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Repeated games with incomplete information on one side

M P̨

Department of Economics, University of Chicago

This paper studies repeated games with incomplete information on one side and
equal discount factors for both players. The payoffs of the informed player I de-
pend on one of two possible states of the world, which is known to her. The pay-
offs of the uninformed player U do not depend on the state of the world (that is, U
knows his payoffs), but player I’s behavior makes knowledge of the state of interest
to player U. We define a finitely revealing equilibrium as a Bayesian perfect equi-
librium where player I reveals information in a bounded number of periods. We
define an ICR profile as a strategy profile in which (a) after each history the play-
ers have individually rational payoffs and (b) no type of player I wants to mimic
the behavior of the other type. We show that when the players are patient, all
Nash equilibrium payoffs in the repeated game can be approximated by payoffs
in finitely revealing equilibria, which themselves approximate the set of all ICR
payoffs. We provide a geometric characterization of the set of equilibrium pay-
offs, which can be used for computations.

K. Repeated games, incomplete information, discounting.
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1. I

Many strategic situations involve long-run interactions in which there is uncertainty
about payoffs. Aumann and Maschler (1995) (written 1966–68) introduce repeated
games with incomplete information to model such situations. There are two players.
The informed player (player I , she) knows which of two states of the world is true; the
uninformed player (U , he) starts the repeated interaction with prior beliefs. Player I ’s,
but not player U ’s, stage-game payoffs depend on the state of the world. It was under-
stood very early that this model leads to novel strategic issues that cannot be adequately
analyzed by focusing separately on either the uncertainty or the long-run aspect. These
issues include questions of learning, strategic revelation of information, and reputation
effects.
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As a first step toward a complete analysis of equilibrium behavior, one may ask about
equilibrium payoffs. This is the goal of the current paper. Suppose that the two players
discount the future with the same discount factorδ, and that the stage-game payoffs sat-
isfy a certain full-dimensionality condition. Then, if the players are sufficiently patient,
all feasible payoffs that satisfy appropriate individual rationality and incentive compat-
ibility conditions can be approximated by payoffs in sequential equilibria. The main
result provides a geometric characterization for the whole correspondence of payoff sets
for each initial prior.

The analysis is divided into three parts. The first part characterizes a lower bound
on the set of payoffs in a simple subclass of finitely revealing equilibria. The second
part constructs an upper bound on the set of payoffs in profiles that satisfy both incen-
tive compatibility and individual rationality. The third part shows that these bounds are
equal. Specifically, when players are patient, any payoff in a profile that satisfies the
incentive compatibility and individual rationality conditions can be approximated by
payoffs in Nash equilibria; furthermore, any payoff in a Nash equilibrium can be ap-
proximated by payoffs in finitely revealing equilibria. As a by-product of the proof, I ob-
tain a geometric characterization of the equilibrium correspondence that can be used
in applications.

The full-dimensionality condition implies that there is an open set of player I ’s pay-
offs such that for any degenerate prior p ∈ {0, 1}, any payoff of I is attained in some equi-
librium. The assumption allows for flexibility in choosing continuation payoffs, and its
role and strength are comparable to the standard requirement in the folk theorem lit-
erature of a feasible payoff set with a non-empty interior (for example, Fudenberg et al.
1994).

I now describe the characterization in more detail. The major difficulty with re-
peated games with incomplete information is their lack of stationarity. The stage payoffs
of player U depend on his beliefs, which change throughout the game. Some station-
arity can be restored by focusing on finitely revealing equilibria, i.e. equilibria in which
player I reveals information in finitely many periods. During periods when player I does
not reveal information, the prior belief of player U does not change, and payoffs can be
analyzed through the methods of dynamic programming from the literature on games
with imperfect monitoring (see Abreu et al. 1990 and Fudenberg et al. 1994). Section 3
describes the lower bound on payoffs in finitely revealing equilibria, assuming full di-
mensionality; this in turn forms a lower bound on the set of payoffs in all equilibria. The
main result shows that these two bounds are equal.

The reader might find such a result intuitive. In any equilibrium, the belief of player
U is a martingale, and thus converges. This means that, with high probability, substan-
tial amounts of information are revealed only finitely many times, and thus any equilib-
rium is “approximately” finitely revealing. However, this intuition does not easily turn
into a proof, and in fact fails utterly in the no-discounting case, in which examples of
equilibrium payoffs that cannot be approximated by finitely revealing profiles are well-
known (see Aumann and Hart 1986).
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An ICR profile is any (potentially mixed) strategy profile that satisfies two conditions:

IR The continuation payoffs of each player after each history are individually rational.

IC Each type of player I is indifferent between playing any pure strategy in the sup-
port of her own mixed strategy and weakly prefers any such strategy to any pure
strategy in the support of the other type’s mixed strategy.

The incentive compatibility condition IC ensures that neither type of player I wants
to mimic the other. Any equilibrium profile is necessarily an ICR profile, but not the
reverse; in an ICR profile, player U is not required to best-respond to player I , and there
might be profitable deviations for some type of player I not in the support of I ’s strategy.

Section 4 characterizes the upper bound on the set of ICR profiles. This characteriza-
tion is related to an idea in Fudenberg and Levine (1994), who show that the equilibrium
payoffs in a game with complete information (but imperfect monitoring) cannot lie be-
yond a certain hyperplane. Here one could try to use hyperplanes to bound payoffs in a
game that starts with some fixed prior p . However, in order to obtain a tight bound, one
needs to control payoffs across all games starting with any prior p ∈ [0, 1] at the same
time. For this purpose, I use biaffine functions, i.e., functions that are affine in the prior
and payoffs separately. Biaffine functions are introduced in Aumann and Hart (1986) to
study bimartingales, which are useful in games with no discounting.

The lower and upper bounds are stated as correspondences that assign payoff sets
to prior beliefs p ∈ [0, 1]. Characterizations in Sections 3 and 4 derive two classes of geo-
metric constraints on the infinitesimal changes in payoffs with respect to the infinitesi-
mal changes in prior beliefs. These constraints are different, but related. Using a certain
“differential technique,” I show that they can be satisfied by only one correspondence.

1.1 Related literature

The characterization of equilibrium payoffs is the goal of a large part of the repeated
games literature. This field originated with Aumann et al. (1966–68) and initially con-
centrated on the no-discounting criterion. In that model, Hart (1985) shows that all
feasible and individually rational payoffs that satisfy the incentive compatibility condi-
tion can be obtained in an equilibrium. Shalev (1994) and Koren (1992) present sharper
results in the case of known own payoffs, where player U ’s payoffs do not depend on the
state of the world.

So far, there have been no analogous results for games with discounting. The most
advanced analysis, found in Cripps and Thomas (2003), looks at the limit correspon-
dence of payoffs when the probability of one of the types is close to 1.1 It is shown
there that the set of payoffs of player U and the high probability type are close to the
folk theorem payoffs in a complete information game. Cripps and Thomas (1997) and
Chan (2000) ask the same question within the framework of reputation games. All these
results are proved by the construction of finitely revealing equilibria.

1Cripps and Thomas (2003) discuss also the limit of payoff sets when the two players become infinitely
patient, but player I becomes patient much more quickly than does player U . Their characterization is
closely related to Shalev and Koren’s results for the no-discounting case.
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This paper extends Hart’s result to discounting in the special case of two states of the
world and known own payoffs. The main result indicates a curious relationship between
incomplete information and long-run payoff criteria. In games with complete informa-
tion, the sets of equilibrium payoffs in the no-discounting and discounting cases are
equal, i.e., the folk theorem characterizations of Rubinstein (1979) and Fudenberg and
Maskin (1986) coincide. Under incomplete information, the difference between the two
cases is non-trivial: the set of equilibrium payoffs in the no-discounting case is included
(typically strictly) in the set of equilibrium payoffs in the discounted case. Section 2.11
explains this difference by comparing the meaning of individual rationality in each case.

Cripps et al. (2005) study reputation effects in games with strictly conflicting inter-
ests. They provide an upper bound on the payoffs of player U and the normal type of
player I . Although the authors do not state it in this way, their methods are very closely
related to the derivation of the upper bound on ICR payoffs in the current paper. (Note
that reputation games do not satisfy the full-dimensionality assumption; however, this
assumption is not necessary for the upper bound on ICR payoffs.) In fact, biaffine func-
tions lead to a simple argument for reputational effects, and they can be used to show
that these effects are continuous with respect to games that have only close to strictly
conflicting interests.

2. M   

This section introduces the model and definitions, then states the main result.

2.1 Notation

For any v ∈ RK , let ‖v ‖ be the Euclidean length of v . Let Φd ⊆ Rd be a set of all unitary
vectors in Rd : Φd = {φ ∈ Rd : ‖φ‖ = 1}. Let Φd

+ ⊆ Φd be the subset of vectors with
nonnegative coordinates: Φd

+ = {φ : φk ≥ 0}. I use the following set operators. For any
set A, let∆A denote the set of probability distributions on A. For any A ⊆R3,

• int A denotes the interior of A (the largest open set contained in A)

• cl A denotes the closure of A (the smallest closed set containing A)

• proj A denotes the projection of A on its last two coordinates:

proj A = {(v0, v1) : there is vU such that (vU , v0, v1)∈ A}

• con A denotes the convexification of A (the smallest convex set containing A).

2.2 Repeated game

Two players, uninformed U and informed I , repeatedly play a stage game. There are
finite sets of pure actions SU for player U and S I for player I . Player I knows the state of
the world k ∈ {0, 1}. I say that k is a type of player I and write−k = 1−k . Player I ’s pay-
offs in the stage game depend on the state of the world and are given by g k : SU ×S I →R.
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Player U ’s payoffs do not depend on the state of the world (known-payoff case) and are
given by gU : SU ×S I →R. Let M denote the uniform bound on payoffs:

M = max
i=U ,0,1

max
aU∈SU ,a I∈S I

| g i (aU , a I )|. (1)

Players have access to a public randomization device (this assumption is for conve-
nience only and can be dropped using standard arguments). Let Ht = (SU ×S I × [0, 1])t

be the space of t -period histories of actions and public signals. A (behavior) strategy of
player U is a mapping σU : ∪t Ht →∆SU . A (behavior) strategy of player I of type k is a
mappingσk :∪t Ht →∆SU . A strategy profile is a tripleσ= (σU ,σ0,σ1).

Future payoffs are discounted by the factor δ < 1, the same for each player. Let
Γ(p ,δ) denote the game with initial prior p and discount factorδ. Let vk (σU ,σk ) denote
the repeated game payoff of type k when player U uses the strategyσU and player I uses
σk . Let vU (σU ,σk ) denote the payoff of player U facing type k . The expected payoff of
player U in the game with initial prior p is equal to p vU (σU ,σ1) + (1− p )vU (σU ,σ0).
Denote the vector of payoffs as follows:

v p (σU ,σ0,σ1) =
�

p vU (σU ,σ1)+ (1−p )vU (σU ,σ0), v0(σU ,σ0), v1(σU ,σ1)
�

.

2.3 Nash equilibria

A strategy profile σ = (σU ,σ0,σ1) is a Nash equilibrium if σU is a best response for
player U and σk (k = 0, 1) is a best response for type k of player I . Denote the set of
Nash equilibrium payoffs in the game Γ(p ,δ) by

NEδ(p ) =
�

v p (σ) :σ is a Nash equilibrium
	

.

The correspondence NEδ : [0, 1]⇒ R3 can be treated as a subset of [0, 1]×R3. Define
NE⊆ [0, 1]×R3 by

NE=
⋂

δ<1

cl
⋃

δ≤δ′<1

NEδ′ .

The correspondence NE describes the largest reasonable definition of the limit set of
equilibrium payoffs as δ→ 1. Notice that NE is necessarily closed and can be treated as
an upper hemi-continuous correspondence NE : [0, 1]⇒R3.

2.4 Finitely revealing equilibria

An updating rule is a mapping p : ∪Ht → [0, 1], such that p (∅) = p . The rule p is con-
sistent with σ if, given any history h t , beliefs are updated via Bayes’ formula after any
action a t ∈ S I such that σk (h t )(a t ) > 0 for some k = 0, 1. The rule p is SR-consistent
(consistent with support restriction) if, additionally, U ’s beliefs never change after any
history along which player I has already fully revealed her type (if p (h t ) ∈ {0, 1} then
p (h t , hs ) = p (h t ) for any continuation history (h t , hs )).2 A profileσ is sequentially ratio-
nal given the updating rule p if, after any history h t , the continuation strategies are best
responses to the strategy of the opponent and beliefs p (h t ).

2Madrigal et al. (1987) discuss various support restrictions in equilibria of extensive form games.
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Fix strategies σ0, σ1 of player I and an updating rule p . For any history h t , pe-
riod t is a period of revelation if (a) there is uncertainty about the types of player I
(p (h t ) /∈ {0, 1}) and (b) the types of player I play different (possibly mixed) actions at
period t (σ0(h t ) 6=σ1(h t )). Say that strategy σI is K -revealing for some K if there is an
SR-consistent updating rule p such that for any t , along any history h t the number of
periods of revelation t ′ < t is not greater than K .

For example, if p0 ∈ {0, 1}, then the beliefs remain constant along any path (p t (h t ) =
p0), and any profile is 0-revealing. If there is initial uncertainty about the type of player
I (p0 /∈ {0, 1}), then in any 0-revealing profile σ, two types of player I play the same
strategy along any path. The payoff in a 0-revealing σ belongs to the convex hull of the
stage-game payoffs when player I ’s types play the same action:

v p (σ)∈V = con
�

(gU (aU , a I ), g 0(aU , a I ), g 1(aU , a I )) : aU ∈SU and a I ∈S I
	

. (2)

The set V ⊆R3 is called a set of feasible non-revealing payoffs. Note for further reference
that V is spanned by finitely many vertices.

If player I follows a K -revealing strategy, it does not mean that she will stop revealing
any information after K periods. In particular, a K -revealing strategy does not put any
bound on the occurrence of the last period of revelation. Also, a K -revealing strategy
does not require player I to reveal her information fully.

A profile σ = (σU ,σ0,σ1) is a K-revealing equilibrium if there is an updating rule
p that is SR-consistent with σ, σ is sequentially rational given p , and (σ0,σ1) is K -
revealing given p . Any K-revealing equilibrium satisfies the conditions for a sequential
equilibrium in Kreps and Wilson (1982).3 Denote the correspondence of payoffs in all
finitely revealing equilibria in game Γ(p ,δ) by

FEδ(p ) =
∞
⋃

K=0

�

v p (σ) :σ is a K -revealing equilibrium
	

.

Define the limit correspondence FE as

FE=
⋃

δ<1

int
⋂

δ≤δ′<1

FEδ′ .

The correspondence FE consists of all interior equilibrium payoffs in finitely revealing
equilibria for a sufficiently high discount factor δ. It is the smallest possible reasonable
definition of the limit set of finitely revealing equilibrium payoffs as δ→ 1. (Note that
the definitions of NE and FE interchange intersection and union to obtain the largest
and the smallest reasonable definitions.)

2.5 Individual rationality

Let (σU ,σ0,σ1) be a Nash equilibrium profile. The expected payoff of player U is not
smaller than U ’s minmax value; similarly, the weighted average of the expected payoffs

3Strictly speaking, it satisfies an appropriate extension of Kreps and Wilson’s (1982) conditions to games
with infinitely many stages. See also the discussion in Mailath and Samuelson (2006).
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of the types of player I is not smaller than the weighted minmax of player I :

p vU (σU ,σ1)+ (1−p )vU (σU ,σ0)≥mU = max
αU∈∆SU

min
αI∈∆S I

gU (αU ,αI )

and

φ0v0(σU ,σ0)+φ1v1(σU ,σ1)≥m I (φ) = max
αI∈∆S I

min
αU∈∆SU

∑

k=0,1

φk g k (αU ,αI ) for anyφ ∈Φ2
+.

For example, let φk∗ ∈ Φ2
+ be such that φk∗

k = 1 and φk∗
−k = 0. Then m I (φk∗) is the min-

max payoff of type k in the complete information repeated game between player U and
type k . This is standard (see Hart 1985 or Sorin 1999). Define the set of individually
rational payoffs as

IR=
�

(vU , v0, v1) : vU ≥mU and ∀φ ∈Φ2
+, φ · (v0, v1)≥m I (φ)

	

. (3)

Say that the profile σ satisfies ex ante individual rationality if v p (σ) ∈ IR. Let
v p (ht )(σ|h t ) denote the vector of expected continuation payoffs after the history h t

given the strategy profile σ and an SR-consistent updating rule p . The profile σ sat-
isfies the condition IR if

IR: v p (ht )(σ|h t )∈ IR after any positive probability history h t (where positive probability
is with respect to the prior beliefs of player U ).

The condition IR requires that individual rationality hold not only ex ante but also
after any positive probability history. Of course, any equilibrium profile satisfies IR.

2.6 Incentive compatibility

Say that the profileσ satisfies the condition IC if

IC: Given the strategy of player U , each type k of I is indifferent between the pure strate-
gies in the support of her own mixed strategy and weakly prefers any such pure
strategy to any pure strategy in the support of the mixed strategy of type −k .

If the profileσ satisfies IC, then

v0(σU ,σ0)≥ v0(σU ,σ1) and v1(σU ,σ1)≥ v1(σU ,σ0). (4)

Recall the set V of feasible non-revealing payoffs defined in (2). Consider the correspon-
dence

E F,I C (p ) =
�

(p v 1
U +(1−p )v 0

U , v 0
0 , v 1

1 ) : v 0, v 1 ∈V such that v 0
0 ≥ v 1

0 and v 1
1 ≥ v 0

1

	

. (5)

Because of (4), ifσ satisfies the IC condition, then v
p
U (σ) ∈ E F,I C (p ). On the other hand,

one can show that each vector v ∈ int E F,I C (p ) is the payoff in a profile that satisfies
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Type 1

Type 0

v 1 v

v 0

u 1

u

u 0

Non-revealing payoffs V

Type 1

Type 0

v

u

E F,I C (0)

F 1. The construction of E F,I C (0). The shaded areas correspond to payoffs that are individ-
ually rational for player U (vU ≥mU ).

the IC condition when δ is sufficiently high.4 For this reason, I refer to E F,I C as the
correspondence of feasible and incentive compatible payoffs.

Because the sets E F,I C (k ), k = 0, 1 are important later, it is helpful to develop some
intuition into how they are constructed. Figure 1 presents the construction of the set
E F,I C (0). The left-hand side shows an example of the set of non-revealing payoffs V . The
solid line outlines the projection of V onto the payoffs of the player I types, proj V ; the
shaded area is the set of payoffs of I that are associated with individually rational payoffs
of U , proj{v ∈ V : vU ≥mU }. Four payoff vectors v 0, v 1, u 0, u 1 ∈ V are indicated. Notice
that v 1

1 ≥ v 0
1 and v 0

0 ≥ v 0
1 , hence v = (v 0

U , v 0
0 , v 1

1 ) ∈ E F,I C (0). Similarly, u = (u 0
U , u 0

0 , u 1
1 ) ∈

E F,I C (0). The right-hand side of Figure 1 presents proj E F,I C (0) (solid line) and proj{v ∈
E F,I C (0) : vU ≥mU } (shaded area). In particular, because (v 0

0 , v 0
1 ) belongs to the shaded

area on the left-hand side, (v0, v1) belongs to the shaded area on the right-hand side. On
the other hand, because (u 0

0 , u 0
1 ) does not belong to the shaded area on the left-hand

side, (u 0, u 1) does not belong to the shaded area on the right-hand side.

2.7 ICR profiles

A strategy profile σ is an ICR profile if it satisfies the IR and IC conditions. Note that
the continuation profile of an ICR profile after any positive probability history is also an
ICR profile. Denote the set of payoffs in all ICR profiles in the game Γ(p ,δ) and the limit

4Because v ∈ int E F,I C (p ), there exist v 0, v 1 ∈ int V such that v = (p v 1
U + (1− p )v 0

U , v 0
0 , v 1

1 ), v 0
0 ≥ v 1

0 , and
v 1

1 ≥ v 0
1 . Fix any two actions a ∗0, a ∗1 ∈S I such that a ∗0 6= a ∗1. Fix an action a ∗U ∈SU . Define

ṽ k =
1

δ

�

v k − (1−δ)(gU (a ∗U , a ∗k ), g 0(a ∗U , a ∗k ), g 1(a ∗U , a ∗k ))
�

.

For sufficiently high δ, ṽ k ∈ V . Find strategy profiles σk such that v k (σk ) = ṽ k for k = 0, 1. (Such profiles
exist because ṽ k ∈V ; public randomization may need to be used.) Construct a strategy profileσ∗ such that
σ∗(∅) = (a ∗U , a ∗0, a ∗1), σ

∗(aU , a ∗0) =σ
0, andσ∗(aU , a I ) =σ1 for any aU and any a I 6= a ∗0. Thenσ∗ satisfies the

IC condition and v p (σ∗) = v .
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correspondence by

ICRδ(p ) =
�

v p (σ) :σ is an ICR profile
	

ICR=
⋂

δ<1

cl
⋃

δ≤δ′<1

ICRδ′ .

Any equilibrium profile is necessarily an ICR profile, but not the reverse. In an ICR pro-
file, player U is not required to best-respond to player I , and there might be profitable
deviations for each of the types of player I as long as they do not belong to the supports
of the mixed strategies of the two types.

2.8 Feasible, incentive compatible and ex ante individually rational payoffs

Let
Ep = IR∩E F,I C (p ). (6)

Here, Ep is the set of feasible, incentive compatible, and ex ante individually rational
payoffs. As a corollary to the previous sections, we obtain the following result.

C 1. For any δ< 1 and any p ∈ [0, 1], NEδ(p )⊆ ICRδ(p )⊆ Ep .

In general, the last inclusion is strict. This is because the IR condition requires in-
dividual rationality after any positive probability history, and that is, typically, more
restrictive than ex ante individual rationality. However, when the prior p = 0, 1 is de-
generate, Proposition 1 in Section 3 shows that int Ep ⊆ NE (p ). In particular, Ep has a
non-empty interior if and only if NE (p ) has a non-empty interior; in such a situation,
Ep =NE (k ). (An analogous result holds in the no-discounting case; see Hart 1985.) 5

Figure 2 presents the steps in the construction of the sets Ek , k = 0, 1. The left-hand
side presents the projections proj E F,I C (k ), k = 0, 1 on the sets of player I ’s payoffs (com-
pare with Figure 1). The shaded areas correspond to player U ’s individually rational
payoffs and the thick line bounds the payoffs that are individually rational for player I .
By definition, Ek is the set of these payoffs in E F,I C (k ) that are individually rational for
the two players. The projections of the sets Ek are depicted as the shaded areas in the
central part of the figure.

2.9 Full-dimensionality

A 1 (Full-dimensionality). proj int E0 ∩proj int E1 6=∅.

5One can also check that

�

(vU , vk ) : (vU , vk , v−k )∈ Ek
	

= con
�

(gU (aU , a I ), g k (aU , a I )) : aU ∈SU and a I ∈S I
	∩ �(vU , vk ) : vU ≥mU and vk ≥m I (φk∗)

	

.

Thus, the set of payoffs of player U and type k in the incomplete information game with degenerate prior
p = k is equal to the set of feasible and individually rational payoffs of players U and I in the complete
information game between player U and type k of player I . Not surprisingly, the above result implies the
complete information folk theorem.
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Type 1

Type 0

E F,I C (0)

Type 1

Type 0

projE (0)
Type 1

Type 0

E F,I C (1)

Type 1

Type 0

projE (1)

Type 1

Type 0

projE (0)∩projE (1)

F 2. The construction of the sets E0 and E1. The thick lines delineate the sets of player
I ’s individually rational payoffs. The shaded areas correspond to payoffs that are individually
rational for player U (vU ≥mU ).

See the right-hand side graph of Figure 2. Full-dimensionality says that there are two
interior payoff vectors v 0 ∈ int E0 and v 1 ∈ int E1 such that the payoffs of each type of
player I are equal, v 0

k = v 1
k for k = 0, 1. The assumption relates directly to the standard

requirement of full dimensionality from the folk theorem literature (for example, Fuden-
berg et al. 1994). The next result says that if one drops the “int” from the assumption,
then it is always satisfied. The role of the assumption is explained in Section 3.3.

L 1. proj E0 ∩proj E1 6=∅.

P. For each k , choose a payoff vector v k ∈V that maximizes the payoff of type k of
player I among all payoff vectors in V that yield individually rational payoffs to player U :

v k ∈ arg max
v∈V,vU≥mU

vk .

Let α∗U ∈ ∆SU be the minmax action of player U , i.e., the mixed action that guarantees
him at least mU . Then, for k = 0, 1,

v k
k ≥ max

αI∈∆S I

g k (α∗U ,αI ) and v k
k ≥ v−k

k . (7)

For k = 0, 1, define u k = (v k
U , v 0

0 , v 1
1 ). Because of (7), u k ∈ E F,I C (k ). I now check that

u k ∈ IR. For anyφ ∈Φ2
+,

m I (φ)≤ max
αI∈∆S I

∑

k=0,1

φk g k (α∗U ,αI )≤
∑

k=0,1

max
αk

I

φk g k (α∗U ,αI )≤
∑

k=0,1

φk v k
k .

Thus u k ∈ Ek and (v 0
0 , v 1

1 )∈ proj Ek for k = 0, 1. This yields the lemma. �
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2.10 Main result

So far, it is clear that FE⊆NE⊆ ICR. The main result of this paper shows that the inclu-
sions can be replaced by equalities.

T 1. If Assumption 1 holds, then

cl FE=NE= ICR.

In other words, all Nash equilibrium payoffs can be approximated by payoffs in
finitely revealing equilibria, and the limit set of all Nash equilibrium payoffs is equal
to the limit set of payoffs in ICR profiles.

Theorem 1 is proved in parts. Section 3 characterizes a lower bound FE ∗ ⊆ cl FE. Sec-
tion 4 characterizes an upper bound ICR ∗ ⊇ ICR. Section 5 shows that the two bounds
are equal. Assumption 1 is used in the first and the third parts, but is not necessary for
the discussion of the upper bound in Section 4.

2.11 Individual rationality and the no-discounting case

It is useful to compare the main result to the no-discounting case. Formally, define the
payoffs as Banach limits of the finite period averages of stage-game payoffs (see Hart
1985). Nash equilibrium profiles are defined in the standard way. Let NEnd(p ) ⊆ R3

denote the set of payoffs in Nash equilibria. (An interested reader is encouraged to look
at the excellent survey of all related methods in Sorin 1999.)

T 2 (Shalev 1994, Koren 1992). For any k = 0, 1,

NE nd(k ) = Ek .

For any p ∈ (0, 1),

NEnd(p ) =
�

((1−p )v 0
U +p v 1

U , v0, v1) : (v k
U , v0, v1)∈ Ek , k = 0, 1

	

.

In particular, for any p ∈ (0, 1)

proj NEnd(p ) = proj E0 ∩proj E1.

The theorem has a simple interpretation: any equilibrium payoff can be obtained
in a 1-revealing equilibrium in which player I immediately reveals all her information
and subsequently the players play the complete information game. It is shown below
(Proposition 4) that, if Assumption 1 holds, then

NEnd(p )⊆ cl FE⊆NE.

Thus, the payoffs in the no-discounting case are contained in the set of payoffs in the
discounted case. Typically, the inclusion is strict.

The discrepancy between the two cases can be attributed to the restrictiveness of
individual rationality.6 Consider the following condition:

6I am grateful to Martin W. Cripps for suggesting this connection.
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IR-in-every-state: The profileσ satisfies IR and after any positive probability history h t ,
vU (σU ,σk |h t )≥mU for any type k of player I .

This condition says that the continuation payoffs of player U are individually ratio-
nal after all positive probability histories, conditional on each state of the world. In the
no-discounting case, the conditions IR and IR-in-every-state are equivalent. The intu-
ition behind this fact is very simple. If v nd

U (σU ,σk ) <mU < v nd
U (σU ,σ−k ), then the two

types of player I play substantially different mixed actions in infinitely many periods.
Thus, player U learns the type of player I in finite time, with a probability arbitrarily
close to 1. Upon learning that player I has type k , player U should play a best response,
which guarantees him a payoff of at least mU . Since the payoffs received in finitely many
periods do not matter, it must be that v nd

U (σU ,σk )≥mU . This yields a contradiction.
In the discounted case, IR-in-every-state implies IR, but IR is typically weaker. To see

why IR does not imply IR-in-every-state, notice that, in the discounted case, the payoffs
in each period matter. It may happen that player U agrees on a low-payoff action today
only because he counts on a reward tomorrow if player I turns out to be of type k . If
today’s action yields a payoff lower than mU and tomorrow’s continuation payoff given
type−k is equal to mU , then today’s discounted payoff given type−k is lower than mU .

Because the condition IR is usually less restrictive than IR-in-every-state in the dis-
counted case, one should expect that a larger set of profiles can be sustained as equilib-
ria in the discounted case.

3. L —  

In this section, I characterize the sets of payoffs in finitely revealing equilibria. It is con-
venient to consider separately equilibria in which player I begins with a non-revealing
strategy (Section 3.1) and when she reveals some information (Section 3.2). In the last
part, I construct a lower bound FE ∗ on the correspondence of finitely revealing payoffs
FE.

3.1 Non-revealing strategies

Let v be the payoff in an equilibrium of the game Γ(p ,δ) and let v (aU , a I ) be the contin-
uation payoffs. Let α∗U and α∗k denote the first period mixed action of player U and type
k of player I . Denote also the expected action of player I by α∗I = pα∗1+(1−p )α∗0. Then,
by the definition of continuation payoffs,

vU = (1−δ)gU (α∗U ,α∗I )+δvU (α∗U ,α∗I ),
vk = (1−δ)g k (α∗U ,α∗k )+δvk (α∗U ,α∗k ) for k = 0, 1.

(8)

Because v is an equilibrium payoff, incentive compatibility must hold: for any aU , a 0,
and a 1,

vU ≥ (1−δ)gU (aU ,α∗I )+δvU (aU ,α∗I )
vk ≥ (1−δ)g j (α∗U , a k )+δvk (α∗U , a k ) for k = 0, 1.

(9)
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If player I does not reveal any information in the first period, then the posterior be-
liefs of player U do not change. Thus, v (aU , a I ) are equilibrium payoffs in the game with
the same initial prior. Such payoffs can be analyzed using the self-generation technique
of Abreu et al. (1990) that is further extended in Fudenberg et al. (1994), Fudenberg and
Levine (1994), and Kandori and Matsushima (1998). It is convenient to solve the fol-
lowing problem. Recall that Φ ∈ R3 is the space of unit vectors in R3, and fix φ ∈ Φ.
What is the highest possible value ofφ ·v if, after any realized action profile (aU , a I ), the
continuation payoffs lie below a hyperplaneφ that passes through v ,

φ ·v (aU , a I )≤φ ·v ? (10)

It cannot be larger than

η(φ, p ) =max
v
φ ·v such that there are mixed actions α∗U ∈∆SU ,α∗0,α∗1 ∈∆S I and

continuation payoffs v : SU ×S I →R3 so that

(1) equations (8) hold

(2) the incentive compatibility inequalities (9) hold

(3) payoff corrections are separated from the origin by

the hyperplaneφ: inequalities (10) hold

(4) player I plays non-revealing strategies: if p ∈ (0, 1), then α∗0 =α
∗
1.

(11)

There are two differences between the way that problem (11) is formulated and the
literature on games with imperfect monitoring. First, condition (4) requires that two
types of player I play the same strategies when the prior p is nondegenerate. This en-
sures that the actions of player I are non-revealing. Second, the continuation payoffs
depend only on the realized action of player I and not on the actions played by the two
types separately. However, the reader should not expect these to cause any major diffi-
culty. The first simply imposes a constraint on the set of available strategies; the second
is dealt with in a way analogous to games with imperfect monitoring that fail identifia-
bility (see, for example, Fudenberg and Levine 1994).

The next two results are proved in Section A of the Appendix.

P 1. For k = 0, 1,

int Ek ⊆ int
⋂

φ∈Φ
{v :φ ·v ≤η(φ, k )} ⊆ FE (k ).

This result constructs equilibria in which player U believes that he faces type k and
φ ·v ≤η(φ, k ) for each continuation payoff v and eachφ.

P 2. Fix p ∈ (0, 1) and set A ⊆ FE (p ) such that A = cl int A. Then

int[con(A ∪V )∩ IR]⊆ int
⋂

φ∈Φ

n

v :φ ·v ≤max
h

max
v ′∈A

φ ·v ′,η(φ, p )
io

⊆ FE (p ). (12)
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This result constructs equilibria in which player I plays non-revealing strategies un-
til the continuation payoffs fall into the set A. After that, players follow the equilibrium
strategies associated with payoffs in A. If A consists of finitely revealing payoffs, then
such profiles are also finitely revealing equilibria. In any such equilibrium, the payoff
vector is equal to the convex combination of some v ∈V and a ∈ A where the weight on
v depends on the expected time it takes to push the continuation payoff into A.

As mentioned above (Section 2.9), Proposition 1 has an exact equivalent in the no-
discounting literature. The situation is only slightly different with Proposition 2. When
p ∈ (0, 1), Hart (1985) shows that the set of equilibrium payoffs is convex and contained
in IR. That result looks like equation (12), but with V dropped. The difference is easy to
explain: in the discounted case, periods in which player I plays non-revealing actions
contribute to the total discounted payoffs.

3.2 Revelation of information

I now show how to construct payoffs in equilibria that begin with the revelation of in-
formation. Take any p0 < p1 and subsets of finitely revealing payoffs Ap j ⊆ FE (p j ) for
j = 0, 1. For any p ∈ (p0, p1), define the set

Ap =

¨�

p −p0

p1−p0
v 1

U +
p1−p

p1−p0
v 0

U , v0, v1

�

:
�

v
j

U , v0, v1
�∈ Ap j for j = 0, 1

«

.

If the sets Ap j are open and convex, then Ap is open and convex.

P 3. If the sets Ap j are open and convex, then Ap ⊆ FE (p ) for any p ∈ (p0, p1).

P. Assume that the set Ap is non-empty (otherwise there is nothing to prove). Take
v = (vU , v0, v1)∈ Ap . By the definition of Ap j , there are payoff vectors

v j = (v j
U , v0, v1)∈ Ap j for j = 0, 1

such that

(vU , v0, v1) =

�

p −p0

p1−p0
v 1

U +
p1−p

p1−p0
v 0

U , v0, v1

�

.

Because sets Ap0 and Ap1 are open and convex, and because of the definition of the
correspondence FE, there exist δ0 and ε > 0 such that FEδ(p ) contains a ball with center
at v j and radius 2ε: B (v j , 2ε) ⊆ FEδ(p ) for δ ≥ δ0. Assume that δ0 is high enough that
(1− δ0)M ≤ ε. (Recall that M is defined in (1) as the uniform bound on stage game
payoffs.) I show that for all δ≥δ0, B (v,ε)⊆ FEδ(p ).

Find a profile of mixed actions of player I , (α0,α1), so that each type randomizes
between all actions in such a way that the posterior after every action is equal to either
p0 or p1. Denote by S

j
I the set of actions after which the posterior is equal to p j . Then

S I = S0
I ∪ S1

I . Take any mixed action αU ∈ ∆SU of player U . Construct continuation
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payoffs v : SU ×S I →R3 as follows. For a I ∈S
j
I ,

vk (aU , a I ) =
1

δ

�

vk − (1−δ′)g k (αU , a I )
�

for any k = 0, 1

vU (aU , a I ) =
1

δ

�

v k
U − (1−δ′)gU (aU , pα1+(1−p )α0)

�

.

Then v (aU , a I ) ∈ B (v j , 2ε), so there exist finitely revealing continuation equilibria with
payoffs v (aU , a I ). Hence v is a payoff in a finitely revealing equilibrium. �

3.3 Finitely revealing correspondence

Let F be the collection of all correspondences F ⊆ [0, 1]×R3 such that F (p ) ∈ R3 is
closed for each p ∈ [0, 1] and F satisfies the following properties.

FE-1 For any α∈ [0, 1], p0 < p1, and (v k
U , v0, v1)∈ F (pk ) for k = 0, 1,

�

αv 1
U +(1−α)v 0

U , v0, v1
�∈ F (αp1+(1−α)p0).

FE-2 Ek ⊆ F (k ) for k = 0, 1.

FE-3 con(F (p )∪V )∩ IR⊆ F (p ) for p ∈ (0, 1).

All three properties correspond to the propositions above: FE-1 says that F contains
all payoffs in equilibria that start with revealing information and later continue with
payoffs in F ; FE-2 insures that F contains all equilibrium payoffs in states 0 and 1; and
FE-3 says that F contains all payoffs in profiles that start with a non-revealing action
and later continue with payoffs in F .

P 4. The correspondence FE ∗ =
⋂

F∈F
F (p ) is closed and FE ∗ ∈F , i.e., it satisfies

properties FE-1, FE-2, and FE-3. Moreover, if Assumption 1 holds, then

FE ∗(p )⊆ cl FE (p ) for any p ∈ [0, 1].

P. The fact that FE ∗ ∈F is immediate. In Section A.4 of the Appendix I show that
FE ∗ is closed. For any p ∈ [0, 1], define

FE ′(p ) = cl int FE (p ).

In the second part of Section A.4, I show that FE ′ ∈F . By the definition of FE ∗, FE ∗ ⊆ FE ′.
This completes the proof. �

The correspondence FE ∗ is a lower bound on the set of finitely revealing equilibrium
payoffs. This bound is characterized purely in geometric terms. Notice that the set FE ∗
is a function of the sets V and IR. Therefore any pair of stage games that have the same
minmax values and the same convex hull of non-revealing payoffs generate the same
sets FE ∗.
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This is a good place to explain the role of Assumption 1. The assumption implies
that there are two open and convex sets Ak ⊆ Ek , k = 0, 1, such that

proj A0 =
�

(v0, v1) : (v k
U , v0, v1)∈ Ak for k = 0, 1

	

= proj A1.

By Proposition 1, sets Ak are contained in the sets of equilibrium payoffs for p = k .
For each p ∈ (0, 1), let Ap be defined as in the statement of Proposition 3. Then, Ap is
non-empty, open, and, by the above result, contained in FE ∗(p ) ⊆ cl FE (p ). (There is
a natural interpretation of the payoffs in Ap as those obtained by a single full revela-
tion of I ’s type.) Hence, the assumption guarantees that for each p , the set FE ∗(p ) ⊆
FE (p ) ⊆ NE (p ) has a non-empty interior. This plays the same role as the standard full-
dimensionality assumption in the complete information case. Open sets give enough
room to construct continuation payoffs with appropriate incentives.

4. U —ICR 

This section develops tools to bound the set of ICR payoffs. By Corollary 1, ICR (k )⊆ Ek

for any k = 0, 1.

4.1 Separation with biaffine functions

The function l : [0, 1]×R2 → R is biaffine if for any α ∈ R, any p , p ′ ∈ [0, 1], and any
(v0, v1) , (v ′0, v ′1)∈R2,

l (αp +(1−α)p ′, v0, v1) =αl (p , v )+ (1−α)l (p ′, v0, v1)

l (p ,α(v0, v1)+ (1−α)(v ′0, v ′1)) =αl (p , v0, v1)+ (1−α)l (p , v ′0, v ′1).

P 5. Take any biaffine l : [0, 1]×R2 → R such that for any k = 0, 1 and any
(v k

U , v k
0 , v k

1 )∈ Ek ∪V ,
v k

U < l (k , v k
0 , v k

1 ). (13)

Then, for any ε > 0, there is δ0 < 1 such that for all δ ≥ δ0, for any p ∈ (0, 1) and v =
(vU , v0, v1)∈ ICRδ(p ),

vU ≤ l (p , v0, v1)+ ε.

Moreover, if the inequality in (13) is reversed, then the following statement continues to
hold with the inequality also reversed.

Take a biaffine function l that is above all ICR payoffs for degenerate priors, k ∈ {0, 1}
(by Corollary 1, these payoffs are contained in the set Ek ) and above the set of non-
revealing payoffs V (even those non-revealing payoffs that are not individually rational).
The proposition says that it is also above all ICR payoffs for any prior p ∈ [0, 1].7

7Biaffine functions (or more generally, biconvex functions) were introduced in Aumann and Hart (1986)
to analyze bimartingales, which Hart (1985) used in his characterization of the set of equilibrium payoffs
in the no-discounting case. In the no-discounting case, the thesis of Proposition 5 holds for any biaffine
funcion l such that for any k = 0, 1 and any (v k

U , v k
0 , v k

1 ) ∈ E , (13) is satisfied. In particular, it is not required
that l lie above (below) the set of non-revealing payoffs V . The proof in the no-discounting case is shorter
due to the bimartingale property.



Theoretical Economics 3 (2008) Repeated games with incomplete information 45

Suppose that the thesis of the proposition does not hold, and that v is a payoff in
an ICR profile such that vU − l (p , v0, v1)≥ ε > 0. In the proof, I propose to measure the
information revealed by player I ’s first period action by a specific function denoted here
as Info. In particular, if, in the first period, player I plays a non-revealing mixed action,
then Info= 0. The proof of the proposition shows that there exists a continuation payoff
vector v (aU , a I ) such that

vU (aU , a I )− l (p , v0(aU , a I ), v1v0(aU , a I ))≥ vU − l (p , v0, v1)+O(ε− Info). (14)

Here, O(ε− Info) is not smaller than a term proportional to ε− Info. To see some intu-
ition, suppose that Info= 0, that is, player I plays a non-revealing action and the vector
of first period payoffs belongs to V . Recall that v is a convex combination of the first
period payoffs and the payoffs in the continuation ICR profiles in a game with the same
prior p . Because the first-period payoffs belong to V and, by assumption, lie below the
biaffine function l , there must be at least one continuation payoff vector v (aU , a I ) that
lies further from the biaffine function l than the original payoff vector. In fact, I can
bound how much U ’s continuation payoff moves away from l by a term that is propor-
tional to the distance between the original payoff of U and l , which is of order ε (with a
coefficient of proportionality of order (1−δ).)

Because of (14), the distance between U ’s continuation payoff and the biaffine func-
tion l decreases only when player I reveals a substantial amount of information, and
increases otherwise. However, information cannot be revealed indefinitely—at a certain
moment, player U learns the type of player I , and there is nothing more to reveal. But
this means that the distance between U ’s payoffs and the biaffine function l must grow
to infinity. This leads to a contradiction. Hence, it cannot be that vU − l (p , v0, v1) ≥ ε.
The proof of the proposition develops this intuition formally.

P  P . Take any (p , v ) ∈ ICRδ such that p /∈ {0, 1}. Let σ =
(σU ,σ0,σ1) be a strategy profile supporting v as an ICR payoff in the game Γ(p ,δ). Let
αU =σU (;) be the first period mixed action of player U , and αk =σk (;) be the first pe-
riod mixed action of type k player I . Define the average mixed action used by player
I :

αI = pα1+(1−p )α0.

Let S∗I = suppαI = suppα0∪suppα1 be the set of actions that player I plays with positive
probability. After any action a I ∈ S∗I , player U updates his prior about the state of the
world using Bayes’ formula:

p (a I ) =
pα1(a I )
αI (a I )

.

For any positive probability pair of actions aU ∈ suppαU and a I ∈ S∗I , the contin-
uation payoffs v (aU , a I ) are payoffs in an ICR profile. Let w (aU , a I ) ∈ R2 denote the
continuation payoffs of the two types of I that would make them indifferent across all
actions in S∗I :

wk (aU , a I ) = vk (aU , a I )+
1

δ
[vk − (1−δ)g k (αU , a I )−δvk (αU , a I )]. (15)
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If type k of player I plays action a I with positive probability (i.e., a I ∈ suppαk ), then
vk (αU , a I ) = wk (αU , a I ); otherwise, vk (αU , a I ) ≤ wk (αU , a I ). This follows from the IC
condition.

Suppose that the hypothesis of the proposition is satisfied, i.e., for any k = 0, 1 and
any (v k

U , v k
0 , v k

1 ) ∈ Ek ∪V , v k
U < l (k , v k

0 , v k
1 ). (The case of the reverse inequality is com-

pletely analogous.) I relegate two technical steps to the appendix. Section B.1 shows
that when δ is sufficiently high, then, for any a I such that p (a I )∈ {0, 1},

vU (αU , a I )− l (p (a I ), w (αU , a I ))< 0. (16)

Section B.2 finds a constant C <∞ such that, if

vU − l (p , v0, v1)≥ ε
2

,

then
∑

a I∈S∗I

αI (a I )
h

vU (αU , a I )−
�

l (p (a I ), w (αU , a I ))− 1−δ
δ

C

ε
(p (a I ))2

�i

> vU −
�

l (p , v0, v1)− 1−δ
δ

C

ε
p 2
�

+
1−δ

4δ
ε.

(17)

The constant C depends on the payoffs in the stage game and on the biaffine function
l , but not on ε or δ.

Fix ε > 0 and chooseδ high enough that ((1−δ)/δ)(C/ε)≤ 1
4ε. Choose (p ∗, v ∗)∈ ICRδ

so that
h

v ∗U−
�

l (p ∗, v ∗0 , v ∗1 )−
1−δ
δ

C

ε
(p ∗)2

�i

≥ sup
(p ,v )∈ICRδ

h

vU−
�

l (p , v0, v1)−1−δ
δ

C

ε
p 2
�i

−1−δ
8δ

ε.

Suppose that v ∗U − l (p ∗, v ∗0 , v ∗1 )≥ 1
2ε. Because of (17), there is an action a I ∈S∗I such that

v ∗U (αU , a I )−
�

l (p (a I ), w ∗(αU , a I ))− 1−δ
δ

C

ε
(p (a I ))2

�

> v ∗U −
�

l (p ∗, v ∗0 , v ∗1 )−
1−δ
δ

C

ε
(p ∗)2

�

+
1−δ

4δ
ε.

(18)

Because
1−δ
δ

C

ε
(p (a I ))2− 1−δ

δ

C

ε
(p ∗)2 ≤ 1−δ

δ

C

ε
≤ ε

4
,

it must be that
v ∗U (αU , a I )− l (p (a I ), w ∗(αU , a I ))>

ε

2
− ε

4
> 0.

Hence, by (16), p (a I ) ∈ (0, 1) and w ∗(αU , a I ) = (v ∗0 (αU , a I ), v ∗1 (αU , a I )). Together with
(18), this means that there exists an action aU ∈SU such that v ∗U (aU , a I ) is a payoff in an
ICR profile and

v ∗U (aU , a I )−
�

l (p (a I ), v ∗0 (aU , a I ), v ∗1 (aU , a I ))− 1−δ
δ

C

ε
(p (a I ))2

�

> v ∗U −
�

l (p , v ∗0 , v ∗1 )−
1−δ
δ

C

ε
p 2
�

+
1−δ

4δ
ε.
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(Note that the above bound corresponds to (14) with Info(a I ) = 4(C/ε)(p (a I ))2 − p 2).)
This contradicts the choice of (p ∗, v ∗). The contradiction implies that v ∗U − l (p ∗, v ∗0 , v ∗1 )<
1
2ε, and for each ε > 0, each δ such that max(((1−δ)/δ)(C/ε), ((1−δ)/(4δ))ε)≤ 1

4ε, and
for each (p , v )∈ ICRδ,

vU − l (p , v0, v1)≤ v ∗U − l (p ∗, v ∗0 , v ∗1 )+
1−δ
δ

C

ε
(p ∗)2− 1−δ

δ

C

ε
p 2+

1−δ
4δ

ε

≤ ε
2
+
ε

3
+
ε

4
= ε. �

4.2 The ICR correspondence

Due to Proposition 5, one can use information about ICR payoffs in games with de-
generate priors p ∈ {0, 1} to derive a bound on the payoffs in games with p ∈ (0, 1).
The bound is not tight, and it can be tightened through a natural generalization. Sup-
pose that one has some information about ICR payoffs for some priors p0, p1, such that
p0 < p1. This information can be used to bound the sets of ICR payoffs ICR (p ) for all
priors p ∈ (p0, p1). Let I be a collection of correspondences I ⊆ [0, 1]×R3 such that

ICR-1 I (p )⊆ IR for p ∈ [0, 1].

ICR-2 I (k )⊆ Ek for k = 0, 1.

ICR-3 Fix any 0 ≤ p0 < p1 ≤ 1 and any biaffine function l : [0, 1]×R2→ R such that for
any (v j

U , v
j
0 , v

j
1 )∈ I (p j )∪V , j = 0, 1,

v
j

U < l (p j , v
j
0 , v

j
1 ) (or v

j
U > l (p j , v

j
0 , v

j
1 )).

Then, for any α∈ (0, 1) and any (vU , v0, v1)∈ I (αp1+(1−α)p0),

vU ≤ l (αp1+(1−α)p0, v0, v1) (or vU ≥ l (αp1+(1−α)p0, v0, v1)).

Property ICR-1 says that all payoffs are individually rational. Property ICR-2 says
that I (k ) is contained in the set of equilibrium payoffs for degenerate priors k ∈ {0, 1}.
Properties 1 and 2 correspond to Corollary 1. Property 3 is a separation property. It
extends the thesis of Proposition 5 to cover cases when p0 > 0 or p1 < 1.

P 6. The correspondence ICR ∗ = ∪I∈I I is closed and ICR ∗ ∈ I . Moreover,
ICR⊆ ICR ∗ and ICR ∗ satisfies properties FE-1 and FE-3.

Proposition 6 defines a geometric upper bound ICR ∗ for the set of ICR payoffs. In
addition to properties ICR-1, ICR-2, and ICR-3, the proposition shows that the corre-
spondence ICR ∗ satisfies properties FE-1 and FE-3 (defined in Section 3.3). The proof
of the proposition is based on the methods used in the proof Proposition 5 and can be
found in Section B.3.

Notice that conditions ICR-1, ICR-2, and ICR-3 that define the correspondence ICR ∗
are stated in purely geometrical terms and that they depend only on the sets V and IR.
Thus, two games with the same convex hull of non-revealing payoffs and the same sets
of individually rational payoffs generate the same correspondence ICR ∗. This remark
corresponds to an analogous observation about the correspondence FE ∗.
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5. P    

In the previous two sections, I construct correspondences FE ∗ and ICR ∗. By Proposi-
tion 6, the correspondence ICR ∗ contains the correspondence ICR. If Assumption 1
is satisfied, Proposition 4 says that the correspondence FE ∗ is contained in the corre-
spondence cl FE. Hence, Theorem 1 is a consequence of Propositions 4 and 6 and the
following result.

T 3. Suppose that Assumption 1 holds. Then for any p ∈ [0, 1],

FE ∗(p ) = ICR ∗(p ).

The characterizations in Sections 3 and 4 derive two collections of geometric prop-
erties that are satisfied by the correspondences FE ∗ and ICR ∗. These properties lead to
constraints on the infinitesimal changes in FE ∗(p ) and ICR ∗(p )with respect to infinites-
imal changes of p . These constraints are different, but related. The idea of the proof
of Theorem 3 is to make use of these constraints and show that they can be satisfied by
only one correspondence. This is done through a “differential technique.” The rest is di-
vided into three parts. First, I describe the correspondences FE ∗ and ICR ∗ through their
upper and lower surfaces. It is sufficient to show that the respective surfaces of the two
correspondences are equal. In the second part, I demonstrate that the upper surfaces of
the two correspondences are equal. The last part deals with lower surfaces.

5.1 Description of the correspondences FE* and ICR*

Define functions
u I , u F , l I , l F : [0, 1]×R2→R∪{−∞,∞}

in the following way. Let

u F (p )(v0, v1) = sup{vU : (vU , v0, v1)∈ con[FE ∗(p )∪V ]}
u I (p )(v0, v1) = sup{vU : (vU , v0, v1)∈ con[ICR ∗(p )∪V ]}

if the sets are not empty and−∞ otherwise. For example, u I (p )(v0, v1)>−∞ if and only
if (v0, v1) ∈ proj con[ICR ∗(p )∪V ]. The functions u I and u F describe the upper surfaces
of the correspondences ICR ∗(p ) and FE ∗(p ). Next, let

l F (p )(v0, v1) = inf{vU : (vU , v0, v1)∈ con[FE ∗(p )∪V ]}
l I (p )(v0, v1) = inf{vU : (vU , v0, v1)∈ con[ICR ∗(p )∪V ]}

if the sets are not empty and +∞ otherwise. The functions l I , l F describe the lower
surfaces of the two correspondences. By property FE-3 of the correspondences FE ∗ and
ICR ∗ (Proposition 6), for each p ∈ [0, 1],

FE ∗(p ) = {v ∈ IR : l F (p )(v0, v1)≤ vU ≤ u F (p )(v0, v1)}
ICR ∗(p ) = {v ∈ IR : l I (p )(v0, v1)≤ vU ≤ u I (p )(v0, v1)}.
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Because FE ∗ ⊆ ICR ∗, it must be that

u F (p )(v0, v1)≤ u I (p )(v0, v1) (19)

l I (p )(v0, v1)≤ l F (p )(v0, v1). (20)

To prove Theorem 3, it is sufficient to show that the inequalities (19) and (20) can be in
fact replaced by equalities.

The next lemma collects all the properties of the functions u I , u F , l I , l F that are
needed for the subsequent proofs.

L 2. The functions u I , u F , l I , l F have the following properties.

(i) u F (k )(v0, v1) = u I (k )(v0, v1) and l F (k )(v0, v1) = l I (k )(v0, v1), for k = 0, 1.

(ii) u I and u F are concave in (v0, v1) and l I and l F are convex in (v0, v1).

(iii) u I is convex in p ; u I is linear in p above the individually rational payoffs: if for
some p0 < p1 and (v0, v1)∈ proj IR,

u I (pk )(v0, v1)≥mU , for k = 0, 1,

then, for any p ∈ [p0, p1],

u I (p )(v0, v1) =
p −p0

p1−p0
u I (p1)(v0, v1)+

p1−p

p1−p0
u I (p0)(v0, v1).

l I is concave in p .

(iv) u F is concave in p above the individually rational payoffs: if for some p0 < p1,
(v0, v1)∈ proj IR,

u F (pk )(v0, v1)≥mU , for k = 0, 1,

then, for any p ∈ [p0, p1],

u F (p )(v0, v1)≥ p −p0

p1−p0
u F (p1)(v0, v1)+

p1−p

p1−p0
u F (p0)(v0, v1).

l F is convex in p above the individually rational payoffs: if for some p0 < p1,
(v0, v1)∈ proj IR,

l F (pk )(v0, v1)≥mU , for k = 0, 1,

then, for any p ∈ [p0, p1],

l F (p )(v0, v1)≤ p −p0

p1−p0
l F (p1)(v0, v1)+

p1−p

p1−p0
l F (p0)(v0, v1).

P. Part (i) is a consequence of FE-2 and ICR-2. Part (ii) comes from the definitions
of the functions u I , u F , l I , l F . Part (iii) is a consequence of ICE-3 and Proposition 6
(the fact that ICR ∗ satisfies property FE-1). Part (iv) is implied by property FE-3 of the
correspondence FE ∗. �
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Type 1

Type 0

proj ICR(0) = proj E (0)
proj ICR(p ) (light blue) and
proj ICR(p ′) (pink), p < p ′

Type 1

Type 0

Type 1

Type 0

proj ICR(1) = proj E (1)

F 3. The sets proj ICR ∗(p ) for p ∈ [0, 1].

Suppose that, instead of part (iv) of Lemma 2, its stronger version were true. More
precisely, suppose that the function u F is known to be concave in p for all p and (v0, v1).
Because of (19), u F (p ) ≤ u I (p ) for all p , and, because of part (i) of the lemma, u F (p ) =
u I (p ) for p = 0, 1. Because of part (iii), u I and l I are convex in all p , which implies
that u F (p ) = u I (p ) for all p , and the correspondences ICR ∗ and FE ∗ are equal. Unfortu-
nately, the stronger version of part (iv) of the lemma is not generally true; the fact that the
functions u F and l F are known to be, respectively, concave and convex only above the
individually rational payoffs is the main source of difficulty of the proof of Theorem 3.

Observe that proj ICR ∗(p ) consists of all payoffs (v0, v1) at which the upper surface of
ICR ∗ lies above the individually rational payoffs, u I (p )(v0, v1)≥mU . These sets play an
important role in the statement of the lemma. It is helpful to notice that they have some
monotonicity properties.

L 3. For any p ∈ (0, 1),

proj ICR ∗(0)∩proj ICR ∗(1)⊆ proj ICR ∗(p )⊆ proj ICR ∗(0)∪proj ICR ∗(1).

For any p < p ′,

proj ICR ∗(p )∩proj ICR ∗(1)⊆ proj ICR ∗(p ′)∩proj ICR ∗(1),
proj ICR ∗(p ′)∩proj ICR ∗(0)⊆ proj ICR ∗(p )∩proj ICR ∗(0).

By Corollary 1 and Proposition 1, proj ICR ∗(k ) = proj Ek for each k = 0, 1. The
left and right graphs on Figure 3 present the projections of the payoffs in ICR ∗(k ) for
k = 0, 1 on the set of player I ’s payoffs (compare with Figure 2). For general p ∈ [0, 1],
the sets proj ICR ∗(p ) have the following monotonicity properties. First, proj ICR ∗(p )
contains the intersection of, and is contained in the union of the sets proj ICR ∗(0)
and proj ICR ∗(1). Next, proj ICR ∗(p ) ∩ proj ICR ∗(1) is (setwise) increasing in p and
proj ICR ∗(p )∩proj ICR ∗(0) is (setwise) decreasing.

P  L . Notice that (v0, v1)∈ proj ICR ∗(p ) if and only if (v0, v1)∈ proj IR and
u I (p )(v0, v1)≥mU .
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The first inclusion is implied by property FE-1 of the correspondence ICR ∗ (Propo-
sition 6) and part (iii) of Lemma 2 (the linearity of u I in p over individually rational pay-
offs). Take any (v0, v1) /∈ proj ICR ∗(k ) for k = 0, 1. Then u I (k )(v0, v1) <mU for k = 0, 1.
By part (iii) of Lemma 2, u I (p )(v0, v1)<mU and (v0, v1) /∈ proj ICR ∗(p ). This implies the
second inclusion.

The monotonicity of the sets proj ICR ∗(p )∩proj ICR ∗(k ) in p follows from part (iii) of
Lemma 2. �

5.2 Upper surfaces

The goal of this section is to show that the upper surfaces of the two correspondences are
equal, or, in other words, that the inequality in (19) can be replaced by an equality. There
are two steps. First, I define difference functions θk (p ), k = 0, 1, that (indirectly) measure
the distance between the upper surfaces of the correspondences ICR ∗(p ) and FE ∗(p ). If
θk is identically equal to 0 for k = 0, 1, then the upper surfaces of the correspondences
ICR ∗(p ) and FE ∗(p ) are equal. Next, I show that θk is identically equal to 0.

5.2.1 Difference function For each k = 0, 1, define auxiliary correspondences

Ik (p ) = {v ∈ ICR ∗(p ) : u I (p )(v0, v1) =mU and (v0, v1)∈ proj ICR ∗(k )}
F ∗(p ) = {v ∈ con(FE ∗(p )∪V ) : vU ≥mU }.

The correspondence Ik (p ) consists of payoff vectors on the upper surface of ICR ∗(p ),
for which player U ’s payoff is equal to his minmax value and player I ’s payoffs belong
to proj ICR ∗(k ) for k = 0, 1. The correspondence F ∗(p ) consists of payoff vectors in the
convex hull of the sets FE ∗(p ) and V , and such that U ’s payoff is not lower than the
minmax. Note that FE ∗(p ) ⊆ F ∗(p ), and the inclusion is typically strict, because the
payoffs of player I must be individually rational for any v ∈ FE ∗(p ). For each k = 0, 1,
define functions

θk (p ) = sup
v I∈Ik (p )

inf
v F∈F ∗(p )





(v I
0 , v I

1 )− (v F
0 , v F

1 )






(u I (1)(v I
0 , v I

1 )−mU )
,

with the convention that 0/0 = 0 and a/0 =∞ for a > 0. The functions θk measure the
distance between the correspondences ICR ∗ and FE ∗. By part (i) of Lemma 2, for each
k = 0, 1,

θk (0) = θk (1) = 0.

The next lemma shows that if the functions θk are identically equal to 0, then the in-
equality in (19) can be replaced by an equality.

L 4. Suppose that θk (p ) = 0 for each p = [0, 1] and k = 0, 1. Then u F (p )(v0, v1) =
u I (p )(v0, v1) for each p and each (v0, v1)∈ proj ICR ∗(p ).

P. I show that for any (v0, v1)∈ proj ICR ∗(1)∩proj ICR ∗(p ), we have u F (p )(v0, v1) =
u I (p )(v0, v1). For any (v0, v1)∈ proj ICR ∗(1), define

p (v0, v1) = inf{p : u I (p )(v0, v1)≥mU }.
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Because u I (1)(v0, v1) ≥ mU , p (v0, v1) is well defined. I show that for any (v0, v1) ∈
proj ICR ∗(1),

u I (p (v0, v1))(v0, v1) = u F (p (v0, v1))(v0, v1)≥mU . (21)

If p (v0, v1) = 1, then (21) holds by part (i) of Lemma 2. If p (v0, v1) = 0, then the equality
in (21) holds by part (i) of Lemma 2 and the inequality comes from the convexity (hence,
upper semi-continuity) of u I in p . If 0 < p (v0, v1) < 1, then, by part (iii) of Lemma 2,
u I (p )(v0, v1) is convex in p ∈ (0, 1) and hence continuous in a neighborhood of p (v0, v1).
This implies that

(mU , v0, v1) = (u I (p (v0, v1))(v0, v1), v0, v1)∈ I1(p ).

Because θ1(p ) = 0,

u F (p (v0, v1), (v0, v1))≥mU ,

which, together with (19), implies (21).
Observe that

u I (1)(v0, v1) = u F (1)(v0, v1)≥mU for any (v0, v1)∈ proj ICR ∗(1).

Because of (21) and parts (iii) and (iv) of Lemma 2, the inequalities in (19) can be re-
placed by equalities for any p ∈ [p (v0, v1), 1].

An analogous argument shows that for any (v0, v1) ∈ proj ICR ∗(0) ∩ proj ICR ∗(p ),
u F (p )(v0, v1) = u I (p )(v0, v1). By the first part of Lemma 3, proj ICR ∗(p ) ⊆ proj ICR ∗(0)∪
proj ICR ∗(1). This concludes the proof of the lemma. �

Notice that for any (v0, v1) ∈ R2, u I (p )(v0, v1) is either (a) equal to a convex combi-
nation of the form

u I (p )(v0, v1) =αv V
U +(1−α)u I (p )(v I

0 , v I
1 )

for some α ∈ [0, 1], v V ∈ V , and (v I
0 , v I

1 ) ∈ proj ICR ∗(p ) such that α(v V
0 , v V

1 ) +
(1−α)(v I

0 , v I
1 ) = (v0, v1), or (b) equal to −∞ if such a tuple of elements cannot be found.

Because

u F (p )(v0, v1)≥αv V
U +(1−α)u F (p )(v I

0 , v I
1 ),

the previous lemma leads to the following result.

C 2. Suppose that θk (p ) = 0 for each p = [0, 1] and k = 0, 1. Then we have
u F (p )(v0, v1) = u I (p )(v0, v1) for each p and each (v0, v1).

5.2.2 “Differential” step Here I show that θk (p ) = 0 for p ∈ [0, 1] and k = 0, 1. Because
the arguments are exactly analogous, I assume without loss of generality that k = 1. To
save on notation, I also drop the subscript and write θ instead of θ1.

The next result is a crucial step in the proof.
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L 5. Suppose that θ (p u ) = 0 for some p u < 1. There are constants D and d ∗,θ ∗ > 0,
such that if θ (p )≤ θ ∗, then

θ (p ′)≤ θ (p )+D
�

(p ′−p )θ (p )+ (p ′−p )2
�

(22)

for any p , p ′ ∈ [p u , 1
2 (1+p u )] such that p ≤ p ′ and p ′−p < d ∗.

Hence, θ (p ′) is bounded by θ (p ) plus a term that is of second order in θ (p ) and
p ′−p . The lemma is proved in Section C (in the Appendix).

Suppose that θ (p u ) = 0 for some p u < 1. I show that θ (p ) = 0 for any p ∈
[p u , 1

2 (1+p u )]. Take any

m ≥max

�

1

d ∗
,

Ç

D

θ ∗
, D,

1

θ ∗
e 4D

�

and consider any increasing sequence of numbers p u = p0 ≤ p1 ≤ · · · ≤ p2m ≤ 1
2 (1+p u )

such that
�

�p i+1−p i

�

� ≤ 1
m ≤ d ∗ for all i . Applying Lemma 5 once shows that θ (p1) ≤

D( 1
m )

2 ≤ θ ∗. Inductive application of Lemma 5 leads to

θ (p i )≤ θ (p i−1)+D((p i −p i−1)θ (p i−1)+ (p i −p i−1)2)

≤max(θ (p i−1), p i −p i−1)(1+2D(p i −p i−1))

≤max

�

θ (p i−1),
1

m

��

1+2D
1

m

�

≤max

�

θ (p1),
1

m

��

1+2D
1

m

�i−1

≤ 1

m
max

�

D

m
, 1

��

1+2D
1

m

�2m

≤ 1

m
e 4D .

Lemma 5 applies at each step because the choice of m implies that θ (p i ) ≤ θ ∗. Since
any sequence of p i ’s could have been chosen, it follows that for any p ∈ [p u , 1

2 (1+p u )],
θ (p ) is not larger than 1/m times a constant. But, in turn, any large m could have been
chosen. This shows that θ (p ) = 0 for any p ∈ [p u , 1

2 (1+p u )].
I use the lemma to prove that θ (p ) = 0 for all p . Recall that θ (p ) = 0 for p = 0, 1.

Construct a sequence of prior beliefs: p u
0 = 0 and

p u
n+1 =

1

2
(1+p u

n ).

Then limn p u
n = 1, and the above argument shows that θ (p ) = 0 for any p ∈ [0, 1].

Together with Corollary 2, this means that the upper surfaces of ICR ∗ and FE ∗ are
equal.
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5.3 Lower surfaces

The goal of this section is to show that the lower surfaces of the two correspondences
are equal (that is, the inequality in (20) can be replaced by an equality).

For any p ∈ [0, 1] and any (v0, v1), define

θ (p , v0, v1) = l F (p )(v0, v1)− l I (p )(v0, v1),

where, as a convention, I take∞−∞= 0. The function θ measures the distance between
the lower surfaces of the two correspondences. Because of (20), θ (p , v0, v1) ≥ 0. Notice
that l F (p )(v0, v1)<∞whenever u F (p )(v0, v1)>−∞. This is equivalent to u I (p )(v0, v1)>
−∞, which, in turn, implies that l I (p )(v0, v1)<∞. Hence, θ (p , v0, v1) is always finite and
bounded by 2M .

The proofs of the two lemmas below can be found in Section D (in the Appendix).

L 6. Suppose that θ (p , v0, v1) > 0 for some p , v0, v1. Then there is p ′ ∈ [0, 1] such
that

θ (p ′, v0, v1)≥ θ (p , v0, v1)

l I (p ′)(v0, v1)≤mU − 1
2θ (p

′, v0, v1).

L 7. Suppose that

l I (p )(v0, v1)≤mU − 1
2θ (p , v0, v1)

for some p , v0, v1. Then, there exist v ′0 and v ′1 such that

θ (p , v ′0, v ′1)≥
4M

4M −θ (p , v0, v1)
θ (p , v0, v1).

Denote
θ ∗ = sup

p∈[0,1],(v0,v1)
θ (p , v0, v1)

and suppose that θ ∗ > 0. I show that this leads to a contradiction. Choose p ∈ [0, 1] and
(v0, v1) such that θ (p , v0, v1) ≥ 1

2θ
∗. Notice that p ∈ (0, 1). Alternating between the two

lemmas, I construct a sequence (p n , v n
0 , v n

1 ) such that

θ (p n , v n
0 , v n

1 )≥
1

2

� 4M

4M −θ ∗
�n
θ ∗→∞.

This yields the contradiction.

6. C  

An interesting application of the methods developed in this paper is present in unpub-
lished work by Gregory Pavlov, who studies repeated bargaining between a firm and a
union. The union is uncertain about the firm’s commitment to aggressive bargaining.
It turns out that the best equilibrium for the union involves a screening phase during
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which the union resorts to strikes and the firm reveals information about its type finitely
many times. When one interprets the discount factor converging to 1 as a division of
periods into smaller and smaller units, the length of the screening phase converges to a
positive constant. Pavlov uses differential equations to describe the set of equilibrium
payoffs.

The model of this paper has obvious limitations. For example, it is stated for only
two states of the world. When there are more than two states of the world, it is still pos-
sible to define finitely revealing equilibria and construct the correspondence FE ∗ as in
Proposition 4. One can also show an analog of Proposition 5. However, it is unclear how
to proceed further and prove that the two bounds are equal. In yet another extension,
one can relax the known-own-payoffs assumption.

More importantly, this paper is concerned only with one-sided incomplete informa-
tion. I believe that it can serve as a step toward the characterization of payoffs in games
with multisided incomplete information. So far, that problem remains open.8

A

A. P  S 

A.1 Linear problem (11)

In order to solve the linear problem (11), it is convenient to introduce payoff correction
functions9 x : SU ×S I →R3. Let

x (aU , a I ) =δ(g (aU , a I )−v (aU , a I )).

Then (8) and (9) take the form

vU ≥ gU (aU ,α∗I )+xU (aU ,α∗I )
vk ≥ g j (α∗U , a k )+xk (α∗U , a k ) for k = 0, 1,

with equalities when aU ∈ suppα∗U and a k ∈ suppα∗k . Similarly, (10) corresponds to
φ ·x (aU , a I )≤ 0. The payoff corrections are used to characterize the function η(.).

L 8. (i) If either (a) φk > 0 for some k =U , 0, 1 or (b) φU < 0 and φk < 0 for some
k = 0, 1, then η(p ,φ)≥maxv ′∈V φ ·v ′. If p ∈ (0, 1), then η(p ,φ) =maxv ′∈V φ ·v ′.

(ii) If φU =−1 and φk = 0, for k = 0, 1, then η(p ,φ) =−mU .

(iii) If φU = 0 and for k = 0, 1,φk ≤ 0, then η(p ,φ) =−m I (−φ0,−φ1).

8In a recent paper, Athey and Bagwell (forthcoming) study a repeated Bertrand duopoly where each
firm has private information about its own costs. A specific structure of the game allows the authors to use
mechanism design tools to describe the optimal equilibria. It would be very interesting to check whether
the methods of this paper extend to their model.

9This representation is introduced in Kandori and Matsushima (1998). They refer to x (., .) as a “sidepay-
ment contract.”
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(iv) If either (a) φ0,φ1 > 0 or (b) φU 6= 0 and for some k = 0, 1, φ−k > 0, then η(k ,φ) =
∞.

P. The proof consists of solving the linear problem (11) for each case separately.
The first three parts are relatively standard and therefore omitted.

Case (iv)(a). Suppose that k = 0 and that φ0,φ1 > 0. Take any pure actions a ∗U ∈ SU ,
a ∗0, a ∗1 ∈S I , such that a ∗0 6= a ∗1. I enforce the profile (a ∗U , a ∗0, a ∗1)with a payoff correction

x (a ∗U , a ∗0) = (0, 0, 0) and x1(a ∗U , a ∗1) =X1 for any large X1.

• Choose the payoff correction x1(aU , a I ), (aU , a I ) 6= (a ∗U , a ∗0) so that type 1’s incen-
tive compatibility holds.

• Choose x0(a ∗U , a ∗1) small enough so that type 0’s incentive compatibility holds and
condition (10) is satisfied at the profile (a ∗U , a ∗1) (this can be done becauseφ0 > 0).

• Choose x0(a ∗U , a 0), a 0 6= a ∗0, a ∗1 small enough so that type 0’s incentive compatibil-
ity holds.

• Choose x1(a ∗U , a 1), a 1 6= a ∗1, so that type 1’s incentive compatibility holds and con-
dition (10) is satisfied at the profile (a ∗U , a 1) (this can be done becauseφ1 > 0).

• Choose all other payoff corrections to make (10) satisfied for any other pair of
actions.

Case (iv)(b). Suppose that k = 0, φU 6= 0, and φ1 > 0. Take any pure actions a ∗U ∈SU ,
a ∗0, a ∗1 ∈S I , such that a ∗0 6= a ∗1. I enforce the profile (a ∗U , a ∗0, a ∗1)with a payoff correction

x (a ∗U , a ∗0) = (0, 0, 0) and x1(a ∗U , a ∗1) =X1 for any large X1.

• Choose xU (aU , a ∗0), aU 6= a ∗U , so that player U ’s incentive compatibility holds.

• Choose x0(a ∗U , a 0), a 0 6= a ∗0, so that 0’s incentive compatibility holds.

• Choose xU (a ∗U , a ∗1), to make condition (10) satisfied at the profile (a ∗U , a ∗1) (this can
be done becauseφU 6= 0).

• Choose x1(a ∗U , a 1), a 1 6= a ∗1 small enough so that 1’s incentive compatibility holds
and condition (10) is satisfied at the profile (a ∗U , a 1) (this can be done because
φ1 > 0).

• Choose all other payoff corrections for players U and type 0.

• Choose x1(aU , a I ), aU 6= a ∗U , to satisfy condition (10) at profiles (aU , a I ) (this can
be done becauseφ1 6= 0). �
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A.2 Proof of Proposition 1

L 9. For any k = 0, 1,

Ek ⊆
⋂

φ

{v :φ ·v ≤η(k ,φ)}.

P. Suppose that k = 0. Observe that

IR=
⋂

φ satisfies cases (ii) and (iii)
from Lemma 8

{v :φ ·v ≤η(k ,φ)}.

I show that

E F,I C (0)⊆
⋂

φ satisfies case (i) but not cases (ii)–(iv)
from Lemma 8

{v :φ ·v ≤η(0,φ)}.

Indeed, take any (v 0
U , v 0

0 , v 1
1 ) ∈ E F,I C (0) where v 0, v 1 ∈ V and v 0

1 ≤ v 1
1 , v 1

0 ≤ v 0
0 . Suppose

thatφ satisfies case (1) andφ1 ≤ 0; then

φ · (v 0
U , v 0

0 , v 1
1 )≤φ · (v 0

U , v 0
0 , v 0

1 )≤max
v ′∈V

φ ·v ′ ≤η(0,φ).

Suppose that φ satisfies case (i) but not cases (ii)–(iv) and that φ1 > 0. Then it must be
thatφU = 0 andφ0 ≤ 0. Hence,

φ · (v 0
U , v 0

0 , v 1
1 )≤φ · (v 1

U , v 1
0 , v 1

1 )≤max
v ′∈V

φ ·v ′ ≤η(0,φ). �

Take a closed convex set with a smooth boundary

E ∗ ⊆ int Ek ⊆
⋂

φ∈Φ
{v :φ ·v ≤η(k ,φ)}.

(Note that the second inclusion holds by Lemma 9.) I show that there exists δ0 such that
E ∗ is a set of equilibrium payoffs for any δ≥δ0. Take any boundary vector of payoffs v ∈
bd E ∗ and a vectorφ normal to E ∗. For a high enough δv , there is a mixed action profile
(αU ,α0,α1)∈∆SU ×∆S I ×∆S I and a continuation payoff function v : SU ×S I → int E ∗ so
that the payoffs v are supported by the profile and the continuation payoffs (equations
(8)) and incentive compatibility hold (inequalities (9)). By the argument in Fudenberg
et al. (1994), for each v ∈ E ∗ there is an open set U 3 v such that each δ ≥ δv , each
v ′ ∈ E ∗ ∩ v can be supported with an action profile and continuation payoffs inside E ∗
so that incentive compatibility holds. In the terminology of Fudenberg et al. (1994), E ∗ is
locally self-decomposable. Lemma 4.2 of Fudenberg et al. (1994) shows that E ∗ ⊆ FE (k ).
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A.3 Proof of Proposition 2

Assume without the loss of generality that A is convex (if not, then it is easy to use public
randomization to construct non-revealing equilibria with payoffs in con A). By Parts (i)–
(iii) of Lemma 8, if p ∈ (0, 1) then

η(p ,φ) =







−mU ifφU =−1,φ0 =φ1 = 0

−m I (−φ0,−φ1) ifφ0,φ1 ≤ 0,φU = 0

maxv ′∈V φ ·v ′ otherwise.

Together with the definition of individually rational payoffs IR in (3), this implies that
the first inclusion in (12) holds as a equality:

int[con(A ∪V )∩ IR] = int
⋂

φ∈Φ

n

v :φ ·v ≤max
h

max
v ′∈A

φ ·v ′,η(φ, p )
io

.

In order to show the second inclusion, an intermediate result is needed.

L 10. Suppose that A ′ ⊆ A is closed and convex with a nonempty interior and a
smooth boundary. Then for each v ∗ ∈ int[con(A ′ ∪ V ) ∩ IR] there is ε > 0 and a closed,
convex set W ⊆ IR with a nonempty interior and a smooth boundary such that v ∗ ∈W ,
and for each v ∈ bd W and φ ∈ Φ such that φ is normal to W at v , either v ∈ A ′ or
φ ·v ≤η(φ, p )− ε.

P. Instead of a complete argument, I present only the construction of the set W .
For each ε,γ> 0, define

Wε =
⋂

φ∈Φ

n

v :φ ·v ≤max
h

max
v ′∈A ′

φ ·v ′,η(φ, p )− ε
io

Wε,γ =
n

v ∈Wε : inf
v ′ /∈Wε





v −v ′




≥ γ
o

W ε,γ =
n

v : inf
v ′∈Wε,γ





v −v ′




≤ γ
o

.

The set Wε,γ consists of the elements of Wε that are at least γ-far from the complement
of Wε ; the set W ε,γ consists of the vectors that are at most γ-far from Wε,γ. Observe that
W ε,γ ⊆ Wε , but the inclusion might be strict. It is easy to check that, for sufficiently
small ε and γ, W ε,γ is closed and convex, and has a nonempty interior and a smooth
boundary. It is easy to see that ∪ε,�>0Wε,γ = int[con(A ′ ∪ V ) ∩ IR]. Because A ′ has a
smooth boundary, when γ is sufficiently small, A ′ ⊆W ε,γ. One can check that, for such
ε and γ and any v ∈ bd W ε,γ \A ′, ifφ is normal to W ε,γ at v , thenφ ·v ≤η(φ, p )− ε. �

Take any v ∗ ∈ int[con(A ∪V )∩ IR]. There exist δ0 < 1 and closed, convex sets A ′ and
A ′′ such that A ′ ⊆ int A ′′ ⊆ A ′′ ⊆ int A, v ∗ ∈ int[con(A ′ ∪ V ) ∩ IR], and A ′′ ⊆ FEδ(p ) for
δ ≥ δ0. By the previous lemma, there exists ε > 0 and a closed, convex set W with a
nonempty interior and a smooth boundary such that v ∗ ∈W and for each v ∈ bd W and
φ ∈Φ such thatφ is normal to W at v , either v ∈ A ′ orφ ·v ≤η(φ, p )− ε.
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I show that there exists δ∗ ≥δ0 such that W ⊆ FEδ(p ) for all δ≥δ∗. More precisely, I
show that for each v ∈W , either (a) v ∈ int A ′′, hence v is a payoff in a finitely revealing
equilibrium, or (b) v is supported by a profile of mixed actions α∗U , α∗k , k = 0, 1, and con-
tinuation payoffs v (aU , a I ) ∈ W (equations (8)) such that incentive compatibility (in-
equalities (9)) holds. Using the argument for Lemma 4.2 of Fudenberg et al. (1994), one
can construct a strategy that makes v ∈W a payoff in a finitely revealing equilibrium.

I show that (b) holds for any v ∈W \ int A ′′. By the definition of the function η(φ, p ),
there exists δv < 1 such that for each δ≥δv there is a profile α∗U ,α∗k , k = 0, 1 and contin-
uation payoffs v (aU , a I )∈ int W so that equations (8) and inequalities (9) hold. Because
the continuation payoffs v (aU , a I ) belong to the interior of W , for each v , one can find a
neighborhood Uv 3 v such that δv ≥δv ′ for each v ′ ∈Uv . Because W \int A ′′ is compact,
one can find δ∗ ≥δ0 such that for each δ≥δ∗ and each v ∈W \ int A ′′, there are a mixed
profile and continuation payoffs so that (8) and (9) hold.

A.4 Proof of Proposition 4

This section contains the steps missing from the proof of Proposition 4.

A.4.1 FE* is closed Suppose not and there is (p n , v n ) → (p ∗, v ∗) with (p n , v n ) ∈ FE ∗
and v ∗ /∈ FE ∗(p ∗). Without loss of generality I assume that p n > p ∗ for all n (taking a
subsequence might be necessary). Since FE ∗(p ∗) is closed and bounded (notice that
[−M , M ]3× [0, 1] ∈F ) and satisfies property FE-3, there is a vector φ = (φU ,φ0,φ1) ∈ Φ
such thatφU 6= 0 and

φ ·v ∗ > sup
v∈FE ∗(p ∗)∪V

φ ·v =: x ∗.

I assume without loss of generality thatφU > 0 (the argument in the other case is analo-
gous). Let x1 = supv∈FE ∗(1)∪V φ ·v . Define the biaffine function lφ : [0, 1]×R2→R by

lφ(p , v0, v1) =
1

φU

�p −p ∗

1−p ∗
x1+

1−p

1−p ∗
x ∗
�

− 1

φU
(φ0,φ1) · (v0, v1).

Then vU ≤ lφ(p , v0, v1) for each p ∈ {p ∗, 1} and for each v ∈ FE ∗(p ) ∪ V and for high
enough n , v n

U > lφ(p n , v n
0 , v n

1 ).
Define

FE ∗∗ = {(p , v )∈ FE ∗ : if p ∗ ≤ p ≤ 1, then vU ≤ lφ(p , v0, v1)}.
Then for a high enough n , v n /∈ FE ∗∗(p n ). I show that FE ∗∗ satisfies properties FE-1,
FE-2, and FE-3. Because v n ∈ FE ∗(p n ) and FE ∗∗ ⊆ FE ∗, this implies that FE ∗ is not the
smallest set in the collectionF , which contradicts the definition of FE ∗.

It is immediate to check that FE ∗∗ has properties FE-2 and FE-3. I check that FE ∗∗
satisfies property FE-1.

L 11. Suppose F ⊆ [0, 1]×R3 satisfies property FE-1. Suppose that there are p0 < p1

and a biaffine function l such that

vU ≤ l (p j , v0, v1) for each v ∈ F (p j ) and j = 0, 1.
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Define
F ∗∗ = {(p , v )∈ F : if p ∗ ≤ p ≤ 1, then vU ≤ l (p , v0, v1)}.

Then F ∗∗ satisfies property FE-1.

One can apply the lemma to the correspondence FE ∗, priors p ∗, 1, and biaffine func-
tion lφ to conclude that FE ∗∗ satisfies FE-1.

P  L . Take any p ′0 < p ′1 and (v j
U , v0, v1) ∈ I ′(p ′j ), j = 0, 1. For any p ,

define v p = ((p−p ′0)/(p ′1−p ′0))v 1+((p ′1−p )/(p ′1−p ′0))v 0. Notice that by the biaffinity
of l ,

v
p
U − l (p , v0, v1) (A.1)

is affine in p . Because F satisfies FE-1, then v p ∈ FE (p ) for any p ∈ [p ′0, p ′1].
If p ′0, p ′1 ∈ [p0, p1], then v

j
U ≤ l (p ′j , v0, v1). The biaffinity of l implies that v

p
U ≤

l (p , v0, v1) for each p ∈ (p ′0, p ′1).
If p ′0 < p0 < p ′1 ≤ p1, then v 1

U ≤ l (p ′1, v0, v1). Suppose that there is p ∈ (p0, p ′1) such
that v

p
U > l (p , v0, v1). Then it must be that v 0

U > l (p ′0, v0, v1). Thus (A.1) is decreasing in
p . In particular, v

p0

U > l (p0, v0, v1). But this contradicts the thesis of the lemma.
If p ′0 < p0 < p1 < p ′1 and there is p ∈ (p0, p1) such that v

p
U > l (p , v0, v1), then, for

at least one j , v
j

U > l (p ′j , v0, v1). Suppose that j = 0. We have v 1
U > l (p ′1, v0, v1), so

v p j > l (p j , v0, v1) for any j = 0, 1 (because (A.1) is affine). If v 1
U ≤ l (p ′1, v0, v1), then (A.1)

is decreasing in p and v
p0

U > l (p0, v0, v1). In each case, we get a contradiction to the
thesis of the lemma. �

A.4.2 FE ′ ∈ F I need to check that FE ′ satisfies properties FE-1, FE-2, and FE-3. As-
sumption 1 implies that for k = 0, 1, the sets Ek have a non-empty interior. Because
Ek is convex, we have Ek = cl int Ek and Ek ⊆ FE ′(p ) by Proposition 1. This establishes
FE-2. Proposition 2 implies FE-3:

FE ′(p ) = cl int FE (p )⊆ cl int[con(int FE ′(p )∪V )∩ IR]⊆ FE ′(p ).

Thus only property FE-1 needs to be verified. Recall that Assumption 1 together with
Proposition 3 imply that there are non-empty, open, and convex sets Ap ⊆ int FE (p ),
p ∈ [0, 1], such that proj Ap = proj Ap ′ for any p , p ′ ∈ [0, 1].

Take p 0 < p 1 and v j = (v j
U , v0, v1) ∈ FE ′(p j ) for j = 0, 1. I show that for any p ∈

(p 0, p 1),

v p =
p −p 0

p 1−p 0 v 1+
p 1−p

p 1−p 0 v 0 ∈ FE ′(p ). (A.2)

There are sequences v j ,n = (v j ,n
U , v

j ,n
0 , v

j ,n
1 )∈ int FE (p j ) such that v j ,n → v j for j = 0, 1. I

have already established property FE-3; hence

con[{v j ,n}∪Ap j ]⊆ int FE (p j ) for each j , n .

A simple continuity argument shows that

int con[{v j }∪Ap j ]⊆ FE ′(p j ),
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where int con[{v j } ∪ Ap j ] is non-empty, open, and convex. But this implies that se-

quences v j ,n → v j can be chosen in such a way that (v 0,n
0 , v 0,n

1 ) = (v
1,n
0 , v 1,n

1 ). Then,
for each p ∈ (p 0, p 1),

v p ,n =
p −p 0

p 1−p 0 v 1,n +
p 1−p

p 1−p 0 v 0,n ∈ int FE (p ).

Because v p ,n n→∞−→ v p , this demonstrates (A.2).

B. P  S 

B.1 Proof of property (16)

Suppose that p (a I ) = 0. There are open neighborhoods UIR ⊇ IR and UE ⊇ E F,I C (0) such
that for any (uU , u 0, u 1) ∈UIR ∩UE , uU < l (0, u 0, u 1). I show that for a high enough δ,
(vU (αU , a I ), w (αU , a I ))∈UIR ∩UE .

Because of the IR condition, vU (αU , a I )≥mU and (vU (αU , a I ), v0, v1)∈ IR. By (15),

‖w (αU , a I )− (v0, v1)‖ ≤ 2
1−δ
δ

M . (B.1)

Hence for δ high enough, (vU (αU , a I ), w (αU , a I ))∈UIR.
Letσ′ denote the strategy of player I that takes action a I in the first period and then

follows with continuation strategy σ0(aU , a I ); let vU (σU ,σ′,σ′) denote the expected
payoff of player U when the two types of player I use the strategy σ′. Recall that af-
ter observing a I , player U is certain that he faces type 0. Hence the difference between
the expected payoffs vU (σU ,σ′,σ′) and the expected continuation payoffs vU (αU , a I ) is
not larger than the difference between the first-period payoffs and





vU (αU , a I )−vU (σU ,σ′,σ′)




≤ 1−δ
δ

M . (B.2)

Clearly,
(vU (σU ,σ′,σ′), v0(σU ,σ′,σ′), v1(σU ,σ′,σ′))∈V.

Type 0 is indifferent between the strategies σ′ and σ0 because of condition IC.
Type 1 prefers to play σ1; hence we have v (σU ,σ′,σ′) ≤ v1. This implies that
(vU (σU ,σ′,σ′), v0, v1) ∈ E F,I C

0 . Together with (B.1) and (B.2), this implies that for δ high
enough, (vU (αU , a I ), w (αU , a I ))∈UE .

B.2 Proof of inequality (17)

Observe that
∑

a I∈S∗I

αI (a I )(vU (αU , a I )− l (p (a I ), w (αU , a I ))− (vU − l (p , v0, v1)))

=
∑

a I∈S∗I

αI (a I )([vU (αU , a I )−vU ]+ [l (p , v0, v1)− l (p , w (αU , a I ))])

+
∑

a I∈S∗I

αI (a I )[l (p , w (αU , a I ))− l (p (a I ), w (αU , a I ))].

(B.3)
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I bound each of the terms in (B.3). Observe that

∑

a I∈S∗I

αI (a I )vU (αU , a I ) =
1

δ
vU − 1−δ

δ

∑

a I∈S∗I

αI (a I )gU (αU , a I )

∑

a I∈S∗I

αI (a I )w (αU , a I ) =
1

δ
(v0, v1)− 1−δ

δ

∑

a I∈S∗I

αI (a I )(g 0(αU , a I ), g 1(αU , a I ))

and vU ≥ l (p , v0, v1)+ 1
2ε. Hence

∑

a I∈S∗I

αI (a I )([vU (αU , a I )−vU ]+ [l (p , v0, v1)− l (p , w (αU , a I ))])

=
1−δ
δ

∑

a I∈S∗I

αI (a I )(vU − gU (αU , a I )+ l (p , g 0(αU , a I ), g 1(αU , a I ))− l (p , v0, v1))

≥ 1−δ
δ

ε

2
− 1−δ

δ
[gU (αU ,αI )− l (p , g 0(αU ,αI ), g 1(αU ,αI ))]≥ 1−δ

δ

ε

2
.

(The last inequality holds because, by the hypothesis, for any (v ′U , v ′0, v ′1)∈V ,

v ′− l (p , v ′0, v ′1) = p (v ′− l (1, v ′0, v ′1))+ (1−p )(v ′− l (0, v ′0, v ′1))≤ 0.)

The second term in (B.3) is bounded by

∑

a I∈S∗I

αI (a I )[l (p , w (αU , a I ))− l (p (a I ), w (αU , a I ))]

=
∑

a I∈S∗I

αI (a I )[l (p , (v0, v1))− l (p (a I ), (v0, v1))]

+
∑

a I∈S∗I

αI (a I )
�

(l (p , w (αU , a I ))− l (p , (v0, v1)))

− (l (p (a I ), w (αU , a I ))− l (p (a I ), (v0, v1)))
�

.

The first term above is equal to 0 because l is affine in p and
∑

a I∈S∗I
αI (a I )p (a I ) = p . By

biaffinity, the second term is not smaller than

0−2C ′
∑

a I∈S∗I

αI (a I )‖w (αU , a I )− (v0, v1)‖
�

�p −p (a I )
�

�

≥−4C ′M
1−δ
δ

∑

a I∈S∗I

αI (a I )
�

�p −p (a I )
�

� ,

where C ′ is defined by
C ′ = sup

‖v ‖≤1
max(|l (0, v )| , |l (1, v )|).

Also, observe that ‖w (αU , a I )− (v0, v1)‖ ≤ 2((1−δ)/δ)M .
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Putting the two bounds together leads to

∑

a I∈S∗I

αI (a I )(vU (αU , a I )− l (p (a I ), w (αU , a I ))− (vU − l (p , (v0, v1))))

≥ 1−δ
δ

�ε

2
−4C ′M

∑

a I∈S∗I

αI (a I )|p −p (a I )|
�

.

Let

C = 32C ′2M 2. (B.4)

Observe that for any x ≥ 0, 1
4ε−4C M x >−(C ′/ε)x 2, and

ε

4
−4C ′M

∑

a I∈S∗I

αI (a I )|p −p (a I )|=
∑

a I∈S∗I

αI (a I )
�ε

4
−4C ′M |p −p (a I )|

�

>−C

ε

∑

a I∈S∗I

αI (a I )(p (a I )−p )2

Then, for any for any a I ∈S∗I ,

1−δ
δ

�ε

2
−4C ′M

∑

a I∈S∗I

αI (a I )|p −p (a I )|
�

>−1−δ
δ

C

ε

∑

a I∈S∗I

αI (a I )(p (a I )−p )2+
1−δ

4δ
ε

=
1−δ
δ

C

ε

�

p 2−
∑

a I∈S∗I

αI (a I )(p (a I ))2
�

+
1−δ

4δ
ε.

B.3 Proof of Proposition 6

It is easy to see that ICR ∗ ∈I . The proof is divided into a few steps.

B.3.1 ICR* satisfies FE-1 Define I ⊆ [0, 1]×R3:

I =
n�

p ,
p −p0

p1−p0
v 1

U +
p1−p

p1−p0
v 0

U , v0, v1

�

:

(v j
U , v0, v1)∈ ICR ∗(p j ) for j = 0, 1 and p0 < p < p1

o

.

Then I satisfies FE-1. One easily checks that I satisfies properties ICR-1, ICR-2, and
ICR-3 and I ∈I . Since I ⊇ ICR ∗, it must be that I = ICR ∗.

B.3.2 ICR* satisfies FE-3 Define I ⊆ [0, 1]×R3: for each p ,

I (p ) = con[ICR ∗(p )∪V ]∩ IR.

Then I ⊇ ICR ∗ and I satisfies FE-3. I show that I ∈ I . Conditions ICR-1 and ICR-2
hold by definition (notice that con(Ek ∪V )∩ IR = Ek for each k = 0, 1). To see that the
separation property ICR-3 holds as well, suppose that p0 < p1 and there is a biaffine
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function l : [0, 1]×R2 → R such that v
j

U ≤ l (p j , v
j
0 , v

j
1 ) for any (v j

U , v
j
0 , v

j
1 ) ∈ I (p j ) ∪ V ,

j = 0, 1. Because l is biaffine, for any v ∈V and any p ∈ (p0, p1),

vU ≤ p −p0

p1−p0
l (p1, v0, v1)+

p1−p

p1−p0
l (p0, v0, v1) = l (p , v0, v1).

By property ICR-3 applied to the set ICR ∗, for any p ∈ (p0, p1) and any (vU , v0, v1) ∈
ICR ∗(p ),

vU ≤ l (p , v0, v1). (B.5)

Therefore, inequality (B.5) holds also for any (vU , v0, v1)∈ con[ICR ∗(p )∪V ] = I (p ).

B.3.3 ICR* is closed I show that cl I ∈ I for any I ∈ I . A simple continuity argu-
ment shows that ICR-1 and ICR-3 hold for cl I . I show that (cl I )(1) ⊆ E1 (the argu-
ment for (cl I )(0)⊆ E0 is analogous). Suppose that there is (p n , v n

U , v n
0 , v n

1 ) ∈I such that
(p n , v n

U , v n
0 , v n

1 )→ (1, v ∗U , v ∗0 , v ∗1 ) and (v ∗U , v ∗0 , v ∗1 ) /∈ E1. Because (v ∗U , v ∗0 , v ∗1 ) ∈ IR, it must be
that (v ∗U , v ∗0 , v ∗1 ) /∈ con(E1 ∪V ). Because the sets E1 and V are bounded, there is φ ∈ Φ3

andφU > 0 such that either

φ · (v ∗U , v ∗0 , v ∗1 )> max
(vU ,v0,v1)∈con(E1∪V )

φ · (vU , v0, v1)

orφ · (v ∗U , v ∗0 , v ∗1 )< min
(vU ,v0,v1)∈con(E1∪V )

φ · (vU , v0, v1).

Assume without loss of generality that the first inequality holds, and define

c 0 =
1

φU
max

(vU ,v0,v1)∈con(E1∪V )
φ · (vU , v0, v1)

c 1 =
1

φU
max

(vU ,v0,v1)∈con(E1∪V )
φ · (vU , v0, v1)

l (p , v0, v1) = (1−p )c 0+p c 1− 1

φU
(φ0,φ1) · (v0, v1).

Then, for k = 0, 1, any (vU , v0, v1)∈ con(E1 ∪V ),

vU =
1

φU
φ · (vU , v0, v1)− 1

φU
(φ0,φ1) · (v0, v1)≤ l (k , v0, v1).

Property ICR-3 applied to the set ICR ∗ implies that v n
U ≤ l (p n , v n

0 , v n
1 ) for all n . But this

leads to a contradiction:

lim
n→∞v n

U − l (p n , v n
0 , v n

1 ) = v ∗U − l (1, v ∗0 , v ∗1 ) =
1

φU
φ · (v ∗U , v ∗0 , v ∗1 )− c 1 > 0.

B.3.4 ICR* contains ICR payoffs Define the set I ⊆ [0, 1]×R3 as the smallest closed set
such that

(a) ICR⊆ I

(b) for any k ∈ {0, 1}, Ek ⊆ I (k )
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(c) I satisfies FE-1 and FE-3.

The set I is well-defined as the intersection of all closed sets with properties (a)–(c).
I show that I ∈I , which implies that ICR⊆ I ⊆ ICR ∗.

Property ICR-1 holds by Corollary 1. The next two subsections establish properties
ICR-2 and ICR-3.

B.3.5 I satisfies property ICR-2. For each φ ∈ Φ3 and φU 6= 0, for k = 0, 1 define c k
φ =

supv∈Ek∪V φ ·v . Define I ′ ⊆ [0, 1]×R3 by

I ′(p ) =
⋂

φ∈Φ3

�

φ ·v ≤ (1−p )c 0
φ +p c 1

φ

	

.

Then, I ′ is closed. Clearly, it satisfies properties (a), (b), and FE-3. Property FE-1 follows
from Proposition 5. For each k = 0, 1, I ′(k ) ⊆ Ek . Also, by definition, I ⊆ I ′. Hence, for
k = 0, 1, I (k )⊆ I ′(k )⊆ Ek .

B.3.6 I satisfies property ICR-3. I show that the correspondence I satisfies ICR-3 with
inequality “<” (the other case is analogous). I start with a lemma.

L 12. Suppose that for each p0 < p1 and biaffine function l , if

vU ≤ l (p j , v0, v1) for each v ∈ I (p j )∪V and j = 0, 1,

then vU ≤ l (p , v0, v1) for each v ∈ ICR (p ) and p ∈ (p0, p1). Then the correspondence I
satisfies property ICR-3.

P. Suppose to the contrary that there are p0 < p1, a biaffine function l , p ∈ (p0, p1),
and v ∈ I (p ) such that v

j
U ≤ l (p j , v

j
0 , v

j
1 ) for each v j ∈ I (p j ) ∪ V and vU > l (p , v0, v1).

Define I ′ ⊆ [0, 1]×R3 by

I ′ = {(p , vU , v0, v1)∈ I : if p0 ≤ p ≤ p1, then vU ≤ l (p , v0, v1)}.
Then, I ′  I and I ′ is closed. By the hypothesis of the lemma, I ′ satisfies property (a).
Clearly, I ′ satisfies property (b) and FE-3. An application of Lemma 11 shows that I ′
satisfies property FE-1. But this contradicts the definition of I as the smallest closed set
that satisfies properties (a)–(c). �

Therefore, if I violates ICR-3, then there are ε > 0, p0 < p ∗ < p1, a biaffine function
l , and v ∈ ICR (p ∗) such that v

j
U ≤ l (p j , v

j
0 , v

j
1 ) for each v j ∈ I (p j )∪V and j = 0, 1, and

vU ≥ l (p ∗, v0, v1)+11ε. Choose sequences δn → 1 and (p n , v n
U , v n

0 , v n
1 )∈ ICRδn such that

(p n , v n
U , v n

0 , v n
1 )→ (p ∗, v ∗U , v ∗0 , v ∗1 )∈ ICR

v ∗U ≥ l (p ∗, v ∗0 , v ∗1 )+10ε

and, for any n ,

(p n , v n
U , v n

0 , v n
1 )∈ arg max

p0≤p≤p1,(p ,vU ,v0,v1)∈ICRδn

vU −
�

l (p , v0, v1)− 1−δn

δn

D

ε
p 2
�

, (B.6)
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where D is the constant defined in equation (B.4). For each n , let (αn
U ,αn

0 ,αn
1 ) be the

profile of first-period mixed actions, let v n (aU , a I ) be the continuation payoffs, and let
p n (a I ) be the posterior beliefs (posteriors are well-defined only after the action is played
with positive probability). For any aU ∈SU , a I ∈S I , and any type k = 0, 1, define

w n
k (aU , a I ) = v n

k (aU , a I )+
1

δ
[vk − (1−δn )g k (αU , a I )−δn v n

k (α
n
U , a I )]. (B.7)

These continuation payoffs would make the two types of player I indifferent between
any action a I . Observe that, for any a I ,

w n
k (α

n
U , a I )≥ v n

k (α
n
U , a I )

w n
k (α

n
U , a I ) = v n

k (α
n
U , a I ), if p n (a I )∈ (0, 1)∪{k }. (B.8)

I show below (Section B.3.7) that for all sufficiently high n , if a I is played with positive
probability and p n (a I ) /∈ (p0, p1), then

v n
U (α

n
U , a I )− l (p n (a I ), w n

0 (α
n
U , a I ), w n

1 (α
n
U , a I ))< ε. (B.9)

The proof is concluded in the same way as the proof of Proposition 5. As in Sec-
tion B.2, one can show that for a high enough δ, inequality (17) holds for any ICR payoff
(vU , v0, v1) ∈ ICRδ(p ), p0 < p < p1, such that vU − l (p , v0, v1) ≥ ε. In particular, there is
an a I such that

v n
U (α

n
U , a I )−

�

l (p n (a I ), w n
0 (α

n
U , a I ), w n

1 (α
n
U , a I ))− 1−δn

δn

D

ε
(p n (a I ))2

�

> v n
U −

�

l (p n , v n
0 , v n

1 )−
1−δn

δn

C

ε
(p n )2

�

.

Because of (B.9), p n (a I )∈ (p0, p1). Then, by (B.8),

(v n
U (aU , a I ), w n

0 (aU , a I ), w n
1 (aU , a I )) = (v n

U (aU , a I ), v n
0 (aU , a I ), v n

1 (aU , a I ))

is a continuation ICR payoff for all aU played by U with positive probability. Hence there
is a profile (aU , a I ) after which ICR continuation payoffs satisfy

v n
U (aU , a I )−

�

l (p n (a I ), v n
0 (aU , a I ), v n

1 (aU , a I ))− 1−δn

δn

C

ε
(p n (a I ))2

�

> v n
U −

�

l (p n , v n
0 , v n

1 )−
1−δn

δn

C

ε
(p n )2

�

and p n (a I ) ∈ (p0, p1). But this contradicts the choice of (p n , v n
U , v n

0 , v n
1 ) as the maximiz-

ers of expression (B.6).

B.3.7 (B.9) is satisfied for a high enough n Suppose not. Then one can find an action a I

and subsequences (denoted further as a sequence of ns) such that a I is played with pos-
itive probability for all n , p n (a I )→ p ∗(a I ) /∈ (p0, p1), αn

U → α∗U , v n
U (aU , a I )→ v ∗U (aU , a I ),

and w n
k (aU , a I )→w ∗k (aU , a I ), and such that

ε ≤ v ∗U (αU , a I )− l (p ∗(a I ), w ∗0(α
∗
U , a I ), w ∗1(α

∗
U , a I )).
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Assume without loss of generality that p ∗(a I ) ≤ p0 < 1 (the other case, p ∗(a I ) ≥ p1, is
treated analogously). By definition (B.7), ‖w n

k (α
n
U , a I )− (v n

0 , v n
1 )‖ ≤ 2M (1−δn )/δn for

each n . This implies that w (α∗U , a I ) = (v ∗0 , v ∗1 ) and

ε ≤ v ∗U (αU , a I )− l (p ∗(a I ), v ∗0 , v ∗1 ).

L 13. (v ∗U (α
∗
U , a I ), v ∗0 , v ∗1 )∈ I (p ∗(a I )).

P. Suppose first that p ∗(a I ) > 0. Because p ∗(a I ) < 1, this means that for suffi-
ciently large n , a I is played with positive probability by each type of player I . Thus
(v n

U (α
n
U , a I ), v n

0 (α
n
U , a I ), v n

1 (α
n
U , a I )) is a convex combination of payoffs in ICR profiles.

Moreover, each type of player I has to be indifferent between a I and any other equilib-
rium action. Because the first-period payoffs from playing a I converge to 0 when n →
∞, this means that limn→∞ v n

k (α
n
U , a I ) = v ∗k for each k = 0, 1. Hence (v ∗U (α

∗
U , a I ), v ∗0 , v ∗1 )∈

ICR (p ∗(a I ))⊆ I (p ∗(a I )).
Next, suppose that p ∗(a I ) = 0. By property (b) of the set I , it is sufficient to show that

(v ∗U (α
∗
U , a I ), v ∗0 , v ∗1 )∈ E0 = IR∩E F,I C (0).

Clearly, v ∗U (α
∗
U , a I ) = limn→∞ v n

U (α
n
U , a I ) ≥ mU and (v ∗0 , v ∗1 ) = limn→∞(v n

0 , v n
1 ) ∈

proj IR.
Let v n (αn

U , (a I ,σ0)) denote the vector of expected payoffs if player I chose a I in the
first period and then mimicked the strategy σ0 of type 0 (the expectation is taken with
respect to the mixed action αn

U of player U ). Observe that v n (αn
U , (a I ,σ0)) ∈ V . Because

the difference between v n
U (α

n
U , (a I ,σ0)) and v n

U (α
n
U , a I ) is not higher than the first-period

payoffs,




v n
U (α

n
U , (a I ,σ0))−v n

U (α
n
U , a I )





≤ 2M
1−δn

δn
for each n .

Because a I is played with positive probability by type 0, for each n ,

v n
0 (α

n
U , (a I ,σ0)) = v n

0 and v n
1 (α

n
U , (a I ,σ0))≤ v n

1 .

Let v̄ ∗ = limn→∞ v n (αn
U , (a I ,σ0)) ∈ V (note that the limit exists, possibly after taking

subsequences). Hence v̄ ∗U = v ∗U (α
∗
U , a I ), v̄ ∗0 = v ∗0 , and v̄ ∗1 ≤ v ∗1 . This implies that we

have (v ∗U (α
∗
U , a I ), v ∗0 , v ∗1 )∈ E F,I C (0). �

Define

v̄ =
p0−p ∗(a I )
p ∗−p ∗(a I )

(v ∗U (α
∗
U , a I ), v ∗0 , v ∗1 )+

p ∗−p0

p ∗−p ′(a I )
v ∗.

Observe that v̄ ∈ I (p0) because p ∗(a I ) ≤ p0 < p ∗ and because of the above lemma, the
fact that v ∗ ∈ I (p ∗), p ∗(a I ) ≤ p0 < p ∗, and the fact that the correspondence I satisfies
property FE-1. By the choice of a biaffine function l , v̄U ≤ l (p0, v̄0, v̄1). However, notice
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that

0≥ v̄U − l (p0, v̄0, v̄1)

=
p0−p ∗(a I )
p ∗−p ∗(a I )

(v ∗U (αU , a I )− l (p ∗(a I ), v ∗0 , v ∗1 ))+
p ∗−p0

p ∗−p ∗(a I )
(v ∗U − l (p ∗, v ∗0 , v ∗1 ))

≥ p0−p ∗(a I )
p ∗−p ∗(a I )

ε+
p ∗−p0

p ∗−p ∗(a I )
10ε ≥ ε > 0.

The contradiction shows that for a high enough n , if p n (a I ) ≤ p0 or p n (a I ) ≥ p1, then
(B.9) must hold. This ends the proof of the proposition.

C. P  L 

This section is devoted to the proof of Lemma 5. Section C.1 proves some geometrical re-
sults. Section C.2 defines all the constants and states a helpful assumption. Section C.3
proves the lemma given the assumption. Sections C.4 and C.5 fill in some missing steps.
Section C.6 shows how to extend Theorem 3 to games that do not satisfy the assumption
in Section C.2.

C.1 Geometrical results

Suppose that A ⊆ R2 is a (not necessarily bounded) set with finitely many extreme
points Aextr ⊆ A. Then there exists a finite set of unitary vectors ΦA ⊆ Φ2 such that
A =

⋂

φ∈ΦA
{a ∈R2 :φ ·a ≤ supa ′∈Aφ ·a ′}.

L 14. Suppose that A ⊆ R2 is a (not necessarily bounded) set with finitely many
extreme points Aextr ⊆ A. Suppose that B ⊆R2 is a finite set such that A∩con B =∅. Then
there is a constant C B <∞ such that for any a ∗ ∈ A, if

A ∩ con(B ∪{a ∗}) = {a ∗}, (C.1)

then, for any b ∈ con B and α∈ [0, 1],

α≤C B inf
a ′∈A





(1−α)a ∗+αb −a ′




 .

P. Given the assumptions about the sets A and B , there is a finite set Φ∗B ⊆ Φ2 of
unit vectors so that, whenever a ∗ ∈ A and (C.1) holds, there isφ ∈Φ∗B so that

sup
a ′∈A

φ ·a ′ =φ ·a ∗ <min
b∈B

φ ·b.

Indeed, for any a ∈ Aextr, either A ∩ con(B ∪{a }) 6= {a } or there isφa such that

φa ·a =max
a ′∈A

φa ·a ′ <min
b∈B

φa ·b.

Define

Φ∗B =
�

φa : A ∩ con(B ∪{a }) = {a }	∪ �φ ∈ΦA : max
a ′∈A

φ ·a ′ <min
b∈B

φ ·b	.
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It is easy to check that Φ∗B has the required property.
Suppose now that (C.1) holds for some a ∗ ∈ A. Then, for any b ∈ con B , α ∈ [0, 1],

and anyφ,

inf
a ′∈A





(1−α)a ∗+αb −a ′




≥φ · ((1−α)a ∗+αb )− sup
a ′∈A

φ ·a ′

≥α[ inf
b ′∈B

φ ·b ′− sup
a ′∈A

φ ·a ′]+ (1−α)[φ ·a ∗− sup
a ′∈A

φ ·a ].

By the remark above, there exists φ ∈ Φ∗B so that the first term in the last line of the
inequality is strictly positive and the second term is equal to 0. For suchφ,

α≤ 1

minb ′∈B φ ·b ′− supa ′∈Aφ ·a ′
sup
a ′∈A





(1−α)a ∗+αb −a ′




 .

Define

C B = max
φ∈Φ∗B :minb∈B ′ φ·b ′>supa ′∈A φ·a ′

1

minb ′∈B φ ·b ′− supa ′∈Aφ ·a ′
.

This constant is well-defined, as a maximum over finitely many finite constants. �

Say that v ∗ ∈ R3 is represented by tuple (v,α,ρ), v ∈ R3,α ∈ [0, 1], ρ ∈ ∆B , where
B ⊆R3 is a finite set, if

v ∗ =α
∑

b∈B

bρ(b )+ (1−α)v.

L 15. Suppose that v ∗ is represented by (v̄ ,α,ρ) for some α ∈ (0, 1). Then there is an
open neighborhood U 3 v̄ such that for any v̄ ′ ∈U ∩ con(suppρ ∪{v̄ }) , v ∗ is represented
by (v̄ ′,α′,ρ′) for some α′ <α and ρ′ ∈∆(suppρ).

P. Let UV ⊆ con(suppρ ∪{v̄ }) be defined by

UV =

¨

α′′
∑

v∈suppρ′
vρ′′(v )+ (1−α′′)v̄ : α′′ ∈ [0,α),ρ′′ ∈∆suppρ,

and ρ(v )>
(1−α)α′′
α(1−α′′)ρ

′′(v ) for each v ∈ suppρ.

«

.

Then v̄ ∈UV and UV is open relative to con(suppρ ∪ {v̄ }). Hence, there exists an open
set U ⊆R3 such that UV =U ∩ con(suppρ ∪{v̄ }).

Take any v̄ ′ ∈UV and v̄ ′ 6= v̄ and find α′′ ∈ [0,α) and ρ′′ ∈∆suppρ such that

v̄ ′ =α′′
∑

v∈suppρ′
vρ′′(v )+ (1−α′′)v̄

ρ(v )>
(1−α)α′′
α(1−α′′)ρ

′′(v ) for each v ∈ suppρ.

Let

α′ =
α−α′′
1−α′′ ,
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which is less than α because α< 1, and

ρ′(v ) =
1

α−α′′ [α(1−α
′′)ρ(v )− (1−α)α′′ρ′′(v )]> 0

Then ρ′ ∈∆(suppρ) is a probability measure with support contained in suppρ and
(v̄ ′,α′,ρ′) represents v ∗:

α′
∑

v∈suppρ′
vρ′(v )+ (1−α′)v̄ ′ =α′ 1

α−α′′
∑

v∈suppρ′
v [α(1−α′′)ρ(v )− (1−α)α′′ρ′′(v )]

+
1−α

1−α′′
�

α′′
∑

v∈suppρ′
vρ′′(v )+ (1−α′′)v̄

�

= v ∗. �

C.2 Assumption and constants

Throughout Sections C.3, C.4, and C.5 of the Appendix I make the following assumption.

A 2. proj IR has finitely many extreme points.

This assumption implies that there is a finite set of unitary vectorsΦIR ⊆Φ2 such that

proj IR=
⋂

φ∈ΦIR

{(v0, v1)∈R2 :φ · (v0, v1)≥m I (φ)}.

The assumption is restrictive. Initially, I prove that Lemma 5 holds for all games that
satisfy the assumption. Together with the analysis of Section 5, this demonstrates The-
orem 3 for all games satisfying the assumption. In Section C.6 I extend Theorem 3 to all
games.

Define the closed sets

V + =V ∩{v : vU ≥mU } and V − =V ∩{v : vU ≤mU }.

Both sets are convex and spanned by finitely many vertices. Let V +vert and V −vert consist of
the vertices of, respectively, V + and V −. Let

V ∗ =V +vert ∪V −vert.

Then V ∗ is finite. LetB be the set of all finite subsets of proj V ∗ ⊆ R2 such that con B ∩
proj IR = ∅. For any B ∈ B , let C B be the constant from Lemma 14 applied to the set
A = proj IR. (Notice that proj IR satisfies the hypotheses of the lemma because of the
assumption.) Let

CF =max
B∈B C B <∞. (C.2)

Consider a finite class of closed convex sets indexed by subsets Φ⊆ΦIR:

S(Φ) =
⋂

φ∈Φ
{v ∈V :φ · (v0, v1)≤m I (φ)}.
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Observe that for each Φ⊆ΦIR, S(Φ) is spanned by a finite set of vertices Svert(Φ). Define

C I =mU −max
Φ⊆ΦIR

{vU : (vU , v0, v1)∈Svert(Φ), vU <mU }> 0. (C.3)

The number C I is strictly positive because ΦIR is finite and each Svert(Φ) is finite.
Define

L = sup
(v0,v1),(v ′0,v ′1)∈proj ICR ∗(1)

�

�u I (v0, v1)(1)−u I (v ′0, v ′1)(1)
�

�





(v0, v1)− (v ′0, v ′1)






<∞. (C.4)

The constant L is finite because the set ICR ∗(1) = E1 is the convex hull of finitely many
vertices.

Recall that M is the uniform bound on the stage-game payoffs defined in (1). Let

C0 =max

�

2

1−p u [L(1+MCF )+2MCF ], 2
LM

1
4 (1−p u )C I

�

(C.5)

θ ∗ =min

�

1−p u

2C0
,

1

L(1+MCF )
,

1

C0

�

d ∗ =min

�

1

2(C I LM +1)
,
(1−p u )C I

2LM
,

1

C0

�

D =
4M 2(2C0+2+ L)
(1−p u )2C 2

I

+2C0. (C.6)

C.3 Proof of Lemma 5 (given Assumption 2)

In order to shorten the notation, I write v0,1 = (v0, v1) ∈ R2 for any v = (vU , v0, v1) ∈ R3.
Assume that the hypothesis of Lemma 5 is satisfied and, in particular,

p ′−p ≤ d ∗ and θ (p )≤ θ ∗.
Denote

θ = θ (p ).

Take any y I ∈ I1(p ′) for some p ′ > p . I show that there is y F ∈ F (p ′) such that




y I
0,1− y F

0,1





≤ �θ +D(θ 2+(p ′−p )θ +(p ′−p )2)
�

(u I (1)(y I
0,1)−mU ). (C.7)

This establishes (22) and the lemma.
The main objective of the proof is to bound the distances between a number of

payoff vectors. It is helpful to list all the variables involved, together with the rela-
tionships between them. There are two types of payoff vectors: for those associated
with prior beliefs p , I write x I ,x I ,a ,x F,a ∈ R3, and for those associated with p ′, I write
y I , y I ,a , y F , y F,a ∈R3. The following hold:

x A
0,1 = y A

0,1 for any A = I , (I , a ), F, (F, a )

x I =αI v I +(1−αI )x I ,a

y I =αI v I +(1−αI )y I ,a

y F =αF v I +(1−αF )y F,a
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for some v I ∈V and αI ,αF ∈ [0, 1].
The rest of the proof is divided into six steps. All constants are defined in Section C.2.

Lemmas 16 and 17 are proved in Sections C.4 and C.5, respectively.

Step 1. Define x I = (u I (p )(y I
0,1), y I

0,1). Because y I ∈ I1(p ′), it must be that u I (1)(y I
0,1) ≥

mU . Then
x I

U = u I (p )(y I
0,1)≤mU ; (C.8)

otherwise, by part (iii) of Lemma 2, u I (p ′)(y I
0,1)>mU , which contradicts y I ∈ I1(p ′).

L 16. There exist x I ,a ∈ I1(p ), αI ∈ [0, 1], and v I ∈V such that v I ≤mU −C I and

x I =αI v I +(1−αI )x I ,a .

For future reference, note that





x I ,a
0,1 −x I

0,1





≤αI M . (C.9)

Step 2. Due to the concavity of the function u I in v0,1,

αI v I
U +(1−αI )x I ,a

U = x I
U = u I (p )(x I

0,1)≥αI u I (p )(v I
0,1)+ (1−αI )u I (p )(x I ,a

0,1 )

≥αI v I
U +(1−αI )x I ,a

U ,

and all inequalities can be turned into equalities. Note that

x I ,a
U = u I (p )(x I ,a

0,1 ) =mU ,

because x I ,a ∈ I1(p ). Therefore, part (iii) of Lemma 2 implies that

u I (p ′)(x I ,a
0,1 ) =mU +

p ′−p

1−p

�

u I (1)(x I ,a
0,1 )−mU

�

. (C.10)

By the definition of the constant L in (C.4) and by (C.9),

u I (1)(x I
0,1)≤ u I (1)(x I ,a

0,1 )+ L




x I ,a
0,1 −x I

0,1





≤ u I (1)(x I ,a
0,1 )+α

I LM . (C.11)

The above conditions and the convexity of u I in p imply that

mU = y I
U = u I (p ′)(x I

0,1)≤
p ′−p

1−p
u I (1)(x I

0,1)+
1−p ′

1−p
u I (p )(x I

0,1)

≤ p ′−p

1−p
u I (1)(x I ,a

0,1 )+
p ′−p

1−p
αI LM +

1−p ′

1−p
(1−αI )x I ,a

U +
1−p ′

1−p
αI v I

U

=mU +
p ′−p

1−p

h

u I (1)(x I ,a
0,1 )−mU

i

−αI

�

1−p ′

1−p
(mU −v I

U )−
1−p ′

1−p
LM

�

= u I (p ′)(x I ,a
0,1 )−αI

�

1−p ′

1−p
(mU −v I

U )−
1−p ′

1−p
LM

�

.
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This leads to a bound on αI :

αI ≤αI ∗ =
u I (p ′)(x I ,a

0,1 )−mU

1−p ′
1−p (mU −v I

U )− p ′−p
1−p LM

(C.12)

=
u I (1)(x I ,a

0,1 )−mU

(1−p ′)(mU −v I
U )− (p ′−p )LM

(p ′−p ),

where the equality in the second line comes from (C.10).

Step 3. The bound (C.12) implies that

αI ≤ u I (1)(x I ,a
0,1 )−mU

1
4 (1−p u )C I

(p ′−p )

for p ′−p ≤ d ∗ ≤ (1−p u )C I /(2LM ). Because of (C.11) and the equality y I
0,1 = x I

0,1,

u I (1)(y I
0,1)−mU ≥ �1− 1

2C0(p ′−p )
��

u I (1)(x I ,a
0,1 )−mU

�

.

(Recall the definition of the constant C0 in (C.5).) For p ′ − p ≤ d ∗ ≤ 1/C0, we have
(1− 1

2C0(p ′−p ))−1 ≤ (1+C0(p ′−p )). Hence

u I (1)(x I ,a
0,1 )−mU ≤ (1+C0(p ′−p ))(u I (1)(y I

0,1)−mU ). (C.13)

Step 4. By the hypothesis of the lemma, there is x F,a ∈ F ∗(p ) such that




x I ,a
0,1 −x F,a

0,1





≤ (u I (1)(x I
0,1)−mU )θ . (C.14)

L 17. u I (p ′)(x I ,a
0,1 )−u F (p ′)(x F,a

0,1 )≤C0(p ′−p )(u I (1)(x I
0,1)−mU )θ .

By (C.10)

u F (p ′)(x F,a
0,1 )≥mU +

� 1

1−p
−C0θ

�

(u I (1)(x I ,a
0,1 )−mU )(p ′−p )≥mU , (C.15)

where the last inequality holds for θ ≤ θ ∗ ≤ (1−p u )/C0.
Define payoff vectors

y F,a = (u F (p ′)(x F,a
0,1 ),x F,a

0,1 )

y F (α) :=αv I +(1−α)y F,a .

Clearly, y F,a , y F (α)∈ con(FE ∗(p )∪V ). Define

αF∗ =
(1−C0(1−p )θ )(u I (1)(x I ,a

0,1 )−mU )(p ′−p )

(1−C0(1−p )θ )(u I (1)(x I ,a
0,1 )−mU )(p ′−p )+ (1−p )(mU −v I

U )
. (C.16)

Then (C.15) implies that

αF∗ ≤ y F,a
U −mU

y F,a
U −v I

U

.

(Notice that (x −a )/(x −b ) is increasing in x for a <b .) Therefore,

y F (α)∈ F ∗(p ) for each α≤αF∗.
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Step 5. Use (C.12) and (C.16) to bound the difference:

αI ∗−αF∗

p ′−p
≤ u I (1)(x I ,a

0,1 )−mU

(1−p ′)(mU −v I
U )− (p ′−p )LM

− (1−C0(1−p )θ )(u I (1)(x I ,a
0,1 )−mU )

M (p ′−p )+ (1−p )(mU −v I
U )

.

For p ′−p ≤ d ∗ ≤ (1−p u )C I /(2LM ),

(M (p ′−p )+ (1−p )(mU −v I
U ))≤ (1−p u )C I

(1−p ′)(mU −v I
U )− (p ′−p )LM ≤ (1−p u )C I .

Hence

αI ∗−αF∗

p ′−p
≤ 2(u I (1)(x I ,a

0,1 )−mU )

(1−p u )2C 2
I

[(M (p ′−p )+ (1−p )(mU −v I
U ))

− (1−C0(1−p )θ )((1−p ′)(mU −v I
U )− (p ′−p )LM )]

≤ 2(u I (1)(x I ,a
0,1 )−mU )

C 2
I

(1+2C0θ )[C0(1−p )θ (M (p ′−p )

+ (1−p )M )+ (p ′−p )(2M + LM )]

≤ 2[C0(1−p )Mθ +(2+ L)M (p ′−p )](1+2C0θ )
C 2

I

(u I (1)(x I ,a
0,1 )−mU )

≤ D −2C0

2M
(θ +p ′−p )(u I (1)(x I

0,1)−mU ),

where the constant D is defined in equation (C.6).

Step 6. Compute the distance between y I
0,1 and y F

0,1(α):





y I
0,1− y F

0,1(α)




=




αI v I
0,1+(1−αI )x I ,a

0,1 −αv I
0,1+(1−α)y I ,a

0,1







=




(αI −α)v I
0,1+(1−αI )(x I ,a

0,1 − y I ,a
0,1 )− (αI −α)y I ,a

0,1







≤ ��αI −α��2M +




x I ,a
0,1 − y I ,a

0,1





.

Steps 4 and 5, inequality (C.14), and the last inequality imply that one can find αF so
that y F (αF )∈ F (p ) and





y I
0,1− y F

0,1(α
F )




≤ �θ +(D −2C0)(θ +(p ′−p )θ +(p ′−p )2)
��

u I (1)(x I ,a
0,1 )−mU

�

.

Finally, use inequality (C.13) to obtain





y I
0,1− y F

0,1(α
F )






≤ �θ +(D −2C0)(θ +(p ′−p )θ +(p ′−p )2)
��

1+C0(p −p ′)
��

u I (1)(y I
0,1)−mU

�

≤ �θ +D((p ′−p )θ +(p ′−p )2)
��

u I (1)(y I
0,1)−mU

�

.

This ends the proof of (C.7) and the lemma.
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C.4 Proof of Lemma 16

The proof of the lemma is divided into two parts.

L 18. There exist x I ,a ∈ ICR ∗(p ), αI ∈ [0, 1], and ρI ∈∆V such that

x I =αI
∑

v∈V

vρI (v )+ (1−αI )x I ,a , (C.17)

x I ,a
U =mU , and vU ≤mU −C I for each v ∈ suppρI .

Any tuple (x I ,a ,αI , v I ) such that x I ,a ∈ ICR ∗(p ), αI ∈ [0, 1],ρI ∈∆V , and (C.17) holds
is called a representation of x I .

P. There exists at least one representation (x ,α,ρ) of x I ∈ con(ICR ∗(p ) ∪ V ).
Among all such representations, choose (x I ,a ,αI ,ρ) to minimize αI . Such a represen-
tation exists by a simple compactness argument.

I show that x I ,a
U =mU . Consider the following three cases.

1. If αI = 0, then mU ≤ x I ,a
U = x I

U ≤mU by (C.8).

2. Suppose that 0<αI < 1. If x I ,a
U >mU , then construct

x I ,a ′ = x I ,a +
x I ,a

U −mU

x I ,a
U −x I

U

(x I −x I ,a ).

By construction, x I ,a ′
U ≥ mU . Because x I

0,1,x I ,a
0,1 ∈ proj IR, we have x I ,a ′

0,1 ∈ proj IR.
Hence x I ,a ′ ∈ IR and there is α′ < αI such that (x I ,a ′,α′,ρ) is a representation of
x I . This contradicts the choice of (x I ,a ,αI ,ρ) as the representation that minimizes
αI .

3. If αI = 1, then any x I ,a ∈ I1(p ) satisfies (C.17).

Recall the definition of C I and the set Svert(Φ′), where Φ′ ⊆ ΦIR. (These definitions
may be found in Section C.2.) Define

vρ =
∑

v∈V

vρ(v )

ΦI = {φ ∈ΦIR :φ · (vρ0 , v
ρ
1 )≤m I (φ)}

S =Svert(ΦI ).

Then vρ ∈ conS and there exists ρI ∈∆S such that (C.17) holds.
I show that for each v ∈ suppρI , vU <mU . By the definition of the constant C I in

(C.3), this implies that for each v ∈ suppρI , vU < mU −C I . On the contrary, suppose
that there is v ∈ suppρI with vU ≥mU . There are two cases to be considered.
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1. If there is φ ∈ ΦIR such that φ · x I ,a
0,1 = m I (φ) and φ · v0,1 < m I (φ), then, by the

definition of the set S(ΦI ),φ ·vρ0,1 <m I (φ). But then, for any α∈ [0, 1],

φ · [(1−α)x I ,a
0,1 +αv

ρ
0,1]<m I (φ) (C.18)

(1−α)x I ,a
0,1 +αv

ρ
0,1 /∈ proj IR.

Recall that x I
0,1 = y I

0,1 ∈ proj IR. Hence (C.18) contradicts the fact that (x I ,a ,αI , vρ)
is a representation of x I .

2. Next, suppose thatφ ·v0,1 ≤m I (φ) for anyφ ∈ΦIR such thatφ ·x I ,a
0,1 =m I (φ). This

implies that for small ε > 0,

x I ,a
0,1 + ε(v0,1−x I ,a

0,1 )∈ proj IR.

Because vU ,x I ,a
U ≥mU , it must be that x I ,a

U + ε(vU − x I ,a
U ) ≥mU . One concludes

that for small ε > 0,
x I ,a ′ = x I ,a + ε(v −x I ,a )∈ IR.

But then, by Lemma 15, there is a representation (x I ,a ′ ,αI ′, vρ) such that αI ′ <αI .
This contradicts the choice of (x I ,a ,αI , vρ) as the representation that minimizes
αI . �

L 19. x I ,a ∈ I1(p ).

P. I need to show that

u I (p )(x I ,a
0,1 ) =mU , and x I ,a

0,1 ∈ proj ICR ∗(1). (C.19)

First, suppose that the first part of (C.19) is not true. Because x I ,a
U =mU , it must be

that u I (p )(x I ,a
0,1 )>mU . Define

x = (1−αI )(u I (p )(x I ,a
0,1 ),x I ,a

0,1 )+α
I
∑

v∈V

vρI (v ).

Because (x I ,a ,α,ρ) is a representation of x I , x0,1 = x I
0,1. By the above equation, we have

u I (p )(x I
0,1)≥ xU > x I

U . But this contradicts (C.8).
Next, I show that the second part of (C.19) holds. By (C.8), u I (p )(x I

0,1) = x I
U . Hence

u I (p )(x I
0,1) = x I

U = (1−αI )x I ,a
U +αI

∑

v∈V

vUρ
I (v )

= (1−αI )mU +αI
∑

v∈V

vUρ
I (v )

≤mU −αI C I ,

where the last inequality follows from the fact that vU ≤mU −C I for each v ∈ suppρI .
By the definition of the constant L in (C.4),

u I (1)(x I
0,1)≤ u I (1)(x I ,a

0,1 )+ L




x I
0,1−x I ,a

0,1







≤ u I (1)(x I ,a
0,1 )+α

I LM .
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The function u I (.)(x I
0,1) is convex in p (part (iii) of Lemma 2). Hence

mU = u I (p ′)(x I
0,1)

≤ 1−p ′

1−p
u I (p )(x I

0,1)+
p ′−p

1−p
u I (1)(x I

0,1)

≤ 1−p ′

1−p
mU −αI 1−p ′

1−p
C I +

p ′−p

1−p
u I (1)(x I ,a

0,1 )+
p ′−p

1−p
αI LM . (C.20)

Suppose that x I ,a
0,1 /∈ proj ICR ∗(1), or, because x I ,a

0,1 ∈ proj IR, u I (1)(x I
0,1)<mU . Then

mU >
1−p ′

1−p
mU +

p ′−p

1−p
u I (1)(x I ,a

0,1 ). (C.21)

Subtract both sides of (C.21) from the corresponding sides of (C.20) and multiply by
(1−p )/αI to get (1−p ′)C I < (p ′−p )LM and

p ′−p >
LM

C I (1−p )
.

Therefore, if p ′−p < LM/(C I (1−p u )), then

x I ,a
0,1 ∈ proj ICR ∗(1) and x I ,a ∈ I1(p ). �

C.5 Proof of Lemma 17

L 20. There exist x ∈ FE ∗(p ), αF ∈ [0, 1], and ρF ∈∆V such that

x F,a =αF
∑

v∈V

vρF (v )+ (1−αF )x (C.22)

and
αF ≤CF inf

v IR
0,1∈proj IR.





v0,1−v IR
0,1







A tuple (x ,αF ,ρF ) such that x ∈ FE ∗(p ), αF ∈ [0, 1], ρF ∈ ∆V , and (C.22) holds is
called an F -representation of x F,a .

P. I show that there is a representation (x ,αF ,ρF ) of x F,a such that

proj con(suppρF ∪{x })∩proj IR= {x0,1} (C.23)

proj con(suppρF )∩proj IR=∅
suppρF ⊆V +vert ∪V −vert.

(The sets V +vert ∪V −vert are defined in Section C.2.) By Lemma 14,

αF ≤CsuppρF inf
v IR

0,1∈proj IR.





v0,1−v IR
0,1





.

The lemma is a consequence of the definition of the constant CF in equation (C.2).
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Recall that x F,a ∈ F ∗(p ), which implies that x F,a
U ≥ mU . If x F,a ∈ IR, then x F,a ∈

FE ∗(p ), and the lemma is trivially true. From now on, assume that x F,a /∈ IR. There
exists at least one representation (x ′,αF ,ρ) of x F,a such that (C.22) holds. Among all
representations, choose the one with the lowest value of αF and denote it by (x ,αF ,ρ).
Such a representation exists by a simple continuity argument, andαF > 0 because x F,a /∈
FE ∗(p ). Let

vρ =
∑

v∈V

vρ(v ).

If v
ρ
U ≤ mU , then vρ ∈ V − = con V _

vert and there is a representation (x ,αF ,ρF ) so that
suppρF ⊆ V _

vert. Similarly, if v
ρ
U ≥mU , then there is a representation (x ,αF ,ρF ) so that

suppρF ⊆V +vert.
I discuss separately the different cases.
Case αF = 1. There is no representation such that αF < 1. I can assume that

suppρF ⊆V +vert because x F,a = vρ and x F,a
U = v

ρ
U ≥mU .

I show that
con

�

suppρF �∩ IR=∅. (C.24)

If not, then there exists v ∈ con(suppρF )∩ IR⊆ V ∩ IR. Because suppρF ⊆ V +vert, it must
be that vU ≥ mU and v ∈ FE ∗(p ). A simple geometric argument shows that for any
v ′ ∈ int con(suppρF ), there is a representation (v,αF ′,ρ′) with αF ′ < 1. Because x F,a ∈
int con(suppρF ), this leads to a contradiction.

Because αF = 1, equation (C.22) is satisfied by any any x ∈ FE ∗(p ). Choose x so that
con(suppρF ∪{x })∩ IR= {x }. Such a value of x exists by (C.24).

Because for each v ∈ suppρF , vU ≥ mU , the above argument implies that (C.23)
holds.

Case 0< αF < 1 and xU >mU . By Lemma 15 and the choice of αF , there is an open
neighborhood U 3 x such that

U ∩ con
�

suppρF ∪{x }�∩FE ∗(p ) =∅.

There is an open neighborhood U ′ 3 x such that x ′U >mU for any x ′ ∈U ′. Hence

U ′ ∩{x ′ : x ′0,1 ∈ proj IR} ⊆ FE ∗(p ).

These two observations imply that

U ∩U ′ ∩ con
�

suppρF ∪{x }�∩{x ′ : x ′0,1 ∈ proj IR}=∅. (C.25)

Suppose that condition (C.23) does not hold and there is v ∈ R3 such that (v0, v1) ∈
proj IR and either v ∈ con suppρF or v ∈ con(suppρF ∪{x }) \ {x }. Then, for small γ,

γv +(1−γ)x ∈U ∩U ′ ∩ con
�

suppρF ∪{x }�

γv0,1+(1−γ)x0,1 ∈ proj IR,

which contradicts (C.25).
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Case 0< αF < 1 and xU =mU . By Lemma 15 and the choice of αF , there is an open
neighborhood U 3 x such that

U ∩ con(suppρF ∪{x })∩FE ∗(p ) =∅.

Because x F,a
U ≥mU , it must be that vρ ≥mU and suppρF ⊆V +vert. This implies that

con(suppρF ∪{x })∩{x ′ : x ′0,1 ∈ proj IR} ⊆ FE ∗(p ).

These two observations imply that

U ∩ con(suppρF ∪{x })∩{x ′ : x ′0,1 ∈ proj IR}=∅.

The same argument as in the previous case shows that condition (C.23) must hold. �

Next, I prove Lemma 17. Use Lemma 20 to find an F -representation (x ,αF ,ρF ) of
x F,a . Then

αF ≤CF





x F,a
0,1 −x I ,a

0,1





≤CF (u I (1)(x I ,a
0,1 )−mU )θ , (C.26)

where in the second inequality I use (C.14). Denote vρ =
∑

v∈V vρ(v ).
By the definition of L in equation (C.4),

u F (1)(x I ,a
0,1 )−u F (1)(x0,1)≤ L





x I ,a
0,1 −x0,1







≤ L(




x F,a
0,1 −x0,1





+




x I ,a
0,1 −x F,a

0,1





)

≤ L
�

αF M +




x I ,a
0,1 −x F,a

0,1







�

≤ L(1+MCF )(u I (1)(x I ,a
0,1 )−mU )θ ,

where in the last inequality I use (C.14). For sufficiently small θ ≤ θ ∗ = 1/L(1+MCF ),

u F (1)(x0,1)−mU ≥ (u I (1)(x I ,a
0,1 )−mU )(1− L(1+MCF )θ )≥ 0.

By part (iii) of Lemma 2, the function u I (p ′)(x I ,a
0,1 ) is convex in p ′. Hence

u I (p ′)(x I ,a
0,1 )≤

1−p ′

1−p
u I (p )(x I ,a

0,1 )+
p ′−p

1−p
u I (1)(x I ,a

0,1 ) (C.27)

=
1−p ′

1−p
mU +

p ′−p

1−p
u I (1)(x I ,a

0,1 ),

where I use the fact that x I ,a ∈ I1(p ) and u I (p )(x I ,a
0,1 ) =mU . By Lemma 2, the function

u F is concave in p and x0,1. Hence,

u F (p ′)(x F,a
0,1 )≥αF v

ρ
U +(1−α)u F (p ′)(x0,1)

≥αF v
ρ
U +(1−αF )

�1−p ′

1−p
u F (p )(x0,1)+

p ′−p

1−p
u F (1)(x0,1)

�

≥ 1−p ′

1−p
((1−αF )u F (p )(x0,1)+αF v

ρ
U )+

p ′−p

1−p
u F (1)(x0,1)

−αF p ′−p

1−p
(u F (1)(x0,1)−αF v

ρ
U ).
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Recall that x F,a ∈ F ∗(p ), hence mU ≤ x F,a
U ≤ (1 − αF )u F (p )(x0,1) + αF v

ρ
U . Also,

�

�(u F (1)(x0,1)−αF v
ρ
U )
�

�≤ 2M . Hence,

u F (p ′)(x F,a
0,1 )≥

1−p ′

1−p
mU +

p ′−p

1−p
u F (1)(x0,1)−αF p ′−p

1−p
2M . (C.28)

One can put (C.27) and (C.28) together. Using the second inequality in (C.26), one
gets

u I (p ′)(x I ,a
0,1 )−u F (p ′)(x F,a

0,1 )≤
p ′−p

1−p
(u I (1)(x I ,a

0,1 )−u F (1)(x0,1))+
p ′−p

1−p
αF 2M

≤ 2

1−p u [L(1+MCF )+2MCF ](u I (1)(x I ,a
0,1 )−mU )(p ′−p )θ .

The lemma follows from the definition of C0 in equation (C.5).

C.6 Approximation argument

So far, I have shown that Theorem 3 is true if Assumption 2 holds. Here I argue that
Assumption 2 is unnecessary. The idea is that any game can be approximated by games
that satisfy Assumption 2.

Recall that the correspondences FE ∗ and ICR ∗ are defined as functions of the sets
V of non-revealing payoffs and IR of individually rational payoffs. Precisely, consider
two collections of closed subsets of [−M , M ]3: V consisting of all convex sets and IR
consisting of all convex sets with the property that for any IR∈IR there is mU ∈R such
that for any (vU , v0, v1) ∈ IR, (v ′U , v ′0, v ′1) ∈ IR if v ′k ≥ vk and v ′U ≥mU . For any V ∈ V and
IR∈IR , define sets Ek (V, IR) as in equations (6) and (5). Using the sets Ek , I may restate
Assumption 1: it holds if there are two open sets Ak ⊆ Ek such that proj A0 = proj A1.
This allows me to define correspondences FE ∗(V, IR) and ICR ∗(V, IR) as in Sections 3.3
and 4.2.

Theorem 3 can be interpreted as follows. Suppose that Assumption 1 (as stated in
this section) holds for some V ∈V and IR∈IR . Then FE ∗(V, IR) = ICR ∗(V, IR). Till now,
I have shown that Theorem 1 is true, if, in addition, Assumption 2 is satisfied.

Suppose now that Assumption 1 holds for some V ∈ V and IR ∈ IR . Consider an
approximating sequence of closed sets IRn ∈IR , such that Assumption 2 is satisfied for
all sets in the sequence, IRn ⊆ IR, and IRn converges to the set IR in the sense of Hauss-
dorf distance: limn→∞ IRn = IR. Such a sequence clearly exists. Then Assumption 1
holds for a high enough n and

FE ∗(V, IRn ) = ICR ∗(V, IRn ).

By monotonicity, FE ∗(V, IRn )⊆ FE ∗(V, IR) for all n . Two simple lemmas end the proof.

L 21. limn→∞FE ∗(V, IRn ) = FE ∗(V, IR).

P. This is because I can take

FE ∗∗ = cl
⋃

n

FE ∗(V, IRn )

and show that it satisfies all the properties in Section 3.3. �
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L 22. limn→∞ ICR ∗(V, IRn ) = ICR ∗(V, IR).

P. Indeed, define the correspondence ICR ∗∗n for any p ∈ [0, 1] by

ICR ∗∗n (p ) = IRn ∩ ICR ∗(V, IR)(p )

and show that it satisfies all three properties in Section 4.2. As a consequence, ICR ∗∗n ⊆
ICR ∗(V, IRn ). �

D. P  S .

I need the following auxiliary result.

L 23. For any (v0, v1) and any sequence pn → p such that limn→∞ l F (pn )(v0, v1) >
mU ,

l F (p )(v0, v1) = lim
n→∞ l F (pn )(v0, v1).

P. Because the set FE ∗ is closed, (limn→∞ l F (pn )(v0, v1), v0, v1)∈ FE ∗(p ). Hence

l F (p )(v0, v1)≤ lim
n→∞ l F (pn )(v0, v1).

Suppose that the inequality is strict, and define

v ∗U =max[mU , l F (p )(v0, v1)]< lim
n→∞ l F (pn )(v0, v1).

Note that (v ∗U , v0, v1) ∈ FE ∗(p ). By part (iv) of Lemma 2, for any n and any pm ∈ [p , pn ]
(assuming without loss of generality that pn > p ),

l F (pm )(v0, v1)≤ pm −p

pn −p
max l F (pn )(v0, v1)+

pn −pm

pn −p
v ∗U .

But then, keeping n fixed and letting pm → p ,

lim inf
m→∞ l F (pm )(v0, v1)≤ v ∗U < lim

n→∞ l F (pn )(v0, v1).

This creates a contradiction. �

D.1 Proof of Lemma 6

If l F (p )(v0, v1) ≤ mU + 1
2θ (p , v0, v1), then there is nothing to prove. Suppose not and

define

p0 = sup
p ′<p

�

l F (p ′)(v0, v1)≤mU + 1
2θ (p

′, v0, v1)
	

p1 = inf
p ′>p

�

l F (p ′)(v0, v1)≤mU + 1
2θ (p

′, v0, v1)
	

with the convention that p0 = 0 or p1 = 1 if the respective sets are empty. Then p0 < p <
p1, and because of Lemma 23,

l F (p i )(v0, v1)≥mU + 1
2θ (p i , v0, v1) for i = 0, 1.
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By part (iv) of Lemma 2, l F is convex (hence continuous for interior p s) above mU . Thus
the inequality turns into an equality whenever p i 6= 0, 1. Using Lemma 2 again, for any
p ′ ∈ [p0, p1],

θ (p ′, v0, v1)≤ p ′−p0

p1−p0
θ (p1, v0, v1)+

p1−p ′

p1−p0
θ (p0, v0, v1).

This means that there is p ′ ∈ {p0, p1} such that

θ (p ′, v0, v1)≥ θ (p , v0, v1)> 0.

Because θ (k , v0, v1) = 0 for k = 0, 1, it must be that p ′ /∈ {0, 1}. By the above argument,

l F (p ′)(v0, v1) =mU + 1
2θ (p

′, v0, v1),

which implies that
l I (p ′)(v0, v1)≤mU − 1

2θ (p
′, v0, v1).

D.2 Proof of Lemma 7

By the definition of the function l I , there is v ′ = (v ′U , v ′0, v ′1) ∈ ICR ∗(p ), α ∈ [0, 1], and
v̄ ∈V such that

l I (p )(v ′0, v ′1) = v ′U and l I (p )(v0, v1) =αv̄U +(1−α)v ′U . (D.1)

Because v ′U ≥mU , it must be that v ′U − l I (p )(v0, v1) ≥ 1
2θ (p , v0, v1). Because v ′U − v̄U ≤

2M , it must be that

α=
v ′U − l I (p )(v0, v1)

v ′U − v̄U
≥ θ (p , v0, v1)

4M
. (D.2)

Because v̄ ∈ con(FE ∗(p )∪V ),

l F (p )(v̄0, v̄1)≤ v̄U = l I (p )(v̄0, v̄1)≤ l F (p )(v̄0, v̄1)

and all the inequalities can be replaced by equalities. In particular,

θ (p , v̄0, v̄1) = 0.

By the convexity of l F in (v0, v1) (part (ii) of Lemma 2),

l F (p )(v0, v1)≤αl F (p )(v̄0, v̄1)+ (1−α)l F (p )(v ′0, v ′1)
=αv̄ +(1−α)l F (p )(v ′0, v ′1).

Because of (D.1),

θ (p , v0, v1) = l F (p )(v0, v1)− l I (p )(v0, v1)

≤ (1−α)θ (p , v ′0, v ′1). (D.3)

Inequalities (D.2) and (D.3) lead to

θ (p , v ′0, v ′1)≥
4M

4M −θ (p , v0, v1)
θ (p , v0, v1).
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