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Robust virtual implementation
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In a general interdependent preference environment, we characterize when two
payoff types can be distinguished by their rationalizable strategic choices without
any prior knowledge of their beliefs and higher order beliefs. We show that two
payoff types are strategically distinguishable if and only if they satisfy a separabil-
ity condition. The separability condition for each agent essentially requires that
there is not too much interdependence in preferences across agents.

A social choice function, mapping payoff type profiles to outcomes, can be
robustly virtually implemented if there exists a mechanism such that every equi-
librium on every type space achieves an outcome that is arbitrarily close to the
outcome generated by the social choice function. This definition is equivalent to
requiring virtual implementation in iterated deletion of strategies that are strictly
dominated for all beliefs. The social choice function is robustly measurable if
strategically indistinguishable payoff types receive the same allocation. We show
that ex post incentive compatibility and robust measurability are necessary and
sufficient for robust virtual implementation.

K. Mechanism design, virtual implementation, robust implementation,
rationalizability, ex post incentive compatibility.
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1. I

Suppose that a social planner would like to design a mechanism that induces self-
interested agents to make strategic choices that lead to the selection of socially desirable
outcomes. A social choice function specifies the socially desired outcomes as a function
of the unobserved payoff types of the agents. The planner would like to be sure that
outcomes specified by the social choice function arise with probability arbitrarily close
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to 1: thus she requires virtual implementation. In addition, she would like every possi-
ble equilibrium to virtually implement the social choice function: thus she requires full
implementation. Finally she would like every equilibrium to virtually implement the so-
cial choice function whatever the agents’ beliefs and higher order beliefs about others’
types; thus she requires robust implementation. In this paper, we provide a character-
ization of when robust virtual implementation is possible in a general interdependent
preference environment.

One necessary condition for robust virtual implementation is ex post incentive com-
patibility: under the social choice function, each agent must have an incentive to truth-
fully report his type if others report their types truthfully, whatever their types. Ex post
incentive compatibility is sufficient to ensure the existence of desirable equilibria, but,
as the existing incomplete information implementation literature emphasizes, further
restrictions on the social choice function are required to rule out other, undesirable,
equilibria. If a mechanism is to fully implement a social choice function, two types who
are treated differently by the social choice function must be guaranteed to behave differ-
ently in the implementing mechanism. The key result in this paper is a characterization
of when two payoff types are strategically distinguishable in this sense that they can be
guaranteed to behave differently. A second necessary condition for robust virtual im-
plementation is robust measurability: strategically indistinguishable types are treated
the same by the social choice function. We show that ex post incentive compatibility
and robust measurability are also sufficient for robust virtual implementation (under
an economic assumption).

Thus the core of our contribution is an analysis of strategic distinguishability. Fix an
interdependent preferences environment, with a finite set of agents, each with a finite
set of possible payoff types, with expected utility preferences over lotteries depending on
the whole profile of types. Two payoff types of an agent are strategically distinguishable
if they have disjoint rationalizable strategic choices in some finite game for all possible
beliefs and higher order beliefs about others’ types. Thus two payoff types are strategi-
cally indistinguishable if in every game, there exists some action that each type might
rationally choose given some beliefs and higher order beliefs. We are able to provide
an exact and insightful characterization of strategic distinguishability. If we have sets of
types, Ψ1 and Ψ2, of agents 1 and 2, respectively, we say that Ψ2 separates Ψ1 if knowing
agent 1’s preferences and knowing that agent 1 is sure that agent 2’s type is inΨ2, we can
rule out at least one type of agent 1. Now consider an iterative process where we start,
for each agent, with all subsets of his type set and, at each stage, delete subsets of actions
that are separated by every remaining subset of types of his opponents. A pair of types
is said to be pairwise inseparable if the set consisting of that pair of types survives this
process. We show that two types are strategically indistinguishable if and only if they are
pairwise inseparable.

If there are private values and every type is value distinguished, then every pair of
types is pairwise separable and thus strategically distinguishable. Thus strategic indis-
tinguishability arises when the degree of interdependence in preferences is large. We
can illustrate this with a simple example. Suppose that agent i ’s payoff type is θi ∈ [0, 1]
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and agent i ’s valuation of a private good is θi + γ
∑

j 6=iθj . Each agent has quasilinear
utility, i.e., his utility from money is linear and additive. We show that all distinct pairs of
types are strategically distinguishable if |γ|< 1/(I − 1), where I is the number of agents.
All pairs of types are strategically indistinguishable if |γ| ≥ 1/(I −1).

Our characterization result for strategic distinguishability (Theorem 1) comes in two
parts. If two types of an agent are pairwise inseparable, then they belong to a set of types
that are not separable by a profile of sets of types of that agent’s opponents. The set of
types of each opponent in that profile is then not separable by a profile of sets of types
of that opponent’s opponents. And there is a continuing chain of inseparable sets in
the chain. We prove that pairwise inseparable types are strategically indistinguishable
(Proposition 1) by induction, showing that in any mechanism at any stage in the iterated
deletion of messages that are never best responses and for every set of types in the chain
of inseparable type sets, a common action is played. The inseparability property ensures
that we can always construct beliefs for each type that make the same message a best
response.

To show the converse result (Proposition 2), we construct a finite maximally reveal-
ing mechanism with the property that all pairwise separable types have disjoint sets of
rationalizable actions. The construction exploits the linearity of expected utility prefer-
ences and duality theory. Whenever a set of types of one agent is separated by a profile
of sets of types of other agents, we are able to construct a finite set of lotteries such that
knowing the first agent’s preference over those lotteries always rules out at least one of
his types. We can take the union over all such finite sets constructed for each profile
of type sets where the separability property holds. We then construct a finite “test set”
of lotteries such that knowing an agent’s most preferred outcome in that test set im-
plicitly reveals his ranking of outcomes in all the original sets. Finally, we consider a
mechanism where each agent gets to pick a lottery with some positive probability, then
guesses which lotteries others chose and gets to pick another lottery, with small proba-
bility, contingent on other agents making the choice he conjectured, and so on. With a
large, but finite, number of stages this mechanism eventually leads pairwise separable
types to make distinct choices.

Our proof of the sufficiency of ex post incentive compatibility and robust measura-
bility (Corollary 1) for robust virtual implementation builds on an ingenious construc-
tion used by Abreu and Matsushima (1992b) to establish an extremely permissive result
for complete information virtual implementation. In Abreu and Matsushima (1992c),
they adapt the argument to a standard Bayesian virtual implementation problem; we in
turn adapt the argument to our robust virtual implementation problem.

While our sufficiency argument for robust virtual implementation builds on Abreu
and Matsushima (1992c), the interpretation of our results ends up being rather differ-
ent. Abreu and Matsushima (1992c) characterize virtual implementation in a standard
Bayesian environment, where there is common knowledge of a common prior over a
fixed set of types, using the solution concept of iterated deletion of strictly dominated
strategies and restricting attention to well-behaved (finite) mechanisms. Bayesian in-
centive compatibility of the social choice function is a necessary condition: a standard
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compactness argument shows that the weakening to virtual implementation does not
weaken the incentive compatibility requirement. In addition, they show that a mea-
surability condition is necessary. Put each agent’s types into equivalence classes that
have the same preferences over outcomes, unconditional on other agents’ types. Hav-
ing distinguished some types by their unconditional preferences, we can then further
refine agents’ types, by distinguishing types with different preferences conditional on
other agents’ types in the first stage. We can continue this process of refining agents’
types based on preferences conditional on other agents’ types revealed so far. The social
choice function is Abreu–Matsushima measurable if it is measurable with respect to the
limit of this iterative refinement. This seems to be a weak restriction that is generically
satisfied.1 Abreu and Matsushima (1992c) show that Bayesian incentive compatibility
and Abreu–Matsushima measurability are sufficient as well as necessary for virtual im-
plementation in iterated deletion of strictly dominated strategies.

Robust virtual implementation is equivalent to requiring that there is a single mech-
anism that implements a social choice function, for all possible type spaces that could
be constructed for the environment with fixed payoff types and utility functions for the
agents. It is instructive to see how to get from Abreu and Matsushima (1992c) to the
robust virtual implementation results in this paper.

Observe that Abreu and Matsushima (1992c)’s solution concept naturally uses
agents’ given beliefs about others’ types: when strategies are deleted, it is because they
are strictly dominated conditional on the agents’ beliefs. We want implementation for
all possible beliefs. We therefore establish our results under an incomplete information
version of rationalizability that does not make use of any beliefs over others’ types; it is
equivalent to iteratively deleting strategies that are ex post strictly dominated, i.e., strictly
dominated for all possible beliefs over others’ types. We work with this solution concept
throughout the paper. However, results from the epistemic foundations of game the-
ory establish that an action is rationalizable in this sense for a payoff type if and only if
it could be played in an equilibrium on some type space with beliefs and higher order
beliefs, by a type with that payoff type (Brandenburger and Dekel 1987, Battigalli and
Siniscalchi 2003, and Bergemann and Morris 2008). Thus a bonus of our “robust” analy-
sis is that the distinction between equilibrium and rationalizability (or iterated deletion
of strictly dominated strategies) becomes moot.

Now, ex post incentive compatibility is the robust analogue of Bayesian incentive
compatibility and robust measurability is the robust analogue of the measurability of
Abreu and Matsushima (1992c). They can reasonably argue that, in a standard Bayesian
setting, their measurability condition is a weak technical requirement.2 As a result,
the “bottom line” of the virtual implementation literature has been that full imple-
mentation, i.e., getting rid of undesirable equilibria, does not impose any substantive

1Abreu and Matsushima (1992c) and Serrano and Vohra (2005) note that a simple sufficient condition
for all social choice functions to be A–M measurable is type diversity: every type has distinct preferences
over lotteries unconditional on others’ types.

2Although Serrano and Vohra (2001) describe an economic example where all non-trivial individually
rational and Bayesian incentive compatible social choice functions fail Abreu–Matsushima measurability
because types have identical conditional preferences.
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constraints beyond incentive compatibility, i.e., the existence of desirable equilibria.
By requiring the more demanding, but more plausible, robust formulation of incom-
plete information, we end up with a condition that is substantive (imposing significantly
more structure in interdependent value environments than incentive compatibility) and
easily interpretable.

This paper adds to a recent literature on robust mechanism design that provides one
operationalization of the so-called “Wilson doctrine” that progress in practical mecha-
nism design will come from relaxing the implicit common knowledge assumption in the
formulation of mechanism design problems.3 Neeman (2004) highlights the fact that full
surplus extraction with correlated type results (Myerson 1981 and Crémer and McLean
1985) rely on the implicit assumption that there is common knowledge of a mapping
from beliefs to payoff types of all agents (a “beliefs determine preferences” property).
This (counterintuitive) assumption is implied by the “generic” choice of a common prior
on a fixed type space where distinct types are assumed to have different preferences. The
apparent weakness of the Abreu–Matsushima measurability condition (and the fact that
it is satisfied for “generic” priors) relies on the same property. We believe that by relaxing
this unnatural implicit assumption, we get a better insight into the nature of the extra
requirement for full implementation over and above incentive compatibility conditions.

Our operationalization of the “Wilson doctrine” is rather strong: we put no restric-
tions on agents’ beliefs and higher order beliefs. A recent paper of Artemov et al. (2008)
examines what happens to the conditions for robust virtual implementation if the plan-
ner is given partial information about agents’ beliefs, in particular, a subset of beliefs
over others’ payoffs types that can arise with each payoff type. We discuss this interme-
diate robustness approach in Section 6.3.

It is possible to interpret our result as rather negative: ex post incentive compatibil-
ity is already a very strong condition, as emphasized by the recent work of Jehiel et al.
(2006).4 Robust measurability adds the further substantive restriction that there not be
too much interdependence of preferences; and, in any case, the mechanism that we
use to robustly virtually implement social choice functions is complicated to describe
and presumably hard to play. However, we can show that in one large and interesting
class of economic environments with interdependent preferences, robust virtual imple-
mentation is not only possible but is possible in the direct mechanism where agents
simply report their payoff types. Say that an environment has aggregator single cross-
ing preferences if the profile of agents’ types can be aggregated into a single number
and preferences are single crossing with respect to that number. Efficient social choice
functions satisfying ex post incentive compatibility often exist in such environments.
Bergemann and Morris (forthcoming) show that in such an environment, exact robust
implementation is possible if the social choice function satisfies strict ex post incentive
compatibility and a contraction property. In this paper, we observe that the contraction

3Neeman (2004), Bergemann and Morris (2005b), Heifetz and Neeman (2006), and Chung and Ely (2007).
4Although we argue in Bergemann and Morris (forthcoming) that ex post incentive compatibility is fea-

sible in many economically important environments either because types are one-dimensional or because
natural economic features of the environment lead to a failure of the “generic” properties that lead to the
non-existence of non-trivial ex post incentive compatible social choice functions in Jehiel et al. (2006).
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property is equivalent to robust measurability, so that, under the weak condition that
there exists some strictly ex post incentive compatible social choice function, whenever
robust virtual implementation is possible, it is possible in the direct mechanism.

The remainder of the paper is organized as follows. Section 2 introduces the envi-
ronment and the solution concept. Section 3 illustrates the notion of separability in the
context of a single private good with interdependent preferences. Section 4 defines and
characterizes strategic distinguishability, constructing the maximally revealing mecha-
nism to show the equivalence between strategic distinguishability and pairwise sepa-
rability. Section 5 reports our results on robust virtual implementation. Section 6 con-
cludes with discussions of the formal relation between Abreu–Matsushima measurabil-
ity and robust measurability, the role of moderate interdependence, intermediate no-
tions of robustness, the epistemic foundations for the solution concept, weak rather
than strict dominance, positive results in direct mechanisms, and the relation to exact
rather than virtual implementation.

2. S

2.1 Environment

There is a finite set of agents {1, . . . , I } and each agent i has a finite set of possible payoff
types

Θi = {θ 1
i , . . . ,θ s

i , . . . ,θS
i }.

We assume without loss of generality that the cardinality of each set Θi is equal to S for
all i . The finite set X of pure outcomes is given by

X = {x1, . . . ,xn , . . . ,xN }.

The lottery space over the set of outcome is Y = ∆(X ). A lottery y is an N -dimensional
vector y = (y1, . . . , yn , . . . , yN )with

yn ≥ 0 and
N
∑

n=1

yn = 1.

Each agent has a von Neumann–Morgenstern expected utility function u i : Y ×Θ→ R
with

u i (y ,θ ) =
N
∑

n=1

u i (xn ,θ )yn .

We abuse notation by writing x for the lottery putting probability 1 on outcome x and X
for the set of degenerate lotteries.

It is often convenient to work with underlying preferences over lotteries rather than
any of their representations. We writeR for the collection of expected utility preference
relations on Y . We write Rθi ,λi ∈R for the preference relation of agent i if his payoff type
is θi and he has belief λi ∈∆(Θ−i ) about the types of others:

∀y , y ′ ∈ Y y Rθi ,λi y ′⇔
∑

θ−i∈Θ−i

λi (θ−i )u i (y , (θi ,θ−i ))≥
∑

θ−i∈Θ−i

λi (θ−i )u i (y ′, (θi ,θ−i ))
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and we write Pθi ,λi for the strict preference relation corresponding to Rθi ,λi .
We make a weak assumption on the preferences: every agent i , whatever his type

θi ∈Θi and beliefs λi ∈∆(Θ−i ), has a strict preference over some pair of outcomes.

A 1 (No Complete Indifference). For each i , θi ∈ Θi , and λi ∈ ∆(Θ−i ), there
exist x ,x ′ ∈X such that x Pθi ,λi x ′.

We maintain this assumption throughout the paper.5 An analogous condition ap-
pears in Abreu and Matsushima (1992c) and Serrano and Vohra (2005) in the Bayesian
setting for all types (and associated beliefs) of all agents. But in our robust context, it is
a stronger assumption in the sense that it rules out the possibility that alternative pay-
off type profiles of others lead to a reversal in the preferences of agent i with respect to
some x and x ′.

We denote by ȳ the central lottery that puts equal probability on each of the pure
outcomes. Now no-complete-indifference implies that every agent i , whatever his type
θi and beliefs λi ∈∆(Θ−i ), strictly prefers some pure outcome x to ȳ ; and compactness
implies that those strict preferences are uniformly strict.

L 1. There exists c > 0 such that, for each i , θi ∈ Θi , and λi ∈ ∆(Θ−i ), there exists
x ∈X such that

∑

θ−i∈Θ−i

λi (θ−i )u i (x , (θi ,θ−i ))>
∑

θ−i∈Θ−i

λi (θ−i )u i (ȳ , (θi ,θ−i ))+ c .

This lemma is proved in the Appendix. We use c in our later constructions. We also
exploit the existence of an upper bound on payoff differences C that follows immedi-
ately from the finiteness of pure outcomes and states

L 2. There exists C > 0 such that

|u i (y ,θ )−u i (y ′,θ )| ≤C

for all i , y , y ′, and θ .

2.2 Mechanisms and solution concept

A mechanism M is a collection ((M i )Ii=1, g ) where each M i is finite and g : M → Y .
We denote a belief of agent i over the product of payoff type and message spaces of
the other agents by µi ∈∆(Θ−i ×M−i ). We consider the process of iteratively eliminat-
ing never best responses, without making assumptions on agents’ beliefs about others’
payoff types. The set of messages surviving the k th level of elimination for type θi in
mechanismM is defined by

S0
i [M ](θi )¬M i

5Our results can be extended to allow for the presence of complete indifference as shown in the appendix
of the working paper version, Bergemann and Morris (2007).
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and for each k = 0, . . . by induction:

Sk+1
i [M ](θi )

¬











m i ∈Sk
i [M ](θi )

�

�

�

�

�

�

�

�

∃µi ∈∆(Θ−i ×M−i ) s.t.
(1) µi (θ−i , m−i )> 0⇒m−i ∈Sk

−i [M ](θ−i )
(2) m i ∈ arg max

m ′
i

∑

θ−i ,m−i
µi (θ−i , m−i )u i (g (m ′

i , m−i ), (θi ,θ−i ))











.

We let

Si [M ](θi ) =
⋂

k≥0

Sk
i [M ](θi ).

We refer to Si [M ](θi ) as the rationalizable messages of type θi of agent i in mecha-
nismM . This incomplete information version of rationalizability is studied in Battigalli
(1999), Battigalli and Siniscalchi (2003), and Bergemann and Morris (2008). A standard
and well known duality argument implies that this solution concept is equivalent to it-
erated deletion of ex post strictly dominated strategies.

The set Si [M ](θi ) is the set of messages that type θi might send consistent with
knowing that his payoff type is θi , common knowledge of rationality, and the set of pos-
sible payoff types of the other players, but with no restrictions on his beliefs and higher
order beliefs about other types. Equivalently, it is the set of messages that might be
played in any equilibrium on any type space by a type of player i with payoff type θi and
any possible beliefs and higher order beliefs about others’ payoff types. In Section 6.4,
we report a formal argument confirming this interpretation. In the body of the paper,
we work directly with this solution concept.

2.3 Separability

We are interested in the set of preferences that an agent might have if his payoff type is
θi and he knows that the type θj of each opponent j belongs to some subset Ψj of his
possible types Θj . Thus writing Ψ−i = {Ψj }j 6=i for a profile of subsets of i ’s opponents,
we define

Ri (θi ,Ψ−i ) =
�

R ∈R |R =Rθi ,λi for some λi ∈∆(Ψ−i )
	

.

We adopt the convention that if for some j 6= i , Ψj = ∅, then Ri (θi ,Ψ−i ) = ∅. Now
suppose we observe i ’s preferences over lotteries and know that i assigns probability 1
to his opponents’ type profile θ−i being an element of Ψ−i . What can we deduce about
i ’s type? We say that Ψ−i separates Ψi if, whatever those realized preferences, we can
rule out at least one possible type of i .

D 1 (Separation). The type set profile Ψ−i separates Ψi if

⋂

θi∈Ψi

Ri (θi ,Ψ−i ) =∅.
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We are interested in a process by which we iteratively delete type sets of each agent
that are separated by some type set profile of his opponents. Thus writing Ξk

i for the k th
level inseparable sets of player i , we have

Ξ0
i = 2Θi (1)

and

Ξk+1
i =

�

Ψi ∈Ξk
i |Ψ−i does not separate Ψi , for some Ψ−i ∈Ξk

−i

	

, (2)

and a (finite) limit type set profile is defined by

Ξ∗i =
⋂

k≥0

Ξk
i . (3)

Finally, we say that two types are pairwise inseparable if they cannot be iteratively
separated in this way.

D 2 (Pairwise Inseparability). Types θi and θ ′i are pairwise inseparable, written
θi ∼ θ ′i , if {θi ,θ ′i } ∈Ξ

∗
i .

Note that the relation∼ is reflexive and symmetric by construction, but is not neces-
sarily transitive. The following “fixed point” characterization of pairwise inseparability
is useful in the analysis that follows. Let Ξ= (Ξi )Ii=1 ∈×

I
i=12Θi be a profile of type sets for

each agent.

D 3 (Mutual Inseparability). Ξ is mutually inseparable if, for each i and Ψi ∈
Ξi , there exists Ψ−i ∈ Ξ−i such that Ψ−i does not separate Ψi .

L 3. Types θi and θ ′i are pairwise inseparable if and only if there exist mutually
inseparable Ξ= (Ξi )Ii=1 and Ψi ∈Ξi with {θi ,θ ′i } ⊆Ψi .

P. (if) Suppose there exist bΞ= (bΞi )Ii=1 andΨi ∈ bΞi with {θi ,θ ′i } ⊆Ψi . We claim that

�

Ψi |Ψi ⊆Ψ′i and Ψ′i ∈ bΞi for some Ψ′i
	

⊆Ξk
i

for each k = 0, 1, . . . . The claim holds for k = 0 by definition. Suppose the claim holds
for arbitrary k and suppose thatΨi ⊆Ψ′i andΨ′i ∈ bΞi . Because bΞ is mutually inseparable,
there exists Ψ−i ∈ bΞ−i ⊆ Ξk

i such that Ψ−i does not separate Ψ′i . By the definition of
separation, since Ψi ⊆Ψ′i , Ψ−i does not separate Ψi . So Ψi ∈Ξk+1

i and

{θi ,θ ′i } ⊆Ψi ∈Ξ∗i =
⋂

k≥0

Ξk
i .

(only if) Observe that Ξk+1
i ⊆ Ξk

i for each k = 0, 1, . . . by construction. Thus (Ξ∗i )
I
i=1

is mutually inseparable. Thus if θi ∼ θ ′i , there exists a mutually inseparable Ξ∗ with
{θi ,θ ′i } ∈Ξ

∗
i . �
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3. A        

We consider a quasi-linear environment with a single good with interdependent values
to illustrate the notion of separability. There are I agents and agent i ’s payoff type is
θi ∈ [0, 1]. If the type profile is θ , agent i ’s valuation of an object is given by

vi (θi ,θ−i ) = θi +γ
∑

j 6=i

θj ,

with γ ∈ R+. The parameter γmeasures the amount of interdependence in valuations:
the case of private values is given by γ= 0 and the case of pure common values is γ= 1.
The net utility of agent i depends on his probability yi of receiving the object and the
monetary transfer t i :

u i (θ , yi , t i ) =
�

θi +γ
∑

j 6=i

θj

�

yi − t i .

We determine the conditions for separability of types in this preference environ-
ment.6

Type set profile Ψ−i separates Ψi if, knowing i ’s preferences and knowing that he is
sure that others’ type profile is Ψ−i , we can always rule out some θi . In this example,
because the utility function u i is linear in the monetary transfer for all types and all
agents, separability must come from different valuations of the object. For a given type
set profile Ψ−i of all but i , we can identify the set of possible (expected) valuations of
agent i with type θi by writing

Vi (θi ,Ψ−i ) =
�

vi ∈R+ | ∃λi ∈∆(Ψ−i ) s.t. vi = θi +γ
∑

θ−i∈Ψ−i

λi (θ−i )
∑

j 6=i

θj

�

=
�

θi +γ
∑

j 6=i

minΨj ,θi +γ
∑

j 6=i

maxΨj

�

. (4)

Now Ψ−i separates Ψi if and only if

∩
θi∈Ψi

Vi (θi ,Ψ−i ) =∅.

This is equivalent to requiring that

Vi (maxΨi ,Ψ−i )∩Vi (minΨi ,Ψ−i ) =∅.

By (4), this holds if and only if

maxΨi +γ
∑

j 6=i

minΨj >minΨi +γ
∑

j 6=i

maxΨj .

6This example has a continuum of types and a continuum of deterministic monetary allocations while
the general model is defined for a finite number of types and pure outcomes. We could rewrite the exam-
ple and the corresponding results without loss in the finite setting. With a finite model, integer problems
would need to be taken into account; in particular, the exact value of the critical threshold for moderate in-
terdependence would depend on the size of the grid. But as the grid becomes finer, the critical thresholds
converge to the ones of the continuum example here.
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We can rewrite the inequality as

maxΨi −minΨi >γ
∑

j 6=i

(maxΨj −minΨj ).

Thus Ψ−i separates Ψi if and only if the difference between the smallest and the largest
elements in the set Ψi is larger than the weighted sum of the differences of the smallest
and the largest elements in the remaining sets Ψj for all j 6= i . Conversely, Ψ−i does not
separate Ψi if the above inequality is reversed, i.e.,

maxΨi −minΨi ≤ γ
∑

j 6=i

(maxΨj −minΨj ). (5)

Now we can identify the k th level inseparable sets, described in (1)–(3), for our example.
We have

Ξ0
i = 2[0,1]

and, by (5),

Ξk
i =

�

Ψi ∈Ξk
i |maxΨi −minΨi ≤ γ

∑

j 6=i

max
Ψj ∈Ξk

j

(maxΨj −minΨj )
�

.

Now by induction, we have

Ξk+1
i =

�

Ψi |maxΨi −minΨi ≤ (γ(I −1))k
	

.

Thus if γ(I − 1) < 1, Ξ∗i consists of singletons, Ξ∗i = ({θi })θi∈[0,1], while if γ(I − 1) ≥ 1, Ξ∗i
consists of all subsets, Ξ∗i = 2[0,1].

Thus if γ < 1/(I − 1), so that interdependence is not too large, every distinct pair of
types are pairwise separable. If γ≥ 1/(I −1), every pair of types are pairwise inseparable.
We note that the linear structure of the valuations vi leads to the strong converse result.
But the example illustrates the general principle that pairwise separability corresponds
to not too much interdependence. We state a more general result about the relationship
between pairwise separability and not too much interdependence in Section 6.2. We
also note that the argument surrounding the pairwise separability result relies on the
boundedness of the payoff type space. In particular ifΘi =R, then pairwise separability
can only be achieved in the case of of pure private values, i.e. γ= 0.

Our later results show that if γ≥ 1/(I−1), no social choice function (except for a con-
stant one) is robustly virtually implementable; but if γ < 1/(I −1), any ex post incentive
compatible allocation can be robustly virtually implemented. One can construct gener-
alized VCG payments such that efficient allocation is ex post incentive compatible in this
environment if γ≤ 1. Thus the efficient allocation is robustly virtually implementable if
and only if γ< 1/(I −1).

Our result on robust virtual implementation in this environment contrasts with what
happens with standard Bayesian implementation. Suppose we assume there is common
knowledge of a common prior on the set of payoff types [0, 1]I . Suppose first that agents’
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types are drawn independently. Then each type has different expected valuations of
the object and can easily be separated. Even if priors are not independent, for a “typi-
cal” choice of prior, the measurability condition of Abreu and Matsushima (1992b) and
Bayesian virtual implementation are possible as long as incentive compatibility condi-
tions are satisfied. Ex post incentive compatibility (and thus Bayesian incentive com-
patibility for any prior) is satisfied by the efficient allocation if γ≤ 1.

4. S 

4.1 Main result

Two payoff types are strategically distinguishable if there exists a mechanism where the
rationalizable actions of those payoff types are disjoint. Thus they are strategically in-
distinguishable if they have a rationalizable action in common in every mechanism.

D 4 (Strategically Indistinguishable). Types θi and θ ′i are strategically indistin-
guishable if Si [M ](θi )∩Si [M ](θ ′i ) 6=∅ for everyM .

The notion of strategic indistinguishability is related to the idea of incentive com-
patibility in the context of information revelation in a mechanism. The difference be-
tween distinguishability and incentive compatibility arises from the two central features
of strategic indistinguishability. First, we say that two payoff types can be strategically
distinguished if there exists some mechanism and hence some outcome function for
which the types have disjoint rationalizable actions. In contrast, the analysis of incen-
tive compatibility is typically concerned with a specific mechanism and hence a specific
outcome function. Second, strategic distinguishability requires that the two payoff types
display disjoint rationalizable actions for all possible beliefs and higher order beliefs. In
contrast, the analysis of incentive compatibility is typically concerned with a fixed and
common prior belief of the agents.

The characterization of strategic indistinguishability is the key result in our charac-
terization of robust virtual implementation.

T 1 (Equivalence). Types θi and θ ′i are strategically indistinguishable if and only
if they are pairwise inseparable.

This result is proved in two parts. First, Proposition 1 shows that under any finite
mechanism, if θi and θ ′i are pairwise inseparable, then the intersection of the set of ra-
tionalizable messages for θi and θ ′i is always non-empty. This observation follows easily
from our definitions.

P 1. If θi and θ ′i are pairwise inseparable (θi ∼ θ ′i ), then

Si [M ](θi )∩Si [M ](θ ′i ) 6=∅

in any mechanismM .
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P. By Lemma 3, if θi ∼ θ ′i , there exists a mutually inseparable Ξ with {θi ,θ ′i } ⊆
Ψ∗i ∈Ξi .

Now fix any mechanism M . We show, by induction on k , that for each k , i , and
Ψi ∈ Ξi , there exists m k

i (Ψi ) ∈M i such that m k
i (Ψi ) ∈Sk

i [M ](eθi ) for each eθi ∈Ψi . This is
true by definition for k = 0. Suppose that it is true for k . Now fix any i andΨi ∈ Ξi . Since
Ξ is mutually inseparable,

there exists Ψ−i ∈Ξ−i , R , and, for each eθi ∈Ψi ,λ
eθi
i ∈∆(Ψ−i ) such that R

eθi ,λ
eθi
i

=R .

Now let m k+1
i (Ψi ) be any optimal message of agent i when he believes that his oppo-

nents will send the message profile m k
−i (Ψ−i )with probability 1 and has beliefsλ

eθi
i about

the type profile of his opponents, i.e.,

m k+1
i (Ψi )∈ arg max

m ′
i

∑

θ−i

λ
eθi
i (θ−i )u i (g (m ′

i , m k
−i (Ψ−i )), (eθi ,θ−i )).

By construction, m k+1
i (Ψi )∈Sk+1

i [M ](eθi ) for all eθi ∈Ψi .

By the finiteness of the mechanism, there exists K such that Sk
i [M ](eθi ) =Si [M ](eθi )

for all i , eθi and k ≥ K . Thus for eachΨi ∈Ξi , there exists m i (Ψi )∈M i such that m i (Ψi )∈
Si [M ](eθi ) for each eθi ∈Ψ∗i . Thus there exists m i ∈Si [M ](θi )∩Si [M ](θ ′i ). �

The second part of the proof of the theorem is the converse result.

P 2 (Existence of Maximally Revealing Mechanism). There exists M ∗ such
that θi � θ ′i ⇒Si [M ∗](θi )∩Si [M ∗](θ ′i ) =∅.

Propositions 1 and 2 immediately imply Theorem 1. Proposition 2 is proved by the
explicit construction of a mechanism that leads every pair of distinguishable types to
choose different messages. We refer to the specific mechanism as the “maximally re-
vealing mechanism,” and spend the rest of this section describing its construction and
finding its properties.

4.2 The maximally revealing mechanism

We construct a mechanism that works for any environment. In the canonical mecha-
nism, each agent is given K simultaneous opportunities to select a preferred allocation
from a given “test set” of allocations. For each opportunity k to select a preferred al-
location, with k = 1, . . . , K , the agent is asked to report a profile of possible choices by
the remaining agents in the opportunities preceding the k th opportunity. If the report
of the agent at opportunity k matches the choices of the other agents in the opportu-
nities below k , then he is given the right to choose a preferred allocation. On the other
hand, if his report fails to replicate the choices of the other agents in the opportunities
before k , then the designer simply selects the central lottery ȳ . While the mechanism
is entirely static, it requires each agent to make a series of choices, each one contingent
on the choices of the other agents. In particular, by asking the agent at opportunity k to
match his report with the choices of the other agents at the opportunities before k , we
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introduce an inductive structure into the series of choices by each agent. We therefore
refer to the k th opportunity as the k th stage or k th step of the mechanism even though
the mechanism itself is entirely static.

The central aspect of the inductive structure of the choice mechanism is that it al-
lows us to analyze the behavior of the agent in the mechanism in terms of the iterative
elimination of dominated strategies. The precise construction of the choice mechanism
is based on two central concepts, the notion of a test set and the notion of an augmenta-
tion of a given mechanism. A test set gives each agent a finite set of choices and the
choice behavior by the agent allows us to distinguish between different types of the
agent. The construction of the set of test allocations relies on a few critical implica-
tions of our notion of separation. In turn, the notion of an augmentation permits us
to show that we can always construct a more informative mechanism on the basis of a
given mechanism.

4.2.1 A class of maximally revealing mechanisms Fix a finite “test set” of lotteries Y ∗.
A maximally revealing mechanism offers each agent i a series of K opportunities to se-
lect a preferred allocation from Y ∗. The set of messages for each agent in a maximally
revealing mechanism is defined as follows. Let M 0

i = {m̄
0
i } and inductively define

M k+1
i =M k

i ×M k
−i ×Y ∗.

Thus M 0
i = {m̄

0
i }, M 1

i = {m̄
0
i } ×M 0

−i × Y ∗, M 2
i = {m̄

0
i } ×M 0

−i × Y ∗ ×M 1
−i × Y ∗, and so

on. The message m k+1
i of agent i in stage k + 1 thus reiterates his message from step k

and announces a possible message profile of the remaining agents in step k . Due to the
inductive structure of the messages, we can write a typical element m k

i ∈M k
i as a list of

the form
m k

i = {m
0
i , r 1

i , y 1
i , r 2

i , y 2
i , . . . , r k

i , y k
i }, (6)

with m 0
i = m̄ 0

i and each r k
i ∈ M k−1

−i and each y k
i ∈ Y ∗. The entry r k

i constitutes the
report of agent i regarding the message of the other agents in the previous stage k − 1.
The message set of agent i is then given by M K

i .
The outcome function in the revealing mechanism is defined as

g K ,ε(m )¬ ȳ +
�

1− εK

1− ε

�

1

I

� K
∑

k=1

εk−1
I
∑

i=1

I(r k
i , m k−1

−i )(y
k
i − ȳ )

�

(7)

for some ε > 0, where I is the indicator function:

I(r k
i , m k−1

−i )¬

(

1 if r k
i =m k−1

−i

0 otherwise.

For a given ε > 0 and positive integer K , we refer to the associated revealing mechanism
as

M K
ε ¬ (M

K , g K
ε ).

In words, the mechanism has K stages. In each stage k , an agent is asked to announce
a stage k − 1 profile of messages he thinks his opponents might have sent and, with
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positive probability, gets to pick a lottery from Y ∗. Lotteries from early stages are much
more likely to be chosen than lotteries from later stages. We can now analyze how the
series of messages can iteratively and interactively identify the types of each agent.

4.2.2 Characterizing rationalizable behavior for small ε For sufficiently small ε > 0, an
agent’s choice of a message at the k th stage is independent of what messages he thinks
others will send at stage k and higher and thus also independent of K , the total number
of stages of messages that will be sent. We first propose an inductive characterization of
the set of types of player i who could possibly send k th stage message m k

i , and denote
this set by Θ̄k

i (m
k
i ). We then verify with Lemmas 6 and 8 that our proposed inductive

characterization of rationalizable messages is correct for sufficiently small ε.
Write B Y ∗

i (θi ,λi ) for agent i ’s most preferred lotteries in the set Y ∗ if he has payoff
type θi and beliefs λi ∈∆(Θ−i ) and (with a minor abuse of notation) let B Y ∗

i (θi ,Ψ−i ) be
agent i ’s possible most preferred lotteries if he has payoff type θi and assigns probability
1 to his opponents having types in Ψ−i , so that

B Y ∗
i (θi ,λi )¬ {y ∈ Y ∗ | y Rθi ,λi y ′ for all y ′ ∈ Y ∗}

and
B Y ∗

i (θi ,Ψ−i )¬
⋃

λi∈∆(Ψ−i )

B Y ∗
i (θi ,λi ).

We adopt the convention that if Ψj =∅ for some j 6= i , then B Y ∗
i (θi ,∅) =∅ as well.

Let Θ̄1
i (m

1
i ) be the set of types of player i who could possibly send first stage message

m 1
i . Since we ignore later stages, this is independent of ε and K . Taking these sets as

given, we then find the set Θ̄2
i (m

2
i ) of types of player i who could possibly send second

stage message m 2
i , and so on. We end up with an inductive characterization of the set

Θ̄k
i (m

k
i ) of types of player i who could possibly send k th stage message m k

i . Thus

Θ̄0
i (m̄

0
i )¬Θi ,

and inductively define Θ̄k+1
i (m k+1

i ), where we recall that by the inductive description of
the message m k+1

i in (6), we have m k+1
i = (m k

i , r k+1
i , y k+1

i ):

Θ̄k+1
i (m k+1

i )¬







θi ∈Θi

�

�

�

�

�

�

(i) θi ∈ Θ̄k
i (m

k
i )

(ii) Θ̄k
−i (r

k+1
i ) 6=∅

(iii) y k+1
i ∈ B Y ∗

i (θi , Θ̄k
−i (r

k+1
i ))







. (8)

The set Θ̄k
i (m

k
i ) is meant to approximate the set of types of agent i for whom a specific

message m k
i is rationalizable in stage k . In some sense, the set Θ̄k

i (m
k
i ) is the dual to

Sk
i [M ](θi ), which describes the set of messages m i that are rationalizable for a specific

type θi in stage k . The role of the set Θ̄k
i (m

k
i ) is to track the information that can be

inferred from the choices of messages m i about the type θi of agent i .
The analysis of the limit behavior of Θ̄k+1

i (m k+1
i ) is heuristic in the sense that the

inductive process assumes the properties (ii) and (iii) in (8). In particular, it is simply
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assumed that agent i in stage k + 1 announces a past message profile of the remaining
agents which could have been sent by some type profile of the other agents, and that
agent i selects an allocation that is a best response to some belief in stage k +1.

We use two preliminary results to establish formally that these sets characterize limit
behavior for small ε and large K . The routine proofs are reported in the Appendix. First,
we note that for any fixed finite mechanism M , when we iteratively delete messages
that are not best responses, they are uniformly worse responses, i.e., there exists ηM > 0
such that each of those deleted messages is not even an ηM -best response.

L 4 (Uniformly Worse Responses). For any mechanism M , there exists ηM > 0
such that if m i ∈Sk

i [M ](θi ), m i /∈Sk+1
i [M ](θi ), and µi ∈∆(Θ−i ×M−i ) satisfies

µi (θ−i , m−i )> 0⇒m j ∈Sk
j [M ](θj ) for each j 6= i ,

then there exists m̄ i such that

∑

θ−i ,m−i

µi (θ−i , m−i )u i (g ∗(m̄ i , m−i ), (θi ,θ−i ))

>
∑

θ−i ,m−i

µi (θ−i , m−i )u i (g ∗(m i , m−i ), (θi ,θ−i ))+ηM .

Second, we use the uniform lower bound in stating a key result about “augmenting”
mechanisms. We use this “augmentation lemma” in the construction of both the max-
imally revealing mechanism (in this section) and the canonical mechanism for robust
virtual implementation (in the next section). For each player i , fix finite message sets
M 0

i and M 1
i and let M i =M 0

i ×M 1
i . Fix g 0 : M 0→ Y , g 1 : M 1→ Y , and g + : M → Y . Fix

π0,π1,π+ ≥ 0 with π0+π1+π+ = 1 and let g : M → Y be defined by

g (m )¬π0 g 0(m 0)+π1 g 1(m 1)+π+g +(m ).

We now consider the mechanism

M 0 ¬ ((M 0
i )

I
i=1, g 0)

and the augmented mechanism

M ¬ ((M i )Ii=1, g ).

We recall that the constant C > 0 is a finite upper bound on the difference in pay-
offs across all agents and all pairs of lotteries y and y ′, which we established earlier
in Lemma 2.

L 5 (Augmentation). If π+C ≤π0ηM 0 , then

(m 0
i , m 1

i )∈Si [M ](θi )⇒m 0
i ∈Si [M 0](θi ).
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The lemma states that if the weight π0 put on the original payoff function g 0 in the
augmented mechanism is much larger than the weight π+ put on the other component
of the mechanism at which m 0 affects the allocation, then any rationalizable message in
the augmented mechanism must entail sending a message m 0

i that was rationalizable
in the original mechanism.

We now show that these choices are indeed the result of iterative elimination of
strictly dominated strategies. More precisely, we verify that Θ̄k

i (m
k
i ) is an upper bound

on the set of types who could send k th stage message m k
i in any M k

ε for sufficiently
small ε.

L 6 (Limit). Suppose that B Y ∗
i (θi ,λi ) 6= Y ∗ for each i , θi and λi ∈∆(Θ−i ). Then, for

each k , there exists ε̄ > 0 such that

{θi ∈Θi |m k
i ∈S[M k

ε ](θi )} ⊆ Θ̄k
i (m

k
i )

for all ε ≤ ε̄ and m k
i ∈M k

i .

P. By induction. The claim of holds for k = 0, since

�

θi ∈Θi |m 0
i ∈S[M 0

ε ](θi )
	

=Θi = Θ̄0
i (m

0
i ).

Now suppose that the claim holds for k . Thus there exists ε̄k > 0 such that

�

θi ∈Θi |m k
i ∈S[M k

ε ](θi )
	

⊆ Θ̄k
i (m

k
i ) for all ε ≤ ε̄k and m k

i ∈M k
i .

Now observe thatM k+1
ε is an augmentation ofM k

ε and thus, by Lemma 5, there exists
ε̄k+1 ∈ (0, ε̄k ] such that for all ε ≤ ε̄k+1,

m k+1
i = (m k

i , r k+1
i , y k+1

i )∈S[M k+1
ε ](θi )⇒m k

i ∈S[M k
ε ](θi ). (9)

Now by the inductive hypothesis, we also have

θi ∈ Θ̄k
i (m

k
i ). (10)

We further observe that m k+1
i ∈ S[M k+1

ε ](θi ) also implies there must exist µi ∈
∆(Θ−i ×M k+1

−i ) such that (1):

µi (θ−i , m k+1
−i )> 0⇒ m k+1

j ∈S[M k+1
ε ](θj ) for each j 6= i

and (2):

m k+1
i ∈ arg max

m̄ k+1
i ∈M k+1

i

∑

θ−i ,m k+1
−i

µi (θ−i , m k+1
−i )[u i (g k+1,ε(m̄ k+1

i , m k+1
−i ), (θi ,θ−i ))].

But note that (r k+1
i , y k+1

i ), the last components of m k+1
i , affects only one additively sep-

arable component of the above expression. In particular, (r k+1
i , y k+1

i )must maximize
∑

θ−i ,m k+1
−i

µi (θ−i , m k+1
−i )I(r

k+1
i , m k

−i )
�

u i (y k+1
i , (θi ,θ−i ))−u i (ȳ , (θi ,θ−i ))

�

, (11)
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which we can rewrite as
∑

θ−i

∑

{m k+1
−i |m

k
−i=r k+1

i }

µi (θ−i , m k+1
−i )

�

u i (y k+1
i , (θi ,θ−i ))−u i (ȳ , (θi ,θ−i ))

�

.

In particular, the later expression is zero if

µi (r k+1
i )¬

∑

θ−i

∑

{m k+1
−i |m

k
−i=r k+1

i }

µi (θ−i , m k+1
−i ) = 0.

But if µi (r k+1
i )> 0 and y k+1

i ∈ B Y ∗
i (θi ,λi ), where

λi (θ−i ) =

∑

{m k+1
−i |m

k
−i=r k+1

i }
µi (θ−i , m k+1

−i )

∑

θ ′−i

∑

{m k+1
−i |m

k
−i=r k+1

i }
µi (θ ′−i , m k+1

−i )
,

then (11) must be strictly positive, by the premise of the lemma. Thus we must have
(r k+1

i , y k+1
i ) chosen such that µi (r k+1

i )> 0 and y k+1
i ∈ B Y ∗

i (θi ,λi ). Now µi (r k+1
i )> 0, (9),

and the inductive hypothesis imply that

Θ̄k
−i (r

k+1
i ) 6=∅ (12)

and
λi ∈∆(Θ̄k

−i (r
k+1
i )) and y k+1

i ∈ B Y ∗
i (θi ,λi ). (13)

To wit, by the construction of the revealing mechanism (see (7)), the lottery y k+1
i speci-

fied in (13) only affects the (expected) payoff of agent i when r k+1
i =m k

−i . It follows that

y k+1
i should be a best reply to some belief conditioned on the event that r k+1

i =m k
−i .

Now (10), (12), and (13) together imply that any message m k+1
i ∈ S[M k+1

ε ](θi ) sat-
isfies the three requirements in the construction of Θ̄k+1

i (r k+1
i ) in (8) and hence for any

m k+1
i ∈S[M k+1

ε ](θi )we have θi ∈ Θ̄k+1
i (m k+1

i ). �

4.3 Constructing a rich enough test set

Finally, we show that we can choose the “test set” Y ∗ to be sufficiently large so that
Lemma 6 implies that, for sufficiently small ε > 0 and sufficiently large K , the mem-
bers of any pair of mutually separable types are sending distinct messages in the (K ,ε)
revealing mechanism.

L 7 (Existence of Finite Test Set). There exists a finite test set Y ∗ ⊆ Y such that

(i) for each i , θi , and λi ∈∆(Θ−i ), B Y ∗
i (θi ,λi ) 6= Y ∗

(ii) for each i , Ψi , and Ψ−i , if Ψ−i separates Ψi , then for each θi ∈Ψi and λi ∈∆(Ψ−i ),
there exists θ ′i ∈Ψi such that

B Y ∗
i (θi ,λi )∩ B Y ∗

i (θ
′
i ,Ψ−i ) =∅.

The proof of Lemma 7 is in the Appendix. The proof of Proposition 2 is completed
by the following lemma, establishing that the sets Θ̄k

i are closely related to k th level
inseparable sets Ξk

i , as defined in (1)–(3).
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L 8. For all i , all k , and all m k
i ∈M k

i , Θ̄k
i (m

k
i )⊆Ψi for some Ψi ∈Ξk

i .

P. By induction. The claim holds for k = 0 by definition. Suppose for all m k
−i ∈

M k
−i we have Θ̄k

−i (m
k
−i ) ⊆ Ψi for some Ψi ∈ Ξk

i . Now fix any m k+1
i = (m k

i , r k+1
i , y k+1

i ) ∈
M k+1

i . If Θ̄k+1
i (m k+1

i ) =∅, then we are done as the empty set is included in everyΨi 6=∅.
If Θ̄k+1

i (m k+1
i ) 6= ∅, then we let Ψi = Θ̄k+1

i (m k+1
i ) and Ψ−i = Θ̄k

−i (r
k+1
i ). Lemma 7(i) en-

sures that for every θi and λi , there exist y , y ′ ∈ eY such that y Pθi ,λi y ′. Thus any best
response involves setting r k+1

i equal to some m k
−i to which he assigns positive proba-

bility and choosing a strictly preferred lottery. By our inductive assumption, Ψ−i ∈ Ξk
−i .

Now suppose Ψ−i separates Ψi and fix θi ∈Ψi . By Lemma 7(ii), there exists θ ′i ∈Ψi such
that y k+1

i /∈ B Y ∗
i (θ

′
i ,Ψ−i ). Thus θ ′i /∈ Θ̄

k+1
i (m k+1

i ), a contradiction. We conclude that Ψ−i

does not separate Ψi . �

5. R  

In this section, we use the notions of strategic distinguishability and the maximally re-
vealing mechanism to establish necessary and sufficient conditions for robust virtual
implementation. Virtual implementation of a social choice function requires a mecha-
nism such that the desired outcomes are realized with probability arbitrarily close to 1
(see Abreu and Matsushima 1992b,c). Robust implementation requires implementation
of a social choice function depending on agents’ “payoff types” independent of their
beliefs and higher order beliefs about others’ payoff types (see Bergemann and Morris
2008, forthcoming). Our definition of robust virtual implementation is the natural one
incorporating both these notions.

5.1 Definitions

Write ‖y − y ′‖ for the rectilinear norm between a pair of lotteries y and y ′, i.e.,

‖y − y ′‖¬
∑

x∈X

|y (x )− y ′(x )|.

D 5 (Robust ε-Implementation). The mechanism M robustly ε-implements
the social choice function f if

m ∈S[M ](θ )⇒‖g (m )− f (θ )‖ ≤ ε.

The social choice function f is robustly ε-implementable if there exists a mechanism
M that robustly ε-implements f .

We can now define the notion of robust virtual implementation.

D 6 (Robust Virtual Implementation). The social choice function f is robustly
virtually implementable if, for every ε > 0, f is robustly ε-implementable.

The relevant incentive compatibility condition required for our robust problem is ex
post incentive compatibility.
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D 7 (EPIC). The social choice function f satisfies ex post incentive compatibil-
ity (EPIC) if, for all i , θi , θ−i , and θ ′i ,

u i ( f (θi ,θ−i ), (θi ,θ−i ))≥ u i ( f (θ ′i ,θ−i ), (θi ,θ−i )).

Now, “robust measurability” requires that if θi is pairwise inseparable from θ ′i , then
the social choice function must treat the two types the same. This condition is the ro-
bust analogue of the measurability condition in Abreu and Matsushima (1992c) as we
formally establish in Section 6.1.

D 8 (Robust Measurability). The social choice function f is robustly measur-
able if θi ∼ θ ′i ⇒ f (θi ,θ−i ) = f (θ ′i ,θ−i ) for all θ−i .

5.2 Necessity

It is well known from the literature on virtual Bayesian implementation (e.g., Abreu and
Matsushima 1992c) that the relaxation to virtual implementation does not relax incen-
tive compatibility conditions by a standard compactness argument.7

T 2 (Necessity). If f is robustly virtually implementable, then f is ex post incen-
tive compatible and robustly measurable.

P. We first establish ex post incentive compatibility. Fix any mechanismM that
robustly ε-implements f . Fix θ−i and m−i ∈ SM−i (θ−i ). For any m ′

i ∈ Si [M ](θ ′i ), virtual
implementation requires

‖g (m ′
i , m−i )− f (θ ′i ,θ−i )‖ ≤ ε. (14)

Now suppose that player i is type θi and is convinced that his opponent is type θ−i

sending message m−i . Let m i be any message that is a best response to that belief.
Then m i ∈Si [M ](θi ), implying that

‖g (m i , m−i )− f (θi ,θ−i )‖ ≤ ε. (15)

In particular, by the best response property of m i ,

u i (g (m i , m−i ), (θi ,θ−i ))≥ u i (g (m ′
i , m−i ), (θi ,θ−i )). (16)

Now (14) and Lemma 2 imply
�

�u i (g (m ′
i , m−i ), (θi ,θ−i ))−u i ( f (θ ′i ,θ−i ), (θi ,θ−i ))

�

�≤ 1
2εC , (17)

and (15) and Lemma 2 imply
�

�u i (g (m i , m−i ), (θi ,θ−i ))−u i ( f (θi ,θ−i ), (θi ,θ−i ))
�

�≤ 1
2εC . (18)

7Dasgupta et al. (1979) and Ledyard (1979) argue in a private value environment that dominant strategy
incentive compatibility is implied by Bayesian incentive compatibility for all priors on a fixed type space.
In the case of a social choice function, this argument, generalized to interdependent values, shows the
necessity of ex post incentive compatibility (see Bergemann and Morris 2005b).
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Now combining (16), (17), and (18), we obtain

u i ( f (θi ,θ−i ), (θi ,θ−i ))≥ u i ( f (θ ′i ,θ−i ), (θi ,θ−i ))− εC .

But virtual implementation implies that this holds for all ε > 0, so we have

u i ( f (θi ,θ−i ), (θi ,θ−i ))≥ u i ( f (θ ′i ,θ−i ), (θi ,θ−i )),

and this establishes EPIC as a necessary condition.
Next we establish robust measurability. Suppose that f is robustly virtually imple-

mentable. Fix any ε > 0. Since f is robustly virtually implementable, there exists a mech-
anismMε such that

m ∈S[Mε](θ )⇒‖g (m )− f (θ )‖ ≤ ε.

Now fix any θ−i and m ε
−i ∈ S−i [Mε](θ−i ). Also fix any θi ∼ θ ′i , so by Proposition 1 there

exists

m ε
i ∈Si [Mε](θi )∩Si [Mε](θ ′i ).

Now ‖g (m ε
i , m ε

−i )− f (θi ,θ−i )‖ ≤ ε and ‖g (m ε
i , m ε

−i )− f (θ ′i ,θ−i )‖ ≤ ε. Thus ‖ f (θi ,θ−i )−
f (θ ′i ,θ−i )‖ ≤ 2ε. This is true for each ε > 0, so f (θi ,θ−i ) = f (θ ′i ,θ−i ). �

While we maintain the assumption that the mechanism is finite, the same argument
implies the necessity of EPIC and robust measurability if we allow “regular mechanisms”
(Abreu and Matsushima 1992c), i.e., mechanisms where best replies always exist for any
conjecture over opponents’ behavior.

5.3 Sufficiency

We first describe the construction of a canonical mechanism that we use to establish
sufficiency. Our construction follows the logic of Abreu and Matsushima (1992c), which
in turn builds on Abreu and Matsushima (1992b). In the mechanism we construct, each
agent simultaneously announces (i) a message in the maximally revealing mechanism
described above and (ii) L announcements of his payoff type. With probability close to
1/L, the outcome is chosen according to the agents’ l th announcement of their payoff
types in part (ii) of their messages. But with small probability, the outcome is chosen ac-
cording to the maximally revealing mechanism and their part (i) messages. The mech-
anism then checks to see which agent was the “first” to “lie,” in the sense that his l th
report of his type is not consistent with the message he sent in the maximally revealing
mechanism and no other agent sent an inconsistent message in an “earlier” report. If
an agent is not one of the first to lie, then the agent is rewarded. For this part of the
mechanism, we need an economic property.

D 9 (Economic Property). The uniform economic property is satisfied if there
exists a profile of lotteries (z i )Ii=1 such that, for each i and θ , u i (z i ,θ ) > u i (ȳ ,θ ) and
u j (ȳ ,θ )≥ u j (z i ,θ ) for all j 6= i .
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Under the uniform economic property, there exists a constant c0 such that

u i (z i ,θ )> u i (ȳ ,θ )+ c0

for all i and θ .
In the canonical mechanism, part (i) announcements for the maximally revealing

mechanism are made as if the maximally revealing mechanism were being played as
a stand-alone mechanism (since the probability of rewards can be chosen sufficiently
small). An agent never allows himself to be one of the first to lie: sending a message that
ensures that he is not the first to lie (given his beliefs about the others’ strategies) always
strictly improves his expected payoff, since if the others are telling the truth, truth-telling
is a weak best response by ex post incentive compatibility, and if they are lying, for suffi-
ciently large L the reward outweighs the cost of not lying in one stage of the mechanism.

We writeM ∗ = ((M ∗
i )

I
i=1, g ∗) for the maximally revealing mechanism. We use three

numbers in defining the canonical mechanism. The number c0 is the uniform lower
bound on an agent’s utility gain from having his uniformly preferred lottery rather than
the central lottery. Recall from Lemma 2 that C is an upper bound on payoff differences
in the environment, and recall from Lemma 4 that whenever a message is deleted in
the iterated deletion process for the maximally revealing mechanismM ∗, it is not even
an ηM ∗-best response to any conjecture. We use these three numbers c0, C , and ηM ∗ ,
together with the number of players I , to define two further numbers δ and L that we
use in the construction of the canonical mechanism. Choose δ> 0 such that

δ<
ηM ∗

C
(19)

and an integer L such that

L >
I C

δ2c0
. (20)

Now the message space of the canonical mechanism is

M i =M ∗
i ×

L times
︷ ︸︸ ︷

Θi × · · ·×Θi =M ∗
i ×Θ

L
i .

Thus a typical message is written as m i = (m 0
i , m 1

i , . . . , m L
i ), with m 0

i ∈M ∗
i ; m l

i ∈ Θi for
each l = 1, . . . , L. The idea is that an agent is “supposed” to truthfully report his payoff
type in each stage l = 1, . . . , L and receives a small punishment if he is one of the “first” to
report a type that is not consistent with his 0-th message. The small individual rewards
and punishments are provided by

ri (m ) =







ȳ if ∃k ∈ {1, . . . , L} s.t. m 0
i /∈Si [M ∗](m k

i )

and m 0
j ∈S j [M ∗](m l

j )∀j = 1, . . . , I and l = 1, . . . , k −1

z i if otherwise.

(With a slight abuse of notation, we use ri (m ) here to denote rewards, rather than r k
i as

in Section 4.2.1.) Now the outcome function of the canonical mechanism is

g (m ) = (1−δ−δ2)
1

L

L
∑

l=1

f (m l )+δg ∗(m 0)+
δ2

I

I
∑

i=1

ri (m ).
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The mechanism g (m ) has three components. The first component, which carries
the largest probability, is the social choice function f itself. The appropriate allocation
f (m l ) is selected by L replicas, each one of which is chosen with the small probability
1/L. The second component is the maximally revealing mechanism outcome function
g ∗, which receives a smaller weight of δ. The third and final component, ri (m ), repre-
sents a small reward or punishment. It is designed to give each agent an incentive to
replicate in stage l the report issued in the previous stage. It provides a small “punish-
ment” (ȳ ) if player i is the first to report in the message component, m l

i , a type incon-
sistent with previous reports; otherwise ri (m ) provides the small “reward” z i .

T 3. Under the uniform economic property, if f satisfies EPIC and robust mea-
surability, then the canonical mechanism δ(1+δ) robustly implements f .

This immediately implies the sufficiency part of our characterization of robust vir-
tual implementation, since we can choose δ arbitrarily close to 0 in the canonical
mechanism.

C 1 (Sufficiency). Under the uniform economic property, if f satisfies EPIC and
robust measurability, then f is robustly virtually implementable.

P. To prove the theorem, it is enough to establish that, for each i , m i = (m 0
i ,

m 1
i , . . . , m L

i ) ∈ Si [M ](θi ) implies that (1) m 0
i ∈ Si [M ∗](θi ) and (2) m 0

i ∈ Si [M ∗](m l
i ) for

each l = 1, . . . , L. To see why, observe that m 0
i ∈ Si [M ∗](θi ) ∩ Si [M ∗](m l

i ) implies θi

is strategically indistinguishable from m l
i , which implies, by robust measurability, that

f (m l
i , m l

−i ) = f (θi , m l
−i ). Since this holds for each i , we have f (m l ) = f (θ ). Since this is

true for each l , the mechanism selects f (θ )with probability at least 1−δ−δ2.
Claim (1) above, that (m 0

i , m 1
i , . . . , m L

i ) ∈Si [M ](θi )⇒m 0
i ∈Si [M ∗](θi ), follows from

Lemma 5 and inequality (19), since m 0 influences the outcome only through weight δ
on g ∗(m 0) and weight δ2 on (1/I )

∑I
i=1 ri (m ).

We now establish claim (2) above, that (m 0
i , m 1

i , . . . , m L
i ) ∈ Si [M ](θi ) ⇒ m 0

i ∈
Si [M ∗](m l

i ) for all i and l = 1, . . . , L.
Suppose this claim were false. Then there would exist a smallest l for which the

claim fails. Thus there would exist l ∗ ∈ {1, . . . , L} such that, for all j , m j ∈ S j [M ∗](θj )⇒
m 0

j ∈ S j [M ∗](m l
j ) for all 1 ≤ l < l ∗; but there exist i and m i = (m 0

i , m 1
i , . . . , m L

i ) ∈
Si [M ∗](θi ) with m 0

i /∈ Si [M ∗](m l ∗
i ). Now fix any conjecture µi ∈ ∆(Θ−i ×M−i ) with

µi (θ−i , m−i )> 0⇒m j ∈S j [M ∗](θj ) for all j 6= i . Consider two cases. First, suppose that

µi (θ−i , m−i )> 0⇒ m 0
j ∈S j [M ∗](m l

j ) for all j 6= i and l = 1, . . . , L. (21)

In this case, sending the message

m̄ i = (m 0
i ,

L times
︷ ︸︸ ︷

θi ,θi , . . . ,θi )

instead of m i strictly increases i ’s utility: since he is certain that each agent is reporting
a type that is strategically indistinguishable in each of the L stages, EPIC and robust
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measurability ensure that his utility does not decrease from truthtelling in the L stages;
his utility is unchanged in the maximally revealing mechanism; and his utility is strictly
increased in the punishment component. Secondly, i ’s conjecture µi is such that (21)
fails. In this case, we can define

bl =min
�

l ∈ {1, . . . , L} |

∃(θ−i , m−i )with µi (θ−i , m−i )> 0 and m 0
j /∈S j [M ∗](m l

j ) for some j 6= i
	

.

Note that bl ≥ l ∗. Now sending the message

m̄ i = (m 0
i ,

bl times
︷ ︸︸ ︷

θi ,θi , . . . ,θi , m
bl+1
i , . . . , m L

i )

instead of m i strictly increases i ’s utility by the following argument. Since he is certain
that each agent is reporting a type that is strategically indistinguishable in each of the
first bl −1 stages, EPIC and robust measurability ensure that his utility does not decrease
from truthtelling in the first bl − 1 stages, and his utility is unchanged in the maximally

revealing mechanism. If it turns out that m 0
j ∈ S j [M ∗](m bl

j ) for some j 6= i , then i ’s

utility is also not reduced in the bl -th stage or in the punishment component, but if it

turns out that m 0
j /∈ S j [M ∗](m bl

j ) for all j 6= i , then i ’s utility is reduced in the bl -th stage
by at most (1−δ−δ2)(1/L)C and increases in his own punishment component ri (·) by
at least (δ2/I )c0 (and by the economic property, does not decrease in his opponents’
punishment components r−i (·)). The second term exceeds the first term by (20).

We conclude that for no conjecture is m i a best response, contradicting our original
assumption. This proves our second claim. �

While the basic construction of this proof follows Abreu and Matsushima (1992c),
some complications arise in our robust formulation. The messages sent in the max-
imally revealing mechanism do not partition an agent’s types. Rather, for each set of
types that survives the iterated deletion of sets that can always be separated, there is a
message that may be sent by all types in that set. So we say that message m l

i is consistent
with m 0

i if message m 0
i is one that might be sent by m 0

i ∈Si [M ∗](m l
i ).

The economic property can be weakened along the lines of Assumption 2 in Abreu
and Matsushima (1992c). It would be enough to have the economic property hold for
any type set profileΨ in the inseparable type set Ξ∗, i.e. for each set profileΨ= (Ψi )Ii=1 ∈
Ξ∗, there exists (z i )Ii=1 such that, for each i and θ ∈ ×I

i=1Ψj , u i (z i ,θ ) > u i (ȳ ,θ ) and
u j (ȳ ,θ )≥ u j (z i ,θ ) for all j 6= i .

6. D

6.1 Abreu–Matsushima measurability

We establish in the preceding section that robust measurability, jointly with ex post in-
centive compatibility, is a necessary and sufficient condition for robust virtual imple-
mentation. Ex post incentive compatibility is equivalent to Bayesian incentive compat-
ibility on the union of all type spaces (Bergemann and Morris 2005b). We now show
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that robust measurability is equivalent to requiring that the notion of measurability
originally suggested by Abreu and Matsushima (1992c) holds on the union of all type
spaces.8 To spell out the details of this equivalence result, we need a formal language for
epistemic type spaces in the sense of Harsanyi (1967–68) and Mertens and Zamir (1985).

A type space is defined byT ¬ (Ti , bπi , bθi )Ii=1, where each Ti is a countable set of types,
the function bπi : Ti → ∆(T−i ) defines the beliefs that agent i assigns to other agents
having types t−i , and the function bθi : Ti →Θi defines the agent i ’s payoff types. A type
space is finite if each Ti is finite. We fix a type space T and write �Tt i

for the induced
preferences of type t i of agent i over type-contingent lotteries eyi : T−i → Y . Thus

eyi �t i ey
′
i if and only if

∑

t−i∈T−i

bπi (t−i | t i )u i (eyi (t−i ), t )≥
∑

t−i∈T−i

bπi (t−i | t i )u i (ey ′i (t−i ), t ).

Fix a partition profile H = (Hi )Ii=1, where each Hi is a partition of Ti . A function
eyi : T−i → Y isH -measurable if for all j 6= i

�

t j , t ′j
	

⊆H j ∈Hj ⇒ ey (t j , t−{i ,j }) = ey (t ′j , t−{i ,j }).

Say that types t i and t ′i are (T ,H )-distinguishable if there exists aH -measurable eyi :
T−i → Y such that

eyi �Tt i
ȳ and ȳ �Tt ′i eyi ,

where we continue to denote by ȳ the constant uniform lottery.
Now iteratively define a sequence of partitionsH k = (H k

i )
I
i=1 by letting eachH 0

i be
the coarsest partition of the type set Ti , namely {Ti }, and letting eachH k+1

i consist of
sets of types of agent i that are (T ,H k )-indistinguishable.

Let H ∗ be the limit of the sequence of partitions. We say that types t i and t ′i are
Abreu–Matsushima, or “AM”, indistinguishable on type space T , written t i ∼TAM t ′i , if t i

and t ′i are in the same element of the partitionH ∗
i .

P 3 (Equivalence).

(i) If θi and θ ′i are pairwise inseparable, then there exists a finite type space T and

types t i , t ′i ∈ Ti such that (a) bθi (t i ) = θi , (b) bθi (t ′i ) = θ
′
i , and (c) t i ∼TAM t ′i .

(ii) Conversely, if there exists a type space T (perhaps infinite but countable) and types
t i , t ′i ∈ Ti such that (a) bθi (t i ) = θi , (b) bθi (t ′i ) = θ

′
i , and (c) t i ∼TAM t ′i , then θi and θ ′i

are pairwise inseparable.

The equivalence result of Proposition 3 suggests an alternative route to establishing
the necessity result for robust implementation in Theorem 2: by the equivalence of ro-
bust measurability and AM measurability on the union of all type spaces, we could prove
the necessity by an appeal to the arguments used in Abreu and Matsushima (1992c). By
contrast, our sufficiency result (Theorem 3) cannot be established using the arguments

8We would like to thank an anonymous referee who suggested that we investigate the exact relationship
between Abreu–Matsushima measurability and robust measurability.
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and methods in Abreu and Matsushima (1992c): as the union of all type spaces is not a
finite object, the arguments in Abreu and Matsushima (1992c)—which rely on the finite-
ness of the type space—cannot be applied.

6.2 Interdependence and pairwise separability

We illustrate the notions of pairwise and mutual inseparability in Section 3 in the context
of a linear model of interdependent preferences for a single object:

vi (θi ,θ−i ) = θi +γ
∑

j 6=i

θj .

In this linear and symmetric model the parameter γ represents the level of interdepen-
dence in the preferences of the agents. We show that for γ< 1/(I −1), all payoff types of
all agents are pairwise separable and suggest that pairwise separability requires not too
much interdependence in the preferences.

We now establish the relationship between pairwise inseparability and moderate in-
terdependence in a substantially more general environment. We assume that the utility
function of each agent i is given by a convex combination of a private value utility func-
tion vi and an interdependent utility function w i over the general space of lotteries Y
defined in Section 2. The private value utility function

vi : Y ×Θi →R,

gives rise to distinct preferences for every θi :

θi 6= θ ′i ⇒ vi (·,θi ) is not an affine transformation of vi (·,θ ′i ).

The interdependent utility function

w i : Y ×Θ−i →R

can depend in an arbitrary way on the type profile θ−i ∈ Θ−i of all agents except agent
i . For any γi ∈ [0, 1], let u

γi

i be the utility function that puts weight 1−γi on the private
value utility vi and weight γi on the interdependent utility w i :

u
γi

i (y ,θ )¬ (1−γi )vi (y ,θi )+γi w i (y ,θ−i ).

The interdependence in the preferences is now described by the vector of weights γ =
(γ1, . . . ,γI ) ∈ [0, 1]I . For γ = (0, . . . , 0) all payoff types of all agents are pairwise separable
as, by assumption, the private utility function vi gives rise to distinct preferences for all
θi . Also, for γ = (1, . . . , 1), we cannot separate any pair of types for any agent. In this
case, the preferences of each agent are independent of his payoff type and therefore
we cannot expect to separate the payoff types of agent i on the basis of his revealed
preference. We parametrize the limit set Ξ∗ that by Definition 2 describes the set of
pairwise inseparable types, by the vector γ, or Ξ∗(γ).
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P 4 (Interdependence).

(i) The collection of sets Ξ∗i (γ) satisfies Ξ∗i (0) =
�

{θ 1
i }, . . . ,{θS

i }
	

and Ξ∗i (1) = 2Θi \∅ for
all i .

(ii) If bγ≥ γ, then Ξ∗i (γ)⊆Ξ
∗
i (bγ).

The first part of the proposition determines the structure of the pairwise separable
types with minimal and maximal interdependence. The second part establishes that the
sets of pairs of types θi and θ ′i that are inseparable are weakly increasing in the interde-
pendence parameter γ. In particular, it shows that the separability is monotone in the
parameter of interdependence. We should emphasize that as the interdependence is
represented by the vector γ = (γ1, . . . ,γI ), the threshold for complete separability of all
types and all agents itself is a multidimensional surface in the I -dimensional hypercube.

6.3 Intermediate robustness notions

The classic Bayesian implementation literature considers implementation on a fixed
type space. We believe that this approach—as usually formulated—assumes too much
common knowledge (among the agents and the planner) about the environment. In re-
laxing these common knowledge assumptions, we take an extreme approach: we main-
tain the assumption that there is common knowledge of the payoff structure of the envi-
ronment (i.e., the set of possible payoff types of each agent and how each agent’s utility
function depends on the profile of payoff types) but do not restrict agents’ beliefs and
higher order beliefs about other agents’ types.

In a recent paper, Artemov et al. (2008) consider what happens to robust virtual im-
plementation results if one imposes some restrictions on agents’ beliefs in the payoff
environment. In particular, call a pair (θi ,λi ) ∈ Θi ×∆(Θ−i ) a “pseudo-type” and sup-
pose that we add the common knowledge that agent i ’s pseudo-type (θi ,λi ) belongs to
a subset Ti ⊆Θi ×∆(Θ−i ). When can a social choice function be virtually implemented
on all type spaces where each agent i ’s pseudo-type belongs to Ti ? Note that an agent’s
pseudo-type pins down his payoff type and belief about others’ payoff types, but not
his higher order beliefs. Thus this assumption is intermediate between the standard ap-
proach and our robustness approach. In the special case where Ti = Θi ×∆(Θ−i ), this
setting becomes the setting of this paper. But if Ti is a strict subset of Θi ×∆(Θ−i ), the
conditions for robust virtual implementation are weakened.

Now say that “pseudo-type diversity” is satisfied if

1. The set of beliefs consistent with a payoff type is a compact set, i.e., {λi ∈∆(Θ−i ) |
(θi ,λi )∈ Ti } is a compact set for each i and θi ∈Θi .

2. Two distinct payoff types cannot have the same preference over constant lotteries,
i.e., (θi ,λi ), (θ ′i ,λ′i )∈ Ti and θi 6= θ ′i ⇒Rθi ,λi 6=Rθ ′i ,λ′i

.

Artemov et al. (2008) show that if pseudo-type diversity is satisfied, then robust vir-
tual implementation is always possible if the appropriate incentive compatibility con-
ditions are satisfied (their Theorem 1). The idea is that agents’ payoff types can then be
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identified by their preferences over constant lotteries and the Abreu and Matsushima
(1992c)-style argument applied.9

To get a feel for the strength of the pseudo-type diversity condition, we can return to
our leading example in Section 3. Recall that each Θi = [0, 1] and vi = θi +γEi [

∑

j 6=iθj ]
is a sufficient statistic for agent i ’s preferences. Now let Λi ⊆ ∆([0, 1]I−1) be a compact
set of beliefs over others’ types that agent i may have (whatever his payoff type), so his
set of possible pseudo-types is the product set Ti = [0, 1]×Λi . Now if 0 < γ ≤ 1/(I − 1),
so there is not too much interdependence of preferences, pseudo-type diversity will be
satisfied if and only if each Λi is a singleton.10

Artemov et al. (2008) also report the appropriate measurability condition required
for robust virtual implementation if the pseudo-type diversity condition fails (their Def-
inition 12 and Theorem 2). This is naturally intermediate between Abreu–Matsushima
measurability and our robust measurability condition. We can illustrate this also with
our example. Suppose that the probability that agent i assigns to any subset of other
agents’ payoff types is always at least 1−δ times the probability of that event under a
uniform prior, so that

Λi =

(

λi ∈∆(Θ−i ) |λi (E )≥ (1−δ)
∫

θ−i∈E

dθ−i , ∀measurable E ⊆ [0, 1]I−1

)

and Ti =Θi ×Λi .
Now suppose that agent i ’s payoff type is inΨi and he knows that other agents’ pay-

off types are in Ψ−i . If agent i ’s beliefs are restricted to belong to Λi , when does there
exist a pair of payoff types in Ψi who could not have the same expected valuation of the
object? Only if

maxΨi +γ
∑

j 6=i

((1−δ) 12 +δminΨj )>minΨi +γ
∑

j 6=i

((1−δ) 12 +δmaxΨj ).

Thus Ψ−i “δ-separates” Ψi if and only if

maxΨi −minΨi ≤ γδ
∑

j 6=i

(maxΨj −minΨj ).

Now the argument of Section 3 can be adapted to show that if γδ < 1/(I − 1), all pairs
of distinct payoff types are strategically distinguishable from each other (under δ belief

9The version of “pseudo-type diversity” that we report is sufficient to implement the social choice func-
tions depending just on payoff types that we study in this paper. Artemov et al. (2008) assume a slightly
stronger version of pseudo-type diversity: they assume that each Ti is finite and that distinct pseudo-
types have distinct preferences over constant lotteries even if they correspond to the same payoff type,
i.e., (θi ,λi ), (θ ′i ,λ′i ) ∈ Ti and (θi ,λi ) 6= (θ ′i ,λ′i )⇒ Rθi ,λi 6= Rθ ′i ,λ′i

. This allows them to implement richer social
choice functions that treat types with the same payoff types (but different beliefs over others’ payoff types)
differently.

10This example has a continuum of payoff types, so does not fit our formal framework. But we could
make the same point with a finite grid of payoff types.
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restrictions) and thus incentive compatibility is sufficient for robust virtual implemen-
tation. And if γδ > 1/(I − 1), all pairs of payoff types are strategically indistinguishable
from each other (under δ belief restrictions) and robust virtual implementation is im-
possible for any (non-constant) social choice function.

6.4 Rationalizability and all equilibria on all type spaces

Our analysis takes as given the solution concept of incomplete information rationaliz-
ability for our environment. Thus we assume that if the agents’ true payoff type profile
was θ = (θ1, . . . ,θI ), they might send any message profile

m ¬ (m1, . . . , m I )∈
I
×

i=1
Si [M ](θi )¬S[M ](θ ).

Our motivation for employing this solution concept is that we do not want to make any
assumption about agents’ beliefs and higher order beliefs about other agents’ payoff
types. In fact, suppose one constructed a “type space” T specifying for each agent a set
of possible epistemic types, and, for each epistemic type, a description of his (known)
payoff type and his beliefs about others’ epistemic types. By standard universal type
space arguments, we can incorporate any beliefs and higher order beliefs about oth-
ers’ payoff types in such a type space. Now the type space T and a mechanism M
together define a standard incomplete information game. The set of messages that can
be sent by any type of agent i with payoff type θi in any Bayesian Nash equilibrium of
the game (T ,M ) for any type space T is equal to Si [M ](θi ). This result is the straight-
forward incomplete information extension of the classic epistemic foundations result
of Brandenburger and Dekel (1987), showing that the set of actions that can be played
in the subjective correlated equilibria of a complete information game equals the set of
actions that survive iterated deletion of strictly dominated actions in that game. Batti-
galli and Siniscalchi (2003) report the incomplete information version of this result as
Propositions 4.2 and 4.3. For completeness, we formally state and prove this result in
the appendix of the working paper version (Bergemann and Morris 2007).

This observation means that the gap between the solution concepts of pure strat-
egy Bayesian Nash equilibrium (Serrano and Vohra 2001, 2005) and iterated deletion of
(interim) strictly dominated strategies (Abreu and Matsushima 1992c) in incomplete in-
formation virtual implementation disappears in our robust approach. We consider this
to be an attraction of our approach. The intuition is that the extra bite obtained by the
assumption of equilibrium is lost without complementary strong assumptions on be-
liefs and higher order beliefs for the implementation problem.

6.5 Iterated deletion of weakly dominated strategies

Our incomplete information rationalizability solution concept is equivalent to iterated
deletion of strictly dominated strategies. What happens if we look at iterated deletion of



74 Bergemann and Morris Theoretical Economics 4 (2009)

weakly dominated strategies instead? In other words, we let W 0
i [M ](θi ) =M i ,

W k+1
i [M ](θi )

=











m i ∈W k
i [M ](θi )

�

�

�

�

�

�

�

�

∃ µi ∈∆++{(θ−i , m−i ) |m−i ∈W k
−i [M ](θ−i )} s.t.

m i ∈ arg max
m ′

i

∑

θ−i ,m−i
µi (θ−i , m−i )u i (g (m ′

i , m−i ), (θi ,θ−i ))











and
Wi [M ](θi ) =

⋂

k≥0

W k
i [M ](θi ).

It is easy to see that our “negative” results go through unchanged. If two types are pair-
wise inseparable (θi ∼ θ ′i ) then the argument of Proposition 1—unchanged—implies
that they have iteratively weakly undominated actions in common in every mechanism,
or

Wi [M ](θi )∩Wi [M ](θ ′i ) 6=∅ for allM .

Thus robust measurability is a necessary condition for implementation (virtual or exact)
of any social choice function in iterated deletion of weakly dominated strategies in a
finite (or compact) mechanism: the argument of Theorem 2 goes through unchanged in
this case.

Abreu and Matsushima (1994) show that their argument for virtual complete in-
formation implementation in iterated deletion of strictly dominated strategies can be
adapted to show the possibility of exact complete information implementation in iter-
ated deletion of weakly dominated strategies, with some extra restrictions on the envi-
ronment. It is a reasonable conjecture that this extension can be adapted to the stan-
dard incomplete information implementation setting of Abreu and Matsushima (1992c)
and our robust incomplete information setting. However, we have not attempted this
extension.

Chung and Ely (2001) show that in an auction environment with interdependent val-
uations as in Section 3, the efficient outcome can be implemented in the direct mecha-
nism under iterated deletion of weakly dominated strategies (i.e., the solution concept
described above) under the assumption that γ < 1/(I − 1). Our results supply a strong
converse: if γ ≥ 1/(I − 1), it is not possible to implement (exactly or virtually) any non-
trivial social choice function in iterated deletion of weakly dominated strategies in any
finite (or compact) mechanism, direct or indirect.11

6.6 Implementation in a direct mechanism

We restrict attention in this paper to finite mechanisms. Thus the mechanisms here
do not include any of the pathological features of “integer games” that play an impor-
tant role in the full implementation literature and have been much criticized (see, e.g.,

11Our results are stated for a lottery space over finite outcomes, but the extension to any compact space
and compact mechanisms is straightforward.
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Jackson 1992). Nonetheless, the mechanisms in this paper are complex. The canonical
mechanism for robust virtual implementation inherits the complexity of the mecha-
nism of Abreu and Matsushima (1992c), on which it builds. Our maximally revealing
mechanism generating strategic distinguishability is no simpler. While the mechanisms
are theoretically kosher, it has been argued that their complexity and the logic of the iter-
ation deletion in the mechanism might make them hard to use in practise. For example,
Glazer and Rosenthal (1992) have made this argument about the mechanism used by
Abreu and Matsushima (1992b) for complete information virtual implementation (see
Abreu and Matsushima 1992a for a response and Sefton and Yavas 1996 for later experi-
ments inspired by the mechanism).

By requiring robustness to agents’ beliefs and higher order beliefs, we reduce the
amount of common knowledge about the environment that can be used by the plan-
ner in designing a mechanism. This makes it harder to achieve positive results (and
our robust measurability condition is rather strong in applications). But one motivation
for studying robust implementation is that we hope that robustness considerations will
endogenously lead to simpler mechanisms when positive results can be achieved. By
adapting results from our earlier work on exact robust implementation in direct mech-
anisms (Bergemann and Morris forthcoming), we can report that, in at least one broad
class of economic environments of interest, whenever robust virtual implementation
is possible according to Corollary 1, it is possible in a direct mechanism where agents
simply report their payoff types. We say that preferences satisfy aggregator single cross-
ing (ASC) if each agent i ’s preferences at type profile θ belong to a single crossing class
parameterized by h i (θ ), where h i : Θ→ R is a monotonic aggregator. Bergemann and
Morris (forthcoming) established that exact robust implementation by a compact mech-
anism is possible if and only if the social choice function satisfies strict ex post incentive
compatibility and a contraction property on the aggregator functions h = (h1, . . . , h I ). In
the appendix of the working paper version, we show that under the ASC assumption,
robust measurability is always satisfied under the contraction property.

6.7 Exact implementation and integer games

The first papers on incomplete information implementation focus on exact implemen-
tation. Postlewaite and Schmeidler (1986) and Jackson (1991) identify a Bayesian mono-
tonicity condition that (together with Bayesian incentive compatibility) is necessary
and (under weak economic conditions) sufficient for exact implementation in Bayesian
Nash equilibrium. Bergemann and Morris (2005a) provide a robust analogue of this re-
sult, showing that ex post incentive compatibility and a robust monotonicity condition
are necessary and—under weak economic conditions—sufficient for exact robust im-
plementation. All these papers follow a tradition in the implementation literature of
allowing very badly behaved mechanisms, like integer games, in proving their general
results. In this paper, we follow Abreu and Matsushima (1992c) in restricting attention
to finite—and thus well-behaved—mechanisms. We briefly discuss the relation between
these results in this section; a more complete and formal discussion in contained in the
appendix of the working paper version (Bergemann and Morris 2007).
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Robust measurability and robust monotonicity turn out to be equivalent in the im-
portant class of aggregator single crossing preferences. However, in general, one can
show by example that robust measurability neither implies nor is implied by robust
monotonicity. Thus requiring only virtual implementation is sometimes a strict relax-
ation, and allowing badly-behaved mechanisms is sometimes a strict relaxation. We
do not have a characterization of when exact robust implementation by a well behaved
mechanism is possible (just as analogous characterizations do not exist for complete in-
formation and classical Bayesian implementation). We know only that robust measura-
bility, robust monotonicity, and strict ex post incentive compatibility are all necessary.

We restrict attention in our analysis to social choice functions rather than social
choice correspondences. Bergemann and Morris (2005b) consider the problem of par-
tially robustly implementing a social choice correspondence, i.e., ensuring that what-
ever players’ beliefs and higher order beliefs about others’ types, there is an equilibrium
leading to outcomes contained in the social choice correspondence. In the special case
where the social choice correspondence is a function (and more generally in a class of
separable environments), this is possible only if the function (or a selection from the
correspondence in separable environments) is ex post incentive compatible. But in the
general case, we do not have a satisfactory characterization of when partial robust im-
plementation is possible. For this reason, we have not attempted a characterization of
(full) robust implementation of social choice correspondences.

A

This appendix contains omitted proofs from the main body of the paper.

P  L . Suppose that
∑

θ−i∈Θ−i

λi (θ−i )u i (ȳ , (θi ,θ−i ))≥
∑

θ−i∈Θ−i

λi (θ−i )u i (x , (θi ,θ−i )) (22)

for all x ∈X . If
∑

θ−i∈Θ−i

λi (θ−i )u i (ȳ , (θi ,θ−i ))>
∑

θ−i∈Θ−i

λi (θ−i )u i (x ′, (θi ,θ−i ))

for some x ′ ∈X , we could conclude that

∑

θ−i∈Θ−i

λi (θ−i )u i (ȳ , (θi ,θ−i ))>
1

N

∑

x∈X

∑

θ−i∈Θ−i

λi (θ−i )u i (x , (θi ,θ−i ))

=
∑

θ−i∈Θ−i

λi (θ−i )u i (ȳ , (θi ,θ−i )),

a contradiction. So (22) implies
∑

θ−i∈Θ−i

λi (θ−i )u i (ȳ , (θi ,θ−i )) =
∑

θ−i∈Θ−i

λi (θ−i )u i (x , (θi ,θ−i )) (23)
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for all x ∈ X . But (23) implies that Rθi ,λi is indifferent between all pure outcomes and
thus all lotteries. This contradicts Assumption 1 of no-complete-indifference. We con-
clude that the no-complete-indifference assumption implies that (22) fails for all i , i.e.,
that for all i , θi ∈Θi and λi ∈∆(Θ−i ), there exists x ∈X such that

∑

θ−i∈Θ−i

λi (θ−i )u i (x , (θi ,θ−i ))>
∑

θ−i∈Θ−i

λi (θ−i )u i (ȳ , (θi ,θ−i )).

Equivalently, for all i , θi ∈Θi and λi ∈∆(Θ−i ),

max
x∈X

∑

θ−i∈Θ−i

λi (θ−i )[u i (x , (θi ,θ−i ))−u i (ȳ , (θi ,θ−i ))]> 0.

Now, note that for each x ∈X the function
∑

θ−i∈Θ−i

λi (θ−i )[u i (x , (θi ,θ−i ))−u i (ȳ , (θi ,θ−i ))]

is continuous inλ (in the standard topology). The conclusion follows from the compact-
ness (in the standard topology) of∆(Θ−i ) and continuity of the maximum operator. �

P  L . Fix any m i /∈ Si [M ](θi ). Then there exists k such that m i ∈
Sk

i [M ](θi ) and m i /∈Sk+1
i [M ](θi ). Consider

∆k
i =

�

µi ∈∆(Θ−i ×M−i ) |µi (θ−i ×m−i )> 0⇒m−i ∈Sk
−i [M ](θ−i ) for each j 6= i

	

.

For all µi ∈∆k
i , there exists m̄ i such that

∑

θ−i ,m−i

µi (θ−i , m−i )u i (g (m̄ i , m−i ), (θi ,θ−i ))>
∑

θ−i ,m−i

µi (θ−i , m−i )u i (g (m i , m−i ), (θi ,θ−i )).

By the compactness of ∆k
i , there exists ε̄i (m i ) > 0 such that for all µi ∈ ∆k

i there exists
m̄ i such that

∑

θ−i ,m−i

µi (θ−i , m−i )u i (g (m̄ i , m−i ), (θi ,θ−i ))

>
∑

θ−i ,m−i

µi (θ−i , m−i )u i (g (m i , m−i ), (θi ,θ−i ))+ ε̄i (m i ).

Now let
ηM = min

i , θi and m i /∈Si [M ](θi )
ε̄i (m i ),

which establishes the desired bound. �

P  L . Suppose π+C ≤π0ηM 0 . We argue, by induction on k , that

(m 0
i , m 1

i )∈Sk
i [M ](θi )⇒m 0

i ∈Sk
i [M

0](θi )
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for all k ≥ 0. This is true by definition for k = 0. Suppose that it is true for k . Now sup-
pose that m 0

i /∈ Sk+1
i [M 0](θi ) but (m 0

i , m 1
i ) ∈ Sk+1

i [M ](θi ) and so (m 0
i , m 1

i ) ∈ Sk
i [M ](θi )

and, by the inductive hypothesis, m 0
i ∈ Sk

i [M 0](θi ). Now fix any µi ∈∆(Θ−i ×M−i ) sat-
isfying

µi (θ−i , (m 0
j , m 1

j )j 6=i )> 0⇒ (m 0
j , m 1

j )j 6=i ∈Sk
−i [M ](θ−i )⇒m 0

−i ∈Sk
−i [M

0](θ−i ).

Let

µ̄i (θ−i , m 0
−i ) =

∑

(m 1
j )j 6=i∈M 1

−i

µi (θ−i , (m 0
j , m 1

j )j 6=i ).

By Lemma 4, there exists m̄ 0
i such that

∑

θ−i ,m 0
−i

µ̄i (θ−i , m 0
−i )[u i (g 0(m̄ 0

i , m 0
−i ), (θi ,θ−i ))−u i (g 0(m 0

i , m 0
−i ), (θi ,θ−i ))]>ηM 0 .

Thus

∑

θ−i ,m−i

µi (θ−i , m−i )
�

u i (g ((m̄ 0
i , m 1

i ), m−i ), (θi ,θ−i ))−u i (g ((m 0
i , m 1

i ), m−i ), (θi ,θ−i ))
�

>π0ηM 0 −π+C ≥ 0.

This contradicts our premise that (m 0
i , m 1

i ) ∈ Sk+1
i [M ](θi ), and we conclude that

(m 0
i , m 1

i )∈Sk+1
i [M ](θi )⇒m 0

i ∈Sk+1
i [M 0](θi ). �

The canonical mechanism asks each agent to make a series of binary choices be-
tween the central lottery ȳ and a specific lottery y from the test set. If the test set is to be
successful in eliciting the private information from agent i , then the test set should con-
tain a sufficient number of allocations such that for every type θi and every belief λi of
agent i there exists some allocation y that is strictly preferred to the central lottery ȳ .

L 9 (Duality). The type set profileΨ−i separatesΨi if and only if there exists ey :Ψi →
Y such that

∑

θi∈Ψi

(ey (θi )− ȳ ) = 0 (24)

and

ey (θi ) Pθi ,λi ȳ (25)

for all θi ∈Ψi and all λi ∈∆(Ψ−i ).

This result says that for each θi ∈Ψi , we can identify a direction in the lottery space,
ey (θi )− ȳ , that agent i likes whatever his beliefs about Ψ−i , such that the sum of those
changes add up to zero. The lemma follows from the following duality result in Samet
(1998).
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P 5 (Samet 1998). Let V1, . . . , VS be closed, convex, subsets of the N -dimen-
sional simplex ∆N . These sets have an empty intersection if and only if there exist
z 1, . . . , zS ∈RN such that

S
∑

s=1

z s = 0

and
v · z s > 0 for each s = 1, . . . ,S and v ∈Vs .

This result is introduced in Samet (1998) to provide a simple proof of the observa-
tion that asymmetrically informed agents trade against each other if and only if they do
not share a common prior, i.e., their posterior beliefs cannot be derived by updating a
common prior.12 Suppose that there are N states and S agents. Each agent s observes
one of a collection of signals about the true state. Each signal leads him to have a pos-
terior v ∈∆N over the states. Let Vs be the convex hull of his set of possible posteriors.
Notice that Vs represents the set of prior beliefs he might have held over the state space
before observing his signal. Thus posterior beliefs are consistent with a common prior
if and only if the intersection of the Vs sets is non-empty. Now consider a multilateral
bet specifying that if state n is realized, agent s receives payment z s n where the total
payments sum to zero:

S
∑

s=1

z s n = 0 for all n .

Writing z s ¬ (z s n )Nn=1, we then have

S
∑

s=1

z s = 0.

There exists such a bet where every agent has a strictly positive expected value from
accepting the bet conditional on every signal if v · z s > 0 for each s = 1, . . . ,S and v ∈Vs .

P  L . By definition, the type set profile Ψ−i separates Ψi if, for every R ∈
R , there exists θi ∈Ψi such that Rθi ,λi 6=R for every λi ∈∆(Ψ−i ). Write

X = {x1, . . . ,xn , . . . ,xN }
Θi = {θ 1

i , . . . ,θ s
i , . . . ,θS

i }
Θ−i = {θ 1

−i , . . . ,θw
−i , . . . ,θW

−i },

with W =S I−1. The vector

vs w = (u i (xn , (θ s
i ,θw

−i )))
N
n=1

is an element ofRN . Without loss of generality (since expected utility preferences can be
represented by any affine transformation), we can assume that each vs w is an element

12This converse to the no trade theorem was originally proved by Morris (1994), by a more indirect duality
argument.
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of the N -dimensional simplex ∆N . Now (vs w )Ww=1 is a collection of W elements of ∆N ,
and the set of preferences

{Rθ s
i ,λi :λi ∈∆(Ψ−i )}

is represented by the convex hull of (vs w )Ww=1, which we write as

Vs = conv
�

(vs w )Ww=1

�

⊆∆N .

Thus Ψ−i separates Ψi exactly if
S
⋂

s=1

Vs =∅.

By Proposition 5, this is true if and only if there exist z 1, . . . , zS ∈RN such that

S
∑

s=1

z s = 0 (26)

and
v · z s > 0 (27)

for all s and all v ∈Vs . But if (z s )Ss=1 satisfy (26) and (27), we may choose ε > 0 sufficiently
small such that ey (θ s

i ) = ȳ + εz s ∈ Y for each s , and we have established (24) and (25).
Conversely, if (24) and (25) hold and we set z s = ey (θ s

i )− ȳ for s = 1, . . . ,S, then (z s )Ss=1
satisfy (26) and (27). �

We now use Lemma 9 to show how, if Ψ−i separates Ψi , we can construct a finite
set of lotteries eYi (Ψi ,Ψ−i )⊆ Y such that knowing that agent i knows that his opponent’s
type is inΨ−i and knowing his preferences on eYi (Ψi ,Ψ−i ) is always enough to rule out at
least one type in Ψi for agent i .

L 10. If Ψ−i separates Ψi , then there exists a finite set eYi (Ψi ,Ψ−i ) ⊆ Y such that for
each θi ∈Ψi and λi ∈∆(Ψ−i ), there exists y ∈ eYi (Ψi ,Ψ−i ) such that

ȳ Pθi ,λi y (28)

and for some θ ′i ∈Ψi ,
y Pθ ′i ,λ′i

ȳ (29)

for all λ′i ∈∆(Ψ−i ).

P. By Lemma 9, there exists ey :Ψi → Y such that

∑

θi∈Ψi

(ey (θi )− ȳ ) = 0

and
ey (θi ) Pθi ,λi ȳ for all θi ∈Ψi and λi ∈∆(Ψ−i ).
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Let eYi (Ψi ,Ψ−i ) = {ey (θi )}θi∈Ψi . Fix θi ∈ Ψi and λi ∈ ∆(Ψ−i ). Write eYi (Ψi ,Ψ−i ) =
{y 1, . . . , y K }, with y 1 = ey (θi ). Let ȳ 0 = ȳ and

ȳ l = ȳ + ε
l
∑

κ=1

(y κ− ȳ ),

with ε > 0 chosen sufficiently small such that ȳ l ∈ Y for all l = 1, . . . , K . We know
ȳ 1 Pθi ,λi ȳ 0. Suppose ȳ l+1 Rθi ,λi ȳ l for all l = 1, . . . , K − 1. By transitivity, this implies
that ȳ K Pθi ,λi ȳ 0. But ȳ K = ȳ 0, so we have a contradiction. We conclude that, for some
l = 1, . . . , K − 1, ȳ l Pθi ,λi ȳ l+1. This implies that there exists θ ′i such that ȳ Pθi ,λi y (θ ′i ).
Since

y (θ ′i ) Pθ ′i ,λ′i
ȳ for all λ′i ∈∆(Ψ−i ),

the inequalities (28) and (29) are established. �

Now we construct a large enough finite set of lotteries (the “test set”) such that know-
ing just an agent’s most preferred outcome on the test set always reveals enough infor-
mation about his preferences to separate out a type, if it is possible to do so.

The proof of Lemma 7 is constructive. We first construct a set eY consisting of the
degenerate lotteries X and the sets eYi (Ψi ,Ψ−i ) constructed in Lemma 10, for every triple
(i ,Ψi ,Ψ−i ) with Ψ−i separating Ψi . Knowing an agent’s ranking of each element of eY
relative to the central lottery ȳ reveals all the information we need to extract. In order
to extract this information in a single choice, we let the agent pick f : eY → {0, 1}. For
each y ∈ eY , y is chosen with probability 1/ eY if f (y ) = 1, otherwise the central lottery
ȳ is chosen. We let Y ∗ be the set of all such lotteries. Now observing an agent’s most
preferred outcome in Y ∗ reveals his binary preference between ȳ and each element of eY .
Since eY contains each eYi (Ψi ,Ψ−i ), this ensures part (ii). Since eY contains all the lotteries
that put probability 1 on each pure outcome, Assumption 1 (no-complete-indifference)
implies that, for each θi and λi , there exist y , y ′ ∈ eY such that y Pθi ,λi y ′ and thus y ′ /∈
B Y ∗

i (θi ,λi ). This proves part (i).

P  L . Let

eY =X ∪
⋃

{(i ,Ψi ,Ψ−i )|Ψ−i separates Ψi }

eYi (Ψi ,Ψ−i ).

Now for any f : eY → {0, 1}, let y f be the lottery obtained by picking an element y ∈ eY
with uniform probability and then choosing lottery y if f (y ) = 1 and ȳ if f (y ) = 0. Thus
we define

y f ≡ ȳ +
1

#eY

∑

y∈eY

f (y )(y − ȳ ).

Let Y ∗ be the set of such lotteries, i.e.,

Y ∗ = {y ∈ Y | ∃ f : eY →{0, 1} such that y = y f }.
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To prove part (i) of the lemma, fix any θi ∈ Θi and λi ∈ ∆(Θ−i ). By Lemma 1, there
exists x ∈X ⊆ eY such that x Pθi ,λi ȳ ; now let f 0(y ) = 0, for all y ∈ eY , and

f ∗(y ) =

(

0 if y 6= x

1 if y = x .

So we can write

y f 0 = ȳ , y f ∗ = ȳ +
1

#eY
(x − ȳ )

and so y f 0 /∈ B Y ∗
i (θi ,λi ).

To prove part (ii) of the lemma, suppose that Ψ−i separates Ψi . Fix θi ∈Ψi and λi ∈
∆(Ψ−i ). By Lemma 10, there exists y ∈ eYi (Ψi ,Ψ−i ) and θ ′i ∈ Ψi such that ȳ Pθi ,λi y and
y Pθ ′i ,λ′i

ȳ for all λ′i ∈∆(Ψ−i ). So

y f ∈ B Y ∗
i (θi ,λi )⇒ f (y ) = 0,

while
y f ∈ B Y ∗

i (θ
′
i ,Ψi )⇒ f (y ) = 1,

and so
B Y ∗

i (θi ,λi )∩ B Y ∗
i (θ

′
i ,Ψi ) =∅,

which establishes the result. �

P  P . Consider types θi and θ ′i such that θi � θ ′i . Then by the def-
inition of pairwise inseparability, {θi ,θ ′i } ∈ Ξ

∗
i . By the construction of the inseparable

sets Ξk
i , it follows that there is a finite stage k̄ such that {θi ,θ ′i } ∈Ξ

k̄
i but

{θi ,θ ′i } /∈Ξ
k̄+1
i . (30)

By Lemma 7, for all i , k and m k
i we have

Θ̄k
i (m

k
i )∈Ξ

k
i , (31)

and by Lemma 6, for each k there exists ε̄ > 0 such that

{θi ∈Θi |m k
i ∈Si [M k

ε ](θi )} ⊆ Θ̄k
i (m

k
i ), (32)

for all ε < ε̄ and m k
i ∈M k

i . Now since Ξ∗ is established in a finite number of stages, it
follows that by the choosing k sufficiently large and ε sufficiently small, we obtain an
augmented mechanismM K

ε =M ∗such that if θi � θ ′i , then from the exclusion (30) and
the inclusions (31) and (32), it follows that SM

∗

i (θi )∩SM
∗

i (θ ′i ) =∅, which establishes the
result. �

P  P . (i) Fix mutually inseparable Ξ= (Ξi )Ii=1. We use properties of

Ξ to construct a type space T . For each Ψi ∈ Ξi , there exists ΨΨi
−i ∈ Ξ−i such that ΨΨi

−i

does not separate Ψi . Recall that “ΨΨi
−i does not separate Ψi ” means that there exists a
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preference relation Ri over uncontingent lotteries Y such that for each θi ∈ Ψi , there
exists λθi ,Ψi

i ∈∆(ΨΨi
−i ) such that R

θi ,λ
θi ,Ψi
i
=Ri . Now, for each i , let

Ti ¬ {(θi ,Ψi )∈Θi ×Ξi | θi ∈Ψi }, (33)

with

bπi ((θj ,Ψj )j 6=i | (θi ,Ψi ))¬

(

λθi ,Ψi
i (θ−i ) if Ψ−i =Ψ

Ψi
−i

0 otherwise
(34)

and
bθi (θi ,Ψi )¬ θi . (35)

Now consider the partition Hi of the type set Ti , as defined through (33)–(35), that is
generated by the equivalence relation (θi ,Ψi )∼ (θ ′i ,Ψ′i ) ifΨi =Ψ′i . By construction, each
(θi ,Ψi ) and (θ ′i ,Ψi ) are (T ,H )-indistinguishable. To see this, observe that since θi ,θ ′i ∈
Ψi , there exists a commonΨ−i , namelyΨΨi

−i such that λθi ,Ψi
i (ΨΨi

−i ) =λ
θ ′i ,Ψi

i (ΨΨi
−i ) = 1. Now,

as the type contingent lottery eyi has to beH -measurable, it follow in particular that it
has to be constant on ΨΨi

−i and hence is an uncontingent lottery on ΨΨi
−i . But Lemma 3

shows that if any payoff types θi and θ ′i are pairwise inseparable, then there exists a
mutually inseparable Ξ= (Ξi )Ii=1 and Ψk ∈Ξk with {θk ,θ ′k } ⊆Ψk .

(ii) For the other direction, fix a type spaceT . WriteH ∗ for the limit of the sequence
of partitions defined above and let∼TAM be the corresponding equivalence relation. Write
H ∗i (t i ) = {t ′i |t

′
i ∼
T
AM t i } and let

Ξi ¬
�

Ψi ∈ 2Θi \∅ | ∃t i ∈ Ti such that Ψi = {θi | ∃t ′i ∈H ∗i (t i )with bθi (t ′i ) = θi }
	

.

Intuitively, Ξi is a set of payoff types that cannot be distinguished on the particular (in-
terim) type space T .

Fix a player i and any t i ∈ Ti , and let

Ψi =
�

θi | ∃t ′i ∈H ∗i (t i )with bθi (t ′i ) = θi
	

.

Suppose t ′i ∼
T
AM t i . We know that for every H ∗-measurable eyi , eyi �Tt i

ȳ ⇒ eyi �Tt ′i
ȳ . Observe that each t ′i ∈ H ∗i (t i )must have the same support on elements ofH ∗

−i . Pick

any t ∗−i such that bπi (H ∗−i (t
∗
−i )|t

′
i ) > 0 for all t ′i ∈ H ∗i (t i ). Consider λθi ,Ψi

i (ΨΨi
−i ) that equals

the uniform lottery everywhere except on t−i with t j ∼TAM t ∗j for all j 6= i , i.e.,

eyi (t−i ) = ȳ if not t j ∼TAM t ∗j for some j .

Note that eyi is H ∗-measurable. Now let Ψj = {θj | ∃t ′j ∈ H ∗j (t
∗
j )with bθj (t ′j ) = θj }

and observe that by construction, Ψi is not separated by Ψ−i . Thus Ξ is mutually
inseparable. �

The proof of Proposition 4 follows directly from the monotone behavior of the fol-
lowing auxiliary sets related to the inseparable sets. In Section 2.3 we define a sequence
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of inseparable sets, {Ξk }∞k=0 = {(Ξ
k
1 , . . . ,Ξk

I )}
∞
k=0, where the k + 1st level of sets is deter-

mined by an inductive step:

Ξk+1
i =

�

Ψi ∈Ξk
i |Ψ−i does not separate Ψi , for some Ψ−i ∈Ξk

−i

	

. (36)

For our monotonicity result, it is useful to simply fix a sequence of sets for all agents
except i :

{Σk
−i }
∞
k=0 = {(Σ

k
1 , . . . ,Σk

i−1,Σk
i+1, . . . ,Σk

I )}
∞
k=0

such that the sequence satisfies the inclusion property

Σk+1
j ⊆Σk

j ,

but without necessarily coming from the separation property as Ξk+1
j in (36). However,

for agent i ,Σk
i is generated by the separation property relative to the sequence {Σk

−i }
∞
k=0.

In particular, Σ0
i = 2Θi \∅ and

Σk+1
i ¬ {Ψi ∈Σk

i |Ψ−i does not separate Ψi , for some Ψ−i ∈Σk
−i }

and the resulting limit set is defined by

Σ∗i =
⋂

k≥0

Σk
i .

Now we consider two sequences of sets for all agents i , {bΣk
−i }
∞
k=0 and {Σk

−i }
∞
k=0, such

that one sequence is nested in the other, or for all k , bΣk
−i ⊆ Σ

k
−i . We then compare the

resulting limit set for agent i with respect to Σk
−i and bΣk

−i respectively. Correspondingly,
we denote the respective limit sets of agent i by Σ∗i and bΣ∗i .

L 11 (Monotonicity I). If for all k , bΣk
−i ⊆Σ

k
−i , then bΣ∗i ⊆Σ

∗
i .

P. It suffices to show that for all k , bΣk
i ⊆ Σ

k
i . The proof is by induction. By con-

struction it is true for k = 0. Suppose now that it holds for k and we want to establish
that it holds for k + 1. By assumption, bΣk

i ⊆ Σ
k
i and hence consider a set Ψi ∈ Σk

i ∩ bΣ
k
i .

Now suppose that Ψi ∈ bΣk+1
i and we want to show that Ψi ∈ Σk+1

i . We observe that if
Ψi ∈ bΣk+1

i , then there exists some Ψ−i ∈ Σk
−i such that Ψ−i does not separate Ψi . But by

assumption the set Ψ−i ∈Σk
−i , and hence it follows that Ψi ∈Σk+1

i as well. �

L 12 (Monotonicity II). If bγi >γi , then for all k , Σk
i ⊆ bΣ

k
i .

P. The proof is by induction. By construction it is true for k = 0. Suppose now that
it holds for k and we want to establish that it holds for k + 1. By assumption, Σk

i ⊆ bΣ
k
i

and hence consider a set Ψi ∈ Σk
i ∩ bΣ

k
i . Now suppose that Ψi ∈ Σk+1

i and we want to
show that Ψi ∈ bΣk+1

i . We observe that if Ψi ∈ Σk+1
i , then there exists some Ψ−i ∈ Σk

−i
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such thatΨ−i does not separateΨi . In other words, there exists for every θi ∈Ψi a belief
λi (· | θi )∈∆(Ψ−i ) such that for all x ∈X and all θ ′i ,θ ′′i ∈Ψi ,

(1−γi )vi (x ,θ ′i )+γi

∑

θ−i∈Θ−i

λi (θ−i | θ ′i )w i (x ,θ−i )

= (1−γi )vi (x ,θ ′′i )+γi

∑

θ−i∈Θ−i

λi (θ−i | θ ′′i )w i (x ,θ−i ).

As the interdependent utility w i (·) does not depend on θi , we can rewrite the equality as

(1−γi )(vi (x ,θ ′i )−vi (x ,θ ′′i )) = γi

∑

θ−i∈Θ−i

(λi (θ−i | θ ′′i )−λi (θ−i | θ ′i ))w i (x ,θ−i ). (37)

Now we want to show that if bγi >γi , then we can again find associated beliefs bλi (θ−i | θ ′′i )
such that

(1− bγi )(vi (x ,θ ′i )−vi (x ,θ ′′i )) = bγi

∑

θ−i∈Θ−i

(bλi (θ−i | θ ′′i )− bλi (θ−i | θ ′i ))w i (x ,θ−i ). (38)

We can easily verify that by letting for all θ−i ∈Θ−i the beliefs bλi (θ−i | θi ) be defined by

bλi (θ−i | θi )¬
(1− bγi )γi

bγi (1−γi )
λi (θ−i | θ ′′i )+

bγi −γi

bγi (1−γi )
1

(I −1)S

we satisfy (38) if and only if we satisfy (37). Now since bγi >γi , it follows that

(1− bγi )γi

bγi (1−γi )
< 1,

and hence the conditional probability distribution bλi (θ−i | θi ) is well-defined if, as as-
sumed, λi (θ−i | θi ) is well-defined. But now it follows that Ψi ∈ bΣk+1

i as well. �

P  P . (i) For γ = 0, we have by the definition of the private value
utility function vi (·) for all i and all θi and θ ′i , Ri (θi ,Θ−i ) ∩ Ri (θ ′i ,Θ−i ) = ∅. Hence it
follows that we have for all i , Ξ∗i (0) = {{θ

1
i }, . . . ,{θS

i }}. For γ= 1, we have by the definition
of the interdependent value function w i (·), for all i and all θ ′i ∈Θi ,

⋂

θi∈Θi

Ri (θi ,Θ−i ) =Ri (θ ′i ,Θ−i ),

and hence for all i , Ξ∗i (1) = 2Θi \∅.
(ii) It suffices to establish the result component-wise. We thus consider bγ ≥ γ such

that bγi > γi for some i and bγj = γj for all j 6= i . Now suppose that for some agent l , we
have Ξ∗l (γ) 6= Ξ

∗
l (bγ). Then there must be a first stage k ′ such that Ξk ′

l (γ) 6= Ξ
k ′
l (bγ), but for

all k < k ′, we have for all l , Ξk
l (γ) = Ξ

k
l (bγ). Now since we only changed the preferences

of agent i , and k ′ is the first stage where the sets Ξk ′
l (γ) and Ξk ′

l (bγ) differ, it must be that
l = i . But now it follows from Lemma 12 that Ξk ′

i (γ)⊂ Ξ
k ′
i (bγ). Suppose now that there is
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a step k ′′ > k ′ such that there exists j 6= i such that Ξk ′′
j (γ) 6=Ξ

k ′′
j (bγ), but for all k < k ′′, we

have Ξk
j (γ) = Ξ

k
j (bγ). Now we can apply Lemma 11 to conclude that Ξk

j (γ)⊂ Ξ
k
j (bγ). Now a

monotonicity argument of either Lemma 11 or 12 applies at every further step along the
sequence and hence we have shown that for all j , including i , we have Ξk

j (γ)⊆ Ξ
k
j (bγ) for

all k , which establishes the result. �
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