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Contagion through learning
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We study learning in a large class of complete information normal form games.
Players continually face new strategic situations and must form beliefs by extrap-
olation from similar past situations. We characterize the long-run outcomes of
learning in terms of iterated dominance in a related incomplete information game
with subjective priors. The use of extrapolations in learning may generate conta-
gion of actions across games even if players learn only from games with payoffs
very close to the current ones. Contagion may lead to unique long-run outcomes
where multiplicity would occur if players learned through repeatedly playing the
same game. The process of contagion through learning is formally related to con-
tagion in global games, although the outcomes generally differ.
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1. I

In standard models of learning, players repeatedly interact in the same game, and use
their experience from the history of play to decide which action to choose in each pe-
riod. In many cases of interest, decision-makers are faced with many different strategic
situations, and the number of possibilities is so vast that a particular situation is virtu-
ally never experienced twice. The history of play may nonetheless be informative when
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Invest Not Invest
Invest θ ,θ θ −1, 0

Not Invest 0,θ −1 0, 0

T 1. Payoffs in the example of Section 2.

choosing an action, as previous situations, though different, may be similar to the cur-
rent one. Thus, a tacit assumption of standard learning models is that players extrapo-
late their experience from previous interactions similar to the current one.

The central message of this paper is that such extrapolation has important effects:
similarity-based learning can lead to contagion of behavior across very different strate-
gic situations. Two situations that are not directly similar may be connected by a chain
of intermediate situations, each of which is similar to the neighboring ones. One effect
of this contagion is to select a unique long-run action in situations that would allow for
multiple steady states if analyzed in isolation. For this to occur, the extrapolations at
each step of the similarity-based learning process need not be large; in fact, the con-
tagion effect remains even in the limit as extrapolation is based only on increasingly
similar situations.

Our main application of similarity-based learning is to coordination games. Con-
sider, as an example, the class of 2× 2 games Γ(θ ) in Table 1 parameterized by a state
θ . The action Invest is strategically risky, as its payoff depends on the action of the op-
ponent. The safe action, Not Invest, gives a constant payoff of 0. For extreme values of
θ , the game Γ(θ ) has a unique equilibrium as investing is dominant for θ > 1, and not
investing is dominant for θ < 0. When θ lies in the interval (0, 1), the game has two strict
pure strategy equilibria.

The contagion effect can be sketched without fully specifying the learning process,
which we postpone to Section 3. Two myopic players interact in many periods in a game
Γ(θt ), with θt selected at random in each period. Roughly, we assume that, after observ-
ing the current state θt , players estimate their payoffs for each action on the basis of past
experience with states similar to θt . Two games Γ(θt ) and Γ(θs ) are viewed by players as
similar if the difference |θt −θs | is small.

Since investing is dominant for all sufficiently high states, there is some θ above
which players eventually learn to invest. Once these high states have occurred suffi-
ciently many times, the initial phase in which players may not have invested above θ
becomes negligible for the payoff estimates. Now suppose that a state θt = θ − ε just
below θ is drawn. At θt , investing may not be dominant, but players view some past
games with values of θ above θ as similar. Since the opponent has learned to invest in
these similar games, strategic complementarities in payoffs increase the estimated gain
from investing. When ε is small, this increase outweighs any loss that may have occurred
from investing in games below θ if the opponent did not also invest. Thus players even-
tually learn to invest in games with states below, but close to θ , giving a new threshold
θ ′ above which both players invest.

Repeating the argument with θ replaced by θ ′, investment continues to spread to
games with smaller states, even though these are not directly similar to games in the
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dominance region. The process continues until a threshold state θ ∗ is reached at which,
on average, the gain from investment by the opponent above θ ∗ is exactly balanced by
the loss that would occur if the opponent did not invest below θ ∗. Not investing spreads
contagiously beginning from low states by a symmetric process. These processes meet
at the same threshold, giving rise to a unique long-run outcome provided that players
place enough weight on states very close to the current one when forming their payoff
estimates.

Contagion effects have previously been studied in local interaction and incomplete
information games. In local interaction models, actions may spread contagiously across
members of a population because each has an incentive to coordinate with her neigh-
bors in a social network (e.g. Morris 2000). In incomplete information games with strate-
gic complementarities (global games), actions may spread contagiously across types
because private information gives rise to uncertainty about the actions of other players
(Carlsson and Damme 1993). Unlike these models, contagion through learning depends
neither on any network structure nor on high orders of reasoning about the beliefs of
other players. The contagion is driven solely by a natural solution to the problem of
learning the payoffs to one’s actions when the strategic situation is continually chang-
ing. This problem is familiar from econometrics, where one often wishes to estimate
a function of a continuous variable using only a finite data set.1 The similarity-based
payoff estimates used by players in our model have a direct parallel in the use of kernel
estimators by econometricians. Moreover, Gilboa and Schmeidler (2001) provide ax-
iomatic foundations for choice according to similarity-weighted payoff estimation in a
single-agent context. Our learning model applies case-based decision making to strate-
gic environments.

The main tool for understanding the result of contagion through learning is a for-
mal parallel to equilibrium play in a modified version of the game. One may view the
original family of games as a single game of complete information with a move by Na-
ture. Taking this perspective, the modified game differs from the original game only in
the prior beliefs: we show that players eventually behave as if they incorrectly believe
their own observation of the state to be noisy, while correctly believing that other play-
ers perfectly observe the true state. More precisely, players learn not to play strategies
that would be serially dominated in the modified version of the game (see Theorem 1).
The distribution of the noise in the modified game corresponds directly to the similarity
functions used in the learning process. Thus, in the long-run, the use of extrapolations
across states in learning plays a role analogous to subjective uncertainty across states in
static equilibrium.

The relationship between the long-run outcomes of similarity-based learning and
serially undominated strategies in the modified game is quite robust. The result holds
for a broad class of games and a large class of learning processes that vary in the knowl-
edge players have of the environment. In addition, very little structure is imposed on the
similarity functions used by the players in the learning process. Roughly speaking, the

1An important difference between the usual econometric problem and our setting is that players’ actions
can affect their future estimates by influencing other players’ action choices.
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modified game result holds as long as payoffs and similarity are sufficiently continuous
in the state.

In Section 5, we apply the theory to learning in coordination problems. By solving
the modified game, we identify the long-run learning outcomes in a class of binary-
action coordination games closely related to the global games of Carlsson and Damme
(1993) (see Morris and Shin 2003 for a survey). The original game has a continuum of
equilibria, but contagion leads to a unique history-independent learning outcome when
similarity is concentrated on nearby states. As in global games, this outcome involves
symmetric strategies characterized by a single threshold state at which players switch
actions. However, the value of the threshold depends on the shape of the similarity
function. The similarity between the learning outcome and the global game equilib-
rium selection arises because the modified game shares much of the structure of global
games. However, the learning outcome generally differs from the global game equilib-
rium. In terms of the modified game characterization, this difference results from the
heterogeneity of the priors in the modified game as opposed to the common priors used
in global games.

2. E

Before introducing the general model in Section 3, we elaborate on the example from
the previous section to illustrate in more detail the process of contagion through learn-
ing. The underlying family of coordination problems consists of the 2-player games in
Table 1. We denote by U (θ , a i , a−i ) the payoff to action a i in state θ when the oppo-
nent chooses action a−i . To simplify notation, we refer to investing as action 1 and not
investing as action 0.

The game is played repeatedly in periods t ∈ N, with the state θt drawn indepen-
dently across periods according to a uniform distribution on an interval [−b , 1 + b ],
where b > 0. Each realization θt is perfectly observed by both players, who play a my-
opic best response to their beliefs in each period. Beliefs are based on players’ previous
experience, but since θ is drawn from a continuous distribution, players (almost surely)
have no past experience with the current game Γ(θt ), and must extrapolate from their
experience playing different games. In each period, players estimate their payoffs as a
weighted average of historical payoffs in which the weights are determined by the simi-
larity between the current and past states. In forming these estimates, players treat the
past actions of their opponents as given. Thus following any history h t = {θs , a 1

s , a 2
s }s<t ,

the estimated payoff to player i from choosing action a i given the state θt is

r (θt , a i ; h t ) =

∑

s<t g (θs −θt )U (θs , a i , a−i
s )

∑

s<t g (θs −θt )
, (1)

where g ≥ 0 is the similarity function determining the relative weight assigned to
past cases. Each player chooses the action giving the highest estimated payoff. Esti-
mates may be chosen arbitrarily if the history contains no state similar to θt , that is, if
∑

s<t g (θs −θt ) = 0.
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(a) Example similarity function g .
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(b) Example payoff estimates. Dots rep-
resent observed past payoffs.

F 1. Example similarity function with corresponding payoff estimates according to (1).

For this example, suppose that g is the piecewise-linear function illustrated in Fig-
ure 1(a). Figure 1(b) illustrates the estimated payoffs from choosing action 1 as a func-
tion of θ for a particular history of observed payoffs using this similarity function.

The learning process is stochastic, but suppose that the empirical distribution of re-
alized cases may be approximated by the true distribution over θ (this idea is formalized
in Section 3). If the opponent plays according to a fixed strategy s−i , player i ’s expected
estimated return to investing in state θ ∈ [−b +τ, 1+b −τ] is given by

∫

Θ

U (θ ′, 1, s−i (θ ′))g (θ ′−θ )dθ ′. (2)

This expression is formally equivalent to the conditional expectation

E [U (θ ′, 1, s−i (θ ′)) | θ ]
when θ is an imprecise signal of θ ′, with θ ′ − θ distributed according to the density
g . Thus, in the long-run, the similarity-based learner behaves as if she observes only
a noisy signal of the true state. Theorem 1 makes this connection precise by showing
that players learn to play strategies that would be serially undominated in a modified
game of incomplete information in which each holds these (subjective) beliefs about
the information structure.

The long-run outcome of the learning process may be identified by solving this mod-
ified game. Suppose that both players follow cut-off strategies with threshold θ ∗; that is,
both choose action 0 at signals below θ ∗ and action 1 at signals above θ ∗. Each player
assigns probability 1

2 to the true state being greater than her own signal. Since each
believes that the other player observes the true state, a player who receives exactly the
threshold signal θ ∗ believes that the other player chooses action 1 with probability 1

2 .
In order for this strategy profile to be a Bayesian Nash equilibrium, players must be in-
different between their two actions at the threshold signal. Therefore, θ ∗ is the unique
solution to

1
2U (θ , 1, 0)+ 1

2U (θ , 1, 1) = 0. (3)
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This equilibrium turns out to be the unique serially undominated strategy profile in the
modified game, and therefore the unique long-run outcome of the learning process (in
the original family of games).

The particular form of condition (3) depends on the symmetry of the similarity func-
tion. For asymmetric similarity functions, the probability a player assigns to the true
state being greater than her signal can differ from 1

2 . Under general conditions, there is
again a unique long-run outcome of learning, but the coefficients in (3) depend on the
similarity function g .

The process of contagion through learning has a flavor similar to contagion due to
incomplete information in global games. For example, the static game of Table 1 be-
comes a global game if players observe θ with some private noise. When the noise is
small, this game has a unique equilibrium in which players follow the threshold strategy
characterized by (3) independently of the shape of the noise (see Carlsson and Damme
1993). Therefore, with asymmetric similarity functions, the learning outcome generally
differs from the global game selection. This difference arises through the heterogeneity
of the priors in the modified game. In global games with common priors, each player
assigns probability 1

2 to her opponent’s expectation of the state being higher than her
own, and therefore the threshold type believes that her opponent invests with probabil-
ity 1

2 (regardless of the shape of the noise). In the modified game, this belief depends
on the similarity function. Moreover, in games with more than two players, a difference
in outcomes can arise even with symmetric similarity. We leave a detailed discussion of
this comparison to Section 5.

3. T  

3.1 The model

We begin with a formal description of the stochastic learning process. A fixed set of I ≥ 2
players interact in periods t = 0, 1, . . . as follows.

1. At the beginning of each period t , Nature draws a state θt ∈Θ according to a con-
tinuous distribution Φwith support on a compact, convex setΘ⊂RN and contin-
uous, positive densityφ.2 Draws are independent across periods.3

2. All players perfectly observe the realized state θt , and then simultaneously choose
actions a i ∈ A i according to rules described below. The action set A i available to
each player i is the same across all states inΘ and all periods. Each set A i is finite.
As usual, we write A =×I

i=1A i for the set of action profiles.

3. At the end of the period, each player i observes signals v i (θt , a i , a−i
t ) for each

a i ∈ A i , where v i : Θ× A −→ V i is the signal function mapping to an arbitrary

2The modified game result, Theorem 1, holds also for discrete distributions over Θ; in fact, the proof
for the discrete case is much simpler. Our main focus, however, is on the continuous case, which better
captures the idea that players cannot learn from repeated interaction in the same game.

3All of our results continue to hold as long as the process generating states θt is strictly stationary and
ergodic, with stationary distribution Φ.
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set V i . To simplify notation, we denote by v i
t (a

i ) the realized signal v i (θt , a i , a−i
t )

for action a i in period t given θt and a−i
t . We write v i

t for the vector of signals
(v i

t (a
i ))a i∈A i . Note that player i observes counterfactual signals v i

t (a
i ) for actions

a i 6= a i
t that she did not play at t . We discuss the assumption of counterfactual

observations in Section 3.2.

Action choices in each period t are determined as follows. After observing θt , each
player i forms beliefs over the possible signals v i

t (a
i ), and chooses a i

t to maximize the
expected payoff u i (θt , a i , v i

t (a
i )), for some fixed u i : Θ× A i × V i −→ R. Defining the

payoff functions

U i (θ , a )≡ u i (θ , a i , v i (θ , a i , a−i )),

the process describes learning in a family of simultaneous-move games Γ(θ ) with pay-
offs U i (θ , a ). Beliefs over v i

t (a
i ) are formed based on the realized values of v i

s (a
i ) in past

periods s < t in which the realized state θs was similar to θt .
Similarity is measured according to a fixed similarity function g i : Θ×Θ −→ R+ for

each player i , where, for each θ , g i (·,θ ) is integrable. The value g i (θs ,θt ) represents the
weight assigned to the past state θs given that the current state is θt .

Following a private history (θ0, v i
0 , . . . ,θt−1, v i

t−1,θt ), player i forms her beliefs as fol-
lows. If

∑

s<t g i (θs ,θt ) = 0, then player i forms arbitrary beliefs. The interpretation of
this case is that player i perceives all past data to be irrelevant to the problem in state θt ,
and hence ignores it. All of our results are independent of the initial beliefs of players in
the learning process.4

If, on the other hand,
∑

s<t g i (θs ,θt )> 0, then for each a i , player i forms the follow-
ing belief concerning the distribution of v i

t (a
i ):

Pr
�

v i
t (a

i ) = v
�

=

∑

s<t g i (θs ,θt )1v
�

v i
s (a

i )
�

∑

s<t g i (θs ,θt )

for each v ∈ V i , where 1v denotes the indicator function for the set {v }. That is, player
i believes that v i

t (a
i ) is distributed according to the past frequency of signals v i

s (a
i ),

weighted according to the degree of similarity between θs and θt . These are precisely
the beliefs that would arise if players used kernel estimators to estimate the distribution
of v i

t (a
i ) conditional on the state θt using the kernel function g i (·,θt ).

After forming her beliefs about v i
t (a

i ), player i chooses her action a i
t to maximize

her expected payoff in period t . That is, she chooses action a i
t according to

a i
t ∈ arg max

a i∈A i

∑

s<t u i (θt , a i , v i
s (a

i ))g i (θs ,θt )
∑

s<t g i (θs ,θt )
. (4)

In case there is more than one optimal action, the choice among them is according to
an arbitrary fixed rule.

4All of our results hold without modification if, instead of initial beliefs, players begin with an arbitrary
finite history of play that is sufficiently rich to prevent the case

∑

s<t g i (θs ,θt ) = 0 from occurring.
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Following any history h t = (θs , a s )t−1
s=0, the learning process defines a pure strategy

s i
t : Θ −→ A i for each player describing the action that would be chosen in period t

at each possible state θ if the realized state were θt = θ . The process therefore gives
rise to a probability distribution over sequences of strategy profiles (s0, s1, . . .). All our
probabilistic results are with respect to this distribution.

Having formally described the stochastic process we now elaborate on its interpre-
tation as a model of learning. First, note that players form beliefs over signals v i

t (a
i ) di-

rectly and do not make further inferences about the action profiles that generate these
signals. Our interpretation is that players do not know the functional form of the signal-
generating process v i , and are therefore unable to “back out” any further information
from the signals they receive. This formulation is without loss of generality because
cases in which players make inferences based on received signals can be captured by
choosing the signal function v i to include all information inferred by player i . Under
this interpretation, although player i knows the function u i , she may not know the game
payoffs U i since she does not know the signal function v i .

For a given family of games with payoffs U i (θ , a ), there are many different learning
processes corresponding to different ways of decomposing U i (θ , a ) = u i (θ , a i , v i (θ , a ))
into functions u i and v i . The various processes differ in the informational feedback
players receive. Two natural cases arise when players observe opponents’ actions and
when they observe only their own payoffs.

Strategy-based learning Observed signals consist precisely of opponents’ action pro-
files, so that V i = A−i and v i (θ , a i , a−i ) ≡ a−i . In particular, signals are indepen-
dent of a i . In this case, the payoff functions U i and u i are identical: U i (θ , a ) ≡
u i (θ , a i , v ) = u i (θ , a i , a−i ).

Payoff-based learning Observed signals consist only of the player’s own payoffs, so that
V i = R and u i (θ , a i , v ) ≡ v . In this case, the functions U i and v i are identical:
U i (θ , a )≡ v i (θ , a ).

Strategy-based learning requires that each player i knows her own payoff function
U i (θ , a i , a−i ) and needs to estimate only her opponents’ action profile a−i

t at θt . Before
choosing the action a i

t , player i forms beliefs about her opponents’ actions a−i
t accord-

ing to their similarity weighed frequency in past periods s < t . That is, player i chooses
her action a i

t to maximize

∑

s<t U i (θt , a i
t , a−i

s )g
i (θs ,θt )

∑

s<t g i (θs ,θt )
.

The informational feedback required for this process is minimal: each player observes
only her opponents’ actions a−i

s at the end of each period s , and no counterfactual ob-
servations are needed.

Payoff-based learning places no requirements on players’ knowledge of the payoff
functions U i . At the end of each period s , player i observes the payoffs U i (θs , a i , a−i

s )
that she received or would have received for each action a i ∈ A i . Before choosing an
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action a i
t in period t , each player forms beliefs about the payoff to each action according

to a similarity-weighted average of the performance of that action in past states θs . That
is, player i chooses her action a i

t to maximize

∑

s<t U i (θs , a i
t , a−i

s )g
i (θs ,θt )

∑

s<t g i (θs ,θt )
.

Players in this learning process are strategically naïve in the sense that they do not rea-
son about the actions of other players; indeed, they treat the problem simply as a single-
person decision problem with unknown payoffs and they may not be aware that they
are interacting with other players.

In addition to these two processes, the general model encompasses many other pro-
cesses with varying degrees of informational feedback. Since player i knows the func-
tion u i , these processes also differ in the knowledge of the payoff function U i that player
i must possess.

We impose the following technical assumptions on the learning process.

A1 (Bounded payoffs) There exist upper and lower bounds on u i (θ , a i , v ) uniformly
over all (θ , a i , v )∈Θ×A i ×V i .

A2 Each similarity function g i is bounded.

The following assumption ensures that players eventually obtain relevant data for
every state.

A3 For each θ ,
∫

Θ
φ(θ ′)g i (θ ′,θ )dθ ′ > 0.

We require the following continuity assumption.

A4 For every a i and a−i , the expression u i (θ , a i , v i (θ ′, a i , a−i ))g i (θ ′,θ ) is continuous
in θ uniformly over all θ ′.5

Note that the continuity in Assumption A4 is uniform over (θ ,θ ′, a i , a−i ) ∈Θ×Θ×A i ×
A−i because Θ is compact and the action sets are finite. Also note that in the case of
payoff-based learning described above, Assumption A4 holds if g i (θ ′,θ ) is continuous.

3.2 Discussion of the model

In order to form the payoff estimates in (4), player i must observe only values of
v i (a i ,θs , a−i

s ) at the end of each period s given the particular state θs and given the
particular actions a−i

s chosen by the opponents in that period. However, player i must
observe the value of v i (θs , a i , a−i

s ) for every action a i ∈ A i , regardless of the action she
actually chose in period s . In some instances of the learning process, such as strategy-
based learning, the value of v i (θs , a i , a−i

s ) does not depend on a i , and hence each

5Formally, for each a i and a−i , given any ε > 0, there exists some δ > 0 (independent of θ and θ ′) such
that |u i (θ , a i , v i (θ ′, a i , a−i ))g i (θ ′,θ )−u i (θ ′′, a i , v i (θ ′, a i , a−i ))g i (θ ′,θ ′′)|< ε whenever |θ −θ ′′|<δ.
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player needs to observe v i (θs , a i
s , a−i

s ) only for the action a i
s she actually chose. In other

cases, however, players must observe certain counterfactual values of v i . The observa-
tion of these counterfactuals may be viewed as an approximation to a model in which,
in each period, players choose according to the preceding rules with high probability,
but experiment with some small independent probability by choosing a random action
from A i .

The role of the counterfactual observations is to prevent uninteresting cases in
which players fail to learn simply because they never take a particular action. If players
observed only the signal for the action actually chosen in each period, one could mod-
ify the learning model by basing belief formation for each action only on signals in past
periods in which that action was chosen. In the application to coordination problems in
Section 5, all of our results hold in the model without counterfactuals if we suppose that
each player always plays her dominant action in an open set of states in each dominance
region. The choice of dominant actions suffices to begin the process of contagion.

Our notion of similarity g i (θt ,θs ) is not directly linked to strategic considerations.
Players may view games in states θt and θs as similar even if they differ in terms of strate-
gic structure. For instance, in the example of Section 2, players may treat the game in
state θt = .99 as similar to the game in state θs = 1.01 even though investing is dominant
only in the latter state. While a similarity function that distinguishes sharply between
strategically different games may be reasonable for players with precise knowledge of
payoffs, the connection must be weaker if players do not know exactly where the divi-
sions lie. For example, if a player who is trying to estimate her opponent’s actions does
not know her opponent’s payoffs, she may expect her opponent to behave similarly even
in situations that her opponent views as strategically different.

We rule out time-dependent similarity functions in order to simplify the analysis.
More generally, one could suppose that observations are discounted over time accord-
ing to a nonincreasing sequence δ(τ) ∈ (0, 1] by modifying equation (4) to include an
additional factor of δ(t − s ) in both sums. In the undiscounted model, the convergence
results presented below rely on the property that changes in payoff estimates in a sin-
gle period become negligible once players have accumulated enough experience. Since
this property continues to hold as long as the series

∑∞
τ=0δ(τ) diverges, we conjecture

that all of our results hold in this more general setting. If, on the other hand, this sum
converges, then the situation becomes more complicated, as the learning process does
not converge in general. It is therefore not possible for the long-run behavior to agree
with that of the undiscounted process in every period. However, as long as memory is
“sufficiently long,” we expect this agreement to occur in a large fraction of periods. For
example, if memory is discounted exponentially, so that δ(τ) = ρτ for some ρ ∈ (0, 1),
then we expect play to be consistent with our results most of the time when ρ is close
to 1. Simulations run by Carlsson (personal communication) lend some support to this
conjecture. In an environment similar to the example of Section 2, Carlsson simulates a
learning model akin to strategy-based learning with a fixed finite memory. In these sim-
ulations, strategies converge to the long-run outcomes of our model except in a small
measure of states around the threshold, where behavior oscillates.
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4. L- 

In this section, we characterize the long-run outcomes of the learning process from Sec-
tion 3 in terms of the equilibria of a particular game, which we call the modified game.
We begin by informally outlining an observation that lies at the core of this connection.
The informal outline is based on a heuristic application of the Law of Large Numbers
treating the strategies as stationary; Theorem 1 below formalizes the connection allow-
ing for strategies to change over time.

Suppose that the learning process converges to a time-invariant strategy profile s (θ ).
By the Law of Large Numbers, player i ’s long-run estimated payoff for action a i in state
θt against the profile s−i approaches
∫

Θ
u i (θt , a i , v i (θ , a i , s−i (θ )))φ(θ )g i (θ ,θt )dθ

∫

Θ
φ(θ ′)g i (θ ′,θt )dθ ′

=

∫

Θ

u i (θt , a i , v i (θ , a i , s−i (θ )))q i (θ | θt )dθ ,

where

q i (θ | θt ) =
φ(θ )g i (θ ,θt )

∫

Θ
φ(θ ′)g i (θ ′,θt )dθ ′

.

That is, player i ’s expected estimated payoff at state θt against the strategy profile s−i

coincides with the expected payoff against the same strategy profile of a player with
payoffs u i (θt , a i , v i (θ , a i , s−i (θ ))) and beliefs q i (θ | θt ) over the state θ .

The virtual conditional belief q i (θ | θt ) has a convenient interpretation. Suppose
that the state θ is drawn according to the distribution Φ, and player i observes only a
noisy signal θt of θ , where the signal is conditionally distributed according to the den-
sity g i (θ , ·)/∫

Θ
g i (θ ,θ ′)dθ ′. Then q i (θ | θt ) is precisely the density describing player i ’s

posterior beliefs over θ after observing the signal θt . Thus a player with beliefs q i (θ | θt )
can be seen as viewing her observation of θ to be noisy, corresponding to the use of
different past values of θ in the learning process. This interpretation motivates the fol-
lowing definition.

D 1. The modified game is a Bayesian game with heterogeneous priors. The
players i ∈ {1, . . . , I } simultaneously choose actions a i ∈ A i . The state space is given
by Ω = ΘI+1, with typical member (θ ,θ 1, . . . ,θ I ), where each θ i denotes the type of
player i , and θ is a common payoff parameter. Each player i has payoff function
u i (θ i , a i , v i (θ , a i , a−i )). Player i assigns probability 1 to the event that θ j = θ for all j 6=
i , and has prior beliefs over (θ ,θ i ) given by the densityφ(θ )g i (θ ,θ i )/

∫

Θ
g i (θ ,θ ′)dθ ′.

Whereas the family of games Γ(θ ) describes the actual environment in which the
players interact, the modified game describes a virtual setting. The beliefs in the modi-
fied game do not describe what players literally believe in the learning process. Rather,
the modified game merely provides a useful tool for studying the learning outcomes be-
cause the learning process converges, in a sense that is made precise below, to the set of
strategies that are serially undominated in the modified game.
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In order to describe this connection formally, note first that for any game with sub-
jective priors, we may define (interim) dominated strategies in the same way as for
Bayesian games with common priors.6 In fact, we also use a stronger form of domi-
nance in which the payoff difference exceeds some fixed π ≥ 0. Consider any function
ai : Θ −→ 2A i . We interpret ai (θ ) as the set of admissible actions for player i at type θ .
The profiles (ai )i and (aj )j 6=i are denoted, as usual, by a and a−i respectively.

D 2. A strategy s i is consistent with ai if s i (θ ) ∈ ai (θ ) for all θ ∈ Θ. A strategy
profile s−i is consistent with a−i if each component of s−i is consistent with the corre-
sponding component of a−i .

For any profile a, action a i ∈ ai (θ ) is said to be π-dominated7 at θ under the profile
a if there exists a i ′ ∈ ai (θ ) such that for all s−i consistent with a−i ,

Eq (θ ′|θ )
�

u i (θ , a i ′, v i (θ ′, a i ′, s−i (θ ′)))−u i (θ , a i , v i (θ ′, a i , s−i (θ ′))) | θ �>π.

We define iterated elimination of π-dominated strategies in the usual way. For each i
and π > 0, let ai

0,π(θ ) ≡ A i . For k = 1, 2, . . ., define ai
k ,π(θ ) to be the set of actions that

are not π-dominated for type θ of player i under the profile ak−1,π. The set of serially
π-undominated actions for type θ of player i is given by ai∞,π(θ ) =

⋂

k ai
k ,π(θ ). Since

π-domination agrees with the usual notion of strict dominance whenπ= 0, we drop the
prefix π in that case.

The need to consider π-domination instead of ordinary strict domination arises be-
cause of the difference between estimated payoffs following finite histories and their
long-run expectations. In the proof of Theorem 1 below, we show that for any π> 0, es-
timated payoffs under the learning process almost surely eventually lie within π of the
corresponding expected payoffs in the modified game. It follows that actions that are
serially π-dominated in the modified game will (almost surely eventually) not be played
under the learning process. The following lemma, proved in the Appendix, shows that
considering serial π-domination for arbitrary π> 0 suffices to prove the result for π= 0,
that is, for serial strict domination. The lemma is trivial for a single round of elimination,
but not for multiple rounds since differences betweenπ-domination and strict domina-
tion generally become compounded as the iterative elimination proceeds.

L 1. Fix any type θ of player i in the modified game and any k ∈N. If a i /∈ ai
k ,0(θ ),

then there exists some π> 0 such that a i /∈ ai
k ,π(θ ).

The main result of this section, given in the following theorem (which is proved in
the Appendix), shows that, in the long-run, players do not play strategies that are serially
dominated in the modified game. Note that strategies in each period of the learning
process are defined over the set of states Θ, which is identical to the type space for each

6Since no other notion of domination is employed here, we henceforth drop the term “interim” and refer
simply to “dominated strategies.”

7The notion of π-domination should not be confused with the unrelated concept of p -dominance that
has appeared in the literature on higher-order beliefs.
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player in the modified game. Strategies s i
t under the learning process may therefore be

identified with strategies s i in the modified game; to keep the notation simple, we do
not distinguish between the two.

T 1. (i) For any k ∈ N and any π > 0, the strategy profiles s t under the learning
process are almost surely eventually consistent with ak ,π.8

(ii) The probability that the action profile in period t under the learning dynamics is
consistent with the set of serially undominated actions at θt in the modified game
approaches one as time tends to infinity. That is,

Pr(s i
t (θt ) is consistent with ai

∞,0(θt ) ∀i )→ 1

as t →∞.

Using the Strong Law of Large Numbers, it is relatively straightforward to show that
in a given state against a fixed strategy, the long-run payoff estimate in the learning
process approaches the expected payoff in the modified game. The main difficulty in
the proof of the preceding theorem arises because, in order for the analogue of iter-
ated elimination of dominated strategies to occur under the learning dynamics, players
must learn not to play dominated actions in finite time at an uncountable set of states.
Accordingly, the proof demonstrates that it is possible to reduce the problem to one in-
volving a finite state space while introducing only an arbitrarily small error in the payoff
estimates.

Theorem 1 characterizes a set of strategy profiles to which the learning process con-
verges with probability 1. We focus below on cases in which this set consists of a single
element. More generally, if the set is not a singleton, a natural question is whether one
can identify a smaller set of outcomes to which the learning process must converge.
While a full characterization is beyond the scope of this paper, it is possible to suggest
the form that such restrictions might take. Note that when similarity varies continu-
ously in θ , payoff estimates in the learning process must also be continuous in θ after
any history. It follows that, unless payoff estimates happen to be identical for two actions
across an interval of states, strategies under learning must not be highly discontinuous
in θ . Thus, for instance, strategies with a dense set of discontinuities generally do not
appear even if they are serially undominated in the modified game. Carlsson (2004) pro-
poses a related restriction on strategies that simplifies the characterization of monotone
equilibria in a large class of games.

A different approach is to consider alternative equilibrium concepts in the modi-
fied game. Thus, for example, one might ask whether the learning process must con-
verge to the set of Bayesian Nash equilibria of the modified game. Roughly speaking,
if the strategies in the learning process converge with positive probability, then, con-
ditional on convergence, convergence is almost surely to Bayesian Nash equilibrium.
Otherwise, the long-run payoff estimates must differ from the expected payoffs in the
modified game, which is a zero probability event.

8Recall that a property holds eventually if there exists some T such the property holds for all t ≥ T .
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5. C   

We now focus on learning by similarity in a class of symmetric binary-action coordina-
tion games Γ(θ ), where the distribution Φ(θ ) has support Θ = [θ ,θ ].9 Each of I players
chooses between two actions, 0 and 1. We normalize the payoff from action 0 to be 0 in
every state θ against every action profile. We denote by U (θ , l ) the payoff from choosing
action 1 in state θ when l ∈ {0, . . . , I −1} opponents choose action 1.

The similarity function is identical across players, and depends only on the differ-
ence θ ′−θ between states and a scaling parameter τ> 0 according to

g i (θ ′,θ )≡ 1

τ
g

�

θ ′−θ
τ

�

,

where g : R −→ R+. We normalize g to be a probability density function. While addi-
tional restrictions on the similarity function seem natural—for example, that g be de-
creasing in |θ ′−θ |—our main results hold whether or not we impose such restrictions.

We focus on outcomes in the limit as τ tends to 0, where similarity is narrowly con-
centrated on nearby states. Away from this limit, similarity-based learning generally
leads to inconsistent estimates (in the statistical sense) even if the opponents’ strategies
are fixed. This inconsistency arises because nonlinearities in payoffs or asymmetries
in similarity can push the similarity-weighted average of payoffs around θ away from
the payoff at θ . When τ is small, if play converges, these inconsistencies become small
except possibly in states close to discontinuities in payoffs.

As before, the learning process may take different forms, such as payoff-based or
strategy-based learning, depending on the feedback players receive over time. To cap-
ture this, we write the payoff to action 1 as

U (θ , l ) = u (θ , v (θ , l )).

Whenever
∑

s<t g
�

(θs−θt )/τ
�

> 0, the estimated payoff for action 0 is simply 0, and that
for action 1 is given by

∑

s<t u (θt , v (θs , l s )) 1
τ

g
�θs−θt

τ

�

∑

s<t
1
τ

g
�θs−θt

τ

�

.

In addition to the general assumptions from Section 3, we assume the following.

A5 (State Monotonicity) The payoffs U (θ , 0) and U (θ , I −1) are strictly increasing in θ .

A6 (Extremal Payoffs at Extremal Profiles) For all l = 0, . . . , I − 1 and all θ ∈ Θ, U (θ , 0) ≤
U (θ , l )≤U (θ , I −1).

9Frankel et al. (2003) prove existence, uniqueness, and monotonicity of equilibria in asymmetric global
games with many actions. Although they assume common priors, their argument does not rely on com-
monality per se, and can in principle be extended to global games with heterogeneous priors of the form
considered here. We restrict our attention to symmetric binary-action games to facilitate explicit charac-
terization of the equilibrium.
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A7 (Dominance Regions) There exist some θ ′,θ ′ ∈ (θ ,θ ) such that action 0 is dominant
at every state below θ ′ and action 1 is dominant at every state above θ ′.

A8 (Continuity) The payoffs U (θ , 0) and U (θ , I −1) are continuous in θ .

Assumptions A5–A8 are variants of standard global game assumptions, though some
details differ. Assumption A6 substantially weakens the strategic complementarity as-
sumption typically used in global games since we do not require that U (θ , l ′) ≥U (θ , l )
if 0 < l < l ′ < I − 1. In fact, we do not impose any restrictions on the relative values of
U (θ , l ′) for l ′ 6= 0, I −1, and the outcome of the model is independent of these values. In
contrast, by choosing values of U (θ , l ′) for l ′ 6= 0, I −1 that violate strategic complemen-
tarity, one may readily construct games satisfying Assumption A6 for which the global
games approach does not select a unique equilibrium.

Let G be the cumulative distribution function corresponding to the density g . De-
fine the threshold θ ∗ to be the (unique) solution to

G (0)U (θ , 0)+ (1−G (0))U (θ , I −1) = 0. (5)

The existence of this solution is guaranteed by the existence of dominance regions (As-
sumption A7), and its uniqueness by state monotonicity (Assumption A5).

P 1. For any δ > 0, there exists τ > 0 such that for any τ ∈ (0,τ), in the learn-
ing process with parameter τ, all players almost surely eventually choose action 0 when-
ever θt <θ ∗−δ and action 1 whenever θt >θ ∗+δ.

This proposition provides a stark contrast to learning in a fixed game. If instead of
varying in each period the state θ is fixed over all periods, then the learning process
reduces to standard fictitious play (as long as g i (θ ,θ ) > 0). For any θ outside of the
dominance regions, there are multiple long-run learning outcomes that depend on the
initial strategies used by players in the game. For instance, if all players are initially
coordinated on one of the two actions, then they continue to choose this action in every
period. In contrast, Proposition 1 indicates that extrapolation from different past states
may lead to a unique long-run outcome in many of these states θ , independent of the
initial strategies players use in the learning process.

The following proof draws on techniques from the proofs of Propositions 2.1 and 2.2
in Morris and Shin (2003) for the corresponding result in global games. The first part of
the proof characterizes contagion away from the small-τ limit. As in global games away
from the small-noise limit, the dominant actions spread from the dominance regions,
but if the distribution of states is not uniform, the contagion from above and below may
not meet at a unique threshold. The second part of the proof shows that the interme-
diate region with multiple learning outcomes collapses to a single point in the small-τ
limit exactly as in global games with vanishing noise. Intuitively, as τ becomes small,
the distribution of states becomes locally uniform.

P  P . Define mτ(θ , k ) to be the expected payoff to action 1 for type
θ in the modified game when the opponents play a threshold strategy with threshold k .
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That is

mτ(θ , k )

≡
∫ k

θ
φ(θ ′) 1

τ
g
�θ ′−θ

τ

�

u (θ , v (θ ′, 0))dθ ′+
∫ θ

k
φ(θ ′) 1

τ
g
�θ ′−θ

τ

�

u (θ , v (θ ′, I −1))dθ ′
∫

Θ
φ(θ̃ ) 1

τ
g
� θ̃−θ
τ

�

d θ̃
.

(6)

First, we prove that action 0 is serially dominated for θ > θ ∗ and action 1 is seri-
ally dominated for θ < θ ∗, where θ ∗ and θ ∗ are, respectively, the maximal and minimal
roots of mτ(θ ,θ ) = 0.10 Note that the function mτ(θ , k ) is continuous and decreasing in
k . Moreover, for sufficiently small τ, the existence of dominance regions (Assumption
A7) implies that mτ(θ , k ) is negative for small enough values of θ and positive for large
enough values.

Let θ 0 = θ , and for k = 1, 2, . . ., recursively define θ k to be the maximal solution to
the equation

mτ(θ ,θ k−1) = 0.

Let Sk denote the set of strategies remaining for each player after k rounds of deletion
of dominated strategies. We prove by induction that action 0 is dominated for all types
of each player above θ k against profiles of strategies from the set Sk−1. Suppose that the
claim holds for k − 1. By Assumption A6, if opponents play strategies in Sk−1, then the
payoff to action 1 for any type θ is at least as large as if every opponent played a cut-off
strategy with threshold θ k−1 (i.e. a strategy choosing action 0 at any type below θ k−1 and
action 1 at any type above θ k−1). Hence the expected payoff for action 1 at θ is at least
mτ(θ ,θ k−1) regardless of which strategies from Sk−1 are chosen by the opponents. This
expected payoff must be positive above the maximal root θ k because mτ(θ , ·) is contin-
uous everywhere and positive for sufficiently large θ . Therefore, action 0 is dominated
above θ k , as claimed.

Next, we show by induction that (θ k )∞k=1 is a nonincreasing sequence. Note first

that θ 1 ≤ θ 0 trivially because θ 0 lies at the upper boundary of Θ. Suppose that θ k−1 ≤
θ k−2. Then mτ(θ ,θ k−1)≥mτ(θ ,θ k−2) because mτ(θ , k ) decreases in k , and hence the
maximal root of mτ(θ ,θ k−1) = 0 must be weakly smaller than that of mτ(θ ,θ k−2) = 0,
which establishes the induction step.

The nonincreasing sequence (θ k )∞k=1 converges to some θ ∗ which, from the conti-
nuity of mτ, must be a solution to mτ(θ ,θ ) = 0. Therefore, action 0 is indeed serially
dominated at every type above θ ∗. The symmetric argument from below establishes
that action 1 is serially dominated below the minimal solution θ ∗ of mτ(θ ,θ ) = 0.

Note that since
∫ θ+ε

θ−ε

1

τ
g

�

θ ′−θ
τ

�

dθ ′ =
∫ ε/τ

−ε/τ
g (z )d z ,

10One can alternatively prove this statement by applying Theorem 5 of Milgrom and Roberts (1990) to the
ex ante game (in which heterogeneous priors are no longer an issue). However, the direct argument given
here better illustrates the process of contagion, and avoids technical issues that arise in moving to the ex
ante game.
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given any δ> 0 and ε > 0, there exists some τ> 0 such that for all τ∈ (0,τ),
∫ θ+ε

θ−ε

1

τ
g

�

θ ′−θ
τ

�

dθ ′ > 1−δ.

In particular, for any functionψ that is continuous at θ , we have

lim
τ→0

∫

Θ

ψ(θ ′)
1

τ
g

�

θ ′−θ
τ

�

dθ ′ =ψ(θ ), (7)

and similarly

lim
τ→0

∫ θ

−∞
ψ(θ ′)

1

τ
g

�

θ ′−θ
τ

�

dθ ′ =ψ(θ )G (0) (8)

and lim
τ→0

∫ +∞

θ

ψ(θ ′)
1

τ
g

�

θ ′−θ
τ

�

dθ ′ =ψ(θ )(1−G (0)). (9)

Moreover the convergence of the limits in (7)–(9) is uniform over θ in some set X as long
as the functionψ(θ ) is uniformly continuous on X .

Applying (7)– (9) to the definition of mτ(θ ,θ ) from (6) gives

lim
τ→0

mτ(θ ,θ ) =G (0)u (θ , v (θ , 0))+ (1−G (0))u (θ , v (θ , I −1))

=G (0)U (θ , 0)+ (1−G (0))U (θ , I −1)

on the open interval (θ ,θ ). The convergence is uniform on any compact subinterval of
Θ since φ(θ ), U (θ , 0), and U (θ , I − 1) are uniformly continuous on compact sets. We
can choose such a compact subinterval Θ of (θ ,θ ) to intersect with both dominance
regions, so that all roots of mτ(θ ,θ ) = 0 must lie in Θ. Define m (θ ) ≡ limτ→0 mτ(θ ,θ )
for θ ∈ Θ. Given any neighborhood N of the unique root θ ∗ of m (θ ), there exists some
ε > 0 such that m (θ ) is uniformly bounded away from 0 by ε outside of N . Choosing
τ> 0 small enough so that whenever τ< τ, mτ(θ ,θ ) is within ε of m (θ ) everywhere on
Θ guarantees that mτ(θ ,θ ) has no root in Θ \N . �

The uniqueness of the learning outcome results from a process of contagion driven
by the use of similarity in learning. The structure of the similarity function implicitly
precludes discontinuities that could block the contagion process. For example, if there
exists some state θ̃ such that all players assign zero similarity to states lying on opposite
sides of θ̃ , then no action can spread contagiously across θ̃ . Such discontinuities are
exogenously assumed by Jehiel (2005), who models similarity as a partition of the state
space. As noted above, the continuity of our similarity measure is intended to capture
players’ imperfect knowledge of the structure of the game. Note, however, that conta-
gion may occur even with Jehiel’s discontinuous similarity if players do not use the same
similarity classes. If similarity classes differ, the spread of an action within an element of
one player’s similarity partition can cause the same action to spread across a boundary
of another’s partition.
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Since our results focus on the long-run outcomes of learning, a natural question
is whether convergence occurs sufficiently quickly for these outcomes to be relevant.
Convergence of behavior is not uniform across states, and in the coordination environ-
ment studied here, is likely to be particularly slow close to the long-run threshold. How-
ever, states very close to the threshold occur only rarely, so convergence to the predicted
behavior in most periods may occur relatively quickly. As mentioned above, Carlsson
has simulated a bounded-memory variant of strategy-based learning in an environment
similar to the one in Section 2. He finds approximate convergence on the order of hun-
dreds of rounds even in the worst-case scenario in which initial play is biased entirely in
favor of one action.11 With unbiased initial strategies, convergence is generally faster.

Theorem 1 identifies a formal parallel between contagion through learning and con-
tagion through incomplete information in the modified game. This connection explains
in part why many features of the two kinds of contagion appear similar. However, the
information structure of the modified game is inherently different from that of global
games with a common prior. Consequently, important differences arise between the
outcomes of contagion through learning and those of contagion in global games.

The equilibrium threshold in the standard binary action global game model is inde-
pendent of the noise distribution, while the threshold in the similarity learning model
depends on the similarity function g (which determines the noise distribution in the
modified game). The noise-independence result in global games is driven by the com-
mon prior, which generates, in equilibrium, uniform beliefs over l at the threshold type
regardless of the noise distribution. With learning by similarity, beliefs over l at the
threshold in the modified game depend on g because of the heterogeneity of the pri-
ors. Proposition 1 allows us to identify how the learning outcome changes if we vary
the similarity function. We say that a similarity function g̃ is more optimistic than g if
G̃ (0)<G (0). Equation (5) immediately implies the following result.

C 1. Suppose that the similarity function g̃ is more optimistic than g . Then the
threshold θ ∗ when players learn according to g̃ is less than or equal to that when players
learn according to g . That is, in the narrow-similarity limit, players using g̃ coordinate
on the Pareto dominant equilibrium for a (weakly) larger set of states than do players
using g .

Izmalkov and Yildiz (2008) obtain a similar result in a global game without common
priors in which two players observe private signals x i = θ + εi and payoffs are as in Ta-
ble 1. They define the notion of investor sentiment to be the value q = Pri (x−i > x i | x i ).
The unique symmetric equilibrium of their game is characterized by a threshold signal
x ∗ satisfying the indifference condition x ∗ + q = 0 because the threshold type assigns
probability q to the event that her opponent invests. Investor sentiment q is 1

2 under
the common prior specification, but can attain any value in (0, 1) under non-common
priors. The definition of investor sentiment naturally extends to the class of modified

11Carlsson’s simulated model differs from ours in that there is an initial phase in which players play fixed
strategies, which slows learning by making initial beliefs persistent. The results reported here are based on
an initial phase of one hundred periods.
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games studied in the present section. In this setting, sentiment q is equal to 1−G (0), the
belief that each player assigns to the true state exceeding her signal. Hence any senti-
ment q ∈ (0, 1) and any equilibrium threshold θ ∗ outside the dominance regions can be
supported by some similarity function.

While the precise outcome of learning depends on the similarity function, qualita-
tive comparative statics do not. Suppose that the payoffs U (θ , l ; z )depend differentiably
on an exogenous parameter z , and that the derivative (∂ /∂ z )U (θ , l ; z ) has the same sign
for all θ and l = 0, I −1. Implicitly differentiating (5) gives the following result.

C 2. For any similarity function g , we have sgn(∂ θ ∗/∂ z ) =−sgn(∂U/∂ z ) .

One restriction on the similarity function that may seem natural is that θ and θ ′
should be perceived as similar to the same degree that θ ′ and θ are.

A9 (Symmetry) For every θ and θ ′, g (θ ′−θ ) = g (θ −θ ′).
The fact that G (0) = 1

2 for symmetric similarity functions implies the following result.

C 3. If the similarity function is symmetric, then the threshold θ ∗ solves

1
2U (θ ∗, 0)+ 1

2U (θ ∗, I −1) = 0. (10)

Even when similarity is symmetric, the outcome of contagion through learning gen-
erally differs from that in global games, where the threshold solves

I−1
∑

l=0

U (θ ∗, l )
I

= 0. (11)

The solutions of (10) and (11) generally differ if payoffs are not linear in l .
The difference between the threshold indifference conditions (10) and (11) indi-

cates why the learning model requires weaker strategic complementarity than the global
game model. The threshold of the learning model is independent of the payoffs U (·, l )
for values of l other than 0 and I −1. In the modified game, the threshold player places
zero probability on intermediate values of l , and thus full monotonicity of U (·, l ) with
respect to l is not necessary. In global games with common priors, the threshold player
has uniform beliefs over l , and equilibrium uniqueness may fail without full strategic
complementarity.

6. R 

Processes of learning from similar games have been examined in several papers, which
typically define similarity by an equivalence relation on a given set of games (Germano
2007, Katz 1996 (Chapter 1), LiCalzi 1995, Mengel 2007). Stahl and Van Huyck (2002)
demonstrate learning from similar games experimentally.

Jehiel (2005), Jehiel and Koessler (2008), and Eyster and Rabin (2005) study equilib-
rium concepts in which players best respond to coarsenings of their opponents’ strate-
gies, where the coarsenings arise from aggregation across similar states. These models
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focus on interesting deviations from standard equilibrium behavior arising from persis-
tent errors in beliefs. We, on the other hand, focus on the case in which these errors are
small, leading to a selection among equilibria.

Carlsson (2004) proposes an evolutionary justification of global games equilibrium
using strategy-based learning by similarity. Carlsson offers an informal argument to
suggest that the learning process can be approximated by the best-response dynamics
of a modified game. Theorem 1 above formalizes this result in terms of long-run out-
comes. The outcome of the learning process coincides with the global game prediction
in Carlsson’s (2004) two-player model. With more than two players, Proposition 1 above
indicates that the learning outcome generally shares only the qualitative features of the
global game solution, while quantitatively they differ.

Argenziano and Gilboa (2005) study multiplicity of similarity-based learning out-
comes in coordination problems. With finitely many states, the long-run outcome de-
pends on historical accidents when games with dominant actions are sufficiently rare.

Milgrom and Roberts (1990) study supermodular games, of which the coordination
environment studied here is a special case, and show that only serially undominated
strategies are played in the long-run under a large class of adaptive dynamics. These
dynamics, however, require that players adjust to the full strategies of their opponents.
In games with large state spaces, where play of the game (at most) reveals the actions
s (θt ) assigned by strategies s to the particular states θt that are drawn, such dynamics
are difficult to justify. The use of similarity in learning can be seen as generating “close
to” adaptive dynamics, as reflected in the modified serially undominated result of The-
orem 1.12

An alternative approach to learning in certain binary action supermodular games
is offered by Beggs (2005). Play almost surely converges to an equilibrium of the game
if players follow learning rules that adapt threshold strategies based on payoffs from
similar types.

7. D

7.1 Sources of contagion

Morris (1997) identifies a formal relationship between contagion across types in incom-
plete information games and contagion across players in local interaction games. Start-
ing with some incomplete information game, one may reinterpret the types in the game
as players situated in various locations. Each of these players interacts with some sub-
set of the population, her neighbors, and must choose the same action against all oppo-
nents. Payoffs in the local interaction game are obtained by a weighted sum of payoffs
from interactions with all neighbors, where the weights correspond to the posterior be-
liefs over opponents’ types in the incomplete information game (see Morris 1997 for
details).

12In addition, Samuelson and Zhang (1992), Nachbar (1990), and Heifetz et al. (2007) identify classes of
learning processes under which players learn not to play serially dominated strategies. However, all three
papers assume finite or real-valued strategy spaces. The strategy space in our environment, consisting of
functions s :Θ−→{0, 1}, is larger.
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Learning
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F 2. Atlas of Contagion.

The model of learning by similarity discussed here may be reinterpreted in the same
way. Each player may instead be viewed as a population of players with locations θ ∈Θ.
In every period, players at a randomly drawn location are matched to play a game Γ(θ ).
Players estimate payoffs based on other players’ experience at nearby locations. Thus
learning by similarity corresponds to learning from neighbors. Since this is merely a
formal reinterpretation, the modified game result also holds in this setting. As a game
of incomplete information, the modified game may be reinterpreted according to Mor-
ris (1997) as a local interaction game. The only difference from the usual case is that
the heterogeneous priors in the modified game correspond to asymmetric weighting of
payoffs in the corresponding local interaction game; thus, for instance, player i ’s payoff
may depend on player j ’s action even if player j ’s payoff does not depend on player i ’s
action.

The formal connections among the three sources of contagion described here are
summarized in Figure 2. Contagion through learning is related to contagion in Bayesian
games through the equivalence of outcomes with the modified game (Theorem 1). The
modified games that arise in this way differ from global games because of heteroge-
neous priors. Each of these may be reinterpreted according to Morris (1997) as local in-
teraction games, with heterogeneous priors corresponding to asymmetric weights and
common priors to symmetric weights. Learning by similarity may also be reinterpreted
directly as learning from neighbors in local interaction, where the modified game result
describes an equivalence of outcomes with certain local interaction games with asym-
metric payoff weights.
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7.2 Learning with incomplete information

An earlier version of this paper (Steiner and Stewart 2007) considers learning by similar-
ity in games with incomplete information. The environment is close to that of Section 5,
except that each player receives only a noisy signal x i

t = θt +σεi
t of the state θt in each

period t . Players estimate payoffs based on payoffs from similar past types. The mod-
ified game result of Theorem 1 extends naturally to this setting, and may be used to
demonstrate that there is a unique outcome of learning when both σ and τ are small
(i.e. the noise in signals is small and players use narrow similarity functions). This out-
come depends on the ratioσ/τ. Ifσ is small relative to τ, then we recover the complete
information learning outcome of Proposition 1. Ifσ is large relative toτ, then we recover
the usual global game solution.

8. C

The theory of global games has shown that relaxing the common knowledge assumption
in games can lead to a process of contagion that generates a unique selection among
multiple equilibria. This paper identifies a similar effect that arises under learning if we
relax the assumption that players learn from repeated play in exactly the same game.
Moreover, the learning outcome is formally related to the equilibrium of a global game
with subjective priors, which we call the modified game. While the connection to the
modified game is very general, the set of learning outcomes may be difficult to identify
in games outside the coordination environment studied here. The unique outcome of
learning in this environment relies on the dominance solvability of the modified game.
In more general settings, learning outcomes correspond to rationalizable profiles of the
game when beliefs are perturbed in a particular way that depends on the similarity func-
tion. In a different setting, Weinstein and Yildiz (2007) show that for any finite type,
given any rationalizable action, there exists a perturbation of beliefs in the universal
type space for which this action is uniquely rationalizable. A natural question, then, is
whether the corresponding result holds under learning by similarity in general classes
of games; in other words, given any state in the original game, whether any equilibrium
may be uniquely selected by an appropriate choice of similarity function.

A

L A.1. For any ε > 0, there exists some δ > 0 such that changing the opponents’
strategies on a set of type profiles of Lebesgue measure at most δ changes the expected
payoff of every type of player i from each action a i by at most ε.

P. Denote i ’s expected payoff from action a i at type θ against the profile s−i by

Ũ i (θ , a i , s−i ) =

∫

Θ
u i (θ , a i , v i (θ ′, a i , s−i (θ ′)))φ(θ ′)g i (θ ′,θ )dθ ′

∫

Θ
φ(θ̃ )g i (θ̃ ,θ )d θ̃

.

The denominator is bounded above zero because it is continuous and positive by As-
sumption A3, and hence attains a positive minimum on the compact set Θ. Recall that
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the functions u i , g i , and φ are bounded by assumption. Hence there exists a constant
K such that if s−i changes only on a set of measure δ, then the numerator changes by at
most Kδ. �

L A.2. Fix a profile a and an arbitrary action a i . For any δ > 0, there exists some
π > 0 such that the set of types of player i for which action a i is dominated but not π-
dominated under the profile a has measure at most δ.

P. Consider any decreasing sequence π1,π2, . . . such that limn→∞πn = 0. LetΘ(n )
denote the set of types for which action a i is πn -dominated under a, and let Θ denote
the set of types for which a i is dominated under a. Then Θ(n ) is a monotone sequence
of sets, and it suffices to show that limn→∞Θ(n ) =Θ.

Suppose for contradiction thatΘ\limn→∞Θ(n ) contains some type θ . Then there ex-
ists some action a i ′ that dominates a i at θ under the profile a, but does notπ-dominate
a i at θ under a for any π> 0. Hence we have

inf
s−i∈a−i

Ũ i (θ , a i ′, s−i )−Ũ i (θ , a i , s−i ) = 0,

where we abuse notation by writing s−i ∈ a−i to mean that s−i is consistent with a−i .
Define a strategy profile s−i by choosing

s−i (θ ′)∈ arg min
a−i∈a−i (θ ′)

u i (θ , a i ′, v i (θ ′, a i ′, a−i ))−u i (θ , a i , v i (θ ′, a i , a−i ))

for each θ ′. The profile s−i is consistent with a−i , and satisfies

Ũ i (θ , a i ′, s−i )−Ũ i (θ , a i , s−i ) = inf
s−i∈a−i

Ũ i (θ , a i ′, s−i )−Ũ i (θ , a i , s−i ) = 0,

contradicting that a i ′ dominates a i at θ under a. �

L A.3. For any k and θ , we have ai
k ,π(θ )⊆ ai

k ,π′ (θ )whenever π≤π′.
P. Note that the statement is trivial for k = 0. Suppose for induction that the state-
ment holds for k (for all θ ). We need to show that if a i is π′-dominated at θ under ak ,π′

then a i is π-dominated at θ under ak ,π. Accordingly, suppose that a i is π′-dominated
at θ under ak ,π′ ; that is, there exists a i ′ ∈ ai

k ,π′ for which

Ũ (θ , a i ′, s−i )−Ũ (θ , a i , s−i )>π′ for all s−i consistent with a−i
k ,π′ . (12)

Since, by the inductive hypothesis, we have a−i
k ,π ⊆ a−i

k ,π′ , (12) implies

Ũ (θ , a i ′, s−i )−Ũ (θ , a i , s−i )>π for all s−i consistent with a−i
k ,π. (13)

If a i ′ ∈ ai
k ,π(θ ), then we are done. Otherwise, there exists some a i ′′ ∈ ai

k ,π(θ ) such that
a i ′′ dominates a i ′ at θ under the profile ak ,π. Thus we have

Ũ (θ , a i ′′, s−i )−Ũ (θ , a i ′, s−i )> 0 for all s−i consistent with a−i
k ,π.

Combining this with (13) gives the result. �
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P  L . Given any type θ for which a i ∈ ai
k−1,0 \ ai

k ,0, there exists some

π(θ )> 0 such that, against any profile s−i consistent with a−i
k−1,0, the expected payoff for

some action a i ′ ∈ ai
k ,0(θ ) is at least π(θ ) greater than that for action a i . By Lemma A.3,

we have a i ′ ∈ ai
k ,π(θ ) for all π > 0, and hence it suffices to show that a i ′ dominates a i

under the profile ak−1,π for some π> 0. By Lemma A.1, it suffices to show that given any
δ > 0, there exists some π> 0 small enough so that, for any player i , ai

k−1,π differs from

ai
k−1,0 on a set of measure at most δ.

We proceed by induction. The result is trivial for k = 1. For k > 1, assume for induc-
tion that the result is true for k − 1; that is, assume that for any δ > 0, there exists some
π> 0 for which ai

k−2,π differs from ai
k−2,0 on a set of measure at most δ.

By Lemma A.2, given δ > 0, we can choose π′ > 0 small enough so that the set of
types of player i for which the action a i is dominated but notπ′-dominated under ak−2,0

has measure at most δ. By Lemma A.1, starting from any strategy profile, there exists
some δ′ > 0 such that changing the actions of at most a measure of δ′ of the opponents’
types changes the expected payoff of each type of player i by at most π′/4. By the in-
ductive hypothesis, we can choose π′′ > 0 such that a−i

k−2,π′′ differs from a−i
k−2,0 on a set of

types of measure at most δ′. Consider π =min{π′/2,π′′}. We need to show that ai
k−1,π

differs from ai
k−1,0 on a set of types of measure at most δ.

Consider any type θ and actions a i , a i ′ ∈ a−i
k−2,0(θ ). By Lemma A.3, a i and a i ′ also

belong to a−i
k−2,π(θ ) for all π > 0. Also by Lemma A.3, a−i

k−2,π(θ
′) ⊆ a−i

k−2,π′′ (θ
′) for all θ ′.

Therefore, we have

sup
s−i∈a−i

k−2,π

[Ũ (θ , a i , s−i )−Ũ (θ , a i ′, s−i )]≤ sup
s−i∈a−i

k−2,π′′
[Ũ (θ , a i , s−i )−Ũ (θ , a i ′, s−i )], (14)

where, as above, we write s−i ∈ a−i
k ,π to mean that the strategy profile s−i is consistent

with a−i
k ,π. By the definition of π′′, we have

sup
s−i∈a−i

k−2,π′′
[Ũ (θ , a i , s−i )−Ũ (θ , a i ′, s−i )]

≤ sup
s−i∈a−i

k−2,0

[Ũ (θ , a i , s−i )−Ũ (θ , a i ′, s−i )+ 1
2π
′]. (15)

If action a i is π′-dominated by a i ′ for type θ of player i under ak−2,0, then

sup
s−i∈a−i

k−2,0

�

Ũ (θ , a i , s−i )−Ũ (θ , a i ′, s−i )+ 1
2π
′�<− 1

2π
′.

Combining (14) and (15) gives the following: if action a i is π′-dominated for i at type
θ under ak−2,0, then a i must be π′/2-dominated, and hence also π-dominated under
ak−2,π. Therefore, if, at some θ , a i is dominated under ak−2,0 but not π-dominated un-
der ak−2,π, then a i is dominated under ak−2,0 but not π′-dominated under ak−2,0. The
latter can happen only on a set of types of measure δ.
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We have shown that the set of types θ for which a i ∈ ai
k−2,π(θ ) but a i /∈ ai

k−2,0(θ ) has
measure at most δ. The result now follows since the number of players and the number
of actions are both finite. �

P  T . (i) Assume for induction that there almost surely exists some pe-
riod after which the strategies s i

t are consistent with ai
k−1,π .

In the first step, we consider payoff estimates at a fixed state θ ∗. Suppose that action
a i is π-dominated by some action a i ′ for type θ ∗ of player i in the modified game under
the profile ak−1,π. Let

π′(θ ∗) =π
∫

Θ

g i (θ ,θ ∗)dΦ(θ ).

We show that, under the learning process, there almost surely exists some period after
which the estimated payoff to action a i ′ at θ ∗ exceeds that to action a i by at leastπ. This
is the case if

1

t

∑

s<t

�

u i (θ ∗, a i ′, v i (θs , a i ′, a−i
s ))−u i (θ ∗, a i , v i (θs , a i , a−i

s ))
�

g i (θs ,θ ∗)>π′(θ ∗). (16)

For each θ , θ ′ and a−i , let

∆(θ ,θ ′, a−i ) = u i (θ , a i ′, v i (θ ′, a i ′, a−i ))−u i (θ , a i , v i (θ ′, a i , a−i )).

Keeping θ ∗ fixed, choose the strategy profile s−i
min(θ ) to minimize the payoff advantage

of a i ′ over a i at θ ∗; that is,

s−i
min(θ )∈ arg min

a−i∈a−i
k−1,π(θ )

∆(θ ∗,θ , a−i ).

Define a random variable

X =∆(θ ∗,θ , s−i
min(θ ))g

i (θ ,θ ∗),

where the distribution of X is induced from the distribution Φ of θ .
By the inductive hypothesis, opponents play actions in a−i

k−1,π(θs ) in every period
s ≥ t0 for some t0. For large enough t > t0, periods up to t0 receive an arbitrarily small
weight in each player’s payoff estimates. Thus assuming that a−i

s ∈ a−i
k−1,π(θs ) for all

s introduces only an arbitrarily small error in the payoff estimates. Note that for any
history (θs , a i

s , a−i
s )

t−1
s=1 in which a−i

s ∈ a−i
k−1,π(θs ), we have

1

t

∑

s<t

∆(θ ∗,θs , a−i
s )g

i (θs ,θ ∗)≥ 1

t

∑

s<t

∆(θ ∗,θs , s−i
min(θs ))g i (θs ,θ ∗),

so it suffices to prove that (16) holds when a−i
s = s−i

min(θs ) for every s .
By the Strong Law of Large Numbers, the weighted payoff difference

1

t

∑

s<t

∆(θ ∗,θs , s−i
min(θs ))g i (θs ,θ ∗)
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almost surely tends to the expectation of X , that is, to

∫

Θ

∆(θ ∗,θ , s−i
min(θ ))g

i (θ ,θ ∗)dΦ(θ ).

By the assumption that a i ′ π-dominates a i , the last expression is greater than π′(θ ∗).
Therefore, there almost surely exists some period T such that (16) holds for every t > T ,
as desired.

In the second step, we show that there exists some δ> 0 such that if (16) holds at θ ∗,
then s i

t (θ ) 6= a i for all θ ∈ (θ ∗−δ,θ ∗+δ). Let

π′ = inf
θ∈Θ
π′(θ ).

By Assumption A3,π′(θ ) is positive everywhere, and since it is continuous, the compact-
ness of Θ guarantees that π′ is bounded away from zero.

Define the function

k (h t ,θ ) =
1

t

∑

s<t

�

u i (θ , a i ′, v i (θs , a i ′, a−i
s ))−u i (θ , a i , v i (θs , a i , a−i

s ))
�

g i (θs ,θ )

=
1

t

∑

s<t

∆(θ ,θs , a−i
s )g

i (θs ,θ )

for finite histories h t = (θs , a i
s , a−i

s )s<t and states θ . Player i does not choose action a i

at state θ following history h t if k (h t ,θ ) > 0. Thus the second step will be complete if
we show that, for some δ> 0, after any history h t , we have

�

�k (h t ,θ )−k (h t ,θ ′)
�

�<π′

whenever |θ −θ ′|<δ.
By Assumption A4,∆(θ ,θs , a−i

s )g
i (θs ,θ ) is uniformly continuous in θ over all θs and

a−i
s . Hence the average k (h t ,θ ) is also continuous in θ uniformly over all values of θ and

all histories h t , as needed.
Finally, partition the setΘ into a finite number of subsetsΘ1, . . . ,Θm , each of diame-

ter less than δ (where δ is chosen given π′ as in the second step above). Consider any of
these subsetsΘl . IfΘl contains some θ ∗ at which a i is π-dominated by a i ′ (under some
profile), then by the first step, k (h t ,θ ∗) is eventually larger than π′. By the second step,
k (h t ,θ ) is therefore positive for all types in Θl . Hence there almost surely exists some
period Tl after which player i never plays action a i at any state in Θl . Since there are
only finitely many sets Θl , there almost surely exists some T after which player i never
plays action a i at any state θ for which it is serially π-dominated for the corresponding
type in the modified game. The result now follows from the finiteness of the action and
player sets.

(ii) First we claim that for any k , the probability that play is consistent with k rounds
of IEDS in the modified game approaches one as time tends to infinity. In the proof
of Lemma 1, we show that for any δ > 0, there exists some π > 0 such that the set of
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types θ at which k rounds of IEDS differ from k rounds of IEπDS has measure at most
δ. Thus the probability that θt lies in this set can be made arbitrarily small by choosing
π to be sufficiently small. Note that outside of this set, play under the learning process
is almost surely eventually consistent with k rounds of IEDS by part (i) of the theorem.
This proves the claim.

For each k = 1, 2, . . ., denote by Θi
k the set of types of player i for which all se-

rially dominated actions are eliminated within the first k rounds of IEDS. Let Θk =
⋂

i=1,...,I Θ
i
k . The sequence of sets Θk is nondecreasing in k , and converges to the set

Θ. Hence the measure of the set Θ \Θk converges to zero as k tends to infinity. From
the previous paragraph, the probability that play is consistent with IEDS onΘk tends to
one over time, and the probability that the state θt lies inΘ \Θk can be made arbitrarily
small by choosing k to be sufficiently large. �
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