) > u ′′1 ( f (u

′′
1 , u ′−1)), and if f (u 1, u ′−1) < y , then

u 1( f (u ′′1 , u ′−1))> u 1( f (u 1, u ′−1)). Since in either case we have a contradiction of strategy-
proofness, we conclude that f (u 1, u ′−1) = y .

Now, for each j ≥ 2, let u j be any utility function such that p (u j ) ≤ y . Consider
f (u 1, u j , u ′−1,j ). If f (u 1, u j , u ′−1,j ) > y , then u j ( f (u 1, u ′j , u ′−1,j )) > u j ( f (u 1, u j , u ′−1,j )),
and if f (u 1, u j , u ′−1,j )< y , then u ′j ( f (u 1, u j , u ′−1,j ))> u ′j ( f (u 1, u ′j , u ′−1,j )). Since in either
case we have a contradiction of strategy-proofness, we conclude that f (u 1, u j , u ′−1,j ) = y
for all j ≥ 2.

Condition ORP implies that f (u ) = y . Thus, f (u ) = y whenever p (u 1) ≥ y ≥ p (u j )
for all j ≥ 2. �

LEMMA 5. Let f be a securely implementable non-constant SCF in the single-peaked vot-
ing environment. There is an agent i such that f (u ) = a whenever p (u i ) = a , and
f (u ) =b whenever p (u i ) =b .

PROOF. Without loss of generality, suppose agent i = 1 is the agent identified in
Lemma 4, and y the alternative identified in the same lemma. Let u ′ be any profile
such that p (u ′i ) = a for all i , and let ũ be any profile such that p (ũ i ) = y for all i . Then
f (u ′) = a by strategy-proofness, and Lemma 4 implies f (ũ ) = y . If f (u ′i , ũ−i ) = y for
all i , then ORP implies that f (u ′) = y , but this contradicts f (u ′) = a . Thus, there is an
agent i such that f (u ′i , ũ−i ) 6= y . Lemma 4 implies that in fact i = 1. Strategy-proofness
implies f (u ′1, ũ−1)< y . Let z ≡ f (u ′1, ũ−1)< y . We show that z = a .

It is impossible that z < a because a =min{x : x ∈ Range( f )}. Suppose z > a . Now
let û be a profile such that p (û i ) = z for all i . Strategy-proofness implies f (û ) = z . Since
z = f (u ′1, ũ−1), strategy-proofness implies f (u ′1, û i , ũ−1,i ) = z for all i > 1. Then ORP
implies f (u ′1, û−1) = z .
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Now consider f (u ′i , û−i ) for i > 1. Strategy-proofness requires f (u ′i , û−i )≤ z . Notice
that this inequality holds regardless of û 1, as long as p (û 1) = z . Moreover, f (u ′i , û−i ) is
in fact the same alternative for any û 1 such that p (û 1) = z . (Otherwise, there would exist
û 1 and ū 1 such that p (û 1) = p (ū 1) = z and f (û 1, u ′i , û−1,i ) < f (ū 1, u ′i , û−1,i ) ≤ z . But
then û 1( f (û 1, u ′i , û−1,i )) < û 1( f (ū 1, u ′i , û−1,i )), contradicting strategy-proofness.) Sup-
pose w ≡ f (u ′i , û−i ) < z < y . But now consider û 1 such that p (û 1) = z and û 1(y ) >
û 1(w ). Lemma 4 implies that if p (ũ 1) = y , then f (ũ 1, u ′i , û−1,i ) = y . But since û 1(y ) >
û 1(w ) and w = f (u ′i , û−i ), strategy-proofness is violated. This contradiction implies
f (u ′i , û−i ) = z for all i > 1. Since we have already established f (u ′1, û−1) = z , we can
apply ORP and conclude that f (u ′) = z . However, f (u ′) = a , a contradiction of our
hypothesis that z > a . So, we must have z = a .

The previous paragraph establishes that f (u ′1, ũ−1) = a whenever p (u ′1) = a and
p (ũ i ) = y for all i > 1. Now for all i > 1, let ũ i be such that p (ũ i ) = y and ũ i (x )> ũ i (a )
for all x ∈ Range( f ) such that x > a . Consider any agent i > 1 and any arbitrary u i .
If f (u ′1, u i , ũ−1,i ) 6= a , then ũ i ( f (u ′1, u i , ũ−1,i )) > ũ i ( f (u ′1, ũ i , ũ−1,i )), which contradicts
strategy-proofness. Hence, f (u ′1, u i , ũ−1,i ) = a for all i > 1. ORP implies f (u ′1, u−1) = a .
We conclude that f (u ′1, u−1) = a whenever p (u ′1) = a .

Exactly the same line of reasoning establishes the existence of an agent i such that
f (u ′i , u−i ) = b whenever p (u ′i ) = b . Obviously, this must be i = 1, or else we contradict
the already established fact that f (u ′1, u−1) = a whenever p (u ′1) = a . �

Now we are ready to prove our first negative result for single-peaked voting. It covers
the case of single-valued social choice rules.

THEOREM 8. Let f be a securely implementable SCF in the single-peaked voting envi-
ronment. There is a dictator on Range( f ), i.e., an agent i such that for all u and all
x ∈Range( f ), u i ( f (u ))≥ u i (x ).

PROOF. Since the result is trivial if f is constant, suppose f is securely implementable
but not constant. Lemma 5 identifies an agent i such that f (u ) = a whenever p (u i ) = a ,
and f (u ) = b whenever p (u i ) = b . Without loss of generality suppose this is true for
i = 1. Fix any x ∈ Range( f ). Let u ′ be such that p (u ′i ) = x for all i , and let u be an
arbitrary profile. The theorem is proved by showing that f (u ′1, u−1) = x must necessarily
hold.

Strategy-proofness implies f (u ′) = x . Fix any i > 1. We show that f (u i , u ′−i ) = x . If
p (u i ) = x , then f (u i , u ′−i ) = x by strategy-proofness. Suppose instead that p (u i ) > x .
Then strategy-proofness implies f (u i , u ′−i )≥ x . Notice that this inequality holds regard-
less of u ′1, as long as p (u ′1) = x . Moreover, f (u i , u ′−i ) is in fact the same alternative for
any u ′1 such that p (u ′1) = x . (Otherwise, there would exist u ′1 and u ′′1 such that p (u ′1) =
p (u ′′1 ) = x and f (u ′1, u i , u ′−1,i ) > f (u ′′1 , u i , u ′−1,i ) ≥ x . But then u ′1( f (u

′
1, u i , u ′−1,i )) <

u ′1( f (u
′′
1 , u i , u ′−1,i )), contradicting strategy-proofness.)

Now suppose z ≡ f (u i , u ′−i ) > x . But consider u ′1 such that p (u ′1) = x and u ′1(a ) >
u ′1(z ). If ũ 1 is such that p (ũ 1) = a , then f (ũ 1, u i , u ′−1,i ) = a by Lemma 5. But then
u ′1( f (ũ 1, u i , u ′−1,i ))> u ′1( f (u

′
1, u i , u ′−1,i )), contradicting strategy-proofness. This contra-

diction shows that we must have f (u i , u ′−i ) = x whenever p (u i )> x . A similar argument
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establishes that f (u i , u ′−i ) = x whenever p (u i ) < x . We conclude that, for all i > 1,
f (u i , u ′−i ) = x for all u i . ORP implies f (u ′1, u−1) = x . �

As in the previous section, there exist non-dictatorial social choice correspondences
that can be securely implemented. For example, a “veto rule,” similar to Example 4, with
some arbitrary alternative designated as status quo, can be securely implemented in the
single-peaked voting model. However, this SCC is not Pareto efficient. More generally,
in this environment an SCC is either single-valued, in which case it is dictatorial by The-
orem 8, or it is Pareto inefficient. This is our second negative result for single-peaked
voting.

THEOREM 9. Let f be a securely implementable SCC in the single-peaked voting environ-
ment. Then f is either single-valued or Pareto inefficient.

PROOF. Suppose f is a securely implementable SCC that is not single-valued. Then
there is u such that f (u ) contains at least two distinct alternatives. If f is securely im-
plemented by mechanism g , then there are two strategy profiles s , s ′ ∈DSg (u ) such that
g (s ) 6= g (s ′). Then, there necessarily exist alternatives a and b , and an agent i , such that
g (s ′1, . . . , s ′−i , s i , s i+1, . . . , sn ) = a but g (s ′1, . . . , s ′−i , s ′i , s i+1, . . . , sn ) = b 6= a . We may choose
labeling so that i = 1 and b > a .

Thus, we have s ∈DSg (u ), g (s ) = a , (s ′1, s−1) ∈DSg (u ), and g (s ′1, s−1) = b > a . Since
s1, s ′1 ∈DS

g
1 (u 1), it must be the case that a < p (u 1)<b and u 1(a ) = u 1(b ).

Let L = {j : p (u j )≤ a } be the set of agents whose peaks, in the profile u , are (weakly)
to the left of a . Suppose 2 ∈ L, and suppose u ∗2 is such that a < p (u ∗2) < b and u ∗2(a ) >
u ∗2(b ). Let s ∗2 ∈DS

g
2 (u
∗
2).

CLAIM. g (s1, s ∗2, s−1,2) = a .

PROOF. To prove the claim, we consider the various possibilities.
Case 1: a < g (s1, s ∗2, s−1,2) < b . Since s1, s ′1 ∈ DS

g
1 (u 1), we have u 1(g (s1, s ∗2, s−1,2)) =

u 1(g (s ′1, s ∗2, s−1,2)). Therefore, a < g (s ′1, s ∗2, s−1,2)< b . But g (s ′1, s2, s−1,2) = b and 2 ∈ L, so
u 2(g (s ′1, s ∗2, s−1,2)) > u 2(g (s ′1, s2, s−1,2)). However, this contradicts s2 ∈ DS

g
2 (u 2). There-

fore, case 1 is impossible.
Case 2: g (s1, s ∗2, s−1,2) < a = g (s ). This case is impossible because p (u ∗2) > a and

s ∗2 ∈DS
g
2 (u
∗
2).

Case 3: g (s1, s ∗2, s−1,2) ≥ b . But then, u ∗2(g (s )) > u ∗2(b ) ≥ u ∗2(g (s1, s ∗2, s−1,2)), which
contradicts s ∗2 ∈DS

g
2 (u
∗
2).

Since cases 1, 2, and 3 are all impossible, the claim is true.

The claim establishes g (s1, s ∗2, s−1,2) = a . Since s1, s ′1 ∈ DS
g
1 (u 1), it must be the case

that u 1(g (s ′1, s ∗2, s−1,2)) = u 1(a ). This means that g (s ′1, s ∗2, s−1,2) can be either a or b . Sup-
pose g (s ′1, s ∗2, s−1,2) = a . But g (s ′1, s−1) = b . Since 2 ∈ L we have u 2(a ) > u 2(b ), which
contradicts s2 ∈DS

g
2 (u 2). Therefore, we have g (s ′1, s ∗2, s−1,2) =b .

To summarize, we have shown that (s ∗2, s−2) ∈ DSg (u ∗2, u−2), g (s ∗2, s−2) = a ,
(s ′1, s ∗2, s−1,2) ∈ DSg (u ∗2, u−2), and g (s ′1, s ∗2, s−1,2) = b > a . This puts us back in our orig-
inal position, except that the L set has one fewer member after u 2 is replaced by u ∗2
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(because p (u ∗2)> a ). We can repeat the same argument for each j ∈ L: we let u ∗j be such

that a < p (u ∗2)< b and u ∗j (a )> u ∗j (b ), and we pick s ∗j ∈DS
g
j (u
∗
j ). After having exhausted

all the members of L, we obtain s ∗L = {s
∗
j }j∈L , where s ∗j ∈ DS

g
j (u
∗
j ) for each j ∈ L, and

g (s−L , s ∗L) = a . Since g securely implements f , a ∈ f (u−L , u ∗L). However, by definition
of L, when the utility profile is (u−L , u ∗L), all agents have peaks strictly to the right of a .
Therefore, a is not Pareto efficient. �

9. CORRELATED EQUILIBRIA

So far we have restricted attention to pure strategy equilibria following a tradition in
the implementation literature.10 However, showing that mixed strategies do not cause
any problems is an important step toward making implementation more secure. In this
section, we allow for agents to use mixed or more generally correlated strategies. We
show that our characterization results on secure implementation for pure strategy equi-
libria hold even for correlated strategy equilibria. Bergemann and Morris (2005a) obtain
a similar result for their definition of robust implementation. They use a purification
argument that relies on their general type-spaces. Our method of proof is different.

Consider a mechanism g : S → A. For notational simplicity, assume both U and S
are finite sets. A correlated strategy profile for the mechanism is denoted µ : U → ∆(S),
with the following interpretation: when the true preference profile is u , the probability
the agents play s ∈S is µ(s |u ). A correlated equilibrium is a correlated strategy profile µ
such that for each u ∈U and each i ∈ I ,

∑

s∈S
u i (g (s ))µ(s |u )≥

∑

s∈S
u i (g (h(s i ), s−i ))µ(s |u )

for any function h : Si →Si .
The mechanism g securely implements the SCF f in correlated equilibria if (i) for

each u ∈U , there exists a (pure) strategy profile s ∈ DSg (u ) such that g (s ) = f (u ) and
(ii) for any correlated equilibrium µ, g (s ) = f (u ) whenever µ(s |u ) > 0. We now extend
Theorem 1 to cover secure implementation in correlated equilibria.

THEOREM 10. An SCF is securely implementable in correlated equilibria if and only if it
satisfies strategy-proofness and the rectangular property.

PROOF. Since every pure-strategy Nash equilibrium is a correlated equilibrium, “only
if” follows from Theorem 1. So consider “if.” Suppose that f satisfies strategy-proofness
and the rectangular property, and consider the associated direct revelation mechanism.
The first requirement of secure implementability is satisfied since by strategy-proofness,
the truthful pure-strategy profile, σ(u ) = u , is a pure-strategy dominant strategy equi-
librium for any utility profile u ∈U .

Next we prove that the second requirement is also met. Consider any correlated
equilibrium µ of the direct mechanism, and suppose µ(ũ |u ) > 0. We want to show

10Exceptions considering mixed strategy equilibria include Jackson (1992), Jackson et al. (1994), Sjöström
(1994), and Maskin (1999).



226 Saijo, Sjöström, and Yamato Theoretical Economics 2 (2007)

f (ũ ) = f (u ). Let i ∈ I be given. Because µ is a correlated equilibrium, playing according
to µ is at least good as telling the truth at the state u :

∑

u ′∈U
u i ( f (u ′i , u ′−i ))µ(u

′|u )≥
∑

u ′∈U
u i ( f (u i , u ′−i ))µ(u

′|u ).

On the other hand, by strategy-proofness,

u i ( f (u i , u ′−i ))≥ u i ( f (u ′i , u ′−i ))

for all u ′ ∈U . Together these inequalities imply that for all u ′ ∈U with µ(u ′|u )> 0,

u i ( f (u i , u ′−i )) = u i ( f (u ′i , u ′−i )) ∀i ∈ I .

Sinceµ(ũ |u )> 0, u i ( f (u i , ũ−i )) = u i ( f (ũ i , ũ−i )) for all i ∈ I . By the rectangular property,
it follows that f (ũ ) = f (u ). �

A mixed-strategy equilibrium is a correlated equilibrium with independent random-
izations, i.e., µ(s |u ) =

∏

i µi (s i |u i ). It is clear that Theorem 10 continues to hold if “cor-
related equilibria” is replaced by “mixed-strategy equilibria.” In a similar way, we can
extend our results on secure and robust implementation (and robust and truthful im-
plementation) to cover correlated (or mixed) Bayesian–Nash equilibria.

10. CONCLUDING REMARKS

Some recent experiments suggest that strategy-proof mechanisms may not work well
in practice. Motivated by this finding, we have shown that strategy-proofness plus the
rectangular property is a necessary and sufficient condition for the following concepts
of implementation.

(a) Secure implementation in pure-strategy (or mixed, or correlated) Nash equilibria.

(b) Secure and robust implementation in pure-strategy (or mixed, or correlated)
Bayesian–Nash equilibria.

(c) Robust and truthful implementation in pure-strategy (or mixed, or correlated)
Bayesian–Nash equilibria.

For (b) and (c), necessity requires DC I ⊆D.
In standard quasi-linear environments with divisible public or private goods,

Groves–Clarke mechanisms satisfy both strategy-proofness and the rectangular prop-
erty, and so are “secure.” In other environments, the rectangular property turns out to
be surprisingly hard to satisfy. In some such environments, positive results might still
be obtained for partial implementation of social choice correspondences: each player
must have a dominant strategy, and every (Bayesian) Nash equilibrium outcome must
be socially optimal. However, it is not required that every socially optimal outcome be a
dominant strategy equilibrium outcome. This interesting problem is left for future work.
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The next step is to investigate if “secure” mechanisms work in practice. In Cason
et al. (2006), we report experiments on two strategy-proof mechanisms: the pivotal
mechanism with two agents and a binary public project that has a continuum of Nash
equilibria, and a Groves–Clarke mechanism with two agents and single-peaked pref-
erences that has a unique Nash equilibrium. We find that subjects played dominant
strategies significantly more frequently in the secure Groves mechanism than in the
non-secure pivotal mechanism. This makes us optimistic about the future of mecha-
nism design. The negative experimental evidence mentioned in the introduction was
based on mechanisms that are not secure (such as the second-price auction). In these
experiments, there may have been insufficient pressure on the players to adopt their
dominant strategies, and deviations may not have been punished by big payoff losses
(for a discussion, see Cason et al. 2006). Imposing stricter requirements than simply
strategy-proofness may turn out to be the key to successful applications of mechanism
design.
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