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Many inspections are manipulable

ErRAN SHMAYA

Kellogg School of Management, Northwestern University

A self-proclaimed expert uses past observations of a stochastic process to make
probabilistic predictions about the process. An inspector applies a test function
to the infinite sequence of predictions provided by the expert and the observed
realization of the process in order to check the expert’s reliability. If the test func-
tion is Borel and the inspection is such that a true expert always passes it, then it
is also manipulable by an ignorant expert. The proof uses Martin’s theorem about
the determinacy of Blackwell games. Under the axiom of choice, there exist non-
Borel test functions that are not manipulable.

Keyworbps. Forecasting, calibration, zero-sum games.
JEL cLAssIFICATION. C72, C73.

1. INTRODUCTION

Ateveryperiod n =0, 1,2,... nature chooses an outcome s, from a finite set S. An expert
claims to know the underlying distribution behind nature’s choices. To prove his claim,
at each period n the expert provides a probabilistic prediction p, about s, before s, is
realized. The question addressed in this paper is whether the expert’s reliability can be
tested from the infinite sequence of predictions (pg, p1,...) provided by the expert and
the actual observed sequence (sg, s1,...).

Assume that an inspector decides on the reliability of the expert by applying some
test function—a function whose arguments are the predictions (po, p1, ...) made by the
expert and the actual realization (s, s1,...), and whose value is either ‘pass’ if the pre-
dictions fit the realization or ‘fail’ otherwise. The calibration test, which checks whether
the predicted frequencies of events equal their observed frequencies, is a well known
example of such a test function. Several versions of the calibration test are studied in
the literature (Foster and Vohra 1997, Lehrer 2001, Sandroni et al. 2003), and all of them
turn out to be manipulable: An ignorant expert, who does not know the distribution of
the process, can strategically generate predictions so that he matches the performance
of a true expert, who predicts according to the correct distribution. In this paper I prove
that every Borel test function is manipulable, without making any assumption about its
form.
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Olszewski and Sandroni (2008a), extending a previous theorem of Sandroni (2003),
have already proved a general manipulability result of the type sought in this paper.
They consider an inspection in which the expert can be rejected only at some finite pe-
riod: if he is not rejected at any finite period then he passes the test. This assumption
is natural from an economic perspective, since a real world inspection is based on a fi-
nite data sequence. Topologically, this assumption translates to semi-continuity of the
test function. Olszewski and Sandroni prove that such a test function is always ma-
nipulable.! My contribution is twofold: I extend Olszewski and Sandroni’s result from
semi-continuous test functions to arbitrary Borel functions, thus dispensing with the
assumption that rejection is determined at a finite period, and I give an example of a
non-Borel test function that is not manipulable. My proof uses Martin’s theorem about
the determinacy of Blackwell games, which is a new tool in this literature.

A comparison between the results of this paper and those Dekel and Feinberg (2006)
and Olszewski and Sandroni (2008b) shows that the scope of the prediction that the
expert provides is crucial for the existence of a non-manipulable inspection. These au-
thors prove the existence of non-manipulable inspections that are based on a prediction
about the entire infinite realization of the process, which the expert announces before
any data is realized. The manipulability theorem of this paper, on the other hand, relies
on the fact that at every period the expert provides predictions about the current pe-
riod, or, more generally, about a finite number of future periods, but not about events
that are only determined at infinity. To emphasize this point, I give an example of a
non-manipulable sequential inspection, in which at every period the expert makes a
prediction about a single event that is only determined at infinity.

Theorems 1 and 2 in Section 2 are the main results of this paper—every Borel test
function that does not reject the truth with high probability is manipulable, and, un-
der the axiom of choice, there exists a non-Borel test function that is not manipulable.
Section 3 discusses related literature. Section 4 presents Martin’s theorem. The proofs
of the theorems are in Sections 5 and 6. In Section 7 I give an example of a Borel non-
manipulable inspection that is based on repeated predictions about a single event. Sec-
tion 8 concludes.

2. MANIPULABLE AND NON-MANIPULABLE TESTS

Let S be a finite set. Elements of A(S), the simplex of probability distributions over S, are
called predictions. At every period n =0,1,2,... an outcome s, €S is realized. At every
period, before s, is realized, an expert declares a prediction p, € A(S) about s, based
on the past outcomes sy, ..., S,—1. A realization is given by an infinite sequence s € SN of
outcomes, where N=140,1,2,...}.

Let SN = J,.,S" be the set of all finite sequences of elements of S, including the
empty sequence e. For every realization s = (s, sy,...) € SN and every n € N let s, =
(s0,.-.,Sn—1) be the initial segment of s of length n. In particular, sl =e.

In fact, their result is formulated in a wider framework, without the assumption that the predictions are
only about the current period. See Section 3.3.
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DEFINITION 1. A prediction ruleis a function f: S<N — A(S).

If the expert uses a prediction rule f then his prediction about s, after observing
(S0y--+»Sn—1)is f(S0,--+»Sn—1)-

DEFINITION 2. A test function is a function T : A(S)N x SN — {0, 1}.

A test function T dictates, for every infinite sequence of predictions and every realiza-
tion, whether or not the expert passes the inspection:

DerINITION 3. Let T be a test function and s € SN a realization. A sequence p € A(S)N of
predictions passes T over s if T(p,s) = 1. A prediction rule f passes T over s if p passes
T over s, where p =(po, p1,-...) is the sequence of predictions of f along the realization,

pn=f(s0,...,Sn-1).

Ideally, an expert who predicts according to the distribution of the process passes the
test with high probability, and an ignorant expert who does not know the distribution of
the process is not able to pass the test. Definitions 4 and 5 below formalize these notions.
These definitions are special cases of the definitions in Olszewski and Sandroni (2008a),
which pertain to a more general notion of test function (see Section 3.2).

DEFINITION 4. A test function T does not reject the truth with probability 1 — € if
P(f passes T over ©9,0;,...)>1—¢€ (1)

for every sequence of random variables ©¢, ©1,... with values in S, where the prediction
rule f: SN — A(S) is given by

f(so,...,$n=1)[sn] =P(Oy, =5, [O0=S$0,...,0p-1=5,-1) 2)
for every so,..., 5, €S.

RemARK 1. The random variables ©,0;,... are defined over some probability space
(Q,.</,P). The event {f passes T over ©g,0;,...} is the subset of Q that is given by
{fw € Q| f passes T over Op(w),01(w),...}. Note that if T is a Borel function then this
setisin.¢/. If T is universally measurable? then the left side of (1) is still well defined.
The inequality (1) is meaningful even when the set is not measurable, in which case
the meaning is that there exists some A € .«/ such P(A) > 1 —e€ and f passes T over
Op(w),01(w),... forevery w € A.

ReMARK 2. Instead of quantifying over all sequences of random variables with values in
S, I could write Definition 4 by quantifying over all distributions in S, as in Olszewski
and Sandroni (2008a, Definition 1): A test function T does not reject the truth with prob-
ability 1 — e if

pr(xeSY| f passes Toverx)>1—¢

2A subset M of a standard Borel space X is universally measurable if it is u-measurable for every proba-
bility measure u over X.
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for every prediction rule f where uy is the distribution induced by f over S¥. I prefer the
terminology of random variables, which is more suitable to the probabilistic arguments
of this paper and which renders the proof simpler.

DEerINITION 5. A test function T is e-manipulable if there exists some probability mea-
sure £ over prediction rules such that

E({f| f passes T over s}) >1—e¢, 3)

for every s € SN.

If a test function is e-manipulable then an ignorant expert can randomize his predic-
tion rule according to & and pass the test with high probability, regardless of the actual
realization.

ReMARK 3. The set of prediction rules f : S<N — A(S) is naturally endowed with a stan-
dard Borel structure, as a countable product of copies of a simplex. If T is a Borel func-
tion then the set {f | f passes T over s} is a Borel set. If T is not a Borel function then
the inequality (3) means that there exists some Borel set B of prediction rules such that
E(B)>1—e€and f passes T over s for every f € B.

The following theorem is the negative result of this paper: Under the Borel assump-
tion, a test function that does not reject a true expert is manipulable by an ignorant
expert.

TueoreM 1. Let T : A(S)N x SN — {0,1} be a Borel test function. If T does not reject the
truth with probability 1 — €, then T is € + 0 -manipulable for every 6 > 0.

ReMARKk 4. The test function T is a Borel function if the set {(p, s) | T(p,s) = 1} is a Borel
subset of A(S)N x SN, Theorem 1 and its proof remain valid if the space A(S)N x SN is
equipped with the product of discrete topologies over A(S) and S, which gives rise to a
larger class of Borel functions than the standard Borel structure over A(S)N x SY, since
the discrete topology over A(S) is stronger than the Euclidean topology.

Can a test function T : A(S)N x SN — {0, 1} that is not Borel be manipulable? It follows
from the proof of Theorem 1 that there is a model of set theory without the axiom of
choice in which Theorem 1 is valid for an arbitrary test function (Remark 5). The next
theorem shows that in ZFC there exists a test function that is not manipulable.

THEOREM 2. Let S = {0,1}. Under the axiom of choice, there exists a universally measur-
able test function T : A(S)N x SN — {0, 1} such that

(i) T does not reject the truth with probability 1.

(i) For every probability distribution & over prediction rules there exists s € SV such
that

E({f | f passes T overs}) =0.

In particular, T is not e-manipulable for any € > 0.
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3. RELATED LITERATURE
3.1 Calibration tests

Calibration tests (Dawid 1982, Foster and Vohra 1997, Kalai et al. 1999, Fudenberg and
Levine 1999, Lehrer 2001, Sandroni et al. 2003) compare the observed frequencies of
events over sets of periods with the average predictions over the same sets of periods.
I follow Lehrer (2001). For p € A(S) and a subset V of S let P[V] = Zsevp[s] and let
1y : S — {0,1} be the indicator function of V. A simple calibration test is given by a pair
(U,C), where U and C are functions that assign to every observation (sy,...,s,) € SN
subsets C(sg,...,$,) and U(so,...,s,) of S such that C(sg,...,s,) € U(so,...,sn). The
interpretation is that U(so,...,s) is the local universe considered after sy,...,s, and,
within this universe the event C(so,...,s;) is checked. The simple calibration test
TUC: A(SN x SN — {0,1} induced by (U, C) checks whether the conditional probability
attached by the expert to the events C(sy,...,S,) given U(sy,...,S,) matches the empiri-
cal relative frequency. Formally,

o0
TV (p,s)=1if Z 1ys),)($n) = oo implies
n=0
lim Yo Luesln(s:) - (pilUGs )] st (s:) — pil C(s1:)]) —o
e > o luesin(si)

for every realization s = (sg, s1,...) € SN and every infinite sequence of predictions p =
(po, p1,...) € A(S)N. Then TYC is a Borel test function that does not reject the truth with
probability 1.

A more general calibration test is given by a mixture of simple calibration tests. Let
< be the set of simple calibration tests and let A be a probability distribution over ..
Assume the inspector first chooses a simple calibration test T' € . using A and then
applies this test to the expert’s predictions. For every such A, Lehrer constructs a predic-
tion rule that passes the inspection A-almost surely. Lehrer’s result relates to Theorem 1
of this paper in the following way. Let A : A(S)Y x SN — {0, 1} be the test function given
by

A(p,s)=1if and only ifJ T(p,s)MdT)=1.

Then A is a Borel test function that does not reject the truth with probability 1. By The-
orem 1, it is e-manipulable for every €. Thus, there exists a manipulation scheme that
passes the calibration test with high probability. For the case of calibration tests, Lehrer
proves a stronger result: He shows that the test is 0-manipulable and that the manipula-
tion scheme is pure—there exists a prediction rule f such that f passes the test A over s
for every s.3 Most importantly, Lehrer constructs the manipulating rule, while my proof
is not constructive.

30ther calibration tests do not admit a pure manipulation (Sandroni et al. 2003, Example 2.1).
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3.2 Infinite-horizon predictions

According to the setup of Section 2, at each period the expert has to provide a predic-
tion about the outcome of that period. Dekel and Feinberg (2006) and Olszewski and
Sandroni (2008b) consider a different framework, in which at the start of the inspection
the expert must inform the inspector of his prediction about the entire realization of the
process. A test function in this context is a function ¢ : A(SY)x SN — {0, 1}, where A(SN) is
the set of all probability measures over the set SY of realizations. I call elements of A(SY)
infinite-horizon predictions, denote tests that are based on infinite-horizon predictions
by lower case t, and call them infinite-horizon tests. When necessary to avoid confu-
sion, I call elements of A(S) one-period predictions and tests in the sense of Definition 2
one-period tests.

There is a natural correspondence f « ur between prediction rules according to
Definition 1 and probability measures over S*: for every prediction rule f, ur is the
joint distribution of a sequence 0,01, ... of random variables satisfying (2). Because
of this correspondence, every one-period test function T : A(S)N x SN — {0, 1} naturally
induces* an infinite-horizon test function ¢ such that ¢(uy, s) = 1 if and only if f passes
T over s, but the converse is not true. Dekel and Feinberg (2006) and Olszewski and
Sandroni (2008b) prove the existence of infinite-horizon test functions that do not reject
the truth with probability 1 and are not manipulable. In light of Theorem 1 it should
also be mentioned that the test function constructed by Olszewski and Sandroni is a
Borel function when A(S%) is equipped with its standard Borel structure. In Section 7 I
discuss in detail the difference between finite-horizon and infinite-horizon predictions.

3.3 Future-independent tests

Olszewski and Sandroni (2008a) consider (infinite-horizon) test functions ¢ : A(SN) x
SN — 10,1} of the form

0 if(fln Sln)eRforsomeneN

l'(‘U,f,S):{ 4)

1 otherwise

for some R C 5, (A(S)U7=osi x §"), where f], is the restriction of f to A(S)U;!o1 $' for
every prediction rule f and s|, = (so,...,s,—1) for every realization s = (so, s1,...) € SN.
The underlying assumption is that rejection must occur at some period 7, and that the
decision of the inspector at that period depends only on the segment of the data s|, that
was realized before that period and on the prediction rule before that period. The set R
(the rejection set) consists of all finite segments of realizations and prediction rules that
are considered to be inconsistent with each other.

Test functions of the form (4) are called future-independent: the decision whether to
reject an infinite-horizon prediction ¢ at some period does not depend on the predic-
tions made by f at later periods. For future-independent tests, Olszewski and Sandroni

4There is a minor inaccuracy here because uy does not determine f uniquely. Cantankerous readers can
assume that T(p, s) =0 whenever p,[s,] =0 for some n €N, so that T determines ¢ uniquely.
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prove an analogue of Theorem 1: a future-independent test that does not reject the truth
with high probability is manipulable.

It is interesting to compare the theorem of Olszewski and Sandroni with Theorem 1.
Consider first a one-period test function T : A(S)N x SN — {0, 1}. If the infinite-horizon
test function induced by T is future-independent, then the set {(p,s) | T(p,s) = 1} is
closed (recall Remark 4) and, in particular, Borel. Therefore in the framework of test
function studied in this paper, the scope of Theorem 1 is wider than that of Olszewski
and Sandroni’s theorem. However, there are future-independent, infinite-horizon tests
that are not induced by one-period test functions. In fact, neither of the theorems is
contained in the other. Olszewski and Sandroni’s inspector is more restricted in that he
must decide to reject using a finite number of predictions. On the other hand, he can use
the entire prediction rule up to the rejection point, including predictions conditioned on
observations outside the actual realization.

4. BLACKWELL GAMES

A Blackwell game is a two-player zero-sum game that is given by (A4, B, r) where A and B
are the sets of actions of player 1 (the maximizer) and 2 (the minimizer) respectively and
r: (A x B)N—[0,1] is the payoff function.

The game is played as follows. At every stage n =0, 1,2,... both players, simultane-
ously and independently, choose an action. At the end of the stage, each player is in-
formed of his opponent’s action. Let a,, b, be the actions chosen by players 1 and 2 re-
spectively at stage n. The payoff that player 2 pays player 1 is given by r(aq, bo, a1, b1, .. .).

Let s =(Ax B)<N = Unzo(A x B)" be the set of finite histories of the game, including
the empty history e. A behavioral strategy o of player 1 is given by o : ¢ — A(A).
Behavioral strategies 7 of player 2 are defined analogously. Every pair o, 7 of behavioral
strategies induces a probability distribution ., over the set (A x B)N of infinite histories
or plays. Let R(o,7) = f r dug - be the expected payoff in the game if the players play
accordingto o, T.

Determinacy

The upper value V(G) and the lower value V(G) of G of a Blackwell game G are given by
V(G)=infsupR(o, 1)
T g

V(G)=supinfR(o, 1),
o T

where the suprema range over all behavioral strategies o of player 1 and the infima
range over all behavioral strategies 7 of player 2. A strategy o of player 1 is 6 -optimal if
R(o,7)> V(G)—6 for every behavioral strategy 7 of player 2. The game G is determined if
V(G)= V(G). Blackwell (1969, 1989) proves the determinacy of Blackwell games (which
he calls infinite games with imperfect information) with a payoff function that is the in-
dicator function of a G5 set, and conjectures that every Blackwell game with Borel payoff
function is determined. Vervoort (1996) advances higher in the Borel hierarchy, proving
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determinacy for indicators of G54 sets. The conjecture is proved by Martin (1998) (see
also Maitra and Sudderth 1998 for applications to stochastic games).

MARTIN’s THEOREM. Let A, B be two countable sets, at least one of which is finite, and let
r: (A x B)N —[0,1] be a Borel function. Then the Blackwell game (A, B, r) is determined.’

Random plays

Let (o,7) be a pair of behavioral strategies in the Blackwell game (A, B,r). A (o, 1)-
random play is a sequence

aO)ﬁOw--)an’ﬂnyn-

of random variables over some probability space, where the values of ¢, (respectively
) are in A (respectively B) such that

P(an =a,[3‘n =b | ao,ﬁo,...,an_l,ﬂn_l) =
0'(0(0, ﬁOr---ran—lrﬁn—l)[a] : T(aOr ﬁOI--'ran—lrﬁn—l)[b]

foreverya € Aand b € B.

The measure g, that is induced by (o,7) over (A x B)N is the joint distribu-
tion of some (o, 7)-random play. The payoff function associated with a pair of be-
havioral strategies (o,7) can also be written in terms of random plays: R(o,7) =

E (r (o, Bo, 1, i)

Pure and mixed strategies

A pure strategy of player 1 in the Blackwell game (A, B, r) is a function f : B<N — A; for
every sequence by,..., b, of past actions of player 2, f(by,...,by) is player 1’s action at
stage n + 1. Every pure strategy is in particular a behavioral strategy. A mixed strategy of
player 1 is a probability distribution over pure strategies. Kuhn’s Theorem (Sorin 2002,
Theorem D.1) establishes the equivalence between behavioral and mixed strategies. In
particular, for every 6 > 0 player 1 has a §-optimal mixed strategy in every Blackwell
game, i.e. a mixed strategy £ such that R(&, g) > V(G) — 6 for every pure strategy g of
player 2, where R(&, g)= f R(f, g)&(df) is the expected payoff for player 1 under &, g.

5. PROOF OF THEOREM 1

Let AQ(S) = {p € A(S) | p[s] € Qforeverys € S} be the set of elements of A(S) with
rational values. For a test function T let G(T) be the Blackwell game in which the set of
actions of player 1 is AQ(S), the set of actions of player 2 is S, and the payoff function is
the restriction of T to (AQ(S) x S)N. Note that every pure strategy of player 1 in G(T) is
a prediction rule according to Definition 1. Roughly speaking, player 1 represents the
expert and player 2 represents nature. However, in the game G(T), player 2 is allowed
to condition his actions on past actions of player 1 (as if nature picks the value of s,

SMartin states his theorem for the case when both action sets are finite and points out that the proof
works when one of these sets is countably infinite.
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depending on previous predictions made by the expert) and player 1 is only allowed to
make predictions with rational values.®

The game G(T) satisfies the assumptions of Martin's theorem: the action set of player
1 is finite, the action set of player 2 is countable, and the payoff function is Borel. There-
fore V(G(T))= V(G(T)). The following two lemmas complete the proof of Theorem 1.

LEMMA 1. If T does not reject the truth with probability 1 — e then V(G(T)) > 1—e.
LemMma 2. T is(1— V(G(T))+ 0)-manipulable for every 6 >0

The proof of Lemma 1 uses the following lemma. Recall that, for a finite set S and
p, p’ € A(S), a coupling of (p, p’) is a pair (0, ®’) of random variables such that P(© = s) =
pls] and P(®’ = s) = p’[s] for every s €, i.e. the marginal distributions of ® and ©’ are
p and p’ respectively.

CoupLING LEMMA (Lindvall 1992, Chapter 1, Theorem 5.2). Let S be a finite set and let
p,p’ € A(S). Then there exists a coupling (©,0') of (p,p’) such that P(© # @) =
lp=plh/27

Proor oF LEMMA 1. Let 7 be a behavioral strategy for player 2 in G(T). We have to con-
struct a good response for player 1 against 7. The strategy is such that at every stage
player 1 predicts the action of player 2 for that stage. Note that since 7 is given, at every
stage player 1 knows the probability distribution according to which player 2 is going to
choose an action. However, since in G(T') player 1 is only allowed to make predictions
with rational values, his strategy only approximates this distribution.

Let 6 > 0 and let f, f/ : SN — A(S) be the prediction rules defined inductively as
follows. For every (so,...,s,) € S<N let

f(s0s.-,Sn)=7T(P0s--» P1nsS0s--+»Sn), 5)

where p; = f(so,...,5i-1), and let f’(so,...,s,) € AQ(S) be such that

150, r$0) = f(S0,..., sn)llh < /2" (6)

Then f’ is a pure strategy of player 1 in G(T). I am going to construct a (f’,7)-
random play (Ilp, ©p,I1;,0s,...) and, on the same probability space, a stochastic pro-
cess (0;,07,...) that equals (G, ©1,...) with high probability, such that f is the correct
prediction rule for (8, 07,...).

60lszewski and Sandroni (2008b) use another game-theoretic representation of the expert’s problem.
Their game is a normal form one-shot game in which nature chooses a realization and the expert chooses a
prediction rule. They use topological properties of the test function to deduce the determinacy of the game
using the classical minimax theorem.

"I essentially use the coupling lemma to prove that the set of probability measures i that are induced
by prediction rules f with rational values is dense in the norm topology. Cf. Lemma 2 in Olszewski and
Sandroni (2008a).
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Let © =(0,)neny and © = (0@ )nen be random variables over a probability space de-
fined inductively such that, for so, s(’), cey Sn_1, s;_l €S, the conditional joint distribution
of ©,,0’, given the event {0; =s;,0) = s/ for 1 <i < n} satisfies

P (@n =5]0;=s5;,0,=s}for0<i< n) = f(50,+,Sn-1)[s] (7)
P (@’n =5"10;=5;,0;=s.for0<i< n) =f'(sg-.»Sh,_DIs’], (8)

and, if s; = s} for 0 < i < n, then also
PO, #0,10,=s5;,0,=s;for0<i<n)<§/2". 9)

Ifs; = sg for 0 < i < n then the existence of a pair of random variables that satisfies (7),
(8), and (9) follows from (6) and the Coupling Lemma. If s; # s; for some 0 < i < n then
the conditional joint distribution of ©,,©/, given the event {©; = s;, @Q = sl’. for0<i<n}
can be chosen arbitrarily with the marginals given by (7) and (8). Note that from (7)
and (8) it follows that
P(©,=5|0p=50,...,0n-1=5n-1)= f(S0,---,Sn—-1)[5] (10)
PO, =s"|0)=s5p,...,0, 1 =s,_)=f"(sg--,8s,,_Is']. (11)

Also, from (9) it follows that
PO,#06 |0;=0,for0<i<n)<§/2",
and therefore

PO#6)< Y PO, #6),]0;=0)for0<i<n)<25. (12)

neN

Let IT = (I1,,) ,en be given by
I, = f'(Og,...,0u1). (13)

Then it follows from (5), (10), and (13) that
P(®, =s|II,0y,...,I1,-1,0,-1) =1y, O, ..., IT,,-1,0,-1)[s]. (14)
From (13) and (14) it follows that
(ITy, ©,111,01,...) isa (f’, 7)-random play in G(T). (15)

Therefore

R(f',7)=E(T(Ily,B0,11;,0y,...))
=P(I passes T over ©)
>P(I1 passes T over ©') —P(© #0©)
=P(f’ passes T over @) —P(© # @)
>1-€e-PO#O)
>1—€—20,



Theoretical Economics 3 (2008) Many inspections are manipulable 377

where the first equality follows from (15), the second equality from Definition 3, the first
inequality from the fact that

{Il passes T over @'} C {Il passes T over O} U {®’ # 0},

the third equality from (13) and Definition 3, the second inequality from (11) and the fact
that T does not reject the truth with probability 1 — €, and the third inequality from (12).
Thus, for every strategy 7 of player 2 and every 6 > 0 we have built a pure strategy f’ of
player 1 such that R(f/,7) > 1— e —26. Therefore V(G(T)) > 1 — € as desired. O

ProOF OF LEMMA 2. Let £ be a mixed 0-optimal strategy for player 1 in G(T'). We claim
that £, viewed as a distribution over prediction rules, (1 — V(G(T))+ é)-manipulates T.
Indeed, let s be a realization and let g be the pure strategy of player 2 in G(T) given by
g(po,...,pn-1)=sy for every py,..., pn—1 € AQ(S).

Let f be a pure strategy of player 1 in G(T). Then it follows from Definition 3 that

1 if f passes T over s
0 otherwise.

Mﬁ@={
It follows that

K(G(T))—ﬁiR(i,g)ZfR(f»g)ﬁ(df)ZﬂflfpaSSGS T over s},

as desired. O

RemMARK 5. There is a model of set theory without the axiom of choice in which every
Blackwell game is determined (Martin 1998, Theorem 13). In this model every set is
universally measurable, which makes Definitions 4 and 5 meaningful for an arbitrary
test function T. It follows from the proof that in such a model Theorem 1 is valid for an
arbitrary test function.

6. PROOF OF THEOREM 2

The test is a modification of the non-manipulable (infinite-horizon) test of Dekel and
Feinberg (2006, Proposition 2). A subset M of {0, 1} is universally null if M is univer-
sally measurable and u(M¢) = 1 for every non-atomic probability measure u over {0, 1}".
It follows from the axiom of choice that there exist universally null sets in {0, 1}V of car-
dinality X; (Miller 1984, Theorem 5.3).8 Such a set is not a Borel set. Note that for a
universally null set M and an arbitrary probability measure u one has

UM UAW) =1, (16)

where A(u) = {s € {0, 1}V | u({s}) > 0} is the set of atoms of u.

8The existence result in Miller’s paper is formulated for the real line. Since by Kuratowski’s isomorphism
theorem the space {0, 1} and the real line are isomorphic as Borel spaces, the result holds also in {0, 1}".
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Let S = {0,1} and let M be an uncountable universally null subset of SN. Let T :
A(SN x SN — {0, 1} be the test function given by

0 ifseMand [],opnlsa]=0
1 otherwise.

T(P»3)= {

Note that T is universally measurable. I claim that T satisfies the requirements of Theo-
rem 2.

Let f: S<N — A(S) be a prediction rule and let s € SN. Let @, ©1,... be a sequence of
random variables satisfying (2) and let uy € A(SY) be their joint distribution. Then

ur({s})=P(©, =s, forevery n €N)
=l_[IP’(®n=sn|®,~=s,- f0r0§i<n)=l_[pn[sn],

neN neN

where p, = f(S0,...,Sn—1)-

By the last equation and the definition of T it follows that f passes T on s € M if and
only if ug({s}) > 0, i.e. s € A(ur). The rest of the argument is the same as in Dekel and
Feinberg’s paper: For every prediction rule f

ur({s|f passes T over s}) =us(M UA(us))=1

(the last equality follows from (16)), and therefore T does not reject the truth with prob-
ability 1.

To prove the second assertion of Theorem 2, let £ be a probability distribution over
prediction rules and let s € M. If

E({f | f passes T over s}) =&({f | ur({s})>0}) >0,

then in particular £({s}) > 0 where £ € A(SY) is the barycenter of £, given by

E(B)= f pr(B)E(dS)

for every Borel subset B of A(SN). Thus & passes the test with some positive probability
over s € M only if s € A(&). Since M is uncountable and A(&) is countable, it follows that
there are some s € M over which & passes the test with probability 0.

ReMARKk 6. The test constructed by Olszewski and Sandroni (2008b) has the stronger
property that for every randomly generated prediction rule &, the set of all realizations s
over which &£ passes tests with positive probability is a set of first Baire category.

7. FINITE-HORIZON PREDICTIONS AND PREDICTIONS ABOUT A FINITE SET

Theorem 1, which deals with one-period tests, can be generalized to tests with a finite
horizon. Let k > 1 be a natural number. Consider an inspection in which, at every



Theoretical Economics 3 (2008) Many inspections are manipulable 379

period n, the expert provides a probabilistic prediction about (s, Sp+1,..-,Sn+k—1)- A
k -horizon prediction is an element of A(S¥). A k-horizon test function is a function T :
A(SFN x SN — R. A k-horizon prediction ruleis a function f : S<N — A(S¥). Definitions 4
and 5 extend in an obvious way to the case of k-horizon test functions, and the analogue
of Theorem 1 is also true: If a k-horizon test function does not reject the truth with
probability 1 — € then it is € + §-manipulable for every 6 > 0. Moreover, the number k
need not be constant or bounded, and can depend on past realizations and predictions.

On the other hand, as Dekel and Feinberg and Olszewski and Sandroni show,
infinite-horizon tests can be non-manipulable. In order to emphasize that the manip-
ulability result of this paper relies on the fact that the predictions requested from the
expert are about events in the finite horizon, and not just on the fact that the set Sk
over which predictions are made at each period is finite, consider the following situa-
tion. Fix a Borel set B C SN. Assume that at every period n, given the partial realization
(S0,...,Sn—1) observed at that period, the expert is asked to make a prediction g, € [0,1]
about whether the event B will occur, that is whether the infinite realization s is in B.
Consider the test function Tp : [0, 1] x SN — {0, 1} given by

1 if limy 00 gn =15(S)
0 otherwise.

TB(qu)Z {

A prediction rule about B is a function f : S<N — [0, 1]. A prediction rule passes the test
Tp over realization s € SN if Tg(gq,s) =1 where g € [0,1]N is given by g, = f(so,...,Sn—1)-
It follows from the martingale convergence theorem that the test T does not reject the
truth with probability 1. That is, for every stochastic process g, 0,... with values in S
one has

P(f passes Tg on 0y, 04,...)=1

where f is the prediction rule given by
f(s0,...,8p-1)=P((0,01,...) € B[Oy =s0,...,0p_1 = Sp_1).

Note that in the inspection induced by Ty the expert is always asked to state a prediction
about only two possibilities—either B occurs or B does not occur. Still, as I show in
the following example, Tp need not be manipulable when B is an event in the infinite
horizon.

ExampLE 1. Let B C SN be a Borel set that is not an F, set. Then the test Tj is not e-
manipulable for any € < 1/2. ¢

Indeed, Let & be a probability measure over prediction rules. Let

B= {s es|& ({f | im inf £(s],) > 1/2}) > 1/2}.

Since for every s € SN one has

{#1minerest)> 172} = J U ) 11 £6510> 172417

r=1n=1k=n
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it follows that

s€eBe—drn & (ﬂ {1 f(sle)> 1/2+1/r}) >1/2

k=n

—3Ann,tVm=>n & (ﬂ {flf(slk)>1/2+1/r}) >1/2+1/t.

k=n

Therefore
o0

B(r,n,t,m),
m=n

o0
B=
rn,t=1
where

E(r,n,t,m):{slg (ﬂ {f1f(sle)> 1/2+1/r}) >1/2+1/t}.

k=n

Since the sets B(r,n,t,m) are clopen (membership in B(r,n,t,m) depends on only a
finite number of coordinates) it follows that B is an F;, set. By the choice of B it fol-
lows that B # B. If s is any element in the symmetric difference of B and B then
& ({f | f passes Tp on s}) < 1/2. In particular, Tp is not e-manipulable for any € < 1/2.

REMARK 7. Let S = {0,1}. As an example of a Borel subset B of SN that is not an F; set
one can take B={s €SV | ZneN s, =00}, the set of realizations with infinitely many 1’s.

8. CONCLUSIONS

The inspections considered in this paper are sequential: they require the expert to an-
nounce at every period a probabilistic prediction in A(P) for some finite set P of pos-
sibilities. In one-period inspections, P = S, the set of possible outcomes in the period.
In k-horizon inspections (Section 7), P = Sk, the set of possible outcomes in the k next
periods. In inspections T about an event B (Section 7), P is a set consisting of two pos-
sibilities: ‘B occurs’ and ‘B does not occur’. In contrast, the inspections studied by Dekel
and Feinberg (2006) and Olszewski and Sandroni (2008b) require the expert to provide
one prediction in A(SY) about the entire realization of the process.

The paper bears good news and bad news for the inspector. There exist sequen-
tial inspections that are not manipulable (Theorem 2 and Example 1). However, such
inspections must be either non-Borel or rely on predictions about events that are not
determined at any finite period.
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