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Monopolistic group design with peer effects

S B

Department of Economics, University of California Los Angeles

In a range of settings, private firms manage peer effects by sorting agents into dif-
ferent groups, be they schools, communities, or product categories. This paper
considers such a firm, which controls group entry by setting a series of anony-
mous prices. We show that private provision systematically leads to two distor-
tions relative to the efficient solution: first, agents are segregated too finely; sec-
ond, too many agents are excluded from all groups. We demonstrate that these
distortions are a consequence of anonymous pricing and do not depend upon the
nature of the peer effects. This general approach also allows us to assess the way
the ‘returns to scale’ of peer technology and the cost of group formation affect the
optimal group structure.
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1. I

In an increasingly privatized world, for-profit organizations have come to play an im-
portant role in many markets where peer effects are prominent. This paper considers
such a market, where a firm posts a series of prices and agents self-select into different
groups. The quality of a group, in turn, depends on the number and characteristics of
its members. We show that private provision systematically leads to two distortions in
group formation relative to the efficient solution. First, there is too much segregation
between different types of agents; that is, groups are excessively homogenous. Second,
too many agents are excluded from all available groups.

The model captures the key features of several important markets. First, consider
the market for education, where peer effects play an important role in shaping stu-
dents’ goals and learning experiences. In this type of market, firms can manage peer
effects to their advantage by charging more for courses and at institutions that attract
above-average students. This type of differentiation is commonplace among providers
of higher education and professional training and, with the introduction of vouchers,
promises to become important among primary and secondary schools.
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Second, the model can be used to study (indirect) network goods, such as cars, elec-
tronics, and games consoles. When buying one of these goods the consumer cares about
the availability of post-purchase services, such as car repairs, accessories and software.
The quality of these services, in turn, depends on the number and composition of con-
sumers buying the good. A firm can therefore discriminate between different types of
consumers by offering a range of different products.1

The third application concerns the market for private communities (e.g. condomini-
ums, planned unit developments) which now house more than forty million Americans.
When purchasing a unit, buyers care about the type of neighbours both directly (e.g. so-
cial ties, crime) and through the resulting neighbourhood services (e.g. shops, schools).
A developer will then seek to design tiers of communities to attract different types of
agents.

Finally, peer effects play an important role in the theory of the firm. Agents care
about the composition of their division or team, through direct interactions or shared
bonuses. Agents also care about the size of their division or team, since this may yield
returns to scale or exacerbate moral hazard. The firm thus seeks to assemble compatible
agents in order to maximize its productivity and minimize its wage bill.

A significant problem in analysing peer effects is that peer technology can be very
complicated, encompassing composition effects, network effects, and congestion ef-
fects. Peer technology also differs greatly across environments. In a recent survey on the
role of private education, Helen Ladd (2002, p. 14) writes

“This lack of clarity about how peer effects differ among groups rules out
any clear predictions about whether a voucher program would be likely
to increase or decrease the overall productivity of the education system
through the mechanism of peer effects”.

Despite this concern, we analyze the distortions induced by private provision while
placing very little structure on the nature of peer effects. This general approach enables
us to examine how the degree of segregation depends on the form of peer effects. It also
helps us interpret the recent empirical literature quantifying peer effects in different en-
vironments.

1.1 Outline of the paper

The basic structure of the model is as follows. First, a single principal posts a range of
anonymous group-entry prices. Agents vary in their willingness to pay for group quality
and, after observing these prices, sort themselves into different groups. The quality of a
group, in turn, is a one-dimensional metric that depends upon the characteristics of its
members. This quality function is allowed to be very general and subsumes the average

1With some goods, the consumer directly cares about the identity of the other purchasers: restaurants,
golf clubs, and luxury good manufacturers all seek to affect the attractiveness of their product through
exclusivity. For example, Kaneff owns six golf courses in Ontario, charging a range of fees and separating
different types of customers into groups. Similarly, Ryanair has unassigned seating on its planes, but allows
consumers to buy a priority boarding pass. See Rayo (2003) for other examples.
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quality model (e.g. Rayo 2003), the Cobb–Douglas quality model (e.g. Epple and Romano
1998) and the multiplicative quality model (e.g. Lazear 2001).

Since pricing is anonymous, the principal must rely on agents to self-select into
different groups. Self-selection immediately implies that agents who care more about
group quality must be in better quality groups (the monotonicity condition). As a result,
if the agents who generate high quality have a low willingness to pay, then the principal
must assign all agents to groups of identical quality. Conversely, if the agents who gen-
erate high quality have a high willingness to pay, then the principal can segregate the
agents into groups of different standards.

The paper first analyzes the principal’s problem when group formation is cost-
less, showing that profit-maximization leads to two distortions relative to the welfare-
maximizing group structure. The first distortion, the segregation effect, states that there
are too many groups under profit-maximization. Intuitively, by splitting a group into
two, putting all the high types into one group and the low types into another, the princi-
pal increases the price the high types are willing to pay in order to avoid the low quality
group. Crucially, we do not require any assumptions on the nature of peer effects in
order to attain this result: the necessary restrictions come endogenously from the re-
quirement that agents self-select into groups. This segregation effect implies that, if
the optimal group structures are ordered, then the distribution of group qualities under
private provision has a lower mean and tends to be more dispersed than the efficient
distribution.

The second distortion, the exclusion effect, states that too many agents are excluded
from all privately provided groups. The exclusion effect is analogous to the standard
result that a monopolist prices above marginal cost. Intuitively, excluding some low
types of agents raises the price paid by those agents who are not excluded.

We further analyze how the optimal group structure depends upon the nature of
peer interactions. When a quality function exhibits negative returns to scale, in that
merging two groups lowers the average quality, then welfare and profit are maximized
by complete separation. That is, every type is in a group of his own, so agents associate
with those just like themselves and ignore everyone else. Conversely, when a quality
function exhibits positive returns to scale, in that merging two groups raises the average
quality, then matching is assortative (i.e. groups are connected) and there tends to be
some pooling.

The paper also examines the principal’s problem when group formation is costly.
This setting introduces a new factor, the appropriability effect, according to which
a welfare-maximizing principal may invest more in group formation than a profit-
maximizing principal. Intuitively, a profit-maximizer cannot appropriate agents’ con-
sumer surplus and may opt for larger groups than is optimal. Nevertheless, under
positive returns to scale and the usual monotone hazard rate condition, the segrega-
tion effect dominates the appropriability effect and groups are smaller under profit-
maximization.

We also investigate how welfare- and profit-maximizing group structures change as
agents’ types increase. This is motivated by Lazear (2001) who argues that more able
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students tend to be in larger classes. In our model, when group formation is costless,
we also find that an increase in all agents’ types lead groups to become larger, albeit
for a very different reason. The intuition behind our result is that the ratio between
the highest and lowest types in a group declines as everyone’s type rises. This means a
group split, which helps the high types but hurts the low types, becomes less desirable.
In comparison, Lazear’s finding derives from the specifics of the multiplicative quality
model, under which returns to scale increase in agents’ types.

1.2 Theoretical literature

It is helpful to break the peer group literature into three branches.
The first branch considers a single principal with perfect information about agents’

characteristics. In their classic paper, Arnott and Rowse (1987) analyze the socially op-
timal way to break students into N groups in the presence of peer effects. A student’s
utility is a function of his ability, the mean ability of the other students in the class, and
educational expenditure. Using a Cobb–Douglas quality function, the authors obtain
sufficient conditions for assortative matching and computationally solve several exam-
ples. Lazear (2001) considers a highly tractable model where each student is disruptive
with probability p . If there are m students in the class who act independently of each
other then the class is attentive proportion (1− p )m of the time. Lazear shows that a
welfare-maximizing school increases class size as p increases and, in a two-type model,
segregates students by type.

In the second branch, there is a single principal with imperfect information about
agents’ characteristics. Helsley and Strange (2000) analyze common interest develop-
ments with social interactions. Agents, who vary in their type, choose whether to stay
in the public sector or join a single private community, and subsequently choose an ac-
tion. An agent’s utility then depends upon their action, their type, and the mean action
of those in their community. Helsley and Strange allow the private community to choose
both a minimum required action and an entry price. In a numerical example they show
fewer people secede from the public sector when the community is profit-maximizing,
in a similar spirit to our exclusion effect.

The two closest papers to the current one both consider a principal who price dis-
criminates between agents by sorting them into different groups of different qualities.
Rayo (2003) considers a one-sided matching problem, similar to ours, where the princi-
pal breaks the agents up into groups. Rayo uses the average-quality function and investi-
gates the role of non-monotone marginal revenue functions (see Section 5.4). Damiano
and Li (2007) analyze a two-sided matching market where the principal can discrimi-
nate between different sides of the market and between different groups. They derive
necessary and sufficient conditions on the distribution of types for full separation. In
comparison to these papers, we allow for a more flexible form of peer effects that en-
compasses a number of different models as special cases.2

The third branch analyzes competition between peer groups. Epple and Romano

2In a methodologically separate line of work, Moldovanu et al. (2007) considers the optimal grouping of
a finite number of agents who care about their status.
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(1998) consider a model of private school competition, where agents differ in their in-
come and ability, both of which are publicly observable. Epple and Romano show that
monopolistic competition between schools with fixed costs leads to stratification of
the market where poor talented agents attend the same schools as wealthy untalented
agents. Caucutt (2002) introduces educational expenditure and shows that complete
segregation may not be desirable, even without fixed costs of setting up schools. Intu-
itively, a school can keep its quality constant by lowering its expenditure on teachers
but recruiting a few talented students. Farrell and Scotchmer (1988) analyze a perfect-
information model where agents form groups and then split the output of each group
between the members. In the unique core allocation, groups are connected and are too
finely segregated: intuitively, high types do not internalize their positive externality on
low types.3 Finally, in a model with imperfectly observed types, Damiano and Li (2008)
analyze the competition between two matchmakers who each simultaneously choose a
single group-entry price.

1.3 Empirical literature

A large empirical literature seeks to estimate peer technology. In the classroom, Hen-
derson et al. (1978) study how a student’s exam performance is affected by the ability
of their peers. The paper has three main findings. First, the magnitude of these peer
effects is substantial. Moving a student from a weak class to a strong class can increase
their overall rank from the 50th percentile to the 20th percentile. Second, test scores are
a concave function of mean class ability. This result is consistent with a generalized av-
erage quality function where φ(·) is concave (see Section 5.4), implying positive returns
to scale and suggesting that some mixing of abilities is optimal (see Propositions 2–3).
Third, there are insignificant interaction effects between a student’s performance and
the mean ability of the class. This implies that, if all students care equally about their
test scores, then it is impossible to separate different types of agents (see Lemma 2).
However, if high ability students care more about their test scores than low ability stu-
dents, then separation can be sustained. Subsequent classroom studies have added to
these results. Hanushek et al. (2003) find that the variance of ability within a classroom
has no clear effect on a student’s performance, suggesting the mean is a reasonable sum-
mary statistic, as in the generalized average quality model. Hanushek (1999) considers
the effect of class size, reporting that, while the desirability of small classes may seem
obvious, the evidence seems to find beneficial effects only in certain environments

In a study of college roommates, Zimmerman (2003) examines the impact of one
roommate’s performance on the other. He finds that bad students have a bigger effect on
their roommates than good students, suggesting negative returns to scale, and implying
that bad students should be segregated (see Proposition 2). However, in a similar study,
Sacerdote (2001) finds that good students have a bigger effect on their roommates than

3One can view these papers as applications of club theory (e.g. Scotchmer 2002). For example, Ellickson
et al. (1999) show that, when a full set of group- and type-dependent prices is available, then the competi-
tive equilibria are Pareto efficient and coincide with the core. On a more applied level, Nechyba (2000) and
Benabou (1993) look at competition across schools and cities.
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bad students, suggesting positive returns to scale, and implying that some mixing of
abilities is optimal (see Propositions 2–3).

Mas and Moretti (forthcoming) find substantial peer effects in the workplace. They
show that a 10% increase in the productivity of a worker’s colleagues leads that worker’s
productivity to rise by 1.5%. They also find good peers have a stronger effect on poor
workers. Since there are only small numbers of workers, it is unclear whether this is due
to positive returns to scale in the production process (good workers have more effect
on the environment than poor workers) or due to interaction effects (poor workers gain
more from an improvement in the environment).

Looking across these studies, it seems that the peer technology can vary greatly with
the environment. This observation has two important implications. First, it is important
to derive results, like the segregation effect, that do not depend on the exact nature of
the peer effects. Second, theory should identify which aspects of the peer technology
are critical for a given result, rather than working with a single functional form, which
contains many hidden assumptions. This approach both helps us categorize different
classes of peer technologies, and helps us understand what to look for in the data.

2. T- 

There are equal numbers of two types of agents, θH >θL , where an agent’s type describes
his willingness to pay for quality. The utility of type θi who is assigned to a group of
qualityQ(θi ) and pays price y (θi ) is given by u (θi ) = θiQ(θi )− y (θi ), for i ∈ {L, H}. The
quality of a group is determined by the types of its members. A group consisting only
of θH agents has quality QH ; a group consisting only of θL agents has quality QL ; and a
group consisting of both types has quality QLH .4 An agent’s outside option is 0. Finally,
we suppose that agents are small, so no individual agent can affect the quality of a group.

The principal posts anonymous group-entry prices and lets agents self-select into
the different groups. This means that, in order to stop the high type copying the low
type, we must have Q(θH ) ≥ Q(θL) (the monotonicity condition). Consequently, the
principal can separate the agents if and only if QH ≥QL ; otherwise a high type would
enter the low type’s group rather than his own.5

2.1 Segregation effect (see Section 5)

Let us first consider the principal’s incentive to separate the two types of agents. For sim-
plicity, assume that 2θL ≥ θH and that the principal does not exclude either type. Utility
is quasi-linear, so welfare equals θLQ(θL) + θHQ(θH ). A welfare-maximizing principal
would therefore like to separate the agents when

θHQH +θLQL ≥ θHQLH +θLQLH . (1)

4We allow the principal to choose between pooling and separation, but do not allow for stochastic mech-
anisms. While this is restrictive in a two-type model, it is less problematic in a many-type model. The results
are also robust to stochastic mechanisms: see footnote 10.

5The principal is female, while agents are male.
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F 1. Two-type model with QH ≥QL . This figure shows (a) there is more separation under
profit-maximization than welfare-maximization; and (b) under either objective, separation is
optimal if the quality function satisfies negative returns to scale.

Define QW
LH as the pooling quality that equates the two sides of (1). If QH <QL , the prin-

cipal can only pool the agents. If QH ≥QL , then the principal separates the agents when
QLH ≤QW

LH . We say the quality function exhibits negative returns to scale if QLH ≤ 1
2 (QH+

QL), so that pooling the agents lowers the average quality. Since QW
LH ≥ 1

2 (QH +QL), it
follows that separation is optimal if the quality function is increasing, QH ≥ QL , and
satisfies negative returns to scale.

A profit-maximizing principal maximizes total payments, y (θL)+ y (θH ). If the prin-
cipal pools both types, she charges y (θL) = y (θH ) = θLQLH in order to fully extract from
the low type, θL . On the other hand, if the principal separates both types, she charges
y (θL) = θLQL to the low group and y (θH ) = θLQH − (θH − θL)QL to the high group. Un-
der these prices, the low type is just willing to join the low group, while the high type is
indifferent between joining the high and low groups. Putting this together, the profit-
maximizing principal would like to separate the agents when

θHQH +(2θL −θH )QL ≥ 2θLQLH . (2)

Define QΠLH as the pooling quality that equates the two sides of (2). If QH <QL , then the
principal can only pool the agents. If QH ≥QL , then QΠLH ≥QW

LH , so a profit-maximizing
principal is more willing to separate the agents than a welfare-maximizing principal (see
Figure 1). Intuitively, by separating high and low types, the good agents become very
keen to avoid the bad agents and can be forced to pay higher prices. Notice that this
segregation effect requires no assumptions about the structure of qualities (QL ,QH ,QLH ):
the fact thatQ(θH )≥Q(θL) follows from the endogenous self-selection constraint.

2.2 Exclusion effect (see Section 6)

If 2θL < θH , then the profit-maximizing principal may wish to exclude the low types in
order to increase revenue. To see this, consider the case where QH ≥QL . The welfare-
maximizing principal never excludes any type of agent, and separates the two types if
(1) holds. In contrast, the profit-maximizing principal may wish to exclude the low type,
enabling her to charge y (θH ) = θHQH to the remaining high types. She therefore wishes
to separate the two types if

θHQH +max{2θL −θH , 0}QL ≥ 2θLQLH . (3)
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As above, (1) implies (3). This shows that the segregation effect extends to the case where
we allow exclusion. Moreover, a profit-maximizing principal is more willing to exclude
agents than a welfare-maximizing principal. This exclusion effect is analogous to the
standard monopoly distortion: by cutting out low types the principal increases the price
she can charge the high types.

2.3 Appropriability effect (see Section 7)

So far we have assumed that splitting the agents into two groups is free of charge. Costly
group formation introduces a third effect. To illustrate, let us assume that QH ≥ QL .
Using (1), the benefit of separation for a welfare-maximizing principal is

θH (QH −QLH )+θL(QL −QLH ).

If 2θL ≥ θH , (2) implies that the benefit of separation for a profit-maximizing principal is

θH (QH −QLH )+ (2θL −θH )(QL −QLH ).

Hence, if group formation is costly and there are very strong negative returns to scale, in
that QL ≥QLH , then the welfare-maximizing principal is willing to pay more to separate
the agents than the profit-maximizing principal. This appropriability effect is caused by
the profit-maximizing principal’s inability to appropriate the agents’ consumer surplus.
However, when there are positive returns to scale, in that QLH ≥ 1

2 (QH +QL), then the
segregation effect outweighs the appropriability effect and the profit-maximizing prin-
cipal is more likely to separate the groups.

3. B 

Agents’ preferences A single principal faces a continuum of agents with privately known
willingness to pay θ ∈ [θ ,θ ]⊂R+, where we allow θ =∞. Types are distributed accord-
ing to the positive density f (θ )with distribution function F (θ ). If agent θ is assigned to
a group of quality Q and pays price y , he obtains utility

u = θQ − y .

If an agent is assigned to no group, he obtains zero utility.

Mechanism We are interested in a model where the principal chooses prices and
agents self-select into groups. Appealing to the revelation principle,6 we analyze the
direct revelation mechanism 〈G , y 〉 consisting of a group structure G , defined below,
and payments y : [θ ,θ ]→R.

6The revelation principle says that, given any equilibrium in the price-setting game, there exists a corre-
sponding direct revelation mechanism such that all agents accept the mechanism (individual rationality)
and announce their types truthfully (incentive compatibility).



Theoretical Economics 4 (2009) Monopolistic group design with peer effects 97

Groups The principal breaks the agents into groups. A group G ⊂ [θ ,θ ] is a Borel set.
A group structure G is a collection of nonintersecting groups whose union equals [θ ,θ ].
Given a mechanism 〈G , y 〉, an agent who declares θ̂ is assigned to the corresponding
group in G . Three definitions are useful. Taking two group structures, GC and GF , we
write GF ¼ GC if GF is finer than GC . Two groups, G and G ′, overlap if there exists θH >

θM > θL , such that θH ,θL ∈G and θM ∈G ′. Finally, GH larger than GL if θH ≥ θL for all
θH ∈GH and θL ∈GL

Peer technology Each group G ⊂ [θ ,θ ] is associated with a quality Q(G ) > 0. Given a
group structure G , let Q(θ ,G ) denote the quality of type θ ’s group, and assume Q is
integrable on [θ ,θ ].7 A quality function Q(G ) is weakly increasing in G if Q(GH )≥Q(GL)
whenever GH is larger than GL . Similarly, Q(G ) is weakly decreasing in G if Q(GH ) ≤
Q(GL)whenever GH is larger than GL .

Agents’ problem Given a mechanism 〈G , y 〉, an agent of type θ declares that he is type
θ̂ , receives quality Q(θ̂ ,G ), and makes payment y (θ̂ ). Since there is a continuum of
agents in every group, the quality of an agent’s group depends on his declaration, but
not his type. His utility is then

u (θ , θ̂ ) = θQ(θ̂ ,G )− y (θ̂ ).

Principal’s problem The principal chooses a mechanism 〈G , y 〉 to maximize wel-
fare/profits subject to individual rationality (each agent receives positive utility) and
incentive compatibility (each agent declares his type truthfully).

Other definitions We say a function φ : R→ R is quasi-increasing if φ(xL) ≥ 0 implies
φ(xH )≥ 0 for xH > xL .

Some remarks are in order. First, we allow for a large range of quality functions,Q(G ),
subsuming those used in a number of previous papers (see Section 5.4). This level of
generality is important since the peer technology depends on the specific environment
and is hard to quantify in any given application.

Second, we do not insist that groups be connected. This is important because the
optimal group structure may place agents with a wide range of abilities in the same
group, as suggested by the empirical work of Henderson et al. (1978) and Mas and
Moretti (forthcoming). For a theoretical illustration, see Example G in Section 5.4.

Third, we assume that the principal places each agent into a group. That is, we sup-
pose it is not optimal for the principal to exclude any types of agents. This assumption
is for simplicity: we extend the analysis in Section 6.

4. A’ 

Define equilibrium utility to be U (θ ) = u (θ ,θ ).

7For example,Q(θ ,G ) is integrable if Q(G ) is bounded.
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L 1. A mechanism 〈G , y 〉 is incentive compatible and individually rational if and
only if

(i) Utility is given by

U (θ ) =

∫ θ

θ

Q(s ,G )d s +U (θ ). (4)

(ii) The lowest type obtains U (θ )≥ 0.

(iii) The monotonicity condition holds. That is,Q(θ ,G ) is increasing in θ .

P. Since Q(θ ,G ) is integrable, Milgrom and Segal (2002, Corollary 1) shows that
incentive compatibility implies (4). The rest of the proof is the same as Mas-Colell et al.
(1995, Proposition 23.D.2). �

L 2. In any incentive compatible group structure,

(i) any overlapping groups have the same quality

(ii) if Q(G ) is weakly decreasing then every agent is in a group of the same quality.

This result follows from the monotonicity condition (Lemma 1(iii)).
Lemma 2(i) says that while groups do not have to be connected, any overlapping

groups must have the same quality. Lemma 2(ii) says that the principal cannot separate
different types when the agents who generate high quality have a low willingness to pay.
Separation may therefore be difficult with some conspicuous goods, where agents seek
to signal a certain image. For example, the consumers who generate Harley-Davidson’s
reputation are unlikely to have the highest incomes. Similarly, the supporters with the
highest willingness to pay for football tickets may not create the best atmosphere.

5. T  

5.1 Principal’s problem

Welfare equals the sum of utilities plus transfers,

W = E [θQ(θ ,G )]. (5)

Integrating utility (4) by parts, consumer surplus is

E [U (θ )] = E

�

1− F (θ )
f (θ )

Q(θ ,G )
�

+U (θ ). (6)

Profit equals welfare (5) minus consumer surplus (6). The profit-maximizing principal
sets prices so that the lowest type’s individual rationality constraint binds, U (θ ) = 0.
Profit is then given by

Π= E [MR(θ )Q(θ ,G )] ,
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where marginal revenue is defined by

MR(θ ) := θ − 1− F (θ )
f (θ )

.

Welfare and profit can be thus combined into a single objective:

H = E [h(θ )Q(θ ,G )] (7)

where h(θ ) ∈ {θ , MR(θ )}. Let Γ be the set of group structures that satisfy the mono-
tonicity condition (Lemma 1(iii)). The principal’s problem is then to choose G ∈ Γ to
maximize (7). Assume a solution to this problem exists.8

5.2 Welfare- and profit-maximization

An interval partition is a collection of intervals (connected sets) whose union equals
[θ ,θ ]. For a fixed group structure G , let I (G ) be the finest connected coarsening of G ,
formed by merging all overlapping groups. Formally,I (G ) is the join (coarsest common
refinement) of all interval partitions formed by taking unions of groups inG . Lemma 2(i)
then implies that quality is constant over each I ∈I (G ).

L 3. GF ¼GC implies I (GF )¼I (GC ).

P. Let ΛC (resp. ΛF ) be the set of interval partitions formed by taking unions of
groups in GC (resp. GF ). Pick I ∈ ΛC . Since GF ¼ GC , I can also be formed by taking
unions of groups in GF . That is, ΛC ⊂ΛF . As a consequence,

I (GF ) =∨I∈ΛFI ¼∨I∈ΛCI =I (GC )

where ∨ denotes the join. �

A (MON). [1− F (θ )]/θ f (θ ) is decreasing in θ .

This assumption implies that MR(θ ) is quasi-increasing. It is weaker than the usual
hazard rate condition (see Section 7).

Proposition 1 is our main result. It states that, starting from a welfare-maximizing
group structure, profit is reduced by merging groups further. That is, the profit-
maximizing group structure is no coarser than the welfare-maximizing group structure.

P 1 (Segregation effect). Suppose (MON) holds and MR(θ ) ≥ 0. Pick any
welfare-maximizing solution, GW . Then Π(GW ) ≥ Π(G ) for all G ∈ Γ that are coarser
than GW .

8A solution is guaranteed to exist for a discrete version of the problem, where we break [θ ,θ ] into a finite
interval partitionP , and a group is restricted to be measurable with respect toP . While this discretization
rules out the use of calculus (e.g. Proposition 3), it does not affect our other results.
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P. Suppose GW maximizes welfare and fix G ∈ Γ such that G ´ GW . Since GW

is welfare-maximizing, E [θ∆Q(θ )] ≥ 0, where ∆Q(θ ) := Q(θ ,GW )−Q(θ ,G ). Define
I ∗ to be the coarsest interval partition on which ∆Q(θ ) is quasi-increasing (see Fig-
ure 2). Applying Lemma 3, I (G )´I (GW ). SinceQ(θ ,G ) is constant on each I ∈I (G ),
monotonicity implies that ∆Q(θ ) is increasing on each I ∈ I (G ), implying I ∗ ´ I (G ).
Moreover, each I ∈ I ∗ has positive measure since ∆Q(θ ) = 0 on single points in I (G ).
The proof is now based on two steps.

For the first step, we claim that E [θ∆Q(θ ) | I ∗]≥ 0.9 To see this suppose, by contra-
diction, that E [θ∆Q(θ ) | I ∗]< 0 on some set I ∈I ∗. Then define a new group structure,
G ′, equal to G on I and GW elsewhere. This new structure has two properties. First, G ′
has higher welfare than GW , E [θQ(θ ,G ′)] > E [θQ(θ ,GW )]. Second, G ′ ∈ Γ, which we
verify below. Together, these contradict the welfare-optimality of GW .

Let us now verify that G ′ ∈ Γ. The interval partition I ∗ has the key property that
∆Q(θ ) goes from negative to positive on each I ∗ ∈ I ∗. Formally, there exists θ1(I ∗) ∈ I ∗
such that ∆Q(θ ) ≤ 0 on {θ ∈ I ∗ : θ ≤ θ1(I ∗)}, except possibly for the lowest interval.
Similarly, there exists θ2(I ∗) ∈ I ∗ such that ∆Q(θ ) ≥ 0 on {θ ∈ I ∗ : θ ≥ θ2(I ∗)}, except
possibly for the highest interval. To showQ(θ ,G ′) is increasing, pick θH >θL and denote
the respective interval partitions IH , IL ∈ I ∗. If IH = IL , then Q(θH ,G ′) ≥ Q(θL ,G ′)
follows from the monotonicity ofQ(θ ,G ) andQ(θ ,GW ). Next, suppose IH 6= IL and fix
θ ′ ∈ {θ ∈ IH : θ ≤ θH ,θ ≤ θ1(IH )} and θ ′′ ∈ {θ ∈ IL : θ ≥ θL ,θ ≥ θ2(IL)}. Then,

Q(θH ,G ′)≥Q(θ ′,G ′)≥Q(θ ′,GW )≥Q(θ ′′,GW )≥Q(θ ′′,G ′)≥Q(θL ,G ′).

The first, third, and fifth inequalities come from monotonicity. The second and fourth
inequalities come from the above properties of I ∗. Hence G ′ ∈ Γ, as required.

For the second step, index the objective function h(θ , t ) so that h(θ , 1) =MR(θ )≥ 0
and h(θ , 0) = θ . Under (MON), the function h(θ , t ) ≥ 0 is log-supermodular. Since
∆Q(θ ) is quasi-increasing on each I ∗ ∈ I ∗, Lemma 5(i) in Section A.1 states that
E [h(θ , t )∆Q(θ ) | I ∗] is quasi-increasing in t . Thus E [θ∆Q(θ ) | I ∗] ≥ 0 implies that
E [MR(θ )∆Q(θ ) | I ∗] ≥ 0. Integrating over θ , we have E [MR(θ )∆Q(θ )] ≥ 0. That is,
Π(GW )≥Π(G ). �

C 1. Suppose the welfare- and profit-maximizing group structures satisfy
GW ´GΠ. Then E [φ ◦Q(θ ,GW )]≥ E [φ ◦Q(θ ,GΠ)] for any increasing concave function
φ :R→R.

The proof of this corollary is given in Section A.2.
Proposition 1 says that the profit-maximizing group structure is no coarser than the

welfare-maximizing group structure. If these optimal group structures are ordered then
Corollary 1 says that profit-maximization induces a distribution of quality levels that has
a lower mean and tends to be more dispersed. In the school example, if one interprets
Q(θ ,G ) as the exam scores of agent θ , then Corollary 1 yields testable implications of
the theory.

9Notation: the function E [θ∆Q(θ ) | I ∗] : [θ ,θ ]→Rmaps each type into its conditional expectation.
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∆Q(θ )

I (GW )

I (G )

I ∗
θ θ

F 2. Illustration of sets in proof of Proposition 1.

The idea behind the segregation effect is that, under (MON), MR(θH )/MR(θL)≥ θH/θL

for θH > θL , so a profit-maximizing firm puts relatively more weight on the preferences
of high types than does the social planner. This means a profit-maximizing firm is more
likely to split up a group, which helps the high types and hurts the low types. Intuitively,
by introducing extra segregation the principal raises the cost of pretending to be a lower
type and reduces consumer surplus. That is, by separating good and bad agents, the
good agents become very keen to avoid the bad groups and can be forced to pay higher
prices.

As stated in the Introduction, we make no assumption about the nature of peer ef-
fects. This is important because peer technology differs greatly across environments.
Instead, the result uses only the monotonicity condition that comes endogenously from
the agents’ self-selection constraints.

Proposition 1 states that, starting from the welfare-maximizing outcome GW , profit
is not increased by merging groups. One can also show that, starting from the profit-
maximizing outcome GΠ, welfare is not increased by splitting groups. The proof is the
same, although one should use Lemma 5(ii) rather than Lemma 5(i).10

Proposition 1 does have one limitation in that the welfare- and profit-maximizing
groups may not be ordered. Intuitively, this comes from the fact that different ways
of dividing a group are likely to be substitutes, rather than complements. One should
therefore view the result as saying that, if we start from the welfare-maximizing group

10One can also extend the model to allow for multidimensional types and stochastic mechanisms. To
do this, endow each agent with a two-dimensional type (θ ,q ), where θ is the willingness to pay and q
determines quality, and define a group to be a measure over (θ ,q ). In this more general environment, the
segregation effect (Proposition 1) continues to apply. Intuitively, an agent’s utility depends on his payoff
type θ , but not his quality type q . Hence the the principal can screen only on θ , and the two-dimensional
screening problem collapses to a one-dimensional screening problem (Board 2007, Section 9.2).
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2 2.5 3

Revenue

Welfare

F 3. Optimal group formation: maxmin quality. This figure shows the profit and welfare-
maximizing group structures where Q(G ) = 0.55 sup(G ) + 0.45 inf(G ) and θ ∼ U [2, 3]. See Sec-
tion 5.4 and Example 5 for more details.

structure, then separating groups may increase profit, but merging groups does not.
Figure 3 shows that the spirit of the result may remain true even if the optimal solutions
are not ordered.

The following example shows that the (MON) condition is tight.

E 1 (Pareto distribution). Suppose θ ∼ Par(α,β ), so that f (θ ) = αβαθ−(α+1). In
this case, (MON) holds with equality and profit is (1−α−1)E [θQ(θ ,G )]. Consequently,
the welfare- and profit-maximizing group choices coincide. ◊

5.3 Group structure and returns to scale

This section analyzes how peer technology affects the optimal group structure. Define
the returns to scale by

R(GC ,GF ) := E [Q(θ ,GC )]−E [Q(θ ,GF )]

for GF ¼GC .

D 1. The quality function exhibits

(i) positive returns to scale (PRS) if R(GC ,GF )≥ 0 for all GF ¼GC

(ii) negative returns to scale (NRS) if R(GC ,GF )≤ 0 for all GF ¼GC .

Under NRS, merging groups lowers the average quality. Under PRS, merging groups
raises the average quality. Which case is appropriate depends upon the application and
the interpretation of a group. To illustrate, consider the school example. If one interprets
a group as a class, then merging two classes into one large class is likely to harm all
students’ performances. This suggests that the quality function satisfies NRS. On the
other hand, if one fixes the class size and interprets a group as an entire school, then the
good students may help the poor students more than the poor students harm the good
students (e.g. Henderson et al. 1978). In this case, the quality function satisfies PRS.
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Recall h(θ ) ∈ {θ , MR(θ )}. The following result assumes h(θ ) is increasing. It there-
fore applies to the welfare-maximization problem and, when MR(θ ) is increasing, to the
profit-maximization problem.

P 2. Assume h(θ ) is positive and increasing, and Q(G ) is weakly increasing
in G .

(i) Under NRS, the optimum is attained by full separation, where each type is in a
group of their own.

(ii) Under PRS, the optimum is attained by an interval partition, where all groups are
connected.

P. (i) We prove a more general result: Suppose h(θ ) is positive and increasing, and
that NRS holds. Then, for any GC ,GF ∈ Γ such that GF ¼GC , the principal prefers GF to
GC . IfQ(G ) is weakly increasing then full separation satisfies monotonicity and therefore
maximizes the principal’s payoff.

Pick GC ,GF ∈ Γ such that GF ¼ GC , and denote ∆Q(θ ) :=Q(θ ,GF )−Q(θ ,GC ). Let
I ∗ be the coarsest interval partition on which∆Q(θ ) is quasi-increasing. By Lemma 3,
I (GF )¼I (GC )¼I ∗. We claim that NRS implies

E [∆Q(θ ) | I ∗]≥ 0. (8)

To see this pick I ∗ ∈ I ∗ and let G ′ equal GF on I ∗ and equal GC elsewhere. First, G ′ ∈ Γ,
as in the proof of Proposition 1. Second, since G ′ ¼GC , NRS implies

E [∆Q(θ ) | I ∗] = E [Q(θ ,G ′)]−E [Q(θ ,GC )]≥ 0

as required. This result implies that

E [h(θ )∆Q(θ ) | I ∗]≥ E [h(θ ) | I ∗]E [∆Q(θ ) | I ∗]≥ 0,

where the first inequality comes from the fact that an increasing function and a quasi-
increasing function have positive covariance (e.g. Persico 2000, Lemma 1), and the sec-
ond from (8). Integrating over θ , GF yields a higher payoff than does GC .

(ii) Suppose there is PRS. Pick an arbitrary group structure, G ∈ Γ. Let I (G ) be the
finest connected coarsening of G . Since Q(G ) is weakly increasing, we have I (G ) ∈ Γ.
Moreover, PRS implies that merging increases group quality, so E [h(θ )Q(θ ,I (G ))] ≥
E [h(θ )Q(θ ,G )]. �

Proposition 2 shows that if the quality function exhibits negative returns to scale,
then there is full separation. Proposition 3 is a partial converse: it shows that if the
quality function exhibits positive returns to scale that are of first-order, then there is
some pooling. Define the local returns to scale at θ by

Rθ (ε) :=Q(Gε)−E [Q({x }) |Gε] (9)

where Gε := [θ ,θ +ε] and Q({x }) is the quality of x ’s group under full separation. We say
that a group structure exhibits pooling at θ if we cannot find an open set (θ − ε,θ + ε)
over which there is full separation.
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P 3. Assume h(θ ) is strictly positive and Q(G ) is weakly increasing and ex-
hibits PRS. In addition, suppose that h(θ ) and Q({θ }) are continuously differentiable.
Then any optimal group structure exhibits pooling at θ ∈ (θ ,θ ) if there exist ε,δ> 0 such
that

h(θ )Rθ (ε)≥
�

1
12 h ′(θ )Q ′({θ })+δ�ε2 for ε∈ (0,ε]. (10)

This is satisfied if R ′θ (0) := limε→0 Rθ (ε)/ε> 0.

P. Since h(θ ) is positive and Q(G ) is weakly increasing and exhibits PRS, Propo-
sition 2(ii) implies that the optimum is attained by an interval partition. Fix θ ∈ (θ ,θ ).
Observe that pooling and separating Gε are both feasible since Q(G ) is weakly increas-
ing. The principal prefers to pool Gε if

Eε[h(x )]Q(Gε)> Eε[h(x )Q({x })] (11)

where Eε[h(x )] := E [h(x ) |Gε]. Using the definition of local returns to scale (9), inequal-
ity (11) becomes

Eε[h(x )]Rθ (ε)> Eε
��

h(x )−Eε[h(x )]
��

Q({x })−Eε[Q({x })]��=Covε(h(x ),Q({x })). (12)

Taking Taylor expansions, one can show that

Eε[h(x )] = h(θ )+ 1
2 h ′(θ )ε+O(ε2) (13)

h(x ) = h(θ )+h ′(θ )(x −θ )+O((x −θ )2). (14)

Substituting (13) and (14) into the definition of Covε(h(x ),Q({x })) yields

Covε(h(x ),Q({x })) = h ′(θ )Q ′({θ })Eε��x −θ − 1
2ε
�2�+O(ε3)

= h ′(θ )Q ′({θ })�Eε[(x −θ )2]−εEε[x −θ ]+ 1
4ε

2
�

+O(ε3)

= h ′(θ )Q ′({θ })� 1
3ε

2− 1
2ε

2+ 1
4ε

2
�

+O(ε3)

= 1
12 h ′(θ )Q ′({θ })ε2+O(ε3) (15)

where the second line comes from multiplying out the squared term, and the third line
comes from taking Taylor expansions of the two conditional expectations. Using (12)
and (15), the principal wishes to pool if

[h(θ )+O(ε)]Rθ (ε)> 1
12 h ′(θ )Q ′({θ })ε2+O(ε3).

This is satisfied if (10) holds. �

Proposition 3 provides a sufficient condition for the optimal group structure to ex-
hibit pooling. This result also reveals that the incentive to separate is determined by the
relative slope of the objective function, h ′(θ )/h(θ ). Since (MON) says the relative slope
of MR(θ ) is higher than the relative slope of θ , Proposition 3 provides another way of
looking at the segregation effect.
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5.4 Group quality functions

We now apply our results to different quality functions, many of which have been used
in previous papers. Examples A–F all satisfy either positive or negative returns to scale.

A. Average quality Suppose Q(G ) = E [θ |G ], so the quality of a group is given by the
average type of its members. This is used by status papers such as Rayo (2003),
Dubey and Geanakoplos (2004), and Moldovanu et al. (2007), as well as match-
ing papers such as Damiano and Li (2007, 2008). The average quality function
is particularly attractive since it satisfies both positive and negative returns to
scale. As shown by Rayo (2003), one can then analyze objective functions that are
non-monotone. In particular, when the ironed h(θ ) is increasing, the principal
chooses full separation; when the ironed h(θ ) is constant, the principal chooses
full pooling.11 Thus there is always full separation under welfare-maximization,
but there may be regions of pooling under profit-maximization, if MR(θ ) is badly
behaved. This suggests welfare-maximization leads to smaller groups than profit-
maximization. In comparison, Proposition 1 says that when we allow for different
quality functions, the reverse is likely to be true.

B. Generalized average quality Suppose Q(G ) = φ(E [θ |G ]). If φ(·) is concave and
increasing, as suggested by the empirical analysis of Henderson et al. (1978), then
the quality function has positive returns to scale.12 As a result, the welfare- and
profit-maximizing group structures are connected (Proposition 2(ii)). The local
returns to scale are then given by,13

Rθ (ε) =φ(E [x |Gε])−E [φ(x ) |Gε] =− 1
24φ

′′(θ )ε2+O(ε3). (16)

Applying equation (10) from Proposition 3, pooling is desirable if

−h(θ )φ′′(θ )> 2h ′(θ )φ′(θ ). (17)

As a special case, this analysis applies to the Cobb–Douglas quality function,
Q(G ) = E [θ | G ]β with β ∈ (0, 1), which is used by Epple and Romano (1998),
Nechyba (2000), Caucutt (2002), and the latter parts of Arnott and Rowse (1987).
However, despite exhibiting PRS, this quality function does not satisfy equation

11Definition: The ironed version of a function h(θ ) is defined such that the integral equals the greatest
convex minorant of the integral of h(θ ). See Myerson (1981).

12Proof: Let GF ¼ GC and ψ = E [θ | GF ]. By Jensen’s inequality, φ(E [ψ | GC ]) ≥ E [φ(ψ) | GC ]. Taking
expectations over θ and applying the law of iterated expectations yields the result.

13Equation (16) is attained by using the Taylor expansions

E [φ(x ) |Gε] =φ(θ )+ 1
2
φ′(θ )ε+

h

1
6
φ′′(θ )+ 1

12
f ′(θ )
f (θ ) φ

′(θ )
i

ε2+O(ε3)

φ(E [x |Gε]) =φ(θ )+ 1
2
φ′(θ )ε+

h

1
8
φ′′(θ )+ 1

12
f ′(θ )
f (θ ) φ

′(θ )
i

ε2+O(ε3).
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(17) when h(θ ) = θ . Indeed, full separation is welfare maximizing and, by Propo-
sition 1, is also profit-maximizing.14

C. Maxmin quality Suppose Q(G ) = β sup(G ) + α inf(G ), with α,β ≥ 0. One spe-
cial case of this is min-quality, Q(G ) = inf(G ), where the group is only as good
as its worst member. Another special case is max-quality, Q(G ) = sup(G ), where
the best agent becomes the “leader” of the group. First, if G ∈ Γ, then Q(θ ,G ) =
Q(θ ,I (G )), so we can restrict ourselves to connected groups.15 Next, suppose
θ ∼ U [θ ,θ ]. If β ≤ α (e.g. min-quality) this exhibits negative returns to scale
for G ∈ Γ and welfare- and profit-maximization entail full separation (Proposi-
tion 2(i)). Conversely, if β > α (e.g. max-quality) this exhibits positive returns to
scale for G ∈ Γ. Local returns to scale are then given by

Rθ (ε) = 1
2 (β −α)ε.

Since R ′θ (0)> 0, the optimal group structure induces pooling (Proposition 3). See
Figure 3 for an illustration.

D. Multiplicative quality Suppose Q(G ) = exp
�−α∫

G
(1− θ )d F (θ )

�

, where α > 0.
This is a continuous analogue of the production functions in Kremer (1993) and
Lazear (2001), where each child is quiet with probability θi ∈ [0, 1] and a class of
N students is attentive with probabilityΠN

i=1θi (see Section B.1). In this case, Q(G )
exhibits negative returns to scale and full separation is optimal (Proposition 2(i)).

E. Average quality with multiplicative size effects Suppose Q(G ) =φ(E [1G ])E [θ |G ].
The slope of φ(·) represents the importance of scale effects. Assuming φ(·) is in-
creasing, as in Farrell and Scotchmer (1988), this quality function exhibits positive
returns to scale. As a result, the welfare- and profit-maximizing group structures
are connected (Proposition 2(ii)). The local returns to scale are then given by

Rθ (ε) = E [x |Gε]�φ(F (θ +ε)− F (θ ))−φ(0)�

= θφ′(0) f (θ )ε+ 1
2

�

θφ′(0) f ′(θ )+θφ′′(0) f (θ )2+φ′(0) f (θ )
�

ε2+O(ε3).

The optimal group structure therefore induces pooling ifφ′(0)> 0 (Proposition 3).

F. Average quality with additive size effects Suppose Q(G ) = E [θ |G ] +φ(E [1G ]). If
φ(·) is decreasing, then agents crowd each other out, the quality function exhibits
NRS, and full separation is optimal (Proposition 2(i)). If φ(·) is increasing, then

14Proof that full separation is welfare maximizing: Since Q(G ) satisfies PRS, the optimal group structure
is connected. Pick an arbitrary group G = [a ,b ]⊂ [θ ,θ ]. We show that welfare in increased by separating G .
First, observe that separation is feasible sinceQ(G ) is weakly increasing. Welfare under pooling, conditional
on being in G , is E [θ | G ]1+β . Welfare under separation, conditional on being in G , is E [θ 1+β | G ]. Since
β > 0, Jensen’s inequality yields the result.

15Proof: Pick I ∈ I (G ). There exists G ⊂ I such that sup(G ) = sup(I ). Suppose, by contradiction, that
Q(I ) 6= Q(G ). Then α > 0 and inf(G ) > inf(I ). There exists G ′ ⊂ I such that inf(G ′) = inf(I ). Since α > 0,
sup(G )≥ sup(G ′) and inf(G )> inf(G ′), so Q(G )>Q(G ′), contradicting monotonicity.
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there are network effects, the quality function exhibits PRS, and the optimal group
structure is connected (Proposition 2(ii)). The local returns to scale are given by

Rθ (ε) =φ(F (θ +ε)− F (θ ))−φ(0)
=φ′(0) f (θ )ε+ 1

2

�

φ′(0) f ′(θ )+φ′′(0) f (θ )2
�

ε2+O(ε3).

The optimal group structure therefore induces pooling ifφ′(0)> 0 (Proposition 3).

Example G fails to satisfy either PRS or NRS. It shows that the optimal group struc-
ture may not be connected.

G. Max quality with additive size effects Suppose the quality of the group depends
upon its leader and the number of followers. In particular,

Q(G ) =

(

sup(G ) if E [1G ]≤ 1/2

sup(G )−1 if E [1G ]> 1/2.

Here, groups do not take the form of intervals: it is optimal to have two groups,
both with mass 1/2 and containing a very good leader. Since groups overlap,
Lemma 2(i) implies that they must have the same quality. For example, if θ ∼
U [0, 1], then it is optimal to set G1 = [1/2, 1) and G2 = [0, 1/2)∪{1}.

6. T  

In Section 5 we examine the optimal way to segregate different types of agents when the
principal serves all agents. In this section we extend the analysis to allow for exclusion.
In the education example, these excluded agents may attend a public school or, in the
case of universities, enter the workplace.

6.1 Principal’s problem

There are two possible reasons to exclude an agent. First, the principal might wish to
exclude θ if h(θ )< 0. Second, the principal can exclude groups to ‘monotonize’ a non-
monotonic quality function, expanding the set of implementable group-structures. To
illustrate this latter effect, consider the two-type model in Section 2 and suppose QL >

QH > QLH . If QLH is sufficiently low, the principal may prefer to separate rather than
pool. Since QL >QH , separation is feasible only if the low types are excluded. To simplify
the presentation we abstract from this effect by assuming that Q(G ) is weakly increasing
in G . The working paper version of the paper, Board (2007), extends Propositions 4 and
5 to the more general case.

An agent has an outside option of zero. Given a group structure G , suppose the
principal excludes A ⊂ [θ ,θ ], made up of groups from G . Agents’ rents can then be
characterized by Lemma 1, where the quality function is given byQ(θ ,G )1¬A and ¬A :=
{θ : θ 6∈ A}. Formally, the principal’s problem is to choose a group structure G and a set
of excluded agents A to maximize

H = E [h(θ )Q(θ ,G )1¬A ] (18)

subject toQ(θ ,G )1¬A increasing in θ .
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D 2. An allocation rule 〈G , A〉 is nice if it satisfies

(i) G ∈ Γ

(ii) A is a decreasing set16

(iii) A is measurable with respect toσ(I (G )).17

The principal’s problem is equivalent to choosing a nice allocation rule to maximize
(18). To see this, we make two observations. First, any nice allocation rule satisfies
monotonicity. Second, any allocation rule 〈G̃ , Ã〉 that satisfies monotonicity can be re-
placed by a payoff-equivalent nice allocation rule 〈G , A〉.18

Lemma 4 characterizes the optimal excluded set. This result applies to the welfare-
maximization problem and, under (MON), to the profit-maximization problem. De-
note the positive and negative components of a function by φ(x )+ :=max{φ(x ), 0} and
φ(x )− :=−min{φ(x ), 0}.

L 4. Fix G ∈ Γ. Suppose h(θ ) is quasi-increasing and Q(G ) is weakly increasing in
G . Then the principal’s maximal payoff is given by

H (G ) = E
�

E [h(θ ) | I (G )]+Q(θ ,G )�. (19)

P. Fix G ∈ Γ. We seek to choose A to maximize the principal’s payoff (18) subject
to A being decreasing andσ(I (G ))-measurable. We can rewrite (18) as

E
�

h(θ )Q(θ ,G )1¬A
�

= E
�

E [h(θ )Q(θ ,G )1¬A | I (G )]�= E
�

E [h(θ ) | I (G )]Q(θ ,G )1¬A
�

.

The first equality uses the law of iterated expectations and the second uses the fact that
Q(θ ,G ) and A are measurable with respect toσ(I (G )). Pointwise maximization implies
that the principal’s payoff is maximized when she excludes the set

A∗ = {θ : E [h(θ ) | I (G )]< 0}. (20)

Observe that A∗ is σ(I (G ))-measurable and, since h(θ ) is quasi-increasing, is also de-
creasing. This yields equation (19). �

6.2 Welfare- and profit-maximization

The principal’s problem is to choose G to maximize (19). The excluded set is then given
by (20). Proposition 4 shows a profit-maximizing principal excludes too many agents.

16Definition: A is decreasing if θH ∈ A and θH ≥ θL implies θL ∈ A.
17Notation: σ(I ) is the sigma-algebra generated by I .
18Proof: Suppose Q(θ , G̃ )1¬Ã is increasing. Clearly Ã is decreasing and is measurable with respect to

σ(I (G̃ )). Form a new group structure,G , by pooling all excluded agents into one group and let A = Ã. Since
Q(G ) is weakly increasing, G ∈ Γ. Hence the new allocation rule 〈G , A, 〉 is nice and is payoff equivalent to
〈G̃ , Ã〉, as required.
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P 4 (Exclusion effect). Suppose that (MON) holds and Q(G ) is weakly increas-
ing in G . Then fewer agents are excluded under welfare-maximization than under profit-
maximization (up to sets of measure zero).

P. Lemma 4 implies that welfare is maximized by AW = ;, so that AW ⊂ AΠ. �

The exclusion effect is analogous to the standard monopoly distortion. Under
profit-maximization the principal would like to exclude agents with negative marginal
revenue, whereas under welfare-maximization the principal would like to exclude no
agents.

Proposition 5 shows that the segregation effect extends to the case where the princi-
pal can exclude agents. Notably, this result places no restrictions on the sign of MR(θ ).

P 5 (Segregation effect II). Suppose (MON) holds and Q(G ) is weakly increas-
ing in G . Pick any welfare-maximizing solution, GW . Then Π(GW ) ≥ Π(G ) for all G ∈ Γ
that are coarser than GW .

The proof of this result is given in Section A.3.
Two effects underlie Proposition 5. First, a profit-maximizing principal cares rela-

tively more about high-value agents than a welfare-maximizing principal (see Proposi-
tion 1). Second, a profit-maximizing principal is more willing to exclude agents than is a
welfare-maximizing principal (see Proposition 4). Hence the smaller group size provides
additional flexibility to exclude some agents.

Proposition 6 provides a characterization of the excluded agents. A quality function
Q(G ) is increasing in G if Q(GH ) ≥ Q(GL) whenever GH is larger than GL in strict set
order.19

P 6. Suppose h(θ ) is increasing and Q(G ) is weakly increasing in G .

(i) It is optimal for the principal to exclude A∗ ⊂ {θ : h(θ )< 0}.
(ii) Suppose that either (a) Q(G ) exhibits NRS or (b) Q(G ) is increasing in G and exhibits

PRS. Then it is optimal for the principal to exclude A∗ = {θ : h(θ )< 0}.
P. (i) Let D := {θ : h(θ ) < 0}. Since h(·) is increasing, D is a decreasing set. By
contradiction, suppose that A \D has positive measure. Form a new group structure G ′
by including A \D as a single group. Since Q(G ) is (weakly) increasing,G ′ ∈ Γ. Moreover,
G ′ yields a (weakly) higher payoff than G .

(ii)(a) Q(G ) exhibits NRS, so Proposition 2(i) implies that, among all G ∈ Γ, the prin-
cipal’s payoff is maximized by full separation.20 Using pointwise maximization, profit is
maximized when the principal excludes D.

(ii)(b) Q(G ) exhibits PRS, so Proposition 2(ii) implies that, among all G ∈ Γ, the prin-
cipal’s payoff is maximized when groups are intervals.21 By contradiction, suppose that

19Definition: GH is larger than GL in strict set order if min{θ ,θ ′} ∈GL and max{θ ,θ ′} ∈GH for all θ ∈GL

and θ ′ ∈GH .
20Proposition 2(i) does not allow for exclusion, but the result immediately extends. With exclusion,

smaller groups provide more flexibility and, via Jensen’s inequality, further increase the principal’s payoff.
21Proposition 2(ii) does not allow for exclusion, but the result immediately extends. The proof is identical.
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D \A has positive measure. Form a new group structureG ′ by splitting any group G into
G ∩D and G ∩¬D, and consider excluding D. Since Q(G ) is (weakly) increasing, G ′ ∈ Γ.
Moreover, Q(G ) is increasing, soQ(G∩¬D)≥Q(G ). As a result,G ′ yields a (weakly) higher
payoff than G ,

E [h(θ )Q(θ ,G )1¬A ]≤ E [h(θ )Q(θ ,G )1¬D ]≤ E [h(θ )Q(θ ,G ′)1¬D ]

as required. �

Proposition 6(i) says that an agent should be included if h(θ ) ≥ 0. It also may be
optimal to include some agents with h(θ )< 0, if they exert a positive externality on the
agents with h(θ )> 0. Broadly speaking, Proposition 6(ii) says that this form of external-
ity is ruled out if the quality function is increasing.

7. C  

The segregation effect (Proposition 1) states that groups are finer under profit-
maximization than they are under welfare-maximization. With costly group formation
this is countered by the appropriability effect: a profit-maximizing principal cannot cap-
ture consumer surplus and may not invest enough in creating groups. Examples 2 and
3 illustrate how the appropriability effect can dominate the segregation effect. Proposi-
tion 7 then derives sufficient conditions for the segregation effect to dominate the ap-
propriability effect.

In order to focus on the segregation effect, we suppose the principal cannot exclude
any agents. The principal’s problem is thus to choose G ∈ Γ to maximize H (G )− c (G ),
where H (G ) := E [h(θ )Q(θ ,G )] and c (G ) is an arbitrary cost function.

E 2 (Appropriability effect I). Suppose θ ∼ Par(α,β ), as in Example 1. If there are
N groups, the principal’s problem is to choose groups {G i }Ni=1 to maximize

(1−α−1)
N
∑

i=1

Q(G i )

∫

G i

θ d F − c (G ). (21)

This coincides with the welfare-maximizing problem if α =∞. Suppose that c (G ) de-
pends on G only through the number of groups N , and is increasing in N (e.g. N is
the number of teachers). Expression (21) is supermodular in (α, N ), so there are more
groups under welfare-maximization than under profit-maximization. ◊

E 3 (Appropriability effect II). Suppose that splitting a group increases every-
one’s quality (e.g. multiplicative quality) and that MR(θ )≥ 0. Hence∆Q(θ ) =Q(θ ,GF )−
Q(θ ,GC ) ≥ 0 (∀θ ), for GC ,GF ∈ Γ such that GF ¼ GC . Since θ ≥ MR(θ ) ≥ 0, we have
E [θ∆Q(θ )] ≥ E [MR(θ )∆Q(θ )]. That is, whenever a profit-maximizer splits a group, a
welfare-maximizer also splits the group. ◊
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A (HR). [1− F (θ )]/ f (θ ) is decreasing in θ .

This hazard rate assumption is stronger than the (MON) assumption used in Sec-
tions 5 and 6. Proposition 7 shows that the segregation effect continues to hold when
group formation is costly if the distribution of types obeys (HR) and the quality function
exhibits PRS.

P 7 (Weak Segregation Effect). Suppose (HR) holds and Q(G ) exhibits positive
returns to scale. Pick any welfare-maximizing solution, GW . Then Π(GW )≥ Π(G ) for all
G ∈ Γ that are coarser than GW .

P. Suppose GW maximizes welfare and fix G ´ GW such that G ∈ Γ. Hence
E [θ∆Q(θ )]≥ c (GW )− c (G ), where ∆Q(θ ) =Q(θ ,GW )−Q(θ ,G ). Let I ∗ be the coars-
est interval partition on which ∆Q(θ ) is quasi-increasing. As in Proposition 2, PRS
implies that E [∆Q(θ ) | I ∗] ≤ 0. Since ∆Q(θ ) is quasi-increasing on each I ∗ ∈ I ∗,
E [1D∆Q(θ )]≤ 0 for any decreasing set D.

For decreasing sets {Di } and positive constants {a i }, i ∈ {1, . . . , m },

E

�

∑

i

a i 1Di∆Q(θ )
�

≤ 0.

Since (HR) implies that [1 − F (θ )]/ f (θ ) is decreasing, we can define {Di } such that
∑

i a i 1Di → [1− F (θ )]/ f (θ ) as m →∞. Hence

E

�

1− F (θ )
f (θ )

∆Q(θ )
�

≤ 0. (22)

Inequality (22) implies that

Π(GW )−Π(G ) = E [MR(θ )∆Q(θ )]≥ E [θ∆Q(θ )]≥ c (GW )− c (G ),

as required. �

The appropriability effect states that a profit-maximizing principal cannot capture
consumer surplus and may not invest enough in group formation. Under (HR) and PRS,
consumer surplus is maximized by complete pooling, so a profit-maximizer is willing to
invest more in group formation than a welfare-maximizer.

Proposition 7 is more restrictive than the original segregation effect (Proposition 1).
First, it assumes that the distribution of types satisfies (HR) rather than (MON). Defining
h(θ , 0) = θ and h(θ , 1) =MR(θ ), (MON) implies that h(θ , t ) is log-supermodular, while
the stronger (HR) assumption is required for h(θ , t ) to be supermodular. Second, the
result assumes that Q(G ) satisfies PRS, overcoming the problem in Example 3.

Example 4 provides a tractable numerical illustration of Proposition 7. Observe that
Example 4 exhibits zero returns to scale, so the conditions of Proposition 7 are stronger
than necessary.
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E 4 (Average quality). Suppose Q(G ) = E [θ | G ] and c (G ) depends only on G
through the number of groups, N . By Proposition 2(ii), the optimal group structure
consists of intervals. The principal then chooses cutoffs {θi }Ni=0 to maximize welfare or

profit (7). When θ ∼ U [θ ,θ ], the FOCs for {θi }N−1
i=1 reduce to (θi+1 − θi ) = (θi − θi−1)

under both welfare- and profit-maximization. If exclusion is not feasible, then marginal
welfare from an extra group is d W /d N = (θ − θ )2/6N 3, while the marginal profit from
an extra group is dΠ/d N = (θ−θ )2/3N 3. Since dΠ/d N ≥ d W /d N , a profit-maximizing
principal chooses to have more groups (see Section B.2).

This example shows that, once again, profit-maximization exhibits excessive seg-
regation. However, conditional on choosing the same number of groups, welfare- and
profit-maximizing principals choose to divide agents in the same manner. This makes
regulation relatively easy: the government needs to restrict only the total number of tar-
iffs; the principal then chooses the welfare-maximizing group structure.22 ◊

8. T    

In this section we investigate how the optimal group structure changes with an increase
in all agents’ types. In the education market, these results help us assess how class com-
position varies (a) with ability and (b) over time.

Group size may change for two reasons. First, as agents’ types increase, the returns
to scale of the peer technology may change. Second, as agents’ types increase, the shape
of the objective function changes. In this subsection we consider the technological ef-
fect, allowing us to categorize Examples A–G. Subsequently, we adopt a linearity as-
sumption that parses out this technological effect. In Section 8.1, we then show that,
under costless group formation, the increase in agents’ types leads groups to become
coarser. In Section 8.2, we show this result extends to costly group formation if the qual-
ity function exhibits positive returns to scale, but reverses under negative returns.

Consider the following experiment. Suppose that types are initially distributed ac-
cording to θ ∼ f (θ ) on [θ ,θ ]. We examine the effect of an upward shift in the distribu-
tion so that θ ∼ f (θ − t ) on [θ + t ,θ + t ] for t > 0. We then compare the size of the group
containing θ in the initial distribution to that containing θ+t in the shifted distribution.
As in Section 5, the returns to scale are defined by

R(GC ,GF , t ) := E [Q(θ + t ,GC + t )−Q(θ + t ,GF + t )].

D 3. A quality function exhibits

(i) decreasing returns to scale (DRS) if R(GC ,GF , t ) is decreasing in t for all GF ¼GC

(ii) increasing returns to scale (IRS) if R(GC ,GF , t ) is increasing in t for all GF ¼GC

(iii) constant returns to scale (CRS) if R(GC ,GF , t ) is constant in t for all GF ¼GC .

22This result depends on the uniform distribution. Suppose we consider splitting [a , c ]⊂ [θ ,θ ] into two
groups with cutoff b . If MR(θ ) is increasing and convex then, conditional on being in [a , c ], one can show
that W (bH )≥W (bL) implies Π(bH )≥Π(bL) for bH >bL .
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In Propositions 2 and 3 we showed that under positive (negative) returns to scale
there tends to be pooling (separation). It therefore seems natural that under IRS (DRS),
groups tend to become coarser (finer) as t increases. Proposition 8 provides a formal-
isation of this intuition. It considers the problem of choosing G to maximize average
quality,

J (G , t ) := E [Q(θ + t ,G + t )]− c (G + t ),

where c (G + t ) is independent of t .23

P 8. Suppose G is chosen to maximize J (G , t ). Pick tH > tL and pick any tL-
optimal solution, G L .

(i) Suppose there is DRS. Then J (G L , tH )≥ J (G , tH ) for all G that are coarser than G L .

(ii) Suppose there is IRS. Then J (G L , tH )≥ J (G , tH ) for all G that are finer than G L .

(iii) Suppose there is CRS. Then J (G L , tH )≥ J (G , tH ) for all G .

P. (i) Pick G such that G ´ G L . Since G L is tL-optimal, R(G ,G L , tL)≤ c (G + tL)−
c (G L + tL). Since there are decreasing returns to scale, R(G ,G L , tH ) ≤ c (G + tH ) −
c (G L + tH ), as required. Parts (ii) and (iii) are identical. �

We now briefly reconsider the examples in Section 5.4. Of these examples, four ex-
hibit CRS, one exhibits DRS, and one exhibits IRS.

A. Average quality. This quality function satisfies CRS and, as shown in Section 5.4,
exhibits PRS and NRS.

B. Generalized average quality. Recall, ifφ(·) is concave, this quality function exhibits
PRS. Ifφ′(·) is convex the quality function also obeys DRS.24 Both these conditions
are satisfied by the generalized Cobb–Douglas quality function Q(G ) = (E [θ |G ]−
α)β with β ∈ (0, 1). This suggests that an increase in all agents’ types makes groups
finer. It also suggests that, if the distribution of types is uniform, then higher types
are in smaller groups within a given distribution. This intuition is illustrated in
Figure 4.

C. Maxmin quality. This quality function exhibits CRS. As shown in Section 5.4, if
types are distributed uniformly, then the quality function obeys NRS if β ≤ α and
PRS if β ≥α.

23For simplicity, we ignore the monotonicity condition. In general, the set of implementable group struc-
tures, Γ(t ), may vary with t .

24Proof: PickGF ,GC such thatGF ¼GC . Letψ= E [θ |GF ]. Sinceφ′(·) is convex, Jensen’s inequality implies
E [φ′(E [ψ+ t | GC ])]≤ E [φ′(ψ+ t )]. Integrating over t ∈ [tL , tH ] and rearranging,

R(GC ,GF , tH ) = E [φ(E [ψ+ tH | GC ])]−E [φ(ψ+ tH )]≤ E [φ(E [ψ+ tL | GC ])]−E [φ(ψ+ tL)] =R(GC ,GF , tL).
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0.5 0.75 1

Pooling Full Separation

F 4. Welfare-maximizing group formation: generalized Cobb–Douglas quality. In this fig-
ure, θ ∼U [0.5, 1] and Q(G ) = (E [θ |G ]− 0.5)0.3. Using (17), one can verify that full separation is
preferred to small groups when θ > (1.3)−1 = 0.769. Using numerical methods, one can show
that the welfare-maximizing group structure pools agents below 0.924 into a single group, while
those above the cutoff are fully segregated.

D. Multiplicative quality. As shown in Section 5.4, this obeys NRS. The quality func-
tion satisfies neither IRS nor DRS. However, R(GC ,GF , t ) is increasing in t if types
are sufficiently close to one. This helps us understand Lazear (2001, Proposition
1) which shows that, with multiplicative quality and homogenous agents, groups
are larger when agents’ types increase.

E. Average quality with multiplicative size effects. If φ(·) is increasing this quality
function exhibits IRS25 and, as shown in Section 5.4, also exhibits PRS. As a re-
sult, groups tend to become coarser as all agents’ types increase. This is related
to the finding of Farrell and Scotchmer (1988, Proposition 3) that, within a given
distribution, group size in the unique stable partition increases in agents’ types, if
the distribution of types is uniform.

F. Average quality with additive size effects. This quality function exhibits CRS. As
shown in Section 5.4, this also exhibits NRS if φ(·) is decreasing and PRS if φ(·) is
increasing.

G. Max quality with additive size effects. This exhibits CRS, but satisfies neither PRS
nor NRS.

8.1 Costless group formation

In this section and the next we adopt the following linearity assumption.

A (LIN). A vertical shift affects group quality linearly: Q(G + t ) =Q(G )+λt .

This implies the quality function obeys constant returns to scale, enabling us to
parse out the technological effect identified in Proposition 8. Assumption (LIN) also

25Proof: Pick GF ,GC such that GF ¼ GC . Choose GC ∈ GC and denote the corresponding groups in GF by
{G i }. Suppose GC has mass m and G i has mass m i . Abusing notation, the difference in expected qualities
conditional on GC is R(t ) = φ(m )E [θ + t | GC ]−

∑

i (m i /m )φ(m i )E [θ + t | G i ], which is increasing in t .
Summing over GC ∈GC yields the result.
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implies that the set of implementable group structures,

Γ(t ) = {G :Q(θ ,G + t ) is increasing in θ ∈ [θ + t ,θ + t ]},

is independent of t . It is satisfied by Examples A, C, F, and G.
The principal’s problem is to choose G ∈ Γ to maximize26

H =

∫ θ+t

θ+t

h(θ , t )Q(θ ,G + t ) f (θ − t )dθ .

Under (LIN) we can change variables to θ̃ = θ − t . Under welfare-maximization,
h(θ , t ) = θ , so the objective becomes h(θ̃ + t , t ) = θ̃ + t . Under profit-maximization,
h(θ , t ) = θ − [1− F (θ − t )]/ f (θ − t ), so the objective becomes h(θ̃ + t , t ) =MR(θ̃ ) + t .
Putting this together, h(θ̃ + t , t ) = h(θ̃ ) + t . The principal’s problem is thus to choose
G ∈ Γ to maximize

H (G , t ) =

∫ θ

θ

[h(θ̃ )+ t ][Q(θ̃ ,G )+λt ] f (θ̃ )d θ̃ . (23)

P 9. Suppose h(θ ) is positive and increasing in θ , and that Q(G ) satisfies
(LIN). Fix tH > tL and pick any tL-optimal solution, G L . Then H (G L , tH ) ≥ H (G , tH )
for all G ∈ Γ that are finer than G L .

P. The function h(θ ) + t is strictly positive and log-submodular in (θ , t ). The
rest of the proof is identical to the proof of Proposition 1, although one should use
Lemma 5(ii) rather than Lemma 5(i). �

Proposition 9 says that, under either welfare- or profit-maximization, an increase in
all agents’ types leads groups to become no finer. To understand the result, take a group
[θL + t ,θH + t ] and consider a split that reduces the quality of the low types a lot, while
raising the quality of the high types a little. When the agents’ types are low (i.e. t is low),
the ratio between the highest and lowest types in the group, (θH+t )/(θL+t ), is large and
this split may increase welfare/profit. Yet when the agents’ types are high (i.e. t is high),
the ratio between the highest and lowest types in the group is small and the split is less
likely to be beneficial.

Our result concerns the group structure as the entire distribution of types shifts. It
also suggests that higher types will be in larger groups than lower types within a given
distribution if the relative ratio of high types to low types remains constant throughout
the distribution (e.g. the density is uniform, ignoring boundary problems). This can be
seen in Figure 3, where higher types are in larger groups under both welfare- and profit-
maximization.

26This assumes the principal cannot exclude.
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8.2 Costly group formation

With costly group formation, the principal’s problem is to choose G ∈ Γ to maximize
H (G , t )− c (G + t ), where H (G , t ) is defined by (23) and the cost function c (G + t ) is
independent of t .

P 10. Suppose h(θ ) + t is increasing in θ and that quality satisfies (LIN). Fix
tH > tL and pick any tL-optimal solution, G L .

(i) Suppose there is PRS. Then H (G L , tH ) ≥ H (G , tH ) for all G ∈ Γ that are finer than
G L .

(ii) Suppose there is NRS. Then H (G L , tH )≥H (G , tH ) for all G ∈ Γ that are coarser than
G L .

P. (i) Suppose PRS holds. Fix tH > tL , pick any tL-optimal solution G L , and
consider G ∈ Γ such that G ¼ G L . PRS implies that E [∆Q(θ )] ≥ 0, where ∆Q(θ ) :=
Q(θ ,G L)−Q(θ ,G ). Using (23), H (G L , t )−H (G , t ) = E [(h(θ )+ t )∆Q(θ )] and

E [(h(θ )+ tH )∆Q(θ )]−E [(h(θ )+ tL)∆Q(θ )] = (tH − tL)E [∆Q(θ )]≥ 0.

Hence H (G L , tL)−H (G , tL)≥ c (G L)− c (G ) implies H (G L , tH )−H (G , tH )≥ c (G L)− c (G ),
as required. The proof for (ii) is similar. �

Proposition 10 says that (a) under PRS, higher types are in coarser groups, and
(b) under NRS, higher types are in finer groups. In comparison, if there is costless group
formation then (a) under PRS, higher types are in coarser groups (Proposition 9), and
(b) under NRS, there is full separation (Proposition 2). To understand this result, con-
sider the PRS case. Splitting a group has an efficiency effect, reducing the mean group
quality, and a distributional effect, benefiting high types while hurting low types. When
all types are higher, the importance of the efficiency effect increases while the distribu-
tional effect, which depends on the difference between types, remains constant. Hence
the principal chooses to create fewer groups.

Proposition 10 considers a shift of the entire distribution of types. Example 5 shows
that, under the uniform-maxmin model, a similar result applies within a given distribu-
tion of types.

E 5 (Maxmin-quality). Suppose Q(G ) = α inf(G ) + β sup(G ), θ ∼ U [θ ,θ ], and
c (G ) depends onG only through the number of groups, N . As in Section 5.4, the optimal
group structure consists of intervals. The welfare-maximizing principal then chooses
cutoffs {θi }Ni=0 to maximize (5). Under zero returns to scale (α=β ), the FOCs for {θi }N−1

i=1
reduce to (θi+1 − θi ) = (θi − θi−1), as in Example 4, so groups are the same size for all
types. Under NRS (i.e. α ≥ β ), then (θi+1 − θi ) ≤ (θi − θi−1), so groups are smaller for
higher types. Under PRS (i.e. α ≤ β ), then (θi+1 − θi ) ≥ (θi − θi−1), so groups are larger
for higher types (see Section B.3). ◊



Theoretical Economics 4 (2009) Monopolistic group design with peer effects 117

These results have implications for education markets. When considering the op-
timal classroom size, the assumption of negative returns seems reasonable (although
not uncontroversial). Proposition 10 then suggests that more able students should be in
smaller classes. Intuitively, when all students become smarter, they have more to gain
from a reduction in class size.

When considering the optimal school composition, holding class size constant,
Henderson et al. (1978) suggest that positive returns may be the appropriate assump-
tion. Propositions 9 and 10 then suggest that more able students should be in less seg-
regated schools. Intuitively, when all students become smarter, the performance of the
least able becomes relatively more important.

9. C

This paper analyzes how a principal divides agents into groups in the presence of peer
effects. With costless group formation, we show that a profit-maximizing principal seg-
regates agents more finely than is socially optimal (the segregation effect) and excludes
too many agents (the exclusion effect). We also analyze how the optimal group structure
depends upon the returns to scale of peer technology. With costly group formation, we
demonstrate that a profit-maximizing firm may not invest enough in group formation
(the appropriability effect). However, under positive returns to scale, the segregation
effect dominates the appropriability effect.

Our analysis has implications for public policy. Proponents argue that private com-
munities increase welfare by providing safety and comfort for those willing to pay; crit-
ics counter that they are discriminatory and isolationist. Our model is consistent with
both these arguments, showing how stratification can increase welfare, but also that pri-
vate provision leads to communities that are insufficiently diverse. This suggests that,
in cases where a few local developers have market power, the government should be
careful to ensure new developments contain a wide range of housing stock.

This paper also informs the debate on the role of private schools. Much of the discus-
sion over vouchers and public-private partnerships centres on the mantra of parental
choice. However, choice is not the aim in itself. This paper has shown that when the
options are designed by an organization with market power, then private provision may
provide too much choice, introducing excessive segregation. On the positive side, given
knowledge of these distortions, there is no reason why an alert regulatory agency cannot
mitigate their impact.

We examine a simple model, while allowing for a wide range of peer interactions. A
number of extensions are of interest. First, while we consider a single firm, it is impor-
tant to understand how oligopolistic schools would differentiate themselves. Second,
in many practical examples, agents are not atomless and can directly affect the quality
of their group. Third, one would like to take account of interactions between the group
structure and the quality of the outside option (e.g. the local public school). Fourth, one
could allow the principal to choose both inputs (e.g. teachers) as well as group-entry
prices. It is hoped that the framework used in this paper can help address some of these
issues.
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A

A. O 

A.1 Monotone comparative statics

The following result is a version of Karlin and Rubin (1956, Lemma 1). The proof is es-
sentially identical.

L 5. Suppose ∆Q(θ ) is quasi-increasing on an interval I . In addition, suppose ei-
ther

(i) h(θ , t ) is positive, log-supermodular in (θ , t ) and decreasing in t , or

(ii) h(θ , t ) is strictly positive and log-supermodular in (θ , t ).

Then E [h(θ , t )∆Q(θ ) | I ] is quasi-increasing in t .

P. (i) By way of contradiction, suppose there exists tH > tL such that

E [h(θ , tL)∆Q(θ ) | I ]≥ 0 and E [h(θ , tH )∆Q(θ ) | I ]< 0. (24)

Since∆Q(θ ) is quasi-increasing on I , we can break it up into positive and negative com-
ponents. That is, ∆Q(θ )≥ 0 on some I+ ∈ I and∆Q(θ )< 0 on I− := I \ I+. Restrict the
state space to I and rewrite (24) as

E [h(θ , tL)∆Q(θ )+]≥ E [h(θ , tL)∆Q(θ )−] (25)

E [h(θ , tH )∆Q(θ )+]< E [h(θ , tH )∆Q(θ )−]. (26)

There are two possible cases. First, suppose that the left-hand side of (25) equals zero.
Then the right-hand side of (25) is also zero and, since h(θ , t ) is decreasing in t , the
left-hand side of (26) is zero. We thus obtain a contradiction. Second, we suppose the
left-hand side of (25) is strictly positive. Multiplying (25) and (26),

E [h(θ , tL)∆Q(θ )+]E [h(θ , tH )∆Q(θ )−]−E [h(θ , tH )∆Q(θ )+]E [h(θ , tL)∆Q(θ )−]

=

∫

I−

∫

I+
[h(θH , tL)h(θL , tH )−h(θH , tH )h(θL , tL)]∆Q(θH )+∆Q(θL)−d F (θH )d F (θL)

> 0.

This last line contradicts the log-supermodularity of h(θ , t ), as required.
(ii) The proof is nearly identical. To prove that the left-hand side of (25) must be

strictly positive suppose, by contradiction, that it equals zero. Since h(θ , t ) > 0, (25)
implies ∆Q(θ ) = 0 (a.e.), so the left-hand side of (26) is zero and (26) cannot hold. We
thus obtain a contradiction. �

A.2 Proof of Corollary 1

Suppose GW ´ GΠ. Lemma 3 implies that I (GW ) ´ I (GΠ). Let I ∗ be the coarsest
interval partition such that∆Q(θ ) :=Q(θ ,GΠ)−Q(θ ,GW ) is quasi-increasing.
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L 6. E [∆Q(θ ) | I ∗]≤ 0.

P. As in Proposition 1, we have E [θ∆Q(θ ) | I ∗] ≤ 0. For any I ∗ ∈ I ∗, it follows
that

0≥ E [θ∆Q(θ ) | I ∗]≥ E [θ | I ∗]E [∆Q(θ ) | I ∗],
where the second inequality comes from the fact that a quasi-increasing function is pos-
itively correlated with an increasing function (e.g. Persico 2000, Lemma 1). �

Fix I ∗ ∈ I ∗. Denote the distribution function of Q(θ ,GΠ), conditional on θ ∈ I ∗,
by FΠ(q ) := E [1Q(θ ,GΠ)≤q | I ∗]. Similarly define the distribution function of Q(θ ,GW ),
conditional on θ ∈ I ∗, by FW (q ) := E [1Q(θ ,GW )≤q | I ∗].
L 7. For any I ∗ ∈I ∗, FW (q )− FΠ(q ) is weakly quasi-increasing.27

P. The functions Q(θ ,GW ) and Q(θ ,GΠ) are increasing; denote their inverses
by Q−1

W (q ) := inf{θ : Q(θ ,GW ) > q} and Q−1
Π (q ) := inf{θ : Q(θ ,GΠ) > q}. The differ-

enceQ(θ ,GΠ)−Q(θ ,GW ) is quasi-increasing on I ∗, so Q−1
W (q )−Q−1

Π (q ) is weakly quasi-
increasing. The difference between the distribution functions is

FW (q )− FΠ(q ) = E [1θ≤Q−1
W (q )
−1θ≤Q−1

Π (q )
| I ∗].

Hence FW (q )− FΠ(q ) is weakly quasi-increasing. �

For I ∗ ∈ I ∗, Lemmas 6 and 7 imply that [Q(θ ,GW ) | I ∗] ≥icv [Q(θ ,GΠ) | I ∗], where
≥icv denotes the increasing-concave order (Shaked and Shanthikumar 2007, Theorem
4.A.22(b)). The increasing-concave order is closed under mixtures so Q(θ ,GW ) ≥icv

Q(θ ,GΠ) (Shaked and Shanthikumar 2007, Theorem 4.A.8(b)).

A.3 Proof of Proposition 5

The method of proof is the same as in Proposition 1. Suppose GW maximizes welfare
and pick G ∈ Γ such that G ´ GW . Since GW is welfare-maximizing, E [θ∆Q(θ )] ≥ 0,
where∆Q(θ ) :=Q(θ ,GW )−Q(θ ,G ). Define I ∗ to be the coarsest interval partition on
which ∆Q(θ ) is quasi-increasing. Applying Lemma 3, I (G ) ´ I (GW ). Monotonicity
thus implies that∆Q(θ ) is increasing on each I ∈I (G ), so I ∗ ´I (G ).
L 8. E [θ∆Q(θ ) | I ∗]≥ 0.

The proof of this result is the same as the proof of Proposition 1.

L 9. E
�

E [MR(θ ) | I (GW )]+∆Q(θ ) | I ∗�≥ 0.

P. Let h(θ , 0) = E [θ | I (GW )] and h(θ , 1) = E [MR(θ ) | I (GW )]+. Lemma 8 implies
that

E
�

h(θ , 0)∆Q(θ ) | I ∗�= E
�

E [θ∆Q(θ ) | I (GW )] | I ∗�= E
�

θ∆Q(θ ) | I ∗�≥ 0,

27Definition: A functionφ :R→R is weakly quasi-increasing ifφ(xL)> 0 impliesφ(xH )≥ 0 for xH > xL .
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where the first equality uses the fact that ∆Q(θ ) is measurable with respect to I (GW )
and the second uses the law of iterated expectations. As shown below, h(θ , t ) is log-
supermodular in (θ , t ). In addition, h(θ , t ) is positive and decreasing in t . Lemma 5(i)
then yields the result.

We now complete the proof by verifying that h(θ , t ) is log-supermodular in (θ , t ).
Letψ(θ , 0) := E [θ | I (GW )] andψ(θ , 1) := E [MR(θ ) | I (GW )]. We wish to show that

ψ(θL , 0)ψ(θH , 1)+ ≥ψ(θH , 0)ψ(θL , 1)+ (27)

for θH >θL .
We make two observations. First, (MON) implies MR(θ ) is quasi-increasing in θ .

Integrating over θ ,ψ(θ , 1) is quasi-increasing in θ .
Second, from (MON) we know that θLMR(θH )≥ θH MR(θL). Integrating over (θH ,θL),

we thus have

ψ(θL , 0)ψ(θH , 1)≥ψ(θH , 0)ψ(θL , 1). (28)

We now show that (27) holds. First, ifψ(θL , 1)< 0, then (27) trivially holds. Second, if
ψ(θL , 1) ≥ 0, then the first observation implies ψ(θH , 1) ≥ 0. Equation (28) then implies
(27), as required. �

Lemma 9 thus implies that

E
�

E [MR(θ ) | I (GW )]+Q(θ ,GW ) | I ∗�≥ E
�

E [MR(θ ) | I (GW )]+Q(θ ,G ) | I ∗�

≥ E
�

E [MR(θ ) | I (G )]+Q(θ ,G ) | I ∗� (29)

where the second line uses the fact that I (G )´I (GW ). Integrating over (29), Π(GW )≥
Π(G ), as required.

B. O   

B.1 Multiplicative technology

Kremer (1993) and Lazear (2001) consider a group of agents, G = {p1, . . . , pµ(G )}, where
agent i makes a mistake with probability p i = 1− θi . For example, one can think of a
project that requiresµ(G ) jobs to be completed. The probability the project is completed
successfully is then

Q(G ) =
µ(G )
∏

i=1

(1−p i ).

We now consider a continuous type analogue to this quality function. Suppose
agents’ types are distributed according to the absolutely continuous measure µ, where
µ([θ ,θ ]) = α. Let f (θ ) = dµ(θ )/α be the normalized density. The quality of a group
G ⊂ [θ ,θ ] is determined as follows. First, as in the discrete model, suppose that a project
requires µ(G ) jobs to be completed. Second, break each job into k equal tasks. Third,
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draw k agents independently from G , where each agent makes a mistake with probabil-
ity p i /k . Then let each of these agents do one of the k tasks for each of the µ(G ) jobs.
The probability the project is completed successfully is then

Qk (G ) =







k
∏

j=1

�

1− p i

k

�







µ(G )

. (30)

L 10. As the number of tasks grows (k →∞),

Qk (G )
p→ exp

�

−
∫

G

(1−θ )dµ
�

= exp

�

−α
∫

G

(1−θ )d F

�

.

P. Define

∆k (p i ) :=
ln(1)− ln(1−p i /k )

p i /k
. (31)

For each k we draw a new set of agents with error probabilities {p i }ki=1, so ∆k (p i ) is a
triangular array. Taking logs of equation (30),

ln(Qk (G )) =µ(G )
k
∑

i=1

ln(1−p i /k ) (32)

=µ(G )
1

k

k
∑

i=1

−p i

�

ln(1)− ln(1−p i /k )
p i /k

�

=µ(G )
1

k

k
∑

i=1

−p i ∆k (p i )

p→−µ(G )E [p |G ]
where the second line uses ln(1) = 0 and the third line uses (31). Observe that for a given
p i ,

lim
k→∞

∆k (p i ) =
d

d x
ln(x )|x=1 = 1

so that E [p∆k (p )]→ E [p |G ]. The forth line of (32) then follows from the weak law of
large numbers (e.g. Durrett 1996, p. 41). �

B.2 Derivation of Example 4

B.2.1 Welfare-maximizing problem The principal chooses {θi }Ni=0 to maximize welfare

W =
N
∑

i=1

E [θ |G i ]

∫ θi

θi−1

θ d F (33)

where θ0 ≥ θ and θN = θ . Assume θ ∼U [θ ,θ ]. The derivative with respect to {θi }N−1
i=1 is

d W

dθi
=

1

4(θ −θ ) (θi+1−θi−1)(θi+1+θi−1−2θi ).
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At the global optimum, (θi+1− θi ) = (θi − θi−1) and θi = θ0+ (i/N )(θ − θ0). Using (33),
welfare is

W =
1

N

�

θ −θ0

θ −θ

� N
∑

i=1

�

θ0+
2i −1

2N
(θ −θ0)

�2

=

�

θ −θ0

θ −θ

��

θθ0+
(θ −θ0)2

12N 2 (4N 2−1)

�

. (34)

When exclusion is not feasible or not desirable, we have θ0 = θ . Differentiating (34),

d W

d N
=
(θ −θ )2

6N 3 .

B.2.2 Profit-maximizing problem The principal chooses {θi }Ni=0 to maximize profit

Π=
N
∑

i=1

E [θ |G i ]

∫ θi

θi−1

MR(θ )d F, (35)

where θ0 ≥ θ and θN = θ . Assume θ ∼U [θ ,θ ]. The derivative with respect to {θi }N−1
i=1 is

dΠ
dθi

=
1

2(θ −θ ) (θi+1−θi−1)(θi+1+θi−1−2θi ).

At the global optimum, (θi+1− θi ) = (θi − θi−1) and θi = θ0+ (i/N )(θ − θ0). Using (35),
profit is

Π=
1

N

�

θ −θ0

θ −θ

� N
∑

i=1

�

θ0+
2i −1

2N
(θ −θ0)

��

2θ0−θ + 2i −1

N
(θ −θ0)

�

=

�

θ −θ0

θ −θ

��

θ (3θ0−θ )
2

+
(θ −θ0)2

6N 2 (4N 2−1)

�

. (36)

When exclusion is not feasible or not desirable, we have θ0 = θ . Differentiating (36),

dΠ
d N

=
(θ −θ )2

3N 3 .

B.3 Derivation of Example 5

Welfare is given by

W =
N
∑

i=1

(βθi +αθi−1)

∫ θi

θi−1

θ

θ −θ dθ .

Differentiating with respect to θi ,

(θ −θ )∂W

∂ θi
=
β

2
(θ 2

i −θ 2
i−1)+ (βθi +αθi−1)θi +

α

2
(θ 2

i+1−θ 2
i )− (βθi+1+αθi )θi . (37)
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Differentiating again,

(θ −θ )∂
2W

∂ θ 2
i

= 3(β −α)θi − (βθi+1−αθi−1). (38)

The FOC (37) induces a quadratic equation in terms of θi . This yields two real solutions:
the smaller solution always satisfies the SOC (38); the larger solution never satisfies the
SOC (38). The smaller solution, θ−i may not lie in [θi−1,θi+1]. Taking the boundaries into
account, the solution is given by θ ∗i =max{min{θ−i ,θi+1},θi−1}.

Write the optimal choice of θi as a function of β , θ ∗i (β ), and define

µ(β ) := 2θ ∗i (β )− (θi+1+θi−1).

From Example 4 we know that µ(α) = 0. We now show that µ(β ) is strictly decreasing
when µ(β ) = 0. As a result, µ(β ) > 0 for β < α and µ(β ) < 0 for β > α, as claimed in
Example 5.

Differentiating the first-order condition (37),

(θ −θ ) ∂
2W

∂ θi ∂ β
= 3

2θ
2
i − 1

2θ
2
i−1−θi+1θi .

When µ(β ) = 0 then θ ∗i (β ) = θ
−
i (β ) and

(θ −θ ) ∂
2W

∂ θi ∂ β
=− 1

8 (θi+1−θi−1)2 < 0.

Hence
1
2

d

dβ
µ(β ) =

d

dβ
θ ∗i (β ) =−

∂ 2W

∂ θi ∂ β

.∂ 2W

∂ θ 2
i

< 0,

as required.
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