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This paper studies a dynamic adjustment process in a large society of forward-
looking agents where payoffs are given by a supermodular normal form game. The
stationary states of the dynamics correspond to the Nash equilibria of the stage
game. It is shown that if the stage game has a monotone potential maximizer,
then the corresponding stationary state is uniquely linearly absorbing and glob-
ally accessible for any small degree of friction. A simple example of a unanimity
game with three players is provided where there are multiple globally accessible
states for a small friction.
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1. I

Supermodular games capture the key concept of strategic complementarity in various
economic phenomena. Examples include oligopolistic competition, the adoption of
new technologies, bank runs, currency crises, and economic development. Strategic
complementarity plays an important role in particular in Keynesian macroeconomics
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(Cooper 1999). From a theoretical viewpoint, supermodular games have appealing prop-
erties due to their monotone structure (Topkis 1979, Milgrom and Roberts 1990, Vives
1990, and Athey 2001).

A salient feature of supermodular games is that they typically admit multiple strict
Nash equilibria due to the presence of strategic complementarities, which raises the
question as to which equilibrium is likely to be played. To address the problem of equi-
librium selection, game theory has so far proposed two major lines of approach be-
sides the classic one of Harsanyi and Selten (1988). One is to consider the stability
of Nash equilibria in transition dynamics (Kandori et al. 1993, Young 1993; KMRY for
short). The other is to embed the original game in a static incomplete information
game and examine the robustness of equilibrium outcomes to a small amount of un-
certainty (Carlsson and van Damme 1993, Kajii and Morris 1997). Early papers using
these two approaches studied 2× 2 coordination games and established a connection
between the approaches through risk-dominance due to Harsanyi and Selten (1988):
the risk-dominant equilibrium is played most of the time in the long run in stochastic
evolutionary dynamics as shown by KMRY, and it is the unique rationalizable outcome
in slightly perturbed incomplete information games, called global games, as shown by
Carlsson and van Damme (1993). Beyond 2× 2 games, however, the connection fails.
The incomplete information approach, on the one hand, has provided general results
for larger classes of games, by using the concepts of p-dominance and the (generalized)
potential function (Frankel et al. 2003, Kajii and Morris 1997, and Morris and Ui 20051).
For the stochastic evolutionary dynamic approach à la KMRY, on the other hand, the
results obtained so far apply only to restricted classes of games.2 Kim (1996) shows that
these approaches predict different outcomes in some binary action games with more
than two players.

In the present paper, we study an alternative to KMRY, the perfect foresight dy-
namics first introduced by Matsui and Matsuyama (1995) for 2 × 2 games.3 Matsui
and Matsuyama (1995) formalize a dynamic adjustment process in a large society
where agents make irreversible decisions (e.g., career or sector choices as considered in
Matsuyama 1991) and examine the possibility that forward-looking expectations desta-
bilize strict Nash equilibria. They demonstrate that in 2× 2 coordination games, if the
degree of friction in action revisions is sufficiently small, then the belief that all agents
will switch from the risk-dominated action to the risk-dominant one can become self-
fulfilling, whereas the belief in the reverse switch cannot. Our first purpose in this paper
is to develop a general theory of stability under perfect foresight dynamics for super-
modular games. The second is to derive sufficient conditions for the stability of Nash
equilibria for broader classes of supermodular games than 2 × 2 games, thereby ex-
tending the connection between the dynamic stability approach and the incomplete
information approach. Specifically, we show that for games with monotone potentials,

1See also Morris and Shin (2003) for an extensive survey.
2See, among others, Kandori and Rob (1995), Young (1998), and Durieu et al. (2006).
3This class of dynamics is studied also by Matsuyama (1991) but with nonlinear payoff functions in the

context of development economics. See also Matsuyama (1992) and Kaneda (1995).
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our condition coincides with the condition for robustness to incomplete information
(Morris and Ui 2005).

We employ the following framework. The society consists of N large populations
of infinitesimal agents, who are repeatedly and randomly matched to play an N -player
normal form game. There are frictions: each agent must make a commitment to a par-
ticular action for a random time interval. Opportunities to revise actions follow Poisson
processes that are independent across agents. The dynamic process thus exhibits iner-
tia in that the action distribution in the society changes continuously. Unlike in stan-
dard evolutionary games, each agent forms his belief about the future path of the action
distribution and, when given a revision opportunity, takes an action to maximize his
expected discounted payoff. A perfect foresight path is defined to be a feasible path of
action distributions along which every revising agent takes a best response to the future
course of play. While the stationary states of these dynamics correspond to the Nash
equilibria of the stage game, there may also exist a perfect foresight path that escapes
from a strict Nash equilibrium when the degree of friction, defined as the discounted
average duration of the commitment, is sufficiently small. We say that a Nash equilib-
rium a ∗ is linearly absorbing if the feasible path converging linearly to a ∗ is the unique
perfect foresight path whenever the initial state is close enough to a ∗; a ∗ is globally ac-
cessible if for any initial state, there exists a perfect foresight path converging to a ∗.4 If a
Nash equilibrium is both linearly absorbing and globally accessible, then self-fulfilling
expectations cannot destabilize this equilibrium, whereas from any other equilibrium,
expectations may lead the society to this equilibrium; that is to say, it is the unique equi-
librium that is robust to the possibility of self-fulfilling prophecies.

In this paper, we consider supermodular games and games that have a monotonic
relationship with supermodular games, by employing methods of analysis based on
monotonicity and comparison. An underlying observation is that a perfect foresight
path is characterized as a fixed point of the best response correspondence defined on
the set of feasible paths. We observe that if the stage game is supermodular, this cor-
respondence is monotone with respect to the partial order over feasible paths induced
by the stochastic dominance order. We then compare the perfect foresight paths of two
different stage games that are comparable in terms of best responses and show the fol-
lowing analogue of the comparison theorem from the theory of monotone dynamical
systems (Smith 1995):5 if at least one of the two games is supermodular, then the order

4Since there may exist multiple perfect foresight paths from a given initial state, it is possible that a state
is globally accessible but not linearly absorbing. Indeed, we provide an example where there exist multiple
globally accessible states when the friction is small; by definition, none of them is linearly absorbing.

5In the case of Euclidean space, the comparison theorem says that if two dynamical systems are ordered
with respect to the partial order of the Euclidean space and at least one of them is a cooperative monotone
system, then, when their initial conditions are ordered, any two solutions that these systems generate are
ordered as well.

Hofbauer and Sandholm (2002, 2007) show that when the underlying game is supermodular, the per-
turbed best response dynamics form a monotone dynamical system. The perfect foresight dynamics, on
the other hand, cannot be considered as a dynamical system due to the multiplicity of perfect foresight
paths.
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of best responses between the games is preserved in the perfect foresight dynamics. This
fact allows us to transfer stability properties from one game to the other.

We apply our monotone methods to the class of games with monotone potentials
introduced by Morris and Ui (2005), who show that a monotone potential maximizer
(MP-maximizer) is robust to incomplete information (Kajii and Morris 1997).6 A normal
form game is said to have a monotone potential if it is comparable (in terms of best re-
sponses) to a potential game, and the action profile that maximizes the potential is said
to be an MP-maximizer. Monotone potential games include both potential games and,
interestingly, games with a p-dominant equilibrium with

∑

i p i < 1. By invoking the po-
tential game results due to Hofbauer and Sorger (2002), our main result shows that if
the stage game or the monotone potential is supermodular, then an MP-maximizer is
globally accessible for any small degree of friction and (generically) linearly absorbing
for any degree of friction. Our result unifies and extends previous results using poten-
tial maximization (Hofbauer and Sorger 1999, 2002) and p-dominance (Oyama 2002), as
done by Morris and Ui (2005) for the robustness of equilibria to incomplete information.

The concept of a perfect foresight path requires that agents optimize against their
beliefs about the future path of the action distribution and that these beliefs coincide
with the actual path. Relaxing the latter requirement, Matsui and Oyama (2006) intro-
duce a model of rationalizable foresight dynamics, where while the rationality of the
agents as well as the structure of the society is common knowledge, beliefs about the fu-
ture path are not necessarily coordinated among the agents. It is instead assumed that
the agents form their beliefs in a rationalizable manner: in particular, they may mis-
forecast the future. A rationalizable foresight path is a feasible path along which every
revising agent optimizes against another rationalizable foresight path. We show that in
supermodular games, a linearly absorbing and globally accessible state is the unique
state from which no rationalizable foresight path escapes. That is, our stability results
for supermodular games hold also under the less demanding assumption of rationaliz-
able foresight.

We briefly review existing results in the literature on perfect foresight dynamics.
Oyama (2002) appeals to the notion of p-dominance to identify (in a single population
setting) a class of games where one can explicitly characterize the set of perfect foresight
paths relevant for stability considerations, showing that a p-dominant equilibrium with
p < 1/2 is selected.7 Hofbauer and Sorger (2002), Kojima (2006), and Kojima and Taka-
hashi (forthcoming) obtain related results based on other generalizations of the risk-
dominance concept in a multiple population setting.8 Hofbauer and Sorger (1999, 2002)
establish the selection of the unique potential maximizer in potential games, both in a
single population setting and in a multi-population setting.9 Their results rely on the

6Morris and Ui (2005) show more generally that a generalized potential maximizer is robust to incom-
plete information. A monotone potential induces a generalized potential in the case considered here.
Frankel et al. (2003) show that under certain conditions, a local potential maximizer (LP-maximizer) is
selected in global games with strategic complementarities. In games with marginal diminishing returns, an
LP-maximizer is an MP-maximizer.

7Tercieux (2006) considers set-valued stability concepts and obtains a similar result.
8Kim (1996) establishes a similar result for binary games with many identical players.
9To be precise, they show that a unique potential maximizer a ∗ is absorbing (and globally accessible for
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relationship between the perfect foresight paths and the solutions to, roughly, an asso-
ciated “dynamic potential maximization” problem as well as the Hamiltonian structure
of the dynamics when the stage game is a potential game.

The paper is organized as follows. Section 2 introduces perfect foresight dynam-
ics for general finite N -player games and provides a characterization of perfect fore-
sight paths as the fixed points of the best response correspondence defined on the set
of feasible paths. Section 3 studies monotone properties of perfect foresight dynam-
ics and proves our comparison theorem. It also examines the relationship between the
stability concepts under perfect foresight and those under rationalizable foresight. Sec-
tion 4 considers games with monotone potentials and establishes the selection of an
MP-maximizer. Section 5 concludes.

2. P  

2.1 Stage game

Let G = (I , (A i )i∈I , (u i )i∈I ) be a normal form game with N ≥ 2 players, where I =
{1, 2, . . . , N } is the set of players, A i = {0, 1, . . . , n i } is the finite set of actions of player
i ∈ I , and u i :

∏

i∈I A i → R is the payoff function of player i . We denote
∏

i∈I A i by A
and

∏

j 6=i A j by A−i .
Denote by R+ the set of all nonnegative real numbers and by R++ the set of all posi-

tive real numbers. The set of mixed strategies for player i is denoted by

∆(A i ) =
n

x i = (x i 0,x i 1, . . . ,x i n i )∈R
n i+1
+

�

�

∑

h∈A i

x i h = 1
o

,

which is identified with the n i -dimensional simplex. We sometimes identify each action
in A i with the element of ∆(A i ) that assigns one to the corresponding coordinate. The
polyhedron

∏

i∈I ∆(A i ) is a subset of the n-dimensional real space endowed with the
sup norm | · |, where n =

∑

i∈I (n i + 1). For x ∈
∏

i ∆(A i ) and ε > 0, Bε(x ) denotes the
ε-neighborhood of x relative to

∏

i ∆(A i ), i.e., Bε(x ) = {y ∈
∏

i ∆(A i ) | |y −x |< ε}.
Payoff functions u i (h, ·) are extended to

∏

j 6=i ∆(A j ), and u i (·) to
∏

j∈I ∆(A j ), i.e.,

u i (h,x−i ) =
∑

a−i∈A−i

�

∏

j 6=i
x j a j

�

u i (h, a−i )

for x−i ∈
∏

j 6=i ∆(A j ), and

u i (x ) =
∑

h∈A i

x i h u i (h,x−i )

for x ∈
∏

j∈I ∆(A j ). Let bri (x−i ) be the set of best responses to x−i ∈
∏

j 6=i ∆(A j ) in pure

small friction): i.e., any perfect foresight path, which may or may not be unique, from a neighborhood of a ∗

must converge to a ∗. It is not known whether a potential maximizer is linearly absorbing. In supermodular
games, as we show, absorption and linear absorption are equivalent.
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strategies, i.e.,

bri (x−i ) = arg max
h∈A i

u i (h,x−i )

= {h ∈ A i | u i (h,x−i )≥ u i (k ,x−i ) for all k ∈ A i }.

An element x ∗ ∈
∏

i ∆(A i ) is a Nash equilibrium if for all i ∈ I and all h ∈ A i ,

x ∗i h > 0⇒ h ∈ bri (x ∗−i ),

and x ∗ is a strict Nash equilibrium if for all i ∈ I and all h ∈ A i ,

x ∗i h > 0⇒{h}= bri (x ∗−i ).

Let ∆(A−i ) be the set of probability distributions on A−i . We sometimes extend
u i (h, ·) to ∆(A−i ). For πi ∈ ∆(A−i ), we write u i (h,πi ) =

∑

a−i∈A−i
πi (a−i )u i (h, a−i ) and

bri (πi ) = arg maxh∈A i
u i (h,πi ).

2.2 Perfect foresight paths

Given an N -player normal form game, which we call the stage game, we consider the
following dynamic societal game. Society consists of N large populations of infinitesi-
mal agents, one for each role in the stage game. In each population, agents are identical
and anonymous. At each point in time, one agent is selected randomly from each pop-
ulation and matched to form an N -tuple and play the stage game. Agents cannot switch
actions at every point in time. Instead, every agent must make a commitment to a par-
ticular action for a random time interval. Time instants at which each agent can switch
actions follow a Poisson process with the arrival rate λ > 0. The processes are indepen-
dent across agents. We choose without loss of generality the unit of time in such a way
that λ= 1.10

The action distribution in population i ∈ I at time t ∈R+ is denoted by

φi (t ) = (φi 0(t ),φi 1(t ), . . . ,φi n i (t ))∈∆(A i ),

where φi h (t ) is the fraction of agents who are committed to action h ∈ A i at time t . Let
φ(t ) = (φ1(t ),φ2(t ), . . . ,φN (t )) ∈

∏

i ∆(A i ). Due to the assumption that the switching
times follow independent Poisson processes with arrival rate λ = 1, φi h (·) is Lipschitz
continuous with Lipschitz constant 1, which implies in particular that it is differentiable
at almost all t ≥ 0. Moreover, its speed of adjustment is bounded: −φi h (t ) ≤ φ̇i h (t ) ≤
1−φi h (t ), where

∑

h∈A i
φ̇i h (t ) = 0. We call such a pathφ(·) a feasible path.

D 2.1. A pathφ : R+→
∏

i ∆(A i ) is feasible if it is Lipschitz continuous and for
all i ∈ I and almost all t ≥ 0 there exists αi (t )∈∆(A i ) such that

φ̇i (t ) =αi (t )−φi (t ). (2.1)

10An alternative interpretation can be given as follows. Each agent exits from his population according
to the Poisson process with parameter λ and is replaced by his successor. Agents make once-and-for-all
decisions upon entry, i.e., an agent cannot change his action once it is chosen.
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In (2.1), αi (t ) ∈ ∆(A i ) denotes the action distribution of the agents in population i
who have a revision opportunity during the short time interval [t , t +d t ). In particular,
if for some action profile a = (a i )i∈I ∈ A, αi (t ) = a i for all i ∈ I and all t ≥ 0, then the
resulting feasible path, which converges linearly to a , is called a linear path to a .

Denote by Φi the set of feasible paths for population i , and let Φ =
∏

i Φ
i and Φ−i =

∏

j 6=i Φ
j . For x ∈

∏

i ∆(A i ), the set of feasible paths starting from x is denoted by Φx =
∏

i Φ
i
x . For each x ∈

∏

i ∆(A i ), Φx is convex and compact in the topology of uniform
convergence on compact intervals.11

An agent in population i anticipates the future evolution of the action distribution,
and, if given the opportunity to switch actions, commits to an action that maximizes his
expected discounted payoff. Since the duration of the commitment has an exponential
distribution with mean 1, the expected discounted payoff of committing to action h ∈ A i

at time t with a given anticipated pathφ ∈Φ is represented by

Vi h (φ)(t ) = (1+θ )

∫ ∞

0

∫ t+s

t

e−θ (z−t )u i (h,φ−i (z ))d z e−s d s

= (1+θ )

∫ ∞

t

e−(1+θ )(s−t )u i (h,φ−i (s ))d s ,

where θ > 0 is a common discount rate (relative to λ = 1). We view the discounted
average duration of a commitment, θ/λ = θ , as the degree of friction. Note that V is
well-defined whenever θ >−1.

Given a feasible path φ ∈Φ, let BRi (φ)(t ) be the set of best responses in pure strate-
gies toφ−i = (φj )j 6=i at time t , i.e.,

BRi (φ)(t ) = arg max
h∈A i

Vi h (φ)(t ).

Note that for each i ∈ I , the correspondence BRi : Φ×R+→ A i is upper semi-continuous
since Vi is continuous.

A perfect foresight path is a feasible path along which each agent optimizes against
the correctly anticipated future path.

D 2.2. A feasible path φ is a perfect foresight path if for all i ∈ I , all h ∈ A i , and
almost all t ≥ 0,

φ̇i h (t )>−φi h (t )⇒ h ∈BRi (φ)(t ).

Note that φ̇i h (t ) > −φi h (t ) (i.e., αi h (t ) > 0 in (2.1)) implies that action h is taken
by some positive fraction of the agents in population i having a revision opportunity
during the short time interval [t , t + d t ). The definition says that such an action must
be a best response to the pathφ itself.

As we observe in Remark 2.2, a perfect foresight path from x ∈ ∆ is equivalent to a
Nash equilibrium of an N -player differential game in which each population i ∈ I acts
as a single player, who chooses a feasible path from the set Φi

x and whose payoff is given
by the sum of discounted values of u i .

11One can instead use the topology induced by the discounted sup norm.
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2.3 Best response correspondence

For a given initial state x ∈
∏

i ∆(A i ), a best response path for population i to a feasible
path φ ∈ Φx is a feasible path ψi ∈ Φi

x along which every agent takes an optimal action
against φ. This defines the best response correspondence β i

x : Φx →Φi
x , which maps each

feasible pathφ ∈Φx to the set of best response paths for population i :

β i
x (φ) = {ψi ∈Φi

x | ψ̇i h (t )>−ψi h (t )⇒ h ∈BRi (φ)(t ) a.e.}.

Let βx : Φx → Φx be defined by βx (φ) =
∏

i β
i
x (φ). We denote by β : Φ→ Φ the extension

of βx to Φ, i.e., β (φ) =βφ(0)(φ) forφ ∈Φ.
A perfect foresight path φ with φ(0) = x is a fixed point of βx : Φx → Φx , i.e., φ ∈

βx (φ). The existence of perfect foresight paths follows, due to Kakutani’s fixed point
theorem, from the fact that βx is a nonempty-, convex-, and compact-valued upper
semi-continuous correspondence. This fact can be shown by either of the two char-
acterizations given below.

R 2.1. For a given feasible path φ ∈ Φx , a best response pathψ ∈ βx (φ) is a Lips-
chitz solution to the differential inclusion

ψ̇(t )∈ F (φ)(t )−ψ(t ) a.e., ψ(0) = x ,

where F : Φ×R+→
∏

i ∆(A i ) is defined by

Fi (φ)(t ) = {αi ∈∆(A i ) |αi h > 0⇒ h ∈BRi (φ)(t )}, (2.2)

which is the convex hull of BRi (φ)(t ). Since F (φ)(·) is convex- and compact-valued,
and upper semi-continuous, the existence theorem for differential inclusions (see, e.g.,
Aubin and Cellina 1984, Theorem 2.1.4) implies the nonemptiness of the set of solutions,
βx (φ). The convexity of βx (φ) is obvious. Furthermore, we can show that βx (φ) is com-
pact and depends upper semi-continuously on φ. For these properties of βx , we need
only the upper semi-continuity of BRi , which is in turn implied by the continuity of Vi .

L 2.1. βx is compact-valued and upper semi-continuous.

P. Since the values are contained in the compact set Φx , it is sufficient to show
that βx has a closed graph. Let {φk }∞k=1 and {ψk }∞k=1 be such that ψk ∈ βx (φk ), and
assume that φk →φ andψk →ψ as k →∞. Take any i ∈ I , h ∈ A i , and t ≥ 0 such that
ψ̇i h (t )>−ψi h (t ). We want to show that h ∈BRi (φ)(t ).

Observe that for any ε > 0, there exists k̄ such that for all k ≥ k̄ ,

ψ̇k
i h (tk )>−ψk

i h (tk )

for some tk ∈ (t − ε, t + ε). Take a sequence {ε`}∞`=1 such that ε` > 0 and ε`→ 0 as `→∞.

Then, we can take a subsequence {ψk`}∞`=1 of {ψk }∞k=1 such that ψ̇k`
i h (t`)>−ψ

k`
i h (t`) holds

for some t` ∈ (t − ε`, t + ε`). By assumption, h ∈ BRi (φk` )(t`) for all `. Now let `→∞.
Since BRi (·)(·) is upper semi-continuous, we have h ∈BRi (φ)(t ). �
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R 2.2. The correspondence β i
x is actually the best response correspondence for

an associated differential game, as constructed in Hofbauer and Sorger (2002). Given the
stage game G , the discount rate θ > 0, and an initial state x ∈

∏

i ∆(A i ), the associated
differential game is an N -player normal form game in which the set of actions for player
i ∈ I is Φi

x and the payoff function for player i is given by

Ji (φ) =

∫ ∞

0

e−θ t u i (φ(t ))d t .

As shown by Hofbauer and Sorger (2002), the perfect foresight paths are precisely the
Nash equilibria of this game, due to the following fact.

L 2.2. For a feasible pathφ ∈Φx ,

β i
x (φ) = arg max

ψi∈Φi
x

Ji (ψi ,φ−i ).

P. Follows from Lemma 3.1 in Hofbauer and Sorger (2002). �

The continuity of Ji , the quasi-concavity of Ji (·,φ−i ), and the compactness of Φi
x

therefore imply the desired properties of β i
x .

2.4 Stability concepts

The constant path φ̄ given by φ̄(t ) = x ∗ ∈
∏

i ∆(A i ) for all t ≥ 0 is a perfect foresight path
if and only if x ∗ is a Nash equilibrium of the stage game. Nevertheless, there may exist
another perfect foresight path starting at x ∗ that converges to a different Nash equilib-
rium; that is to say, self-fulfilling beliefs may enable the society to escape from a Nash
equilibrium. When the degree of friction θ > 0 is sufficiently small, this may happen
even from a strict Nash equilibrium. In fact, in 2 × 2 coordination games, there ex-
ists a perfect foresight path from the risk-dominated equilibrium to the risk-dominant
equilibrium for small θ > 0, but not vice versa. This motivates the following stability
concepts.

D 2.3. (i) x ∗ ∈
∏

i ∆(A i ) is absorbing if there exists ε > 0 such that any perfect
foresight path from any x ∈ Bε(x ∗) converges to x ∗.

(ii) a ∗ ∈ A is linearly absorbing if there exists ε > 0 such that for any x ∈ Bε(a ∗), the
linear path to a ∗ is a unique perfect foresight path from x .

(iii) x ∗ ∈
∏

i ∆(A i ) is accessible from x ∈
∏

i ∆(A i ) if there exists a perfect foresight path
from x that converges to x ∗. x ∗ is globally accessible if it is accessible from any x .

If x ∗ is absorbing and the current state is close enough to x ∗, then along any (not
necessarily unique) perfect foresight path, the behavior pattern of the society converges
to x ∗. Linear absorption is a stronger concept than absorption:12 if a ∗ is linearly absorb-
ing and the current state is close enough to a ∗, then the perfect foresight path is unique,

12No example is known of a state that is absorbing but not linearly absorbing. We show that in super-
modular games, any absorbing state is a strict Nash equilibrium and is also linearly absorbing.
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0 1
0 a , a c ,b
1 b , c d , d

F .. A 2×2 coordination game.

along which every agent at every revision opportunity takes the action prescribed in a ∗.
If a (linearly) absorbing state is also globally accessible, then it is the unique (linearly)
absorbing state; if a globally accessible state is also absorbing, then it is the unique glob-
ally accessible state.

A globally accessible state is not necessarily absorbing, as there are generally multi-
ple perfect foresight paths from a given initial state. We present a (nondegenerate) ex-
ample in Section 4.3.4 that has two globally accessible states for small θ ; by definition,
neither of them is absorbing.

Any absorbing or globally accessible state is a Nash equilibrium of the stage game,
which follows from the following proposition.

P 2.1. If x ∗ ∈
∏

i ∆(A i ) is the limit of a perfect foresight path, then x ∗ is a Nash
equilibrium.

P. Suppose that x ∗ is the limit of a perfect foresight pathφ∗. Let φ̄ be the constant
path at x ∗, i.e., φ̄(t ) = x ∗ for all t ≥ 0. Let φt be the feasible path defined by φt (s ) =
φ∗(s + t ) for all s ≥ 0. Then {φt }t≥0 converges to φ̄ as t →∞.

Take any i ∈ I and any h ∈ A i with x ∗i h > 0. Then, there exists a sequence {tk }∞k=1
such that tk → ∞ as k → ∞ and h ∈ BRi (φ∗)(tk ) = BRi (φtk )(0) for any k since φ∗ is a
perfect foresight path that converges to x ∗. Let k →∞. By the upper semi-continuity of
BRi (·)(0), we have h ∈BRi (φ̄)(0) = bri (x ∗−i ). �

2.5 2×2 case

Before starting our analysis of general supermodular games, we illustrate in a simple
2× 2 game example how our stability concepts allow us to discriminate among strict
Nash equilibrium outcomes. Consider the symmetric 2× 2 coordination game given in
Figure 2.1, where a >b and d > c so that 0= (0, 0) and 1= (1, 1) are strict Nash equilibria.
Note that this game is supermodular.

Assume that a −b < d − c so that 1 risk-dominates 0. In the following, we review
the result by Matsui and Matsuyama (1995) that 1 is the unique state that is linearly
absorbing and globally accessible for any sufficiently small θ > 0.

Define the function∆u : [0, 1]→R by

∆u i (x j 1) = u i (1, (1−x j 1,x j 1))−u i (0, (1−x j 1,x j 1)),

where ∆u i (x j 1) denotes the payoff difference between the actions 1 and 0 for agents in
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population i when the fraction x j 1 of agents in j 6= i play action 1. Note that ∆u i is
(strictly) increasing by the supermodularity of the underlying game and satisfies

∫ 1

0

∆u i (ξ)dξ> 0

by the assumption that 1 is a risk-dominant equilibrium.
To verify the global accessibility of 1 for small θ , let the initial condition be x 0 = 0

and consider the linear path φ from 0 to 1, given by φj 1(t ) = 1− e−t , along which every
agent switches to action 1 at his first revision opportunity. Consider an agent in i who
is given a revision opportunity at time 0, and call him agent 0. Against the path φ, the
difference in the expected discounted payoffs that agent 0 obtains during a commitment
is computed as

∆Vi (φ)(0) =Vi 1(φ)(0)−Vi 0(φ)(0)

= (1+θ )

∫ ∞

0

e−(1+θ )s∆u i

�

1− e−s
�

d s

= (1+θ )

∫ 1

0

∆u i (ξ)(1−ξ)θ dξ

→
∫ 1

0

∆u i (ξ)dξ> 0 as θ → 0, (2.3)

which implies that this agent has an incentive to switch to action 1 provided that θ is
sufficiently small. Due to the supermodularity, this in turn implies that 1 is globally
accessible for small θ . To see this, observe that for any linear path φ′ given by φ′j 1(t ) =
1− (1−φ′j 1(0))e

−t where φ′j 1(0) ∈ [0, 1], we have φj 1(t ) ≤ φ′j 1(t ) for all t ≥ 0 and hence
∆Vi (φ)(0)≤∆Vi (φ′)(0), since∆u i is increasing. (This observation is extended to general
supermodular games in Section 3.2.)

Along the path φ, all the agents are playing action 0 at time 0, but will eventually
switch to action 1 in the future. For agent 0, the decision is whether to already commit
to action 1, which is suboptimal in the present but will become optimal in the future, or
to stay with the currently optimal action 0, postponing the switch to action 1 to a next or
later revision opportunity. In the presence of positive time discounting θ > 0, the agent
assigns larger weights to lower values of ξ ∈ [0, 1] in computing ∆Vi (φ). In the limit as
θ → 0, however, all the ξ’s receive an equal weight, as seen in (2.3). Since 1 is a risk-

dominant equilibrium and hence we have
∫ 1

0
∆u i (ξ)dξ> 0, this implies that, when θ is

small, the relative return from the future coordination on 1 is large enough, so that the
agent chooses to commit to action 1.

To verify the linear absorption of 1, let the initial condition be x 0 = 1 and consider
the linear pathψ from 1 to 0, given byψj 1(t ) = e−t , along which every agent switches to
action 0 at his first revision opportunity. Consider again an agent who is given a revision
opportunity at time 0. Againstψ,
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∆Vi (ψ)(0) = (1+θ )

∫ ∞

0

e−(1+θ )s∆u i

�

e−s
�

d s

= (1+θ )

∫ 1

0

∆u i (ξ)ξθ dξ

>

∫ 1

0

∆u i (ξ)dξ> 0,

which implies that the agent has an incentive to stick to action 1 for any θ > 0 (observe
that∆Vi (ψ)(0) is increasing in θ , as∆u i is increasing). That is, since the risk-dominated
action 0 does not perform well enough to compensate the loss from not playing the
currently optimal action 1, the agent chooses action 1 at this revision opportunity, in-
tending to switch to action 0 at a future opportunity. However, this is the case for all
the agents revising at time 0, so that the escaping path ψ cannot be a perfect foresight
path. Moreover, since, due to the supermodularity, the path ψ is the best scenario for
action 0 to be played, action 1 is the best response to any feasible path from 1. It thus
follows that the only perfect foresight path from 1 is the constant path at 1. Since the
argument above remains valid when the initial condition lies in a small neighborhood
of 1, we conclude that 1 is linearly absorbing.

3. S  

In a supermodular game, the actions are ordered so that each player’s marginal payoff to
any increase in his action is nondecreasing in other players’ actions. In this section, we
first identify monotone properties of the perfect foresight dynamics for supermodular
stage games. In particular, we observe the monotonicity of the best response corre-
spondence β with respect to a partial order on Φ induced by the stochastic dominance
relation over mixed strategies. We then prove a comparison theorem for the perfect
foresight paths associated with two different stage games that are comparable in terms
of best responses. This theorem implies that if at least one of the two games is super-
modular, then one game inherits stability properties from the other. Finally, we show
that for supermodular games, stability under perfect foresight is equivalent to that un-
der rationalizable foresight (Matsui and Oyama 2006).

3.1 Supermodular games

For x i , yi ∈∆(A i ), we write x i ­ yi if yi stochastically dominates x i , i.e.,

n i
∑

k=h

x i k ≤
n i
∑

k=h

yi k

for all h ∈ A i . For x , y ∈
∏

i ∆(A i ), we write x ­ y if x i ­ yi for all i ∈ I and x−i ­ y−i if
x j ­ y j for all j 6= i . Moreover, we define φi ­ψi for φi ,ψi ∈ Φi by φi (t ) ­ψi (t ) for all
t ≥ 0; φ ­ ψ for φ,ψ ∈ Φ by φi ­ ψi for all i ∈ I ; and φ−i ­ ψ−i for φ−i ,ψ−i ∈ Φ−i by
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φj ­ψj for all j 6= i . Note that ifφ(0)­ψ(0) and φ̇(t )+φ(t )­ ψ̇(t )+ψ(t ) for almost all
t ≥ 0, thenφ ­ψ. This can be verified by observing that

φ(t ) = e−tφ(0)+

∫ t

0

e s−t
�

φ̇(s )+φ(s )
�

d s (3.1)

for all t ≥ 0.
The game G is supermodular if whenever h < k , the difference u i (k , a−i )−u i (h, a−i )

is nondecreasing in a−i ∈ A−i , i.e., if a−i ≤b−i , then

u i (k , a−i )−u i (h, a−i )≤ u i (k ,b−i )−u i (h,b−i ).

It is well known that this property extends to mixed strategies: if h < k and x−i ­ y−i ,
then

u i (k ,x−i )−u i (h,x−i )≤ u i (k , y−i )−u i (h, y−i ).

The expected discounted payoff function Vi preserves this property, implying that BRi

is monotone with respect to the partial order on Φ.

L 3.1. Suppose that the stage game is supermodular. For φ,ψ ∈ Φ, if φ−i ­ ψ−i ,
then for all t ≥ 0,

Vi k (φ)(t )−Vi h (φ)(t )≤Vi k (ψ)(t )−Vi h (ψ)(t )

for h < k , and

min BRi (φ)(t )≤min BRi (ψ)(t )

max BRi (φ)(t )≤max BRi (ψ)(t ).

P. Supposeφ−i ­ψ−i and fix any t . If k > h, then

Vi k (φ)(t )−Vi h (φ)(t ) = (1+θ )

∫ ∞

t

e−(1+θ )(s−t )�u i (k ,φ−i (s ))−u i (h,φ−i (s ))
	

d s

≤ (1+θ )
∫ ∞

t

e−(1+θ )(s−t )�u i (k ,ψ−i (s ))−u i (h,ψ−i (s ))
	

d s

=Vi k (ψ)(t )−Vi h (ψ)(t ).

Next, let k =min BRi (φ)(t ). For any h < k ,

Vi k (ψ)(t )−Vi h (ψ)(t )≥Vi k (φ)(t )−Vi h (φ)(t )> 0

since h /∈ BRi (φ)(t ). Hence, if ` ∈ BRi (ψ)(t ), then ` ≥ k =min BRi (φ)(t ). We thus have
min BRi (ψ)(t )≥min BRi (φ)(t ).

The other claim that max BRi (φ)(t )≤max BRi (ψ)(t ) can be proved similarly. �

The next proposition establishes the monotonicity of the best response correspon-
dence β i over Φ. For φ ∈ Φ, a feasible path φ−i ∈ β i (φ) is the smallest element of β i (φ)
if φ−i ­ φ

′
i for all φ′i ∈ β i (φ), and φ+i ∈ β i (φ) is the largest element of β i (φ) if φ′i ­ φ

+
i

for allφ′i ∈β i (φ).
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P 3.1. Suppose that the stage game is supermodular. For φ ∈ Φ, β i (φ) has
smallest element minβ i (φ) and largest element maxβ i (φ). If φi (0) ­ ψi (0) and φ−i ­
ψ−i , then

minβ i (φ)­minβ i (ψ)

maxβ i (φ)­maxβ i (ψ).

P. Take φ andψ such that φi (0) = x i ,ψi (0) = yi , x i ­ yi , and φ−i ­ψ−i . First, we
constructφ−i =minβ i (φ); the construction of maxβ i (φ) is similar. Define

αi (t ) =min BRi (φ)(t ),

where the right hand side is considered to be a mixed strategy. Note that αi is lower
semi-continuous, and hence measurable, since BRi (φ)(·) is an upper semi-continuous
correspondence. Then, the unique solutionφ−i to

φ̇−i (t ) =αi (t )−φ−i (t ) a.e., φ−i (0) = x i

is given by

φ−i (t ) = e−t x i +

∫ t

0

e s−tαi (s )d s .

By construction, φ−i ∈ β i (φ), and φ−i ­ φ
′
i for all φ′i ∈ β i (φ), i.e., φ−i is the smallest

element of β i (φ).
On the other hand, any pathψ′i ∈β i (ψ) is given by

ψ′i (t ) = e−t yi +

∫ t

0

e s−tα′i (s )d s

for some α′i : R+ → ∆(A i ) such that α′i (t ) ∈ Fi (ψ)(t ) for almost all t ≥ 0, where Fi (ψ) is
defined by (2.2). Sinceφ−i ­ψ−i , it follows from Lemma 3.1 that

min BRi (φ)(t )≤min BRi (ψ)(t ),

and hence αi (t ) ­ α′i (t ) for almost all t . Together with the assumption that x i ­ yi ,
this implies that φ−i ­ ψ

′
i (recall (3.1)), thereby completing the proof that minβ i (φ) ­

minβ i (ψ). �

3.2 Comparison theorem

Fix the set of players, I , and the set of action profiles, A. Consider two games G =
(I , (A i )i∈I , (u i )i∈I ) and G ′ = (I , (A i )i∈I , (vi )i∈I ) such that for all i ∈ I and all πi ∈∆(A−i ),

min bri
vi
(πi )≤min bri

u i
(πi ), (3.2)

or that for all i ∈ I and all πi ∈∆(A−i ),

max bri
vi
(πi )≤max bri

u i
(πi ), (3.3)
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where bri
u i
(πi ) and bri

vi
(πi ) are the sets of best responses to πi in the games G and G ′,

respectively. In this subsection, we study the relationship between the perfect foresight
paths for the stage game G and those for G ′. Note that the state space

∏

i ∆(A i ) is com-
mon to both cases. We show that if G or G ′ is supermodular, then the perfect foresight
dynamics preserve the order of best responses between G and G ′, and therefore G in-
herits stability properties from G ′.

To specify the payoff functions, we denote by BRi
u i
(φ)(t ) (respectively BRi

vi
(φ)(t ))

the set of best responses for population i to a feasible path φ at time t when the stage
game is G (respectively G ′). Note that this set can be written as

BRi
u i
(φ)(t ) = bri

u i
(πt

i (φ))

with a probability distribution πt
i (φ)∈∆(A−i ) that is given by

πt
i (φ)(a−i ) = (1+θ )

∫ ∞

t

e−(1+θ )(s−t )
�

∏

j 6=i
φj a j (s )

�

d s .

Thus, if (3.2) is satisfied, then for anyφ ∈Φ and any t ≥ 0,

min BRi
vi
(φ)(t )≤min BRi

u i
(φ)(t ),

while if (3.3) is satisfied, then for anyφ ∈Φ and any t ≥ 0,

max BRi
vi
(φ)(t )≤max BRi

u i
(φ)(t ).

The following lemma is a key to our comparison theorem. The proof relies on a fixed
point argument together with the monotonicity of BRi .

L 3.2. Let x , y ∈
∏

i ∆(A i ) be such that y ­ x .

(i) Suppose that G and G ′ satisfy (3.2) and that G or G ′ is supermodular. If a feasible
pathφ ∈Φx is such that for all i ∈ I , all h ∈ A i , and almost all t ≥ 0,

φ̇i h (t )>−φi h (t )⇒ h ≥min BRi
u i
(φ)(t ), (3.4)

then there exists a perfect foresight pathψ∗ ∈Φy for G ′ such that ψ∗ ­φ.

(ii) Suppose that G and G ′ satisfy (3.3) and that G or G ′ is supermodular. If a feasible
pathψ∈Φy is such that for all i ∈ I , all h ∈ A i , and almost all t ≥ 0,

ψ̇i h (t )>−ψi h (t )⇒ h ≤max BRi
vi
(ψ)(t ),

then there exists a perfect foresight pathφ∗ ∈Φx for G such that ψ­φ∗.

P. We show only (i). Given x , y ∈
∏

i ∆(A i ) with y ­ x and φ ∈ Φx satisfying (3.4),
define the convex and compact subset Φ̃y ⊂Φy by

Φ̃y = {ψ∈Φy |ψ­φ}.
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Let βG ′ be the best response correspondence for the stage game G ′. We define a convex-
and compact-valued and upper semi-continuous correspondence β̃G ′ : Φ̃y → Φ̃y by

β̃G ′ (ψ) =βG ′ (ψ)∩ Φ̃y (ψ∈ Φ̃y ).

We want to show that β̃G ′ (ψ) is nonempty for any ψ ∈ Φ̃y . Then, it follows from Kaku-
tani’s fixed point theorem that β̃G ′ has a fixed pointψ∗ ∈ β̃G ′ (ψ∗)⊂ Φ̃y , which is a perfect
foresight path for G ′ and satisfiesψ∗ ­φ.

For ψ ∈ Φ̃y , take any i ∈ I , h ∈ A i , and t ≥ 0 such that φ̇i h (t ) > −φi h (t ). If G is
supermodular, then

h ≥min BRi
u i
(φ)(t )≥min BRi

u i
(ψ)(t )≥min BRi

vi
(ψ)(t ),

where the second inequality follows from the supermodularity of G and Lemma 3.1, and
the third inequality follows from the assumption of (3.2). If G ′ is supermodular, then

h ≥min BRi
u i
(φ)(t )≥min BRi

vi
(φ)(t )≥min BRi

vi
(ψ)(t ),

where the second inequality follows from the assumption of (3.2), and the third inequal-
ity follows from the supermodularity of G ′ and Lemma 3.1. Therefore, in each case, we
have

h ≥min BRi
vi
(ψ)(t ) (3.5)

for all h such that φ̇i h (t )>−φi h (t ).
Now letψ′ ∈Φy be given by

ψ̇′i (t ) =min BRi
vi
(ψ)(t )−ψ′i (t ) a.e., ψ′i (0) = yi

for all i ∈ I . By construction, we haveψ′ ∈βG ′ (ψ). We also have

ψ̇′i (t )+ψ
′
i (t ) =min BRi

vi
(ψ)(t )­ φ̇i (t )+φi (t ) (3.6)

for all i and almost all t , since (3.5) holds for all h such that φ̇i h (t ) +φi h (t ) > 0. From
(3.6) along with ψ′(0) = y ­ x = φ(0), it follows that ψ′ ­ φ (recall (3.1)), i.e., ψ′ ∈
Φ̃y . Therefore, we have ψ′ ∈ β̃G ′ (ψ) = βG ′ (ψ)∩ Φ̃y , which implies the nonemptiness of
β̃G ′ (ψ). �

As a corollary, we have the following result, which is an analogue of the comparison
theorem from the theory of differential equations (Walter 1970) or monotone (coopera-
tive) dynamical systems (Smith 1995) and of the comparative statics theorem (Milgrom
and Roberts 1990).

T 3.1. Let x , y ∈
∏

i ∆(A i ) be such that y ­ x .

(i) Suppose that G and G ′ satisfy (3.2) and that G or G ′ is supermodular. For any
perfect foresight path φ∗ for G with φ∗(0) = x , there exists a perfect foresight path
ψ∗ for G ′ withψ∗(0) = y such that ψ∗ ­φ∗.
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(ii) Suppose that G and G ′ satisfy (3.3) and that G or G ′ is supermodular. For any
perfect foresight pathψ∗ for G ′ withψ∗(0) = y , there exists a perfect foresight path
φ∗ for G withφ∗(0) = x such that ψ∗ ­φ∗.

Suppose that G or G ′ is supermodular. This theorem implies that if G is comparable
(in terms of best responses) to G ′, then G inherits stability properties from G ′. First,
assume that G and G ′ satisfy (3.2) and that the action profile max A = (n i )i∈I is (linearly)
absorbing in G ′. Take any state x ∈ Bε(max A) for a sufficiently small ε > 0 and any
perfect foresight path φ∗ for G with φ∗(0) = x . By Theorem 3.1(i), there exists a perfect
foresight pathψ∗ for G ′ withψ∗(0) = x such thatψ∗ ­φ∗. By the assumption that max A
is (linearly) absorbing in G ′,ψ∗ converges (linearly) to max A, so that φ∗ also converges
(linearly) to max A. This implies that max A is (linearly) absorbing in G as well.

Second, assume that G and G ′ satisfy (3.3) and that max A is globally accessible in
G ′. Take any state x ∈

∏

i ∆(A i ). By the assumption that max A is globally accessible in
G ′, there exists a perfect foresight pathψ∗ for G ′ withψ∗(0) = x that converges to max A.
By Theorem 3.1(ii), there exists a perfect foresight pathφ∗ for G withφ∗(0) = x such that
ψ∗ ­ φ∗. Since ψ∗ converges to max A, φ∗ also converges to max A. This implies that
max A is globally accessible in G as well.

Note that by reversing the orders of the actions, the above arguments can be applied
to min A.

A candidate for the game G ′ is a potential game. Such a case is considered, with
some refinement, in Section 4.

Lemma 3.2 with G ′ =G (i.e., vi = u i for all i ∈ I ) yields the following corollary. We
say that a feasible pathφ is a superpath if

φ̇i h (t )>−φi h (t )⇒ h ≥min BRi (φ)(t )

for all i ∈ I , all h ∈ A i , and almost all t ≥ 0; a feasible pathψ is a subpath if

ψ̇i h (t )>−ψi h (t )⇒ h ≤max BRi (ψ)(t )

for all i ∈ I , all h ∈ A i , and almost all t ≥ 0.

L 3.3. Suppose that the stage game is supermodular. Let x , y ∈
∏

i ∆(A i ) be such
that y ­ x .

(i) If there exists a superpathφ withφ(0) = x , then there exists a perfect foresight path
ψ∗ withψ∗(0) = y such that ψ∗ ­φ.

(ii) If there exists a subpath ψ with ψ(0) = y , then there exists a perfect foresight path
φ∗ withφ∗(0) = x such that ψ­φ∗.

This lemma is used to prove the following propositions.

P 3.2. Suppose that the stage game is supermodular. If x ∗ ∈
∏

i ∆(A i ) is ab-
sorbing, then it is a strict Nash equilibrium.
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0 1
0 1, 1 1, 1
1 0, 0 1, 1

F .. A globally accessible, non-strict Nash equilibrium.

P. In light of Proposition 2.1, it is sufficient to show that any Nash equilibrium that
is not a strict Nash equilibrium is not absorbing. Suppose that x ∗ is a non-strict Nash
equilibrium. We show the existence of an escaping path from x ∗.

Let a ′i (respectively a ′′i ) be the smallest (respectively the largest) in bri (x ∗−i ) for each
player i , and let a ′ = (a ′i )i∈I and a ′′ = (a ′′i )i∈I , which are considered to be mixed strategy
profiles. Note that a ′ ­ x ∗ ­ a ′′ and, by the definition of a non-strict Nash equilibrium,
a ′ 6= a ′′, so that a ′ or a ′′ is different from x ∗. Let us assume that a ′ 6= x ∗.

Now denote by φ̄ the constant path such that φ̄(t ) = x ∗ for all t . Note that
BRi (φ̄)(t ) = bri (x ∗−i ), so that min BRi (φ̄)(t ) = a ′i for all t . Let φ be the feasible path
starting from x ∗ and converging linearly to a ′, i.e.,

φ(t ) = e−t x ∗+(1− e−t )a ′.

This path satisfiesφ ­ φ̄,φ 6= φ̄, and φ̇i h (t )>−φi h (t ) only for h = a ′i . We also have

a ′i =min BRi (φ̄)(t )≥min BRi (φ)(t ),

where the inequality follows from Lemma 3.1. This means thatφ is a superpath. There-
fore, it follows from Lemma 3.3 that there exists a perfect foresight pathψ∗ from x ∗ such
thatψ∗ ­φ, which does not converge to x ∗. �

The next proposition shows the equivalence of absorption and linear absorption for
supermodular games. A proof is given in Section A.1, in the Appendix.

P 3.3. Suppose that the stage game is supermodular. If a ∗ ∈ A is absorbing,
then it is linearly absorbing.

A globally accessible state need not in general be a strict Nash equilibrium. Even
in the class of strict supermodular games, there are degenerate games for which a non-
strict, pure-strategy Nash equilibrium is globally accessible. In the game given by Fig-
ure 3.1, the non-strict Nash equilibrium (0, 1) is globally accessible for any degree of
friction. It is an open problem whether every globally accessible state must be a pure
Nash equilibrium in generic supermodular games.

3.3 Stability under rationalizable foresight

The concept of a perfect foresight path requires that agents maximize their future dis-
counted payoffs against their beliefs about the future path of the action distribution
and that these beliefs coincide with the actual path. Relaxing the latter requirement,
Matsui and Oyama (2006) introduce the model of rationalizable foresight dynamics. In
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this model, while the rationality of agents as well as the structure of the society is com-
mon knowledge, beliefs about the future path are not necessarily coordinated among
agents. It is assumed instead that agents form their beliefs in a rationalizable manner:
in particular, they may misforecast the future. In this subsection, we consider stabil-
ity under rationalizable foresight dynamics and show that in supermodular games, an
absorbing and globally accessible state under perfect foresight dynamics is uniquely ab-
sorbing under rationalizable foresight dynamics as well.

Following Matsui and Oyama (2006), we define rationalizable foresight paths as fol-
lows. First let Ψ0 be the set of all feasible paths, Φ. Then for each positive integer k ,
define Ψk to be

Ψk =
�

ψ∈Ψk−1
�

�∀ i ∈ I ,∀h ∈ A i , a.a. t ≥ 0 :
�

ψ̇i h (t )>−ψi h (t )

⇒∃ψ′ ∈Ψk−1 :ψ′(s ) =ψ(s )∀s ∈ [0, t ] and h ∈BRi (ψ′)(t )
�	

.

Along a path in Ψk , an agent with a revision opportunity at time t takes a best response
to some path in Ψk−1 while knowing the past history up to time t .13 Let Ψ∗ =

⋂∞
k=0Ψ

k .

D 3.1. A path in Ψ∗ is a rationalizable foresight path.

Our concept of rationalizable foresight path differs from rationalizability in the as-
sociated differential game defined in Remark 2.2. The former incorporates the feature
of societal games that different agents in a population can have different beliefs and a
single agent can have different beliefs at different revision opportunities, while for the
latter, each population acts as a single player, who makes his decision only at time zero.

Along every rationalizable foresight path, each agent optimizes against some, possi-
bly different, rationalizable foresight path. We state this without a proof, as it is essen-
tially the same as Proposition 3.3 in Matsui and Oyama (2006).

P 3.4. A feasible path ψ ∈ Φ is contained in Ψ∗ if and only if for all i ∈ I , all
h ∈ A i , and almost all t ≥ 0 such that ψ̇i h (t ) > −ψi h (t ), there exists ψ′ ∈ Ψ∗ such that
ψ′(s ) =ψ(s ) for all s ∈ [0, t ] and h ∈BRi (ψ′)(t ).

As in one-shot games, we have the following relationship between perfect and ratio-
nalizable foresight paths. This is verified by observing that every perfect foresight path
is contained in each Ψk .

L 3.4. A perfect foresight path is a rationalizable foresight path.

We define absorption under rationalizable foresight analogously to that under per-
fect foresight.14

D 3.2. x ∗ ∈
∏

i ∆(A i ) is absorbing under rationalizable foresight if there exists
ε > 0 such that any rationalizable foresight path from any x ∈ Bε(x ∗) converges to x ∗.

13Since the environment is stationary and BRi (φ)(t ) depends only on the behavior of φ after time t , in
the definition of Ψk one can equivalently takeψ′ as a path in Ψk−1 that satisfies onlyψ′(t ) =ψ(t ).

14We can define global accessibility under rationalizable foresight in a similar manner. Due to Lemma 3.4,
it is weaker than that under perfect foresight.
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An absorbing state under rationalizable foresight is also absorbing under perfect
foresight due to Lemma 3.4, but not vice versa in general (see Examples 3.1 and 3.2 in
Matsui and Oyama 2006). As noted, in rationalizable foresight dynamics, agents are al-
lowed to have different beliefs at various revision opportunities, and these beliefs need
only be rationalizable and thus may be misforecasts about the actual course of future
play. Hence, it is generally easier for the action distribution to escape from an equi-
librium state under rationalizable foresight than under perfect foresight. Nevertheless,
for supermodular games we can show that absorption under perfect foresight is in fact
equivalent to that under rationalizable foresight.

T 3.2. Suppose that the stage game is supermodular. Then x ∗ ∈
∏

i ∆(A i ) is ab-
sorbing under rationalizable foresight if and only if it is absorbing under perfect foresight.

Therefore, in supermodular games, an absorbing and globally accessible state under
perfect foresight is the unique state that is absorbing under rationalizable foresight.

The “if” part of this theorem follows from the lemma below, an analogue of the fact
in general supermodular games that the set of rationalizable strategy profiles has small-
est and largest elements, and these elements are pure-strategy Nash equilibria (Milgrom
and Roberts 1990). For x ∈

∏

i ∆(A i ), let Ψk
x = Ψ

k ∩Φx and Ψ∗x =
⋂∞

k=0Ψ
k
x . Note that

Ψ∗x =Ψ
∗ ∩Φx , i.e., Ψ∗x is the set of rationalizable foresight paths from x .

L 3.5. Suppose that the stage game is supermodular. Then Ψ∗x has smallest and
largest elements, and these elements are perfect foresight paths.

P. We show that Ψ∗x has a smallest element and that it is a perfect foresight path.
Letφ0 be the smallest feasible path from x (i.e., the linear path from x to min A) andφk

the smallest best response path toφk−1, which is given by

φ̇k
i (t ) =min BRi (φk−1)(t )−φk

i (t ) a.e., φk
i (0) = x i .

Then {φk }∞k=0 is an increasing sequence in the compact set Φx , so that {φk }∞k=0 con-
verges to some φ∗ ∈ Φx . By the upper semi-continuity of βx , φ∗ is a perfect foresight
path, and hence, an element of Ψ∗x by Lemma 3.4.

It suffices to show thatφ∗ is a lower bound of Ψ∗x . We show thatφk is a lower bound
of Ψk

x (⊃Ψ∗x ) for all k . It follows that the limitφ∗ is also a lower bound of Ψ∗x .
First, φ0 is a lower bound of Ψ0

x . Then, suppose that φk−1 is a lower bound of Ψk−1
x .

Fix any ψ ∈ Ψk
x , and take any i and any t such that φk

i and ψi are differentiable at
t . For any h such that ψ̇i h (t ) > −ψi h (t ), we have h ∈ BRi (ψ′)(t ) for some ψ′ ∈ Ψk−1

x .
Sinceφk−1 ­ψ′ by assumption, it follows from the supermodularity and Lemma 3.1 that
min BRi (φk−1)(t )≤min BRi (ψ′)(t )≤ h. Therefore, we have φ̇k

i (t )+φ
k
i (t )­ ψ̇i (t )+ψi (t )

for almost all t , which implies thatφk ­ψ. Hence,φk is a lower bound of Ψk
x . �

P  T .. “If” part: Take any rationalizable foresight path ψ from x suf-
ficiently close to x ∗. By Lemma 3.5, there exist perfect foresight paths φ and φ′ from x
such that φ ­ ψ ­ φ′. If x ∗ is absorbing under perfect foresight, then both φ and φ′

converge to x ∗, and therefore,ψ also converges to x ∗.
“Only if” part: Follows from Lemma 3.4. �
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R 3.1. All the results in this section, as well as Lemma 2.1, hold in more general
settings (after appropriate modifications, replacing “φ−i ­ψ−i ” with “φ ­ψ”, and bri

with BRi ) where Vi (·)(·): Φ×R+ → Rn i+1 is continuous and Vi (·)(t ): Φ→ Rn i+1 is super-
modular, i.e., ifφ ­ψ, then

Vi k (φ)(t )−Vi h (φ)(t )≤Vi k (ψ)(t )−Vi h (ψ)(t )

for k > h. Examples of such functions include the expected discounted payoffs induced
by the stage game where the payoff to an agent in population i taking action h ∈ A i is
given by a continuous function g i h :

∏

i ∆(A i )→ R. Note here that the payoff function
for an agent in population i may depend on the action distribution within population
i itself and may not be N -linear in

∏

i ∆(A i ). Such payoff functions can describe ran-
dom matching models within a single population, considered in Matsui and Matsuyama
(1995), Hofbauer and Sorger (1999), and Oyama (2002), as well as models with nonlin-
ear payoffs, considered in Matsuyama (1991, 1992) and Kaneda (1995). In alternative
settings, Vi may depend on the past behavior ofφ.

4. G   

This section applies the monotonicity argument developed in the previous section to
games with monotone potentials introduced by Morris and Ui (2005). Suppose that the
games G and G ′ satisfy (3.2) or (3.3). Roughly speaking, G has a monotone potential if
G ′ can be chosen to be a potential game, and the action profile max A is a monotone po-
tential maximizer of G if it is the unique potential maximizer of G ′. For potential games,
Hofbauer and Sorger (2002) show that the unique potential maximizer is absorbing and
globally accessible for any small degree of friction. Therefore we can conclude from
Theorem 3.1 and the subsequent discussion that if G or G ′ is supermodular, then max A
is absorbing (if (3.2) is satisfied) and globally accessible (if (3.3) is satisfied) for any small
degree of friction in the stage game G .

For the precise definition, which is given in the following subsection, two remarks
are in order. First, when G ′ is a potential game, a condition weaker than both (3.2) and
(3.3) is sufficient for the global accessibility result. Morris and Ui’s (2005) definition
of monotone potential employs this weaker version (Definition 4.1), while (3.2) corre-
sponds to what we call strict monotone potential (Definition 4.2). Second, in order to
define the concept for action profiles a ∗ other than max A or min A, we need to divide the
set of actions for each player i into two parts: the actions below a ∗i and those above a ∗i .

4.1 Monotone potential maximizer

Fix an action profile a ∗ ∈ A. Let A−i = {h ∈ A i | h ≤ a ∗i } and A+i = {h ∈ A i | h ≥ a ∗i }. For a
function f : A→R, a probability distribution πi ∈∆(A−i ), and a nonempty set of actions
A ′i ⊂ A i , let

bri
f (πi |A ′i ) = arg max

h∈A ′i

f (h,πi ),
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where f (h,πi ) =
∑

a−i∈A−i
πi (a−i ) f (h, a−i ). We employ the following simplified version

of monotone potential.15

D 4.1. The action profile a ∗ ∈ A is a monotone potential maximizer, or MP-
maximizer, of G if there exists a function v : A→R with v (a ∗)> v (a ) for all a 6= a ∗ such
that for all i ∈ I and all πi ∈∆(A−i ),

min bri
v (πi |A−i )≤max bri

u i
(πi |A−i ) (4.1)

and
max bri

v (πi |A+i )≥min bri
u i
(πi |A+i ). (4.2)

Such a function v is called a monotone potential function for a ∗.

In addition, we introduce a slight refinement of the notion of an MP-maximizer.16

D 4.2. The action profile a ∗ ∈ A is a strict monotone potential maximizer, or
strict MP-maximizer, of G if there exists a function v : A → R with v (a ∗) > v (a ) for all
a 6= a ∗ such that for all i ∈ I and all πi ∈∆(A−i ),

min bri
v (πi |A−i )≤min bri

u i
(πi |A−i ) (4.3)

and
max bri

v (πi |A+i )≥max bri
u i
(πi |A+i ). (4.4)

Such a function v is called a strict monotone potential function for a ∗.

Recall that in a potential game, the best response correspondences are exactly equal
to those in the corresponding common interest game whose payoffs are given by the
potential function. In defining a monotone potential function v for a game G , equalities
are replaced with inequalities, so that the best responses in G are bounded by those
(restricted to A− and A+) in the potential game Gv . With supermodularity in G or Gv ,
this suffices to allow G to inherit properties of potential games.

A (strict) MP-maximizer is a (strict) Nash equilibrium. A strict MP-maximizer is al-
ways an MP-maximizer, but the converse is not true. In a degenerate game (with at least
two action profiles) where payoffs are constant for each player, all the action profiles be-
come MP-maximizers, while none of them is a strict MP-maximizer. For a generic choice
of payoffs, an MP-maximizer is a strict MP-maximizer. For supermodular games, a strict
MP-maximizer is unique if it exists, due to Theorems 4.1 and 4.2, given subsequently.

The notion of an MP-maximizer unifies several existing concepts. A unique weighted
potential maximizer is a strict MP-maximizer. A (strict) p-dominant equilibrium with
∑

i∈I p i < 1 is a (strict) MP-maximizer. For games with diminishing marginal returns,
the notion of an MP-maximizer reduces to that of a local potential maximizer (Morris
1999 and Morris and Ui 2005). See Section 4.3 for details.

15In Morris and Ui (2005) a monotone potential function is defined on a given partition of A.
16Morris (1999) introduces a version of MP-maximizer that is stronger than our concept of a strict MP-

maximizer: if a ∗ is an MP-maximizer in the sense of Morris (1999), then it is a strict MP-maximizer, but not
vice versa in general.
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4.2 Results

For a function f : A→R, a feasible pathφ, and a nonempty set of actions A ′i ⊂ A i , let

BRi
f (φ|A

′
i )(t ) = arg max

h∈A ′i

(1+θ )

∫ ∞

t

e−(1+θ )(s−t ) f (h,φ−i (s ))d s ,

where f (h,x−i ) =
∑

a−i∈A−i

�
∏

j 6=i x j a j

�

f (h, a−i ) for x−i ∈
∏

j 6=i ∆(A j ). Let Gv =
(I , (A i )i∈I , (v )i∈I ) be the potential game in which all players have the common payoff
function v . We have the following two theorems. Their proofs are given in Sections A.2
and A.3, in the Appendix.

T 4.1. Suppose that the stage game G has an MP-maximizer a ∗ with a monotone
potential function v . If G or Gv is supermodular, then there exists θ̄ > 0 such that a ∗ is
globally accessible for all θ ∈ (0, θ̄ ).

T 4.2. Suppose that the stage game G has a strict MP-maximizer a ∗ with a strict
monotone potential function v . If G or Gv is supermodular, then a ∗ is linearly absorbing
for all θ > 0.

In particular, a strict MP-maximizer is the unique linearly absorbing (and globally
accessible) state for any small degree of friction, if G or Gv is supermodular.

Note that, in order for Theorems 4.1 and 4.2 to apply, it is sufficient that at least
one of the games G and Gv be supermodular. Indeed, in the special case considered in
Section 4.3.1, the original game G need not be a supermodular game, and Section 4.3.3
presents a numerical example of a non-supermodular game that has a supermodular
monotone potential function.

Given an MP-maximizer a ∗ and a monotone potential v , observe that the restricted
games G−v = (I , (A−i )i∈I , (v )i∈I ) and G+v = (I , (A+i )i∈I , (v )i∈I ) are potential games with the
unique potential maximizer a ∗. The proofs of Theorems 4.1 and 4.2 utilize this observa-
tion to apply results on potential games by Hofbauer and Sorger (2002).

The proofs proceed as follows. Suppose that a ∗ is an MP-maximizer with a mono-
tone potential function v . Observe (for the case where a ∗ =max A) that (4.1) is weaker
than (3.3). We thus need feasible pathsφ− andφ+ such that

φ̇−i (t ) =min BRi
v (φ

−|A−i )(t )−φ
−
i (t ) a.e., φ−i (0) =min A i

φ̇+i (t ) =max BRi
v (φ

+|A+i )(t )−φ
+
i (t ) a.e., φ+i (0) =max A i

for all i ∈ I , and limt→∞φ−(t ) = limt→∞φ+(t ) = a ∗. Notice that φ− (respectively φ+)
is a feasible path on

∏

i ∆(A
−
i ) (respectively

∏

i ∆(A
+
i )), and actually a perfect foresight

path for the stage game G−v (respectively G+v ).
To obtain these paths, we use the fact that if the stage game is a potential game, then

any solution to a certain optimal control problem is a perfect foresight path, and when
the friction θ > 0 is sufficiently small, it converges to the potential maximizer a ∗. Fix
such a small θ . We show that a minimal (respectively maximal) solution to the optimal
control problem associated with G−v (respectively G+v ) satisfies the above conditions.
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Then, an argument similar to that in the proof of Lemma 3.2 allows us to show that if
G or Gv is supermodular, then for any x ∈

∏

i ∆(A i ) there exists a perfect foresight path
φ∗ with φ∗(0) = x such that φ− ­ φ∗ ­ φ+. Since φ− and φ+ converge to a ∗, φ∗ also
converges to a ∗. This implies that a ∗ is globally accessible for a small friction.

Next, suppose that a ∗ is a strict MP-maximizer with a strict monotone potential
function v . Take any perfect foresight path φ∗ starting from a state sufficiently close
to a ∗. As in the proof of Lemma 3.2, we can show that if G or Gv is supermodular, then
there exist feasible pathsφ− andφ+ starting from states sufficiently close to a ∗ such that
φ− ­ φ∗ ­ φ+ and that φ− and φ+ are perfect foresight paths for the restricted games
G−v and G+v , respectively. Since a ∗, the potential maximizer of G−v and G+v , is absorbing
in G−v and G+v , φ− and φ+ converge to a ∗, and therefore, φ∗ also converges to a ∗. In
the case where G is supermodular, this implies that a ∗ is linearly absorbing in G , due
to Proposition 3.3. In the case where Gv is supermodular, a ∗ is linearly absorbing in G−v
and G+v , so thatφ− andφ+ converge linearly to a ∗. Therefore,φ∗ also converges linearly
to a ∗, implying the linear absorption of a ∗ in G .

4.3 Examples

This subsection provides special cases of games with monotone potentials. An example
is also presented in Section 4.3.4 in which there are multiple globally accessible states
for small frictions, so that the game admits no monotone potential.17

4.3.1 p-dominance Let p= (p1, . . . , pN )∈ [0, 1)N . The notion of p-dominance (Kajii and
Morris 1997) is a many-player, many-action generalization of risk-dominance.

D 4.3. (i) An action profile a ∗ ∈ A is a p-dominant equilibrium of G if for all
i ∈ I , a ∗i ∈ bri (πi ) holds for all πi ∈∆(A−i )with πi (a ∗−i )≥ p i .

(ii) An action profile a ∗ is a strict p-dominant equilibrium of G if for all i ∈ I , {a ∗i } =
bri (πi ) holds for all πi ∈∆(A−i )with πi (a ∗−i )> p i .

A p-dominant equilibrium with low enough p is an MP-maximizer with a monotone
potential function that is supermodular (with an appropriate re-ordering of actions).

L 4.1. If a ∗ is a (strict) p-dominant equilibrium with
∑

i∈I p i < 1, then a ∗ is a
(strict) MP-maximizer with the (strict) monotone potential v given by

v (a ) =

(

1−
∑

i∈I p i if a = a ∗

−
∑

i∈C (a )p i otherwise,

where C (a ) = {i ∈ I | a i = a ∗i }.

A proof is given in Section A.4, in the Appendix.

17Morris (1999) presents a symmetric 4×4 game that has no robust equilibrium, and hence no monotone
potential, while by the result of Takahashi (2008), this game has an absorbing and globally accessible state
for small frictions.
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By relabeling actions so that a ∗i =max A i for all i ∈ I , we can make v supermodular.
Therefore, we have the following result as a corollary to Theorems 4.1 and 4.2, which
generalizes a result for symmetric two-player games by Oyama (2002, Theorem 3).

C 4.1. (i) A p-dominant equilibrium with
∑

i∈I p i < 1 is globally accessible for
any small degree of friction.

(ii) A strict p-dominant equilibrium with
∑

i∈I p i < 1 is linearly absorbing for any de-
gree of friction.

In particular, a strict p-dominant equilibrium with
∑

i∈I p i < 1 is the unique linearly
absorbing (and globally accessible) state for any small degree of friction.18

R 4.1. Hofbauer and Sorger (2002) consider the following concept of 1
2 -dominance

and show that for games with linear incentives, it implies linear absorption and global
accessibility for small frictions. An action profile a ∗ ∈ A is said to be 1

2 -dominant if for
all i ∈ I , {a ∗i } = bri (x−i ) holds for all x−i ∈

∏

j 6=i ∆(A j ) such that x j a ∗j
≥ 1

2 for all j 6= i .
For two-player games, 1

2 -dominance is equivalent to strict p-dominance with p i <
1
2

for any i ∈ I , so that Corollary 4.1 covers their result. For games with more than two
players, there is no obvious relation. Note the difference between πi and x−i in the
definitions, where πi is a correlated probability distribution over the opponents’ action
profiles, while x−i is a profile of probability distributions over each opponent’s actions.

4.3.2 Local potential maximizer We consider a simplified version of the notion of local
potential maximizer introduced by Morris and Ui (2005) as well as its refinement.

D 4.4. (i) An action profile a ∗ ∈ A is a local potential maximizer, or LP-
maximizer, of G if there exists a function v : A→R with v (a ∗)> v (a ) for all a 6= a ∗

such that for all i ∈ I , there exists a function µi : A i →R+ such that if h < a ∗i , then
for all a−i ∈ A−i ,

µi (h)
�

v (h +1, a−i )−v (h, a−i )
�

≤ u i (h +1, a−i )−u i (h, a−i ),

and if h > a ∗i , then for all a−i ∈ A−i ,

µi (h)
�

v (h −1, a−i )−v (h, a−i )
�

≤ u i (h −1, a−i )−u i (h, a−i ).

Such a function v is called a local potential function for a ∗.

(ii) An action profile a ∗ is a strict local potential maximizer, or strict LP-maximizer,
of G if there exists a function v : A → R with v (a ∗) > v (a ) for all a 6= a ∗ such that
for all i ∈ I , there exists a function µi : A i → R++ such that if h < a ∗i , then for all
a−i ∈ A−i ,

µi (h)
�

v (h +1, a−i )−v (h, a−i )
�

≤ u i (h +1, a−i )−u i (h, a−i ),

18Kojima and Takahashi (forthcoming) give an alternative proof for this result, which does not rely on a
potential function.
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and if h > a ∗i , then for all a−i ∈ A−i ,

µi (h)
�

v (h −1, a−i )−v (h, a−i )
�

≤ u i (h −1, a−i )−u i (h, a−i ).

Such a function v is called a strict local potential function for a ∗.

An LP-maximizer is a strict LP-maximizer if one can take strictly positive numbers
for the weights µi .19

The game G is said to have diminishing marginal returns if for all i ∈ I , all h 6= 0, n i ,
and all a−i ∈ A−i ,

u i (h, a−i )−u i (h −1, a−i )≥ u i (h +1, a−i )−u i (h, a−i ).

In games with diminishing marginal returns, the MP-maximizer conditions reduce to
the LP-maximizer conditions.

L 4.2. If the game G has a (strict) LP-maximizer a ∗ with a (strict) local potential
function v and if G or Gv has diminishing marginal returns, then a ∗ is a (strict) MP-
maximizer with the same function v .

A proof is given in Section A.4, in the Appendix. We have the following result as a
corollary of Theorems 4.1 and 4.2.

C 4.2. (i) Suppose that the stage game G has an LP-maximizer a ∗ with a local
potential function v . If G or Gv has diminishing marginal returns and if G or Gv

is supermodular, then a ∗ is globally accessible for any small degree of friction.

(ii) Suppose that the stage game G has a strict LP-maximizer a ∗ with a strict local po-
tential function v . If G or Gv has diminishing marginal returns and if G or Gv is
supermodular, then a ∗ is linearly absorbing for any degree of friction.

In particular, a strict LP-maximizer is the unique linearly absorbing (and globally
accessible) state for any small degree of friction if G or Gv has diminishing marginal
returns and G or Gv is supermodular.

4.3.3 Young’s example Consider the 3×3 game given in Figure 4.1(a), taken from Young
(1993). Oyama (2002) shows by direct computation that (2, 2) is linearly absorbing and
globally accessible for a small degree of friction. In fact, (2, 2) is a strict MP-maximizer
with a strict monotone potential function that is supermodular (Figure 4.1(b)), while the
original game is not supermodular (for any ordering of actions). Therefore, our results,
Theorems 4.1 and 4.2, apply also to this game.

Note that (1, 1) is stochastically stable (Young 1993), while it is neither absorbing nor
globally accessible when the friction is small.

19Morris (1999) and Frankel et al. (2003) give a slightly different definition of LP-maximizer, which is
weaker than strict LP-maximizer.
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0 1 2
0 6, 6 0, 5 0, 0
1 5, 0 7, 7 5, 5
2 0, 0 5, 5 8, 8

(a) Original game

0 1 2
0 6 5 0
1 5 7 5
2 0 5 8

(b) Monotone potential function

F .. Young’s example.

4.3.4 Unanimity game with multiple globally accessible states Consider the three-
player unanimity game: for each player i ∈ {1, 2, 3}, A i = {0, 1} and

u i (a ) =







yi if a = 0

z i if a = 1

0 otherwise,

where yi , z i > 0 and 0 = (0, 0, 0), 1 = (1, 1, 1) ∈ A. Now let y1 = 6+ c > 0, y2 = y3 = 1,
and z 1 = z 2 = z 3 = 2 (see Figure 4.2). This game is a modified version of an example in
Morris and Ui (2005, Subsection 7.2).20 If c > 0, then 0 is globally accessible for a small
friction, while if c < 2

p
6, then 1 is globally accessible for a small friction (see an earlier

version of this paper, Oyama et al. 2006, Section 5). Therefore, if 0< c < 2
p

6, the game
has two globally accessible states simultaneously when the friction is small. Note that 0
(respectively 1) has the higher Nash product if c > 2 (respectively c < 2).

On the other hand, one can show that if c ≤ 0, then 1 is absorbing for any degree of
friction, while if c ≥ 2

p
6, then 0 is absorbing for any degree of friction.

5. C

In this paper, we study perfect foresight dynamics à la Matsui and Matsuyama (1995) for
supermodular games and generalizations thereof (games that have a monotone rela-
tion, in terms of best responses, with supermodular games), and elucidate the induced
monotone structure of the dynamics. We prove, in particular, the stability of a monotone
potential maximizer, which is known to be robust to incomplete information (Morris
and Ui 2005), thus demonstrating that the prediction obtained by the dynamic stability
approach based on perfect foresight dynamics agrees with that obtained by the incom-
plete information approach in monotone potential games. We also show that for super-
modular games, stability in perfect foresight dynamics coincides with stability under
the less demanding assumption of rationalizable foresight.

We conclude by noting that, beyond the agreement in the formal results, there is
a parallelism at a conceptual level between the two approaches. Perfect foresight dy-
namics, as well as incomplete information games, fall into the class of interaction games

20One can verify that 0 is not an MP-maximizer for any c , while 1 is an MP-maximizer (and hence, robust
to incomplete information) if and only if c < −2. In the case where c ≥ −2, nothing seems to be known
about the robustness of equilibria.
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0 1
0 6+ c , 1, 1 0, 0, 0
1 0, 0, 0 0, 0, 0

0

0 1
0 0, 0, 0 0, 0, 0
1 0, 0, 0 2, 2, 2

1

F .. Multiple globally accessible states.

(Morris 1999, Morris and Shin 2006), in which a type or player interacts with various
subsets of the set of all types/players, and total payoffs are given by the payoffs from dif-
ferent interactions with different weights. Under perfect foresight dynamics, forward-
looking agents make irreversible decisions, so that each agent interacts with agents who
will make decisions in the future as well as those who have made decisions in the past. A
recent paper by Takahashi (2008) proves that perfect foresight dynamics can formally be
understood as a static incomplete information game by identifying the time axis with
the type space. With this interpretation, global accessibility and linear absorption in
perfect foresight dynamics, roughly, correspond respectively to robustness (Kajii and
Morris 1997) and contagion/infection (Morris et al. 1995) in the incomplete informa-
tion game literature. We leave for future research an investigation of the relationship
among these concepts beyond the class of games we study in this paper.

A

A.1 Proof of Proposition 3.3

Suppose that the stage game is supermodular and that a ∗ ∈ A is absorbing (recall from
Proposition 3.2 that in supermodular games, any absorbing state is a pure-strategy
state). We first show that a perfect foresight path from a ∗ is unique. Denote by φ̄ the
constant path at a ∗.

L A.1. Suppose that the stage game is supermodular. If a ∗ is absorbing, then φ̄ is
the unique perfect foresight path from a ∗.

P. Suppose that a ∗ is absorbing. Let φ− and φ+ be the smallest and the largest
perfect foresight paths from a ∗, respectively (these exist, as demonstrated in Lemma 3.5,
due to the supermodularity of the stage game). We show thatφ− is nonincreasing in the
sense that φ−(s ) ­ φ−(t ) if t ≤ s ; a dual argument shows that φ+ is nondecreasing.
Then, φ− and φ+ must be constant at a ∗; otherwise, φ− or φ+ would not converge to
a ∗, contradicting the absorption of a ∗.

For each i ∈ I , denote by a i the smallest action among h’s such that min BRi (ψ)(t ) =
h for some t ≥ 0. Note that a i ≤ a ∗i , since φ− ­ φ̄, and hence min BRi (φ−)(t ) ≤
min BRi (φ̄)(t ) ≤ a ∗i for all t ≥ 0 by Lemma 3.1. Then, define for each i ∈ I a sequence

T
a i

i , . . . , T
a ∗i

i by

T h
i = inf{t ≥ 0 |min BRi (φ−)(t )≤ h}
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for h = a i , . . . , a ∗i . Note that 0 = T
a ∗i

i ≤ T
a ∗i−1

i ≤ · · · ≤ T
a i+1

i ≤ T
a i

i < ∞. Now define
α: R+→

∏

i ∆(A i ) by
αi h (t ) = 1 if t ∈ [T h

i , T h−1
i ),

where T
a i−1

i =∞, and letφ be the feasible path given by

φ̇i (t ) =αi (t )−φi (t ) a.e., φi (0) = a ∗i

for all i ∈ I . Observe thatφ is nonincreasing and thatφ ­φ−.
We show that φ is a superpath. Take any i ∈ I , h ∈ A i , and t ≥ 0 such that φ̇i h (t ) >

−φi h (t ). By the definition ofφ, t ∈ [T h
i , T h−1

i ). Then,

h ≥min BRi (φ−)(T h
i )≥min BRi (φ)(T h

i )≥min BRi (φ)(t ),

where the first inequality follows from the definition of T h
i , the second from the fact that

φ ­ φ−, and the third from the fact that φ is nonincreasing. This means that φ is a
superpath. It therefore follows from Lemma 3.3 that there exists a perfect foresight path
ψ∗ from a ∗ such thatψ∗ ­φ.

On the other hand, φ− is the smallest perfect foresight path from a ∗. Therefore, we
must haveφ− ­ψ∗, so thatψ∗ =φ =φ−. We conclude thatφ− is nonincreasing. �

We now show that a ∗ is linearly absorbing. Note that

BRi (φ̄)(t ) = {a ∗i }for all i ∈ I and all t ≥ 0, (A.1)

since a ∗ is a strict Nash equilibrium by Proposition 3.2.

P  P .. Suppose that a ∗ is absorbing. For ε ∈ [0, 1], let x−ε = εmin A+
(1− ε)a ∗ and x+ε = εmax A + (1− ε)a ∗. In order to show the linear absorption of a ∗, it
is sufficient to prove that there exists ε̄ > 0 such that the smallest perfect foresight path
from x−ε̄ , φ−, and the largest perfect foresight path from x+ε̄ , φ+, satisfy BRi (φ−)(t ) =
BRi (φ+)(t ) = {a ∗i } for all i ∈ I and t ≥ 0. Then, for any perfect foresight path φ from
Bε(a ∗), which satisfiesφ− ­φ ­φ+ by Lemma 3.3, we have BRi (φ)(t ) = {a ∗i } for all i ∈ I
and t ≥ 0, so thatφ converges linearly to a ∗.

Take any sequence {εk }∞k=0 such that ε0 > ε1 > · · ·> 0 and limk→∞ εk = 0, and letφk ,−

andφk ,+ be the smallest perfect foresight path from x−
εk and the largest perfect foresight

path from x+
εk , respectively. Here, we assume that ε0 is small enough so that both φ0,−

and φ0,+ converge to a ∗. We show only that for some k , min BRi (φk ,−)(t ) ≥ a ∗i for all
i ∈ I and all t ≥ 0; a dual argument shows that for some k ′, max BRi (φk ′,+)(t ) ≤ a ∗i for
all i ∈ I and all t ≥ 0. Then, setting ε̄ = min{εk ,εk ′} completes the proof. Note that
φ0,− ­φ1,− ­ · · ·­ φ̄ and that {φk ,−}∞k=0 converges, as k →∞, to some perfect foresight
path from a ∗, which must be φ̄ by Lemma A.1.

Seeking a contradiction, suppose that for each k , there exists T k such that
min BRι̃(φk ,−)(T k ) < a ∗i for some ι̃ ∈ I , where ι̃ can be taken independently of k due
to the finiteness of I . Since a ∗ is absorbing (and a strict Nash equilibrium), there exists
T̄ such that min BRι̃(φ0,−)(t ) = a ∗ι̃ for all t ≥ T̄ . Since φ0,− ­ φk ,− (­ φ̄), it follows that
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for all k , min BRι̃(φk ,−)(t ) = a ∗ι̃ for all t ≥ T̄ . Therefore, it must be true that T k < T̄ for
all k , so that there exists a convergent subsequence of {T k }∞k=0 with some limit T ∗. By
the lower semi-continuity of min BRι̃ , we have min BRι̃(φ̄)(T ∗) < a ∗ι̃ , which contradicts
(A.1). �

A.2 Proof of Theorem 4.1

Suppose that a ∗ is an MP-maximizer with a monotone potential function v . Let A ′i ⊂ A i

denote a set of actions for player i that contains a ∗i . This set is taken to be A−i = {h ∈ A i |
h ≤ a ∗i } or A+i = {h ∈ A i | h ≥ a ∗i }. For the potential game G ′v = (I , (A ′i )i∈I , (v )i∈I ) with
the unique potential maximizer a ∗ ∈ A ′, consider the following optimal control problem
with a given initial state z ∈

∏

i ∆(A
′
i ):

maximize J (φ) =

∫ ∞

0

e−θ t v (φ(t ))d t subject toφ ∈Φ′z , (A.2)

where Φ′z is the set of feasible paths defined on
∏

i ∆(A
′
i ) with the initial state z . The

state z is taken as min A = (0, . . . , 0) or max A = (n 1, . . . , n N ).

L A.2. There exists θ̄ > 0 such that for any θ ∈ (0, θ̄ ) and any z ∈
∏

i ∆(A
′
i ), any

optimal solution to the optimal control problem (A.2) converges to a ∗.

P. Apply Lemma 1 in Hofbauer and Sorger (1999) and Lemmas 4.2 and 4.3 in
Hofbauer and Sorger (2002) to the restricted potential game G ′v . �

L A.3. Let X be a nonempty compact set endowed with a preorder ­. Suppose that
for all x ∈X , the set Lx = {y ∈X | y ­ x } is closed. Then X has a minimal element.

P. Take any totally ordered subset of X , and denote it by X ′. Since {Lx }x∈X ′ con-
sists of nonempty closed subsets of a compact set and has the finite intersection prop-
erty, L∗ =

⋂

x∈X ′ Lx is nonempty. Any element x ∗ ∈ L∗ is a lower bound of X ′ in X . There-
fore, it follows from Zorn’s lemma that X has a minimal element. �

L A.4. For any z ∈
∏

i ∆(A
′
i ) there exist optimal solutionsφ− andφ+ to the optimal

control problem (A.2) such that

φ̇−i (t ) =min BRi
v (φ

−|A ′i )(t )−φ
−
i (t ),

φ̇+i (t ) =max BRi
v (φ

+|A ′i )(t )−φ
+
i (t )

for all i ∈ I and almost all t ≥ 0.

P. Fix z ∈
∏

i ∆(A
′
i ). We show only the existence of φ−; the existence of φ+ is

shown similarly. Since the functional J is continuous on Φ′z , the set of optimizers is a
nonempty, closed, and hence compact subset of Φ′z . Hence a minimal optimal solution
(with respect to the orderφ ­ψdefined byφ(t )­ψ(t ) for all t ≥ 0) exists by Lemma A.3.
Letφ− be such a minimal solution.



Theoretical Economics 3 (2008) Monotone methods for equilibrium selection 185

Take any i ∈ I and consider the feasible pathφi given byφi (0) = z i and

φ̇i (t ) =min BRi
v (φ

−|A ′i )(t )−φi (t )

for almost all t ≥ 0. Since, by Lemma 2.2, for almost all t ≥ 0 there exists αi (t ) in the
convex hull of BRi

v (φ
−|A ′i )(t ) such that

φ̇−i (t ) =αi (t )−φ−i (t ),

we have φi ­φ−i . On the other hand, since φi is a best response to φ−−i for the game G ′v
by construction, we have

J (φi ,φ−−i )≥ J (φ−) =max
ψ∈Φ′z

J (ψ)

by Lemma 2.2, meaning that the path (φi ,φ−−i ) is also optimal. Hence, the minimality of
φ− impliesφ−i (t ) =φi (t ) for all t ≥ 0. Therefore, we have

φ̇−i (t ) =min BRi
v (φ

−|A ′i )(t )−φ
−
i (t )

for almost all t ≥ 0, as claimed. �

L A.5. There exists θ̄ > 0 such that the following holds for all θ ∈ (0, θ̄ ): there exists
a feasible pathφ− such that

φ̇−i (t ) =min BRi
v (φ

−|A−i )(t )−φ
−
i (t ) a.e., φ−i (0) =min A i

for all i ∈ I and limt→∞φ−(t ) = a ∗; there exists a feasible pathφ+ such that

φ̇+i (t ) =max BRi
v (φ

+|A+i )(t )−φ
+
i (t ) a.e., φ+i (0) =max A i

for all i ∈ I and limt→∞φ+(t ) = a ∗.

P. Follows from Lemmas A.2 and A.4. �

P  T .. Suppose that v is a monotone potential function for a ∗. Take
φ− and φ+ as in Lemma A.5. In what follows, we fix a sufficiently small θ > 0 so that
bothφ− andφ+ converge to a ∗.

Now fix any x ∈
∏

i ∆(A i ). Note that φ− ­ φ+ and φ−(0) ­ x ­ φ+(0). Consider the
best response correspondence βG for the stage game G . Let Φ̃x = {φ ∈ Φx | φ− ­ φ ­
φ+}. We show, as in the proof of Lemma 3.2, that β̃G (φ) = βG (φ)∩ Φ̃x is nonempty for
anyφ ∈ Φ̃x . Then, since Φ̃x is convex and compact, it follows from Kakutani’s fixed point
theorem that there exists a fixed point φ∗ ∈ β̃G (φ∗) ⊂ Φ̃x , which is a perfect foresight
path in G and satisfies φ− ­ φ∗ ­ φ+. Since both φ− and φ+ converge to a ∗, φ∗ also
converges to a ∗.

Take any φ ∈ Φ̃x . Suppose first that the original game G is supermodular. Then, we
have

min BRi
v (φ

−|A−i )(t )≤max BRi
u i
(φ−|A−i )(t )≤max BRi

u i
(φ|A−i )(t ),
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where the first inequality follows from the assumption that v is a monotone potential,
and the second inequality follows from the supermodularity of u i and Lemma 3.1. Sim-
ilarly, we have

max BRi
v (φ

+|A+i )(t )≥min BRi
u i
(φ+|A+i )(t )≥min BRi

u i
(φ|A+i )(t ).

Suppose next that the potential game Gv is supermodular. Then, we have

min BRi
v (φ

−|A−i )(t )≤min BRi
v (φ|A

−
i )(t )≤max BRi

u i
(φ|A−i )(t ),

where the first inequality follows from the supermodularity of v and Lemma 3.1, and the
second inequality follows from the assumption that v is a monotone potential. Similarly,
we have

max BRi
v (φ

+|A+i )≥max BRi
v (φ|A

+
i )(t )≥min BRi

u i
(φ|A+i )(t ).

Therefore, in each case, we have

max BRi
u i
(φ|A−i )(t )≥min BRi

v (φ
−|A−i )(t )

min BRi
u i
(φ|A+i )(t )≤max BRi

v (φ
+|A+i )(t )

for all i ∈ I and all t ≥ 0, so that there exists h ∈BRi
u i
(φ)(t ) such that

min BRi
v (φ

−|A−i )(t )≤ h ≤max BRi
v (φ

+|A+i )(t ).

Define

F̃i (φ)(t ) = Fi (φ)(t )∩
�

min BRi
v (φ

−|A−i )(t ), max BRi
v (φ

+|A+i )(t )
�

,

where

Fi (φ)(t ) = {αi ∈∆(A i ) |αi h > 0⇒ h ∈BRi
u i
(φ)(t )},

and [αi ,α′i ] = {α
′′
i ∈∆(A i ) |αi ­α′′i ­α

′
i } denotes the order interval. Then the differential

inclusion

ψ̇(t )∈ F̃ (φ)(t )−ψ(t ), ψ(0) = x

has a solution ψ as in Remark 2.1. Since F̃i (φ)(t ) ⊂ Fi (φ)(t ), we have ψ ∈ βG (φ). By
the construction of φ−, φ+, and ψ, we have φ− ­ψ ­ φ+. Thus, we have ψ ∈ β̃G (φ) =
βG (φ)∩ Φ̃x , implying the nonemptiness of β̃G (φ). �

A.3 Proof of Theorem 4.2

Suppose that a ∗ is a strict MP-maximizer with a strict monotone potential function v .
For a nonempty set of actions A ′i ⊂ A i that contains a ∗i , consider the potential game
G ′v = (I , (A ′i )i∈I , (v )i∈I ).
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L A.6 (Hofbauer and Sorger 2002). Suppose that G ′v is a potential game with a
unique potential maximizer a ∗ ∈ A ′. Then, a ∗ is absorbing for all θ > 0.

P  T .. Suppose that v is a strict monotone potential function with
the strict MP-maximizer a ∗, and let A−i = {h ∈ A i | h ≤ a ∗i } and A+i = {h ∈ A i |
h ≥ a ∗i }. By Lemma A.6, a ∗ is absorbing in each of the restricted potential games
G−v = (I , (A−i )i∈I , (v )i∈I ) and G+v = (I , (A+i )i∈I , (v )i∈I ). Let

x−ε = εmin A +(1− ε)a ∗

x+ε = εmax A +(1− ε)a ∗

for ε ∈ [0, 1].
Choose a small ε > 0 so that any perfect foresight path for G−v from x−ε and for G+v

from x+ε converges to a ∗. Fix any state x ∈
∏

i ∆(A i ) close to a ∗ satisfying

x−ε ­ x ­ x+ε ,

and letφ∗ be any perfect foresight path from x in the original game G .
In the following, we find perfect foresight paths φ− and φ+ for G−v and G+v , respec-

tively, such that φ−(0) = x−ε , φ+(0) = x+ε , and φ− ­φ∗ ­φ+. Then, since a ∗ is absorbing
both in G−v and in G+v , φ− and φ+ converge to a ∗, and thus φ∗ also converges to a ∗.
In the case where G is supermodular, this implies that a ∗ is linearly absorbing in G by
Proposition 3.3. In the case where Gv is supermodular, a ∗ is linearly absorbing in G−v
and in G+v , by Proposition 3.3, so that φ− and φ+ linearly converge to a ∗, and therefore,
φ∗ also converges linearly to a ∗, implying the linear absorption of a ∗ in G . We show only
the existence ofφ−; the existence ofφ+ is proved similarly.

Let Φ̃x−ε
= {φ ∈ Φx−ε

| φ ­ φ∗ andφ(t )∈
∏

i ∆(A
−
i ) for all t ≥ 0}. Consider the best

response correspondence βG−v
for the stage game G−v . We show that β̃G−v

(φ) = βG−v
(φ)∩

Φ̃x−ε
is nonempty for any φ ∈ Φ̃x−ε

. Then, since Φ̃x−ε
is convex and compact, it follows

from Kakutani’s fixed point theorem that there exists a fixed point φ− ∈ β̃G−v
(φ−)⊂ Φ̃x−ε

,
as desired.

Take anyφ ∈ Φ̃x−ε
. If G is supermodular, then

min BRi
v (φ|A

−
i )(t )≤min BRi

u i
(φ|A−i )(t )≤min BRi

u i
(φ∗|A−i )(t ),

where the first inequality follows from the assumption that v is a strict monotone poten-
tial and the second inequality follows from the supermodularity of u i and Lemma 3.1.

If Gv is supermodular, then

min BRi
v (φ|A

−
i )(t )≤min BRi

v (φ
∗|A−i )(t )≤min BRi

u i
(φ∗|A−i )(t ),

where the first inequality follows from the supermodularity of v and Lemma 3.1, and the
second inequality follows from the assumption that v is a strict monotone potential.

Therefore, in each case, we have

min BRi
v (φ|A

−
i )(t )≤min BRi

u i
(φ∗|A−i )(t ),
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so that there exists h ∈BRi
v (φ|A

−
i )(t ) such that

h ≤min BRi
u i
(φ∗|A−i )(t ).

Then, there exists a best response ψ to φ in the game G−v such that ψ(0) = x−ε and ψ ­
φ∗, which can be constructed as in the proof of Proposition 3.1. �

A.4 Proofs for Section 4.3

P  L .. Let v be given as in the lemma. We show only the conditions (4.1)
and (4.3) for A−i ; (4.2) and (4.4) are proved similarly. Fix any i ∈ I andπi ∈∆(A−i ). If a ∗i =
min A i , then (4.1) and (4.3) are satisfied. Then consider the case of a ∗i >min A i . Observe
that v (h,πi ) =

∑

a−i∈A−i
πi (a−i )v (h, a−i ) is constant for all h < a ∗i , so that min bri

v (πi |A−i )
is either min A i or a ∗i . It is sufficient to consider the case where a ∗i =min bri

v (πi |A−i ).
Since

v (a ∗i ,πi )−v (min A i ,πi ) =πi (a ∗−i ) · (1−p i )+
∑

a−i 6=a ∗−i

πi (a−i ) · (−p i )

=πi (a ∗−i )−p i ,

it follows from a ∗i =min bri
v (πi |A−i ) that πi (a ∗−i )> p i .

Therefore, if a ∗ is a p-dominant equilibrium, then a ∗i ∈ bri
u i
(πi |A−i ), i.e., a ∗i =

max bri
u i
(πi |A−i ); if a ∗ is a strict p-dominant equilibrium, then {a ∗i } = bri

u i
(πi |A−i ), i.e.,

a ∗i =min bri
u i
(πi |A−i ). �

P  L .. (i) Suppose that a ∗ is an LP-maximizer with a local potential
function v . We show that if G or Gv has diminishing marginal returns, then a ∗ is an
MP-maximizer with this function v . Fix any i ∈ I and πi ∈ ∆(A−i ). We show that
max bri

v (πi |A−i ) ≤max bri
u i
(πi |A−i ). Let a i =max bri

v (πi |A−i ). It is sufficient to consider
the case where a i >min A i .

Since a ∗ is an LP-maximizer, for all h < a i there exists µi (h)≥ 0 such that

µi (h)
�

v (h +1, a−i )−v (h, a−i )
�

≤ u i (h +1, a−i )−u i (h, a−i )

for all a−i ∈ A−i , so that we have

µi (h)
�

v (h +1,πi )−v (h,πi )
�

≤ u i (h +1,πi )−u i (h,πi )

for all h < a i . On the other hand, we have

v (a i ,πi )−v (a i −1,πi )≥ 0

by the definition of a i .
Suppose first that G has diminishing marginal returns. Then, we have

u i (h +1,πi )−u i (h,πi )≥ u i (a i ,πi )−u i (a i −1,πi )

≥µi (a i −1)
�

v (a i ,πi )−v (a i −1,πi )
�

≥ 0
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for any h < a i . Hence, we have

u i (a i ,πi )−u i (h,πi )≥ 0

for all h < a i , which implies that a i ≤max bri
u i
(πi |A−i ).

Suppose next that Gv has diminishing marginal returns. Then, we have

u i (h +1,πi )−u i (h,πi )≥µi (h)
�

v (h +1,πi )−v (h,πi )
�

≥µi (h)
�

v (a i ,πi )−v (a i −1,πi )
�

≥ 0

for any h < a i . Hence, we have

u i (a i ,πi )−u i (h,πi )≥ 0

for all h < a i , which implies that a i ≤max bri
u i
(πi |A−i ).

(ii) Suppose that a ∗ is a strict LP-maximizer with a strict local potential function
v . We show that if G or Gv has diminishing marginal returns, then a ∗ is a strict MP-
maximizer with the same function v . Fix any i ∈ I and πi ∈ ∆(A−i ). We show that
min bri

v (πi |A−i ) ≤ min bru i (πi |A−i ). Let a i = min bri
v (πi |A−i ). It is sufficient to consider

the case where a i >min A i .
Since a ∗ is a strict LP-maximizer, for all h < a i there exists µi (h)> 0 such that

µi (h)
�

v (h +1, a−i )−v (h, a−i )
�

≤ u i (h +1, a−i )−u i (h, a−i )

for all a−i ∈ A−i , so that we have

µi (h)
�

v (h +1,πi )−v (h,πi )
�

≤ u i (h +1,πi )−u i (h,πi )

for all h < a i . On the other hand, we have

v (a i ,πi )−v (a i −1,πi )> 0

by the definition of a i .
Suppose first that G has diminishing marginal returns. Then we have

u i (h +1,πi )−u i (h,πi )≥ u i (a i ,πi )−u i (a i −1,πi )

≥µi (a i −1)
�

v (a i ,πi )−v (a i −1,πi )
�

> 0

for any h < a i . Hence we have

u i (a i ,πi )−u i (h,πi )> 0

for all h < a i , which implies that a i ≤min bri
u i
(πi |A−i ).
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Suppose next that Gv has diminishing marginal returns. Then we have

u i (h +1,πi )−u i (h,πi )≥µi (h)
�

v (h +1,πi )−v (h,πi )
�

≥µi (h)
�

v (a i ,πi )−v (a i −1,πi )
�

> 0

for any h < a i . Hence we have

u i (a i ,πi )−u i (h,πi )> 0

for all h < a i , which implies that a i ≤min bri
u i
(πi |A−i ). �
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