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Choice deferral and ambiguity aversion

I K

Department of Economics and Institute for Mathematical Behavioral Sciences,
University of California, Irvine

When confronted with uncertain prospects, people often exhibit both choice de-
ferral and Ellsberg-type ambiguity aversion. This paper obtains a joint represen-
tation for these behavioral phenomena. The decision maker as portrayed by my
model is willing to choose an uncertain prospect f over g rather than to defer
this choice if and only if the expected utility of f is greater that or equal to the
expected utility of g for every probability measure in a convex and closed set ∆.
This set is interpreted as a collection of the decision maker’s possible future be-
liefs. When choices cannot be deferred, the decision maker evaluates every un-
certain prospect via an ε-mixture of the least favorable element in the set ∆ and
her current probabilistic belief p ∈ ∆. All components of my model are derived
from observable preferences in an essentially unique way.

K. Choice deferral, ambiguity aversion, epsilon contamination, multiple
priors model, subjective probability, Ellsberg paradox.
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1. I

People often defer choices among uncertain prospects until they get thoroughly in-
formed about the process through which uncertainty will be resolved. For example,
business managers postpone selling a new product until they run safety tests, investors
wait to allocate their portfolios until they consult with independent experts, advantage
gamblers postpone wagering until they learn the mathematical odds of winning. Intu-
itively, such decisions are deferred because people are uncertain about their future be-
liefs and hence about their future preferences over feasible alternatives. This intuition
is consistent with empirical studies of choice deferral in psychology and marketing (e.g.
Tversky and Shafir 1992 and Dhar 1997). In decision theory, uncertainty about tastes
has been used to explain preference for flexibility as in Koopmans (1964), Kreps (1979),
and Dekel et al. (2001).

When choices cannot be postponed and objective information is scarce, people of-
ten exhibit ambiguity aversion. To illustrate, recall Ellsberg’s (1961) famous paradox
where the decision maker is told only that (i) a ball will be drawn randomly from an
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urn that contains 90 balls of three possible colors (red, green, and blue), and (ii) the
number of red balls in the urn is 30. Then it is typical to bet on the event {R} rather than
on {B} because the decision maker knows the objective probability of {R} to be 1

3 , but
does not know the objective probability of {B}. Analogously, it is typical to bet on {B ,G }
rather than on {R ,G }. These betting preferences cannot be represented by any proba-
bility measure p because the inequalities p (R)> p (G ) and p (G )+p (B )> p (R)+p (B ) are
inconsistent.

Ellsberg’s setting can be adapted to illustrate choice deferral as well. To do so, sup-
pose that decisions can be postponed until the precise composition of the urn is an-
nounced. Then the decision maker should defer her choices between bets on {R} and
on {G } and between bets on {G , B} and on {R , B} because she does not know how she
will rank these bets after she learns the composition of the urn. This choice deferral
is intuitive even if she is not averse to ambiguity and does not exhibit the preference
reversals in the Ellsberg paradox. By contrast, the decision maker should agree to bet
on {G , B} rather than on {R} immediately because she believes that {G , B} is more likely
than {R} and expects to keep the same belief after she learns the composition of the urn.

This paper obtains a joint representation for choice deferral and ambiguity aversion
and identifies a behavioral connection between these phenomena. I model two primi-
tive preference relations� and�∗ over Anscombe and Aumann’s (1963) acts—functions
that map states of nature into lotteries (i.e. numerical distributions over deterministic
prizes.) For any two acts f and g , the preference f � g means that the decision maker
is willing to choose f rather than g when no other alternatives are feasible, and the firm
preference f �∗ g means that she is still willing to choose f rather than g when she has
the option to postpone this choice. Intuitively, the ranking f �∗ g reveals the decision
maker’s firm belief that she should prefer f to g whenever these acts are available to
her. By definition, the ranking �∗ is incomplete if choices between some acts f and g
are deferred.

My main result (Theorem 1) provides necessary and sufficient conditions for the
following pair of representations for the preferences � and �∗:
• � is represented by the utility function

U ( f ) = (1− ε)∫u ( f (s ))d p + εmin
q∈∆

∫

u ( f (s ))d q , (1)

• for all acts f , g ∈H ,

f �∗ g ⇔ ∫

u ( f (s ))d q ≥ ∫u (g (s ))d q for all q ∈∆, (2)

where u is an expected utility index, ε ∈ [0, 1],∆ is a convex and closed set of probability
measures, and p ∈∆. Moreover, all of these components are derived from � and �∗ in
an essentially unique way.

Representation (2) is due to Bewley (2002). In my framework, the decision maker
as portrayed by (2) expects that she will make her deferred choices via expected utility,
and her probabilistic belief will belong to the convex and closed set∆. Accordingly, she
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firmly prefers an act f to g if and only if the expected utility of f is greater than or equal
to the expected utility of g . To obtain the set ∆ from the firm preference �∗, I invoke a
characterization result due to Ghirardato et al. (2004) (henceforth GMM).

The novel part of my model is representation (1) for the preference �. This utility
function evaluates every act f via the ε-mixture of the least favorable belief in the set∆
with the probability measure p ∈∆. It is natural to interpret p as the decision maker’s ex
ante probabilistic belief, and ε as an index of her ambiguity aversion. Theorems 2 and 3
provide some behavioral foundations for this interpretation of p and ε.

Representation (1) can be written in the maxmin expected utility form

U ( f ) =min
q∈Π

∫

u ( f (s ))d q ,

where the convex and closed set of priors

Π= (1− ε){p}+ ε∆

has the parametric structure of ε-contamination.1 Therefore, representation (1) is a spe-
cial case of the multiple priors model due to Gilboa and Schmeidler (1989) (henceforth
GS).

My key axiom, called Cautious Independence, requires separability:

f � g ⇒ α f +(1−α)h �αg +(1−α)h

for all α ∈ [0, 1] and for all acts f , g , h such that the mixture α f + (1−α)h is a “better
hedge” than αg + (1−α)h. In particular, this constraint holds when h is constant or
when h = g , which implies GS’s Certainty Independence and Uncertainty Aversion re-
spectively. More broadly, my notion of a “better hedge” is defined in terms of the firm
preference �∗ and can apply for arbitrary h. Thus, Cautious Independence strengthens
the counterpart axioms of the multiple priors model.

Representation (1) has applications in economics, decision theory, and statistics.
An important special case is obtained if∆ equals the entire simplexP of all probability
measures on the state space S. In behavioral terms, it means that the decision maker
defers her choice between any acts f and g that do not statewise dominate each other.
The corresponding utility function (1) takes the form

U ( f ) = (1− ε)∫u ( f (s ))d p + εmin
s∈S

u ( f (s )),

and the set of priors Π has the structure

Π= (1− ε){p}+ εP .

1The ε-contamination structure was originally proposed by Hodges and Lehmann (1952) in Bayesian
analysis (reviewed by Berger 1994). In statistical applications, the parameter ε is interpreted as the amount
of error that is deemed possible for the prior p . This interpretation differs from mine because it uses ε to
describe the imprecision of a priori knowledge rather than the behavioral effect of this imprecision.
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This structure has been used in models of asset pricing (Epstein and Wang 1994), search
(Nishimura and Ozaki 2004), and insurance (Carlier et al. 2003.)

Note that representation (1) can be applied in Ellsberg’s setting where the natural
candidate for∆ is the set of all probability measures q such that q (R) = 1

3 . Ellsberg (1961,
pp. 663–669) suggests the functional form (1) as an ad hoc explanation for his paradox.
He describes p as an “estimated distribution, which reflects all [subjective] judgements
of the relative likelihoods of distributions, including judgements of equal likelihoods,”
and the parameter 1− ε (ρ in his notation) as a degree of the subjective “confidence in
the best estimates of likelihood.” My results provide axiomatic foundations for Ellsberg’s
intuition.

Similarly, one can specify the set ∆ exogenously in most experimental studies of
ambiguity where only intervals of possible objective probabilities are given to subjects.
In an early study of this kind, Becker and Brownson (1964) find some evidence that
people put a constant weight ε on the least favorable probabilistic scenario in this set.
(This study estimates the average weight ε to be 0.768.) Other experiments (reviewed by
Camerer and Weber 1992) produce mixed results.

Yet it should be emphasized that the set ∆ in my model can be derived from choice
behavior even if the decision maker’s knowledge about objective probabilities is not ob-
servable, or if the very concept of “objective probabilities” is problematic.

My model is related to several decision-theoretic results. Gilboa (1988) and Jaffray
(1988) axiomatize a counterpart of representation (1) for choice of objective lotteries
where expected utility is mixed with the worst possible outcome. Eichberger and Kelsey
(1999) and Nishimura and Ozaki (2006) characterize ε-contamination with complete ig-
norance (i.e.∆=P ) in Anscombe–Aumann’s framework. (Nishimura and Ozaki take the
parameter ε as a primitive as well.) Gajdos et al. (2008) derive ε-contamination in a dif-
ferent framework that includes variable information sets ∆ and incorporates them into
objects of choice—it is assumed that the decision maker ranks act-information pairs
of the form ( f ,∆). These authors interpret the parameter ε as a degree of imprecision
aversion, which is common for all information sets. The probability measure p in their
model is uniquely determined by ∆ and hence does not depend on preference (is not
subjective).

The model that is most closely related to mine is due to Gilboa et al. (2008) (hence-
forth GMMS). These authors characterize a special case of representations (1) and (2)
with ε = 1. I rely in part on their analysis, but have a different motivation and a more
general representation result.

2. M

2.1 Preliminaries

I adopt a version of Anscombe and Aumann’s (1963)’s decision framework. A set X of
outcomes, a set S of states of nature, and an algebra Σ⊂ 2S of events are given. Based on
these primitives, define

• the setL = {l , . . .} of all lotteries—probability measures on X with finite support
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b

ex ante stage
� and �∗ are observed

b

interim stage
deferred choices are made

b

ex post stage
state s is resolved
lotteries are resolved
payoffs are consumed

F 1. The time line.

• the setU of all expected utility functions onL
• the setP = {p ,q , . . .} of all finitely additive probability measures on (S,Σ)with the

weak∗ topology2

• the setC of all non-empty, convex, closed subsets ofP
• the setH = { f , g , . . .} of all acts—Σ-measurable functions f : S →L that have a

finite range inL .

Endow the setH with a natural mixture operation: for any f , g ∈ H and α ∈ [0, 1], let
α f +(1−α)g be an act such that for all s ∈S,

[α f +(1−α)g ](s ) =α f (s )+ (1−α)g (s ).

Identify constant acts with the corresponding lotteries l ∈ L . Given any lotteries
l , l ′ ∈L and any event A ∈Σ, define a binary act

l A l ′ =

(

l if s ∈ A

l ′ if s /∈ A.

Interpret any act f ∈H as a physical action that yields the lottery f (s ) after the state
s is observed. This lottery is then resolved via an objective randomizing device like a fair
coin or a roulette wheel.

For any act f ∈H and any probability measure q ∈P , let

f (q ) =
∑

l ∈L
l ·q �{s : f (s ) = l }� .

This mixture is well-defined because f has finite range. Say that the lottery f (q ) is in-
duced by f via q .

Suppose that prior to the ex post stage when all uncertainty is resolved and payoffs
are consumed, there are two time periods, ex ante and interim, when choices can be
made. Let � be the decision maker’s ex ante preference over acts inH . As customary,
f � g means that she chooses the act f rather than g when no other options are feasible
ex ante.

2 If S is finite, then this topology is Euclidean. In general, a net {qd }d∈D in P converges to q ∈ P in the
weak∗ topology if for any event A ∈Σ, the net {qd (A)}d∈D converges to q (A).
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Suppose next that at the interim stage, the decision maker can obtain additional
information about the physical process through which uncertainty will be resolved ex
post. For example, she may learn some experimental data, experts’ opinions, or market
odds (e.g. insurance rates, bookmakers’ lines). Anticipating the arrival of such informa-
tion, she may be uncertain ex ante about her interim preferences.

For any acts f , g ∈ H , let f �∗ g if the decision maker is willing to choose f rather
than g ex ante even though she has the option to postpone this choice until the interim
stage. Intuitively, this behavior reveals her firm belief that she should still prefer f to g
at the interim stage regardless of any new information that may arrive by that time. To
reflect this intuition, call the relation �∗ a firm preference. Note that �∗ is observed at
the ex ante stage, and the decision maker’s interim choice behavior is not a primitive of
my model.

One concern about the above interpretation of the firm preference �∗ is that some
people may postpone ex ante choices between acts f and g without even contemplating
possible interim preferences between these two acts. They may do so to delay contem-
plation or to get some intrinsic value of freedom of choice as in Sen (1988). To make
the ranking �∗ more deliberate, one may adapt the experimental design of Danan and
Ziegelmeyer (2008) and set a small monetary cost (such as 10 euro cents) for postponing
a choice between acts f and g . This cost should motivate the decision maker to commit
to f ex ante if she can determine that she should choose f at the interim stage anyway.

The ranking �∗ in my decision framework has other possible interpretations. For
example, GMMS define �∗ in terms of “objective rationality” so that each preference
f �∗ g is “justified or defended on more or less objective grounds,” and the decision
maker can “convince others that she is right” when she chooses f rather than g . In this
interpretation, the ranking �∗ cannot be observed through choice behavior alone, but
my representation results can still apply.

2.2 Axioms and main representation result

Consider the following axioms for the preferences � and �∗.
A 1 (Completeness). � is complete.

This condition requires that the decision maker can choose between any two acts f and
g if she has no other alternatives available ex ante. Note that if she strictly prefers to
postpone this decision, then her firm preference �∗ is incomplete.

A 2 (Consistency). For all acts f , g ∈H , if f �∗ g , then f � g .

This axiom requires that if the decision maker chooses f rather than g when she can
postpone this choice, then she should still prefer f to g when she has no option to wait.

A 3 (Transitivity). � and �∗ are transitive.

This condition requires that at the ex ante stage, the decision maker should neither have
cyclical preferences nor expect that her interim preferences can be cyclical.
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Say that � is continuous if the sets

{α∈ [0, 1] :α f +(1−α)g � h} and {α∈ [0, 1] :α f +(1−α)g � h}

are closed in [0, 1]. Adopt the same notion of continuity for �∗.

A 4 (Continuity). � and �∗ are continuous.

As customary, continuity is motivated by an abstract mathematical intuition that cannot
be refuted by any finite number of observations.

Given acts f , g ∈H , write f ½ g if f (s )� g (s ) for all s ∈S.

A 5 (Monotonicity). For all acts f , g ∈H , if f ½ g , then f �∗ g .

Monotonicity assumes that the decision maker’s risk attitude—that is, her ex ante rank-
ing of lotteries in L—should be preserved at the interim and ex post stages. Then the
firm preference f �∗ g is intuitive for all acts f and g such that f ½ g . By Monotonic-
ity and Consistency, the firm preference �∗ coincides with � on the domain L of all
constant acts.

A 6 (Firm Independence). For all α∈ [0, 1] and acts f , g , h ∈H ,

f �∗ g ⇒ α f +(1−α)h �∗ αg +(1−α)h.

To motivate this axiom, suppose that the decision maker expects to rank all acts via
expected utility at the interim stage. Then she should expect her interim preference
between any acts f , g ∈H to be unaffected if f and g are both mixed with a common
weight α∈ [0, 1] and a common act h ∈H .

By contrast, the ex ante preference � may still violate the expected utility model
because of ambiguity aversion. Even in this case, the decision maker may still plan to
comply with expected utility at the interim stage, providing that she expects to have suf-
ficiently detailed information by that time. For example, expected utility maximization
is plausible in Ellsberg’s setting after the precise composition of the urn is announced.

Say that f is more secure than g (or g is less secure than f ) if for all l ∈L ,

g �∗ l ⇒ f �∗ l .

That is, if f is firmly preferred to any lottery l that g is firmly preferred to.
Being ambiguity averse, the decision maker may be biased in favor of more se-

cure acts. This bias can be motivated in part by the comparative ignorance effect. Fox
and Tversky (1995) observe that ambiguity aversion is much more common empirically
when subjects compare “their limited knowledge about an event with their superior
knowledge about another event.” Similarly, the decision maker’s ambiguity aversion
in my framework can rely on the comparison between her limited ex ante knowledge
about acts f and g and her superior knowledge about lotteries l .
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A 7 (Cautious Independence). For all α ∈ [0, 1], acts f , g , h ∈H and lotteries l ∈L
such that α f + (1−α)h is more secure than α f + (1−α)l , but αg + (1−α)h is less secure
than αg +(1−α)l ,

f � g ⇒ α f +(1−α)h �αg +(1−α)h. (3)

This axiom implies both Certainty Independence and Uncertainty Aversion that GS for-
mulate in their multiple priors model.3 Indeed, if h = l , then by Cautious Independence,

f � g ⇒ α f +(1−α)l �αg +(1−α)l ,

which is equivalent to Certainty Independence.
Moreover, for any α ∈ [0, 1] and f , g ∈H , there exists l ∈L such that α f + (1−α)g

is more secure than α f +(1−α)l , but g is less secure than αg +(1−α)l . (The existence
of such lottery follows from Axioms 1–6 and is explained later.) Then Cautious Indepen-
dence implies

f � g ⇒ α f +(1−α)g � g

and hence, Uncertainty Aversion.4

In addition, Cautious Independence requires that the decision maker should pre-
serve her preference α f +(1−α)l � αg +(1−α)l when the constant act l in these mix-
tures is replaced by any act h such that α f + (1−α)h is more secure than α f + (1−α)l ,
but αg + (1−α)h is less secure than αg + (1−α)l . This separability is intuitive if the
decision maker’s ambiguity aversion is based exclusively on her bias in favor of more
secure acts.

Note that both rankings � and �∗ are essential for the statement of Cautious Inde-
pendence. To clarify the role of the firm preference �∗, let u ∈U be an expected utility
representation for the ranking of lotteries. For any act f ∈H , define its security level

U∗
�

f
�

=max
l ′�∗ f

u (l ′)

as the maximal interim utility that the act f guarantees ex ante according to the firm
preference �∗. For any α ∈ [0, 1] and acts f , g ∈ H , define the security premium of the
mixture α f +(1−α)g by

SP(α, f , g ) =U∗
�

α f +(1−α)g �− �αU∗
�

f
�

+(1−α)U∗ �g
��

,

which is roughly analogous to the definition of risk premium for preferences over mon-
etary gambles (see Kreps 1988, p. 74). Given Axioms 1–6,

3More broadly, Certainty Independence is satisfied by invariant biseparable preferences, which are pro-
posed by Ghirardato et al. (2004, 2005) to accommodate various attitudes towards ambiguity. On the other
hand, Certainty Independence can be violated if � has a variational utility representation, as axiomatized
by Maccheroni et al. (2006).

4In the multiple priors model, it is sufficient to impose Uncertainty Aversion only for symmetric mixtures
with α= 1

2
. Similarly, my representation results are unaffected if α= 1

2
is fixed in Cautious Independence.
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• the functions u and U∗ are well-defined

• f is more secure than g if and only if U∗
�

f
�≥U∗

�

g
�

• for all α∈ [0, 1] and acts f , g , h ∈H ,

SP(α, f , h)≥ SP(α, g , h)

if and only if there exists l ∈ L such that α f + (1−α)h is more secure than α f +
(1−α)l , but αg + (1−α)h is less secure than αg + (1−α)l . (See Lemma 1 in Ap-
pendix A.)

Therefore, Cautious Independence requires separability (3) whenever the security pre-
mium SP(α, f , h) is greater or equal than SP(α, g , h). In this case, one can interpret the
mixture α f +(1−α)h to be a better hedge than αg +(1−α)h.

Say that � is extremely cautious if for all f ∈H and l ∈L ,

f � l ⇒ f �∗ l .

This condition is the same as Caution in GMMS. It requires that any act f that is not
firmly preferred to a constant act l should not be strictly preferred to l either.

The following theorem is my main representation result.

T 1. Preferences � and �∗ satisfy Axioms 1–7 if and only if there exist ∆ ∈ C ,
p ∈∆, ε ∈ [0, 1], and u ∈U such that � is represented by

U ( f ) = (1− ε)u � f (p )
�

+ εmin
q∈∆ u

�

f (q )
�

, (4)

and for all acts f , g ∈H ,

f �∗ g ⇔ u
�

f (q )
�≥ u

�

g (q )
�

for all q ∈∆. (5)

Moreover, if � is not extremely cautious, and � and �∗ have representations (4) and
(5) with other components u ′ ∈ U , ∆′ ∈ C , ε′ ∈ [0, 1], and p ′ ∈ ∆′, then ∆′ = ∆, ε′ = ε,
p ′ = p , and u ′ =αu +β for some α> 0 and β ∈R.

This theorem delivers a joint model for the pair of rankings � and �∗. The Bewley-
type representation (5) for the firm preference �∗ asserts that f �∗ g if and only if the
expected utility of f is greater than or equal to the expected utility of g for all probabilis-
tic beliefs in the set∆. This set can be interpreted as the collection of all interim beliefs
that the decision maker views as possible ex ante. Formally, ∆ is derived from the firm
preference �∗ via GMM’s results.

The main novelty of Theorem 1 is the utility representation (4) for the preference �.
This representation evaluates every act f via the ε-mixture of the least favorable belief
in the set ∆ and a probability measure p ∈ ∆ that is common for all acts f . Then it
is intuitive to interpret p as the decision maker’s ex ante probabilistic belief, and the
weight ε as a degree of her aversion towards ambiguity of her interim beliefs in the set
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∆. Alternatively, 1− ε can be viewed as an index of ex ante subjective confidence in the
belief p .

In particular, if ε = 0, then � is represented by expected utility u
�

f (p )
�

. In this case,
the decision maker exhibits no ambiguity aversion at the ex ante stage, even though
her firm preference �∗ may be incomplete, and the corresponding set ∆ may be non-
singleton.

By contrast, if ε = 1, then � is extremely cautious, and it is represented by maxmin
expected utility

U ( f ) =min
q∈∆ u

�

f (q )
�

,

which does not depend on p at all. Theorem 1 implies that this representation together
with (5) is equivalent to the combination of Axioms 1–6, Certainty Independence, and
extreme caution.5 Therefore, the main representation result (Theorem 3) in GMMS can
be obtained as a corollary of Theorem 1.

In general, representation (4) has the maxmin expected utility form

U ( f ) =min
q∈Π u

�

f (q )
�

, (6)

where the set
Π= (1− ε){p}+ ε∆ (7)

is the ε-contamination of the probability measure p ∈∆ by the convex and closed set∆.
Besides the added structure (7) for the set Π, Theorem 1 differs from the multiple priors
model in several respects.

First, my framework requires the firm preference �∗ as an extra primitive. If �∗ is
not given, then any convex and closed setΠ can be written in the form (7), most trivially
for ε = 1 and∆=Π. Therefore, for any preference � that has a maxmin expected utility
representation, there exists a ranking �∗ such that the pair (�,�∗) complies with all the
assumptions of Theorem 1.

Second, Cautious Independence implies both Certainty Independence and Uncer-
tainty Aversion, but unlike these axioms, it cannot be stated in terms of � alone. For ex-
ample, if�∗ is complete, then∆= {p}, and�∗ is represented by expected utility u ( f (p )).
In this case, Cautious Independence turns into standard Independence and requires
separability (3) for all α ∈ [0, 1] and f , g , h ∈H because SP(α, f , h) = SP(α, g , h) = 0. On

5To show this claim, suppose that � and �∗ satisfy Axioms 1–6, Certainty Independence, and extreme
caution. Then for all f , g ∈H and l ∈L , if f is more secure than g , then

g � l ⇒ g �∗ l ⇒ f �∗ l ⇒ f � l ,

and hence, f � g (otherwise, g � l � f for some l ∈ L ). Therefore, for all f , g , h ∈ H and l ∈ L , if
α f +(1−α)h is more secure than α f +(1−α)l , but αg +(1−α)h is less secure than αg +(1−α)l , then

f � g ⇒ α f +(1−α)h �α f +(1−α)l �αg +(1−α)l �αg +(1−α)h.

Thus, � satisfies Cautious Independence. By Theorem 1, � and �∗ have representations (4) and (5). It is
easy to check that if ∆ is not a singleton and ε < 1, then � is not extremely cautious. On the other hand, if
∆ is a singleton or ε = 1, then � has the required maxmin expected utility representation.
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the other hand, any preference reversal f � g and α f + (1−α)h ≺ αg + (1−α)h that
is consistent with the multiple priors model is also consistent with Cautious Indepen-
dence for some ranking �∗.

Third, my model interprets the set∆ rather thanΠ as the collection of all probabilis-
tic beliefs that the decision maker deems possible ex ante. Therefore, Theorem 1 pins
down a “subjective state space” ∆ that cannot be properly identified within the general
multiple priors model. Note though that representations (4) and (5) are unchanged if
∆ is replaced by any other closed set ∆∗ 6= ∆ as long as the convex hull of ∆∗ coincides
with ∆. Therefore, my model does not distinguish between two individuals who have
the same u , p , and ε, and whose interim beliefs vary in different sets ∆ and ∆∗ with
common convex hulls.

2.3 Sketch of proof

Next, I sketch the construction of representation (4) for the preference�. This construc-
tion is the hardest part of the proof of Theorem 1.

Suppose that � and �∗ satisfy Axioms 1–7.
Step 1. By Herstein and Milnor’s (1953) Theorem, the ranking of lotteries has an ex-

pected utility representation u ∈U that is unique up to a positive linear transformation.
Without loss of generality, assume that u is non-constant. By Ghirardato et al. (2004,
Proposition A.2) there is a unique set ∆ ∈ C such that �∗ has the required representa-
tion (5). Note that for all f ∈H , U∗( f ) =minq∈∆u ( f (q )).

Step 2. Show that � satisfies all the conditions in Theorem 1 in GS. The concavity of
the function U∗ implies that for all α∈ [0, 1] and f , g ∈H ,

SP(α, f , g )≥ 0= SP(α, g , g ).

Then there exists l ∈ L such that α f + (1−α)h is more secure than α f + (1−α)l , but
αg+(1−α)h is less secure thanαg+(1−α)l . (See Lemma 1 in Appendix A.) By Cautious
Independence, � satisfies Uncertainty Aversion. The other conditions in GS’s list are
obvious. Thus, there is a unique set Π ∈C such that � has the maxmin expected utility
representation (6).

Step 3. Assume that S is finite and Σ= 2S (the general case is treated separately). Let
a ·b denote the scalar product of the vectors a ,b ∈RS . For every vector a ∈RS , let

V (a ) =min
q∈∆ q ·a and W (a ) =min

q∈Π q ·a .

LetD be the set of all points a ∈RS where the functions V and W are both differentiable.
For all a ∈D, let

v (a ) =∇V (a ) and w (a ) =∇W (a ).

Then for all a ∈D,
V (a ) = v (a ) ·a and W (a ) =w (a ) ·a . (8)

Moreover, for any a ,b ∈D, there is ε ≥ 0 such that

w (a )−w (b ) = ε(v (a )−v (b )).
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F 2. The construction of ε and p in Theorem 1.

This claim is derived from Cautious Independence (see Lemma 2 below). Roughly, the
argument proceeds as follows. Suppose that v (a )− v (b ) is not parallel to w (a )−w (b ).
Note that if a −a ′ is a constant vector, then v (a ) = v (a ′) and w (a ) =w (a ′). Therefore, it
is without loss of generality to assume that W (a ) =W (b ) and V (c ) = 0. By the separating
hyperplane theorem, there is a vector c such that

(v (a )−v (b )) · c > 0> (w (a )−w (b )) · c .

If α is sufficiently small, then

V (αc +(1−α)a )− (αV (c )+ (1−α)V (a )) =αv (a ) · c +o(α)

>αv (b ) · c +o(α) =V (αc +(1−α)b )− (αV (c )+ (1−α)V (b )).

Similarly, W (αc + (1−α)a ) < W (αc + (1−α)b ) because W (a ) = W (b ). The former in-
equality implies that αc + (1−α)a is a “better hedge” than αc + (1−α)b according to
the security level function V . Yet the latter inequality is a reversal of W (a )≥W (b ). This
situation translates into a contradiction with Cautious Independence.

Step 4. Take any a 1, a 2, a 3 ∈ D and let w i = w (a i ) and vi = v (a i ) for i = 1 . . . 3. By
Step 3, the triangles v1v2v3 and w1w2w3 are homothetic because their edges vi v j and
w i w j are parallel. Figure 2 illustrates this geometric intuition for a three-element state
space. Therefore, there is ε ≥ 0 and a vector p ∈RS such that for all a ∈D,

w (a ) = εv (a )+ (1− ε)p .
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By (8), W (a ) = εV (a )+(1−ε)p ·a for all a ∈D. By Rockafellar (1970, Theorem 25.5),D is
dense in all of RS . By continuity,

W (a ) = εV (a )+ (1− ε)p ·a
for all a ∈ RS . Thus, Π = ε∆+ (1− ε)p . By Consistency, W (a ) ≥ V (a ) for all a ∈ RS . It
follows that ε ≤ 1 and p ∈∆. (See Lemma 3 below.)

Step 5. Extend the utility representation (4) to an arbitrary state space (S,Σ) by ex-
tending the probability measure p from finite subalgebras of Σ to the entire Σ.

2.4 Behavioral meaning and elicitation of p and ε

Theorem 1 delivers a unique probability measure p as a formal component of the utility
representation for the preference �. In contrast with the standard models of subjective
probability, p is not revealed by the decision maker’s betting preference. The behavioral
meaning of the belief p is clarified by the following result.

T 2. Suppose that � and �∗ satisfy Axioms 1–7, and � is not extremely cautious.
Then for all f , g ∈H such that f is more secure than g ,

f (p )� g (p ) ⇒ f � g , (9)

and p is the only probability measure inP that satisfies this condition.

Therefore, the subjective probabilistic belief p manifests itself directly through the ex
ante rankings (9) and is uniquely determined by these rankings (except for the case of
extreme caution). More precisely, p is the only probability measure in the entire simplex
P such that for all acts f and g , if f is more secure than g , and if f (p ) � g (p ), then
f � g . In contrast to the expected utility theory or Machina and Schmeidler’s (1992)
probabilistic sophistication, representation (4) does not imply condition (9) for all acts
f and g . Even if f (p )� g (p ), the decision maker may still strictly prefer g to f when g is
more secure than f . Intuitively, this preference reversal occurs because she is not fully
confident of her subjective assessment of probabilities p and hence is biased in favor of
more secure acts.

To interpret the parameter ε in representations (5) and (6), compare two pairs of
rankings (�,�∗) and (�′,�∗) that share the same firm preference. Say that �′ is more
averse to interim ambiguity than � if for all acts f , g ∈ H such that f is more secure
than g ,

f � g ⇒ f �′ g . (10)

Put differently, this condition requires that�may strictly prefer an act g to a more secure
act f only if �′ does so. It follows that for all acts f ∈H and lotteries l ∈L ,

l � g ⇒ l �′ g

because the ranking l � g implies that the lottery l is more secure than the act g .
Thus, condition (10) strengthens the comparative definition of ambiguity aversion in
Ghirardato and Marinacci (2002).
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T 3. Suppose that both (�,�∗) and (�′,�∗) satisfy Axioms 1–7. Then �′ is more
averse to interim ambiguity than � if and only if � and �′ have representations (4) with
tuples (u ,∆, p ,ε) and (u ,∆, p ,ε′) such that ε′ ≥ ε.

This result describes the behavioral effect of a ceteris paribus increase in the parameter
ε in my model.

The above geometric construction and behavioral interpretations of p and ε do not
provide any practical methods to derive these components from empirical data. To elicit
p and ε from the preferences � and �∗, one may proceed as follows.

Take any payoffs x � y , such as x = $100 and y = $0. For any γ ∈ [0, 1], let lγ be a
lottery that delivers x and y with probabilities γ and 1− γ respectively. For any event
A ∈Σ, let

π(A) =max{γ∈ [0, 1] : x A y � lγ}
π∗(A) =max{γ∈ [0, 1] : x A y �∗ lγ}.

Here the values π(A) and π∗(A)measure the decision maker’s ex ante willingness to bet
on the event A in two different situations: in the former case, she must choose between
the bet x A y and the lottery lγ immediately, and in the latter, she can postpone this
choice until the interim stage.

By Consistency, π∗(A)≤π(A). Consider three possible cases.

(i) For all A ∈ A , π(A) +π(Ac ) = 1. Then � is represented by expected utility with
p =π, and ε ∈ [0, 1] is arbitrary.

(ii) There is A ∈A such thatπ∗(A)+π∗(Ac ) =π(A)+π(Ac )< 1. Take ε = 1 and arbitrary
p ∈∆. In this case, � is extremely cautious.

(iii) There is A ∈A such that π∗(A)+π∗(Ac )<π(A)+π(Ac )< 1. By (7),

π(A) = (1− ε)p (A)+ επ∗(A)
π(Ac ) = (1− ε)(1−p (A))+ επ∗(Ac ).

By summing the two equations, we obtain

ε =
1−π(A)−π(Ac )

1−π∗(A)−π∗(Ac )
.

For all events B ∈A , take

p (B ) =
π(B )− επ∗(B )

1− ε .

In this case, � is not extremely cautious, and both ε < 1 and p are determined
uniquely.

Note that the above construction of ε and p can be sensitive to small measurement er-
rors in the capacities π and π∗ when the ε is close to 1, or the capacity π is close to the
capacity π∗. The robustness of ε and p is discussed in Appendix B.
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2.5 Complete ignorance

An important special case of Theorem 1 is obtained when the firm preference�∗ satisfies

f �∗ g ⇔ f (s )� g (s ) for all s ∈S (11)

for all acts f , g ∈ H . This equivalence is intuitive if the decision maker is completely
ignorant ex ante about her interim beliefs. For example, she may have no ex ante in-
formation about the composition of Ellsberg’s urn, but expect to learn this composition
precisely at the interim stage. Equivalence (11) is also intuitive if the decision maker
views all states in S as possible ex ante, but expects to learn the true state at the interim
stage.

Note that if (11) is assumed, then the firm preference �∗ need not be taken as a for-
mal primitive in Theorem 1. In this case, an act f is more secure than g if and only
if there is s ∈ S such that f (s ′) � g (s ) for all s ′ ∈ S. Then Theorem 1 asserts that the
preference � is complete, transitive, continuous, monotonic, and satisfies Cautious In-
dependence if and only if � has the utility representation

U ( f ) = (1− ε)u ( f (p ))+ εmin
s∈S

u ( f (s )) (12)

where ε ∈ [0, 1], p ∈P , and u ∈U . This function has the maxmin expected utility form
with the set of priors

Π= (1− ε){p}+ εP . (13)

This model has been used in economic applications to asset pricing (Epstein and Wang
1994), insurance (Carlier et al. 2003), and search (Nishimura and Ozaki 2004). If fact,
some of these authors use the term ε-contamination to refer to the structure (13) rather
than to the general (7).

Representation (12) has other noteworthy distinctions. First, if � is not extremely
cautious, then for all lotteries l � l ′ and all events A (S and B (S,

p (A)> p (B ) ⇔ l A l ′ � l B l ′.

Therefore, the probability measure p represents the comparative likelihood relation in-
duced by the preference� over all events A (S. By contrast, the comparative likelihood
relation does not have an additive representation in the Ellsberg Paradox.

Second, representation (12) has the Choquet expected utility form

U ( f ) =

∫

S

u ( f (s ))dπ,

where the capacity π :Σ→ [0, 1] is such that π(S) = 1 and π(A) = (1−ε)p (A) for all events
A ( S. By contrast, if the set Π does not equal the core of some convex capacity, then
representation (4) does not comply with Choquet expected utility.
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3. P 

As mentioned above, representations (4) and (5) remain intuitive as long as the decision
maker expects her interim beliefs to vary in any set ∆∗ that has the convex hull ∆. To
identify the true subjective state space ∆∗, one may consider a preference �0 over all
menus of acts (i.e. subsets ofH ). Note that both � and �∗ can be derived from �0 by
taking

f � g ⇔ { f } �0 {g },
f �∗ g ⇔ { f } �0 { f , g }

for all acts f , g ∈ H . The rankings { f } �0 {g } and { f } �0 { f , g }mean respectively that
(i) the decision maker prefers to commit to f rather than to g ex ante, and (ii) she is
willing to commit to f even if she can keep both f and g feasible until the interim stage.

However, there is not a unique way to extend my model to preferences over menus.
To illustrate, adopt the approach of Epstein et al. (2008). Let ε < 1, let µ be a probability
measure onP with support∆µ, and let the preference�0 over all closed6 menus A ⊂H
be represented by

U0(A) = (1− ε)
∫

P
max
f ∈A

u ( f (q ))dµ+ εmin
q∈∆µ

max
f ∈A

u ( f (q )).

The decision maker as portrayed by this representation expects that her interim prefer-
ence will comply with expected utility and her interim belief will belong to the set ∆µ.
She aggregates these beliefs via a second-order belief µ, but being ambiguity averse, she
puts an additional weight ε on the belief q ∈ ∆µ that is least favorable for the menu at
hand. Consider another preference �′0 that is represented by

U ′0(A) = (1− ε)
∫

P
max
f ∈A

u ( f (q ))dµ+ εmax
f ∈A

min
q∈∆µ

u ( f (q )).

Here the decision maker behaves as if she expects that with probability 1−ε, her interim
preference will comply with expected utility and her interim belief will be resolved in
the set ∆µ according to the second-order distribution µ. Yet she also expects that with
probability ε, she will get no additional information at the interim stage and will have
maxmin expected utility minq∈∆µ u ( f (q )). In this case, her “subjective states” include
some rankings that violate expected utility altogether.

The utility functions U0 and U ′0 correspond to the models of short-run coarseness
and persistent coarseness in Epstein et al. (2008). Besides the difference in interpreta-
tions, these models have distinct behavioral properties. For example, the preference �0

satisfies Indifference to Randomization of menus, but �′0 does not.
Yet both�0 and�′0 induce the same pair of rankings� and�∗ that have representa-

tions (4) and (5) with p =
∫

P q dµ and ∆ equal to the convex hull of ∆µ. Indeed, for all
f ∈H ,

U ({ f }) =U ′({ f }) = (1− ε)u ( f (p ))+ εmin
q∈∆µ

u ( f (q ))

6For simplicity, assume that S and X are finite, and the spacesL andH have Euclidean topologies.
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and hence �0 and �′0 induce the same �. Moreover,

• if u ( f (q ))≥ u (g (q )) for all q ∈∆µ, then

U ({ f , g }) =U ({ f }) =U ′({ f }) =U ′({ f , g })

• if u (g (q )) > u ( f (q )) for some q ∈ ∆µ, then u (g (q ′)) > u ( f (q ′)) for all q ′ in some
neighborhood Nq of q such that µ(Nq ) > 0 and hence U ({ f , g }) > U ({ f }) and
U ′({ f , g })>U ′({ f }).

Therefore, �0 and �′0 induce the same firm preference �∗.
This example illustrates that my model has various possible extensions to prefer-

ences over menus, and these extensions provide different specifications for subjective
states. The compensation for this lack of sharpness is the weaker primitives and weaker
behavioral assumptions that are required to work with a pair of rankings � and �∗ of
individual acts rather than with a preference �0 over all menus of acts.

Alternatively, one may extend my representation results for different interpretations
of the set ∆. In a companion paper (Kopylov 2008), I define ∆ in terms of observable
prices at which uncertain prospects can be sold in incomplete markets. An interesting
distinction of this approach is that the decision maker need not agree with the market
pricing, and her subjective belief p need not belong to∆.

Finally, one may try to accommodate different attitudes towards ambiguity. It is
straightforward to flip my model so that the preference � is represented by

U ( f ) = (1−γ)u � f (p )
�

+γmax
q∈∆ u

�

f (q )
�

, (14)

where p ∈∆,∆ ∈C , u ∈U , and γ ∈ [0, 1]. To do so, say that an act f has more potential
than g (or equivalently, g has less potential than f ) if for all l ∈L ,

l �∗ f ⇒ l �∗ g .

Rewrite Cautious Independence and impose invariance (3) for all α ∈ [0, 1], acts f , g , h
and lotteries l such that α f + (1−α)h has more potential than α f + (1−α)l , but αg +
(1−α)h has less potential than αg + (1−α)l . Then Theorem 1 turns into a characteri-
zation of (14).

To accommodate a mixture of pessimistic and optimistic attitudes towards ambigu-
ity, one can use a utility representation

U ( f ) = (1− ε−γ)u � f (p )
�

+ εmin
q∈∆ u

�

f (q )
�

+γmax
q∈∆ u

�

f (q )
�

,

where ε,γ ∈ [0, 1] are such that ε + γ ≤ 1. A special case of this model for ∆ = P has
been characterized by Chateauneuf et al. (2007), but the general case is an open research
problem.
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A

A. P   –

Suppose that �∗ is represented by (5) for some u ∈ U and ∆ ∈ C . For all f ∈ H , let
U∗( f ) =maxl :l�∗ f u (l ).

L 1. For all α∈ [0, 1] and f , g , h ∈H ,

(i) U∗( f ) =minq∈∆u ( f (q ))

(ii) f is more secure than g if and only if U∗( f )≥U∗(g )

(iii) SP(α, f , h)≥ SP(α, g , h) if and only if there is l ∈L such that α f +(1−α)h is more
secure than α f +(1−α)l and αg +(1−α)h is less secure than αg +(1−α)l .

P. The first two claims are obvious. Turn to (iii). By definition of security premia,
for all α∈ [0, 1], f , g , h ∈H , and l ∈L ,

SP(α, f , h)−SP(α, g , h) = [U∗
�

α f +(1−α)h�−U∗
�

α f +(1−α)l �]
+ [U∗

�

αg +(1−α)l �−U∗
�

αg +(1−α)h�].

Therefore, if α f + (1−α)h is more secure than α f + (1−α)l and αg + (1−α)h is less
secure than αg + (1−α)l , then SP(α, f , h) ≥ SP(α, g , h). Conversely, suppose that
SP(α, f , h) ≥ SP(α, g , h). Take l ∈ L such that U∗

�

α f +(1−α)h� = U∗
�

α f +(1−α)l �.
Then α f +(1−α)h is more secure than α f +(1−α)l and

U∗
�

αg +(1−α)l �−U∗
�

αg +(1−α)h�= SP(α, f , h)−SP(α, g , h)≥ 0.

That is, αg +(1−α)h is less secure than αg +(1−α)l . �

Suppose next that � is represented by

U ( f ) = (1− ε)u ( f (p ))+ εU∗( f )

for some ε ∈ [0, 1] and p ∈ ∆. Then Axioms 1–6 are easy to check. To verify Cautious
Independence, take α ∈ [0, 1], acts f , g , h ∈ H , and a lottery l ∈ L such that f � g ,
α f + (1−α)h is more secure than α f + (1−α)l , but αg + (1−α)h is less secure than
αg +(1−α)l . Then

d 1 =U
�

α f +(1−α)l �−U
�

αg +(1−α)l �≥ 0

d 2 =U∗
�

α f +(1−α)h�−U∗
�

α f +(1−α)l �≥ 0

d 3 =U∗
�

αg +(1−α)l �−U∗
�

αg +(1−α)h�≥ 0

U
�

α f +(1−α)h�−U
�

αg +(1−α)h�= d 1+ ε(d 2+d 3)≥ 0

and hence α f +(1−α)h �αg +(1−α)h.
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Turn to sufficiency. Suppose that preferences � and �∗ satisfy Axioms 1–7. By Her-
stein and Milnor’s Theorem, the ranking of lotteries has an expected utility representa-
tion u ∈ U that is unique up to a positive linear transformation. If u is constant, then
(4) and (5) are trivial. Hereafter, assume that u is non-constant. Without loss of gener-
ality, the range of u contains the interval [−1, 1]. For any act f ∈H , let u ( f ) ∈RS be the
composition of u and f .

By Ghirardato et al. (2004, Proposition A.2) and Gilboa et al. (2008, Theorem 1), there
is a unique ∆ ∈ C such that �∗ is represented by (5). The corresponding function U∗
satisfies Lemma 1.

The preference� satisfies all the conditions in Theorem 1 in GS. In particular, for all
α∈ [0, 1] and f , g ∈H ,

SP(α, f , g )≥ 0= SP(α, g , g )

because U∗ is concave. By Lemma 1 and Cautious Independence,� satisfies Uncertainty
Aversion. Thus, there is a unique set Π∈C such that � is represented by

U ( f ) =min
q∈Π u ( f (q )).

Assume that S is finite and Σ = 2S (the general case is treated separately). For any
a ∈RS , let

V (a ) =min
q∈∆ q ·a and W (a ) =min

q∈Π q ·a . (15)

For any γ ∈ R, let ~γ = (γ, . . . ,γ) ∈ RS . Then the functions V, W : RS → R are continuous
and concave, and satisfy

V
�

αa +~γ
�

=αV (a )+γ and W
�

αa +~γ
�

=αW (a )+γ (16)

for all vectors a ∈RS and scalars α≥ 0, γ∈R.
Next, I claim that for all a ∈RS ,

W (a )≥V (a ). (17)

To show this claim, suppose that W (a )< V (a ) for some a ∈RS . Without loss of general-
ity, a = u ( f ) for some f ∈H . Take l ∈L such that U∗( f ) = V (a )> u (l )>W ( f ) =U ( f ).
Then f �∗ l , but l � f , which contradicts Consistency.

Let D be the set of all points a ∈RS where the functions V and W are both differen-
tiable. For every a ∈D, let

v (a ) =∇V (a ) and w (a ) =∇W (a ).

Take any qa ∈∆ such that V (a ) =qa ·a . Then qa = v (a ) because for all b ∈RS and δ ∈R,

V (a )+δ(qa ·b ) =qa · (a +δb )≥min
q∈∆ q · (a +δb ) =V (a +δb ) =V (a )+δ(v (a ) ·b )+o(δ),

and hence qa ·b = v (a ) ·b . Therefore, the vector v (a ) ∈ ∆ is the unique minimizer in
(15): for all q ∈∆ such that q 6= v (a ),

V (a ) = v (a ) ·a <q ·a . (18)
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Similarly, the vector w (a ) ∈ Π is the unique minimizer in (15): for all q ∈ Π such that
q 6=w (a ),

W (a ) =w (a ) ·a <q ·a . (19)

It follows from (18) and (19) that v (a ) and w (a ) are extreme points in ∆ and Π respec-
tively.

L 2. For any a ,b ∈D, there exists ε ≥ 0 such that

w (a )−w (b ) = ε(v (a )−v (b )). (20)

P. I claim that for all a ,b , c ∈RS such that V (a + c )≥V (a ) and V (b + c )≤V (b ),

W (a )≥W (b ) ⇒ W (a + c )≥W (b + c ). (21)

By (16), it is sufficient to show this claim for vectors a ,b , c ∈ [−1, 1]S . Take acts f , g , h ∈
H such that u ( f ) = a , u (g ) = b , and u (h) = c . Take a lottery l ∈ L such that u (l ) =
0. Then the inequalities W (a ) ≥ W (b ), V (a + c ) ≥ V (a ), and V (b + c ) ≤ V (b ) imply
respectively that f � g ,

U∗
�

f +h
2

�

=V
�

u
�

f +h
2

��

=V
�

a+c
2

�≥V
�
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2

�

=V
�

u
�

f +l
2

��

=U∗
�

f +h
2

�

U∗
�
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2

�

=V
�

u
�

g+l
2

��

=V
�

b
2

�≥V
�

b+c
2

�

=V
�

u
�

g+h
2

��

=U∗
�

g+h
2

�

.

By Lemma 1, 1
2 ( f +h) is more secure than 1

2 ( f +l ), but 1
2 (g+l ) is less secure than 1

2 (g+h).
By Cautious Independence, 1

2 ( f +h)� 1
2 (g +h). Therefore

W
�

u
�

f +h
2

��

≥W
�

u
�

g+h
2

��

,

and by (16), W (a + c )≥W (b + c ).
Turn to (20). Fix any a ,b ∈D. The derivatives of the functions W and V , and hence

the equality (20), are unaffected if the vectors a and b are replaced by a − V (a )~1 and
b − (W (b ) +V (a )−W (a ))~1 respectively. Without loss of generality assume that W (a ) =
W (b ) and V (a ) = 0.

By the separation theorem, the convex hull of the vectors v (a ), −v (b ), and w (b )−
w (a ) either contains 0 or can be separated from 0 by a hyperplane. Therefore, one of the
following two cases must hold.

Case 1. There are λ1,λ2,λ3 ≥ 0 such that λ1+λ2+λ3 = 1 and

λ1v (a )−λ2v (b )+λ3(w (b )−w (a )) = 0.

Then λ1 = λ2 because v (a ) ·~1 = v (b ) ·~1 = w (a ) ·~1 = w (b ) ·~1 = 1. If λ3 6= 0, then (20)
holds for ε = λ1/λ3. Suppose that λ3 = 0. Then λ1 = λ2 6= 0 and v (a ) = v (b ). Recall that
V (a ) = 0. Then for any δ> 0, V (a +δa ) =V (a ) and

V (b +δa ) =min
q∈∆ q · (b +δa )≤ v (b ) · (b +δa ) =V (b )
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because v (b ) · b = V (b ) and v (b ) · a = v (a ) · a = V (a ) = 0. Let c = δa . Then by (21),
W (a +δa )≥W (b +δa ). That is,

W (a )+δ(w (a ) ·a )+o(δ)≥W (b )+δ(w (b ) ·a )+o(δ).

Thus w (a ) ·a ≥w (b ) ·a . By (19), w (a ) =w (b ). The equality (20) then holds for any ε ≥ 0.
Case 2. x · v (a ) > 0 > x · v (b ) and x · (w (b )−w (a )) > 0 for some x ∈ RS . Take a

sufficiently small δ> 0 and c =δx such that

V (a + c ) =V (a )+δ(x ·v (a ))+o(δ)>V (a )

V (b + c ) =V (b )+δ(x ·v (b ))+o(δ)<V (b )

W (a + c )−W (b + c ) =δ(x ·w (a ))−δ(x ·w (b ))+o(δ)< 0.

This contradicts (21). �

If W = V , then � is extremely cautious, Π = ∆, and the utility representation (4)
holds for ε = 1 and any p ∈∆.

L 3. If W 6=V , then there are unique 0≤ ε < 1 and p ∈∆ such that

W (a ) = εV (a )+ (1− ε)p ·a
for all a ∈RS . Moreover, p is the only probability measure inP such that for all f , g ∈H ,
if f is more secure than g and f (p )� g (p ), then f � g .

P. Suppose that W 6= V . If v (a ) = p is constant for all a ∈D, then V (a ) = p ·a for
all a ∈D, and by continuity, for all a ∈RS . Then the inequality

min
q∈Π q ·a =W (a )≥ p ·a for all a ∈RS

implies that Π= {p}, which contradicts W 6=V .
Thus, v is not constant on D, and there are b , c ∈ D such that v (b ) 6= v (c ). By

Lemma 2, there is ε ≥ 0 such that

w (b )−w (c ) = ε(v (b )−v (c )). (22)

Take any a ∈D. I claim that
w (a ) = εv (a )+ p̂ , (23)

where p̂ =w (b )− εv (b ) =w (c )− εv (c ). To show this claim, let

B = {w (b )+γ(v (a )−v (b )) : γ≥ 0}
C = {w (c )+γ(v (a )−v (c )) : γ≥ 0}.

If v (a ) = v (b ) or v (a ) = v (c ), then B or, respectively, C is a singleton. If v (a ) 6= v (b )
and v (a ) 6= v (c ), then B and C are rays in RS . Moreover, the directions of these rays,
v (a )− v (b ) and v (a )− v (c ) respectively, are linearly independent because v (a ), v (b ),
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and v (c ) are distinct extreme points in∆. Therefore, the rays B and C have at most one
point in common. However, εv (a )+ p̂ ∈ B ∩C for γ= ε, and by Lemma 2, w (a ) ∈ B ∩C .
It follows that w (a ) = εv (a )+ p̂ .

By (18), (19), and (23),

W (a ) =w (a ) ·a = εv (a ) ·a + p̂ ·a = εV (a )+ p̂ ·a
for all a ∈ D. Rockafellar (1970, Theorem 25.5) shows that the complement of D has
measure zero, and hence D is dense in RS . By continuity, for all a ∈RS ,

W (a ) = εV (a )+ p̂ ·a .

By (17),
p̂ ·a ≥ (1− ε)V (a ). (24)

I show that ε < 1 and p̂ = (1− ε)p for some p ∈∆. Consider three cases.

(i) ε > 1. Recall that there exist two distinct points v (b ), v (c ) ∈∆. Let a = v (b )− v (c ).
Then V (a )+V (−a )< 0 because

V (a )≤ v (c ) ·a < v (b ) ·a
V (−a )≤−v (b ) ·a < v (c ) ·a .

On the other hand, by (24), V (a ) + V (−a ) ≥ p̂
1−ε · a + p̂

1−ε · (−a ) = 0, which is a
contradiction.

(ii) ε = 1. By (24), W =V , which contradicts W 6=V .

(iii) ε < 1. Let p = p̂/(1− ε). By (24), p ·a ≥ V (a ) =minq∈∆q ·a for all a ∈RS . As ∆ is
convex and closed, p ∈∆ by the separating hyperplane argument.

I now turn to the uniqueness part. The parameter 0≤ ε < 1 is uniquely determined
by (22) and p = p̂/(1− ε) is unique.

Moreover, for any p ′ ∈P such that p ′ 6= p , there are acts f , g ∈H such that

p ′ ·u ( f )> p ′ ·u (g ), p ·u ( f )≤ p ·u (g ), and V (u ( f )) =V (u (g )). (25)

To construct such f and g , take an event A ⊂ S such that p ′(A) > p (A). Let π∗(A) =
minq∈∆q (A) and π∗(Ac ) =minq∈∆q (Ac ). Take vectors a ,b ∈RS such that

a s =

(

1−π∗(A) if s ∈ A

−π∗(A) if s ∈ Ac
and bs =

(

−π∗(Ac ) if s ∈ A

1−π∗(Ac ) if s ∈ Ac .

By construction, p ′ · a > p · a , p · b > p ′ · b , p · a ≥ V (a ) = 0, and p · b ≥ V (b ) = 0. If
p ·a = p ·b , then take f , g ∈H such that u ( f ) = a and u (g ) =b . If p ·a 6= p ·b , then take
f , g ∈H such that u ( f ) = (p ·b )a and u (g ) = (p ·a )b .

It follows from (25) that for any p ′ ∈ P such that p ′ 6= p there are f , g ∈ H such
that f (p ′) � g (p ′), f is more secure than g , but still g � f . The proof of Lemma 3 is
complete. �
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Lemma 3 delivers the required utility representation (4) for the preference �. More-
over, it implies that if � is not extremely cautious, then this representation is unique
up to a positive linear transformation of u , and p is the only probability measure that
satisfies condition (9), in Theorem 2.

Now turn to Theorem 3. Let�′ be another preference that has a utility representation
(4) with a tuple (u ′,∆′, p ′,ε′). Suppose that �′ is more averse to interim ambiguity than
�. Then for all lotteries l , l ′ ∈L , l � l ′ implies that l is more secure than l ′, and hence
l �′ l ′. Thus, u ′ and u are equal up to a positive linear transformation. Without loss of
generality, let u ′ = u . If ε′ = 1, then ε′ ≥ ε and p ′ can be taken equal to p . Assume that
ε′ < 1 and p ′ 6= p . Take acts f , g that satisfy (25). Then g is more secure than f , g � f ,
but f �′ g , which violates (10). Thus p ′ = p . If ∆ = {p} is a singleton, then ε′ can be
taken equal to ε. Assume that∆ is not a singleton, and ε > ε′. Then the function v is not
constant on D, and hence there is a such that v (a ) 6= p . As ε > ε′, the point w ′(a ) does
not belong to the segment [v (a ), w (a )]. By the separating hyperplane theorem, there is
x ∈ RS such that v (a ) · x > 0, w (a ) · x > 0, but w ′(a ) · x < 0. Then for sufficiently small
δ> 0, V (a+δx )>V (a ), W (a+δx )>W (a ), but W ′(a+δx )<W ′(a ). Take acts f , g such
that u ( f ) = a +δx and u (g ) = a . (If needed, rescale a and x so that a , a +δx ∈ [−1, 1]S .)
Then f is more secure than g , f � g , but g �′ f , which violates (10). Thus ε′ ≥ ε.

To extend the utility representation (4) to an arbitrary state space (S,Σ), consider two
cases.

Case 1. For all events A ∈Σ, π(A) =π∗(A). Then for any finite subalgebraΣ′ ⊂Σ, The-
orem 1 implies that the utility function U ( f ) =minq∈∆ f (q ) represents the preference �
restricted to Σ′ measurable acts. Thus, U represents � on all ofH .

Case 2. There exists an event A ∈Σ such that π(A)>π∗(A). Let

ε =
1−π(A)−π(Ac )

1−π∗(A)−π∗(Ac )
.

For all events B ∈Σ, let p (B ) = (π(B )−επ∗(B ))/(1−ε). Then for any finite subalgebraΣ′ ⊂
Σ such that A ∈ Σ′, the finite case of Theorem 1 implies that p is finitely additive on Σ′
and the preference � is represented by (4) with components (u ,ε,∆, p ) when restricted
to Σ′ measurable acts. Thus, p is finitely additive on all of Σ, and the preference � has
the utility representation (4) with components (u ,ε,∆, p ) on all ofH .

B. R  p  ε

Suppose that for all events A ∈ Σ, the observed values π̂(A) and π̂∗(A) of the subjective
willingness to bet on any event A are generated by

π̂∗(A) =min
q∈∆ q (A)+ e∗(A)

π̂(A) = εmin
q∈∆ q (A)+ (1− ε)p (A)+ e (A)

(26)

where ε ∈ [0, 1], ∆ ∈ C , p ∈ ∆ are the sought-after true components of the model and
e∗(A) and e (A) are error terms that do not exceed in magnitude a given threshold e > 0.
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It seems plausible that e should be small when the decision maker has a monetary in-
centive not to postpone her ex ante decisions, but this incentive is minor compared to
the monetary stakes x and y .

For each event A, let Ê (A) be the range of parameters ε̂ that are consistent with the
observed values π̂(A), π̂∗(A), π̂(Ac ), and π̂∗(Ac ) and specification (26) so that

|q∗(A)− π̂∗(A)| ≤ e

|(1−q ∗(A))− π̂∗(Ac )| ≤ e

|ε̂q∗(A)+ (1− ε̂)p̂ (A)− π̂(A)| ≤ e

|ε̂(1−q ∗(A))+ (1− ε̂)p̂ (A)− π̂(Ac )| ≤ e

(27)

for some 0 ≤ q∗(A) ≤ p̂ (A) ≤ q ∗(A) ≤ 1. In particular, these inequalities hold for the
true parameter value ε and q∗(A) =minq∈∆q (A) ≤ p̂ (A) = p (A) ≤ q ∗(A) =maxq∈∆q (A).
Therefore, ε must belong to Ê (A). Let

Ê =∩A∈ΣÊ (A).

If S or Σ is finite, which must be the case in any empirical study, then the construction
of Ê is a (tedious) arithmetic exercise that can be done by a computer.

Note that for any A such that 1− π̂∗(A)− π̂∗(Ac ) > 2e , the length of Ê (A) does not
exceed

1− π̂(A)− π̂(Ac )+2e

1− π̂∗(A)− π̂∗(Ac )−2e
− 1− π̂(A)− π̂(Ac )−2e

1− π̂∗(A)− π̂∗(Ac )+2e
=

4e (1− π̂(A)− π̂(Ac ))
(1− π̂∗(A)− π̂∗(Ac ))2−4e 2 ≤

4e

1− π̂∗(A)− π̂∗(Ac )−2e
.

Therefore, for any ε̂ ∈ Ê ,

|ε̂− ε| ≤min
A∈Σ

4e

1− π̂∗(A)− π̂∗(Ac )−2e
. (28)

In particular, if both π̂∗(A) and π̂∗(Ac ) are close to zero for some event A, then any value
ε̂ ∈ Ê estimates ε with an error not exceeding 4e /(1−2e ).

Finally, for all A ∈Σ and ε̂ ∈ Ê , it follows from (26) and (27) that

�

�q∗(A)−min
q∈∆ q (A)

�

�≤ 2e
�

�ε̂q∗(A)+ (1− ε̂)p̂ (A)− εmin
q∈∆ q (A)− (1− ε)p (A)��≤ 2e

and hence
�

�(ε− ε̂)(p (A)−minq∈∆q (A))+(1− ε̂)(p̂ (A)−p (A))
�

�≤ 4e . Without loss in gener-
ality, ε− ε̂ and p̂ (A)−p (A) have the same sign. (Otherwise, replace A with Ac , p (A)with
1−p (A), and p̂ (A)with 1− p̂ (A).) It follows that

�

�(1− ε̂)(p̂ (A)−p (A))
�

�≤ 4e and hence

�

�p̂ (A)−p (A)
�

�≤ 4e

1− ε̂ . (29)
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The inequalities (28) and (29) suggest that ε̂ and p̂ (A) are robust estimates for the
parameter ε and probabilities p (A) in specification (26), except for the boundary cases
when ε is close to one or∆ is small (then 1−π̂∗(A)−π̂∗(Ac ) is small for all A ∈Σ). Note that
the estimated function p̂ need not be additive. If additivity is added to the constraints
(27), then the quality of the estimate can improve further, but this improvement is hard
to evaluate.
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