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Local stability under evolutionary game dynamics

William H. Sandholm
Department of Economics, University of Wisconsin

We prove that any regular evolutionarily stable strategy (ESS) is asymptotically sta-
ble under any impartial pairwise comparison dynamic, including the Smith dy-
namic; under any separable excess payoff dynamic, including the BNN dynamic;
and under the best response dynamic. Combined with existing results for imita-
tive dynamics, our analysis validates the use of regular ESS as a blanket sufficient
condition for local stability under evolutionary game dynamics.
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1. Introduction

A basic task of evolutionary game theory is to find conditions under which equilibrium
play is dynamically stable. Much of the literature focuses on global convergence to equi-
librium, identifying global payoff structures that ensure eventual equilibrium play re-
gardless of agents’ initial behavior.1 Inevitably, these requirements on payoff structure
are quite demanding: although each condition is satisfied in some applications, a “typi-
cal” game with many strategies does not satisfy any known condition for global conver-
gence.

To obtain stability results relevant to a wider range of games, one can turn instead to
local stability results, seeking conditions under which an equilibrium is robust to small
changes in a population’s behavior. Because conditions for local stability need only con-
strain payoffs near the equilibrium in question, they are far easier to satisfy, and so are
more likely to be applicable.

The natural starting point for discussions of local stability is the notion of an evolu-
tionarily stable strategy (ESS), introduced for single-population random matching mod-
els by Maynard Smith and Price (1973). These authors envision a monomorphic popula-
tion whose members all play the same mixed strategy, and they call this mixed strategy
an ESS if the incumbent population is capable of resisting invasions by any small mutant
group whose members all play some alternative mixed strategy.2
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Most economic applications of evolutionary game theory do not proceed from this
monomorphic, mixed-strategist model, but from a polymorphic model in which agents
choose among the available pure strategies. This, for example, is the setting of the
replicator dynamic of Taylor and Jonker (1978). However, Maynard Smith and Price’s
(1973) conditions retain their importance in this new context: Taylor and Jonker (1978),
Hofbauer et al. (1979), Zeeman (1980), and Hofbauer and Sigmund (1988) show that ESS
provides a sufficient condition for local stability under the replicator dynamic. Because
in this setting Maynard Smith and Price’s (1973) conditions are applied to population
states—that is, to distributions of the agents over the pure strategies—we refer to a strat-
egy distribution that satisfies these conditions as an evolutionarily stable state.3

Subsequent studies of local stability under evolutionary dynamics have tended to
focus on interior equilibria—that is, equilibria in which every pure strategy is played by a
positive mass of players.4 Analyses that do not impose this restriction are less common.
The most noteworthy results in this direction are due to Cressman (1997), who studies a
general class of dynamics that captures imitative behavior. Cressman (1997) shows that
near rest points, the linearization of any imitative dynamic preserves the basic structure
of the linearization of the replicator dynamic, which itself is the fundamental example of
an imitative dynamic. Combining this insight with results from Taylor and Jonker (1978)
and Hines (1980), Cressman (1997) proves that in nondegenerate cases, regular ESSs are
locally stable under all imitative dynamics.5

Imitation is undoubtedly a basic component of human decision making, and most
early analyses of evolutionary game dynamics in the economics literature focus on mod-
els that can be interpreted as imitative.6 However, the direct evaluation of strategic alter-
natives, rather than indirect evaluation through the experiences of others, is also a basic
mode of choice; indeed, it is the approach implicitly followed in most economic and
game-theoretic modeling. Direct evaluation has a number of important consequences
for evolutionary game dynamics: strategies’ growth rates no longer need to be tied to
their current levels of utilization, and unused strategies may be chosen if agents deem
them worthwhile.

The first evolutionary dynamic based on direct evaluation of alternative strategies
to gain wide currency in economics is the best response dynamic of Gilboa and Matsui
(1991). By having revising agents always switch to a strategy that is currently optimal,
this dynamic offers a natural amalgam of inertial evolutionary modeling and traditional,
rational game-theoretic analysis. At the same time, optimization requires exact knowl-
edge of all strategies’ payoffs. Because evolutionary analysis is employed in settings
where agents intermittently and myopically update their strategies, the assumption that

3Thomas (1984) is an early reference that emphasizes the distinction between evolutionarily stable
strategies and evolutionarily stable states.

4See Hofbauer (1995b, 2001), Hopkins (1999), Hofbauer and Hopkins (2005), and Sandholm (2007).
5The formal definitions of ESS and regular ESS are presented in Section 3.
6The reason for this is in part historical. Evolutionary game dynamics were introduced in biology to

model natural selection, with game payoffs representing fitnesses, and dynamics describing relative rates
of births and deaths in animal populations. Early work by economists on deterministic evolutionary game
dynamics retained this biological approach. Only later, with the work of Björnerstedt and Weibull (1996),
Weibull (1995), Schlag (1998), and Hofbauer (1995a), was it recognized that these explicitly biological mod-
els could be reinterpreted as models of imitation by economic agents.
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this myopic updating is done in an optimal way seems somewhat incongruous. To re-
tain the assumption of direct evaluation of strategies, one can suppose instead that each
revising agent considers only a single, randomly chosen alternative to his current strat-
egy. Protocols of this sort form the basis for two families of evolutionary dynamics from
the literature. When agents compare the candidate strategy’s payoff to the population’s
average payoff, aggregate behavior is described by an excess payoff dynamic. If instead
each agent compares the candidate strategy’s payoff to the payoff of his current strat-
egy, aggregate behavior is described by a pairwise comparison dynamic. The Brown–
von Neumann–Nash (BNN) dynamic (Brown and von Neumann 1950) and the Smith
dynamic (Smith 1984) are early examples from these two classes of dynamics; only more
recently have excess payoff dynamics and pairwise comparison dynamics been studied
systematically.7

All of the direct evaluation dynamics described above differ from imitative dynamics
in crucial ways: they allow agents to switch to unused strategies and they do not exhibit
the percentage-growth-rate functional form that is characteristic of imitative dynamics.
Given these basic differences, it is unclear whether conditions on payoffs that imply
local stability under imitative dynamics do the same for dynamics based on other choice
principles.8

In this paper, we study the local stability of rest points under impartial pairwise com-
parison dynamics, which include the Smith dynamic as a special case, under separable
excess payoff dynamics, which include the BNN dynamic, and under the best response
dynamic. By modifying Lyapunov functions used by Hofbauer and Sandholm (2009) to
study evolution in stable games, we prove that any regular ESS is locally asymptotically
stable under all of the dynamics in the classes noted above. Combined with Cressman’s
(1997) results for imitative dynamics, our analysis validates the use of regular ESS as a
blanket sufficient condition for local stability under evolutionary game dynamics.

The paper proceeds as follows. Section 2 introduces population games and evo-
lutionary dynamics, and presents the classes of dynamics under study. Section 3 de-
fines the notions of ESS and regular ESS. Section 4 presents our local stability theorem,
describes the intuition behind its proof, and compares this analysis with local stability
analyses for imitative dynamics. Section 5 presents extensions to multipopulation mod-
els. Section 6 offers concluding discussion. All proofs are presented in the Appendix.

2. The model

2.1 Population games

To keep the notation manageable, we focus first on games played by a single population
of agents. Analogous results for multipopulation models are presented in Section 5.

7See Weibull (1996), Hofbauer (2001), and Sandholm (2005, 2010).
8Indeed, Friedman (1991, p. 656) suggests that ESS should not be viewed as a general sufficient condi-

tion for local stability. Furthermore, imitative dynamics are known to have special properties in related
contexts. Samuelson and Zhang (1992) prove that under imitative dynamics, a strictly dominated strategy
must vanish along any interior solution trajectory, but Hofbauer and Sandholm (2007) show that any con-
tinuous evolutionary dynamic that is not purely imitative allows dominated strategies to survive in some
games.
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We suppose that there is a unit mass of agents, each of whom chooses a pure strategy
from the set S = {1� � � � � n}. The aggregate behavior of these agents is described by a
population state x ∈X , whereX = {x ∈ R

n+ :
∑
j∈S xj = 1} is the simplex and xj represents

the proportion of agents who choose pure strategy j.
We identify a population game with a continuously differentiable payoff function

F :X → R
n. The scalar Fi(x) represents the payoff to strategy i when the population

state is x, and the matrix DF(x) ∈ R
n×n denotes the derivative of F at x. We let F̄(x) =∑

j∈S xjFj(x) denote the average payoff obtained by the members of the population, and

we let F̂i(x) = Fi(x) − F̄(x) denote the excess payoff to strategy i over the population’s
average payoff.

The simplest population games are those with linear payoffs, for which there is a ma-
trix A ∈ R

n×n such that Fi(x)= ∑
j∈S Aijxj .9 In this case, the payoffs to all strategies can

be expressed concisely as F(x)=Ax, implying that DF(x)=A. More generally, payoffs
may depend nonlinearly on the population state. For example, if we use a population
game to model network congestion, then the payoff from using a given link is constant
at low levels of traffic, but falls steeply as the link nears its capacity.10 None of the results
to follow requires payoffs to be linear: the continuous differentiability of F is all that is
needed for our analysis to hold.

2.2 Revision protocols and evolutionary dynamics

To derive evolutionary dynamics from a model of individual decision making, we in-
troduce revision protocols, which describe how agents adjust their choices of strategies
during recurrent play of the game at hand. Formally, a revision protocol is a Lipschitz
continuous map ρ :Rn ×X → R

n×n+ that takes payoff vectors π and population states x
as arguments, and returns nonnegative matrices as outputs. The scalar ρij(π�x) is called
the conditional switch rate from strategy i to strategy j. If we imagine that agents re-
ceive revision opportunities independently according to rate R Poisson processes, then
ρij(π�x)/R represents the probability that an i player who receives a revision opportu-
nity switches to strategy j �= i.11 This framework allows for the possibility that agents
observe all strategies’ current payoffs and utilization levels, but in many cases the infor-
mation requirements are much weaker than this; see the examples below.

A revision protocol ρ and a population game F together define an ordinary differen-
tial equation on the state spaceX :

ẋi =
∑
j∈S
xjρji(F(x)�x)− xi

∑
j∈S
ρij(F(x)�x)� (M)

Equation (M) is called the mean dynamic generated by ρ and F . The first term in (M)

9One could interpret Fi(x) here as representing the expected payoff of a random match in the symmetric
normal form gameA. This is not our preferred interpretation, because in the subsequent model of strategy
revision, Fi(x) is best viewed as a realized payoff. To retain a matching interpretation, one can view Fi(x) as
a realized payoff if each agent is matched once with every opponent. See Section 6 for further discussion.

10For more on large-population congestion games, see Beckmann et al. (1956) and Sandholm (2001).
11Note that the rate Rmust be large enough that

∑
j �=i ρij(π�x)/R never exceeds 1, and that the diagonal

elements of ρ(π�x) play no formal role in the model.
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captures the inflow of agents to strategy i from other strategies, whereas the second term
captures the outflow of agents to other strategies from strategy i.

Deriving evolutionary dynamics from revision protocols not only allows us to study
the aggregate implications of different rules for individual choice, but also lets us find
microfoundations for existing dynamics. For instance, the replicator dynamic

ẋi = xiF̂i(x) (1)

is defined by the property that the percentage growth rate of each strategy in use is equal
to its excess payoff. Although Taylor and Jonker (1978) introduced this dynamic to model
natural selection in animal populations, for the purposes of economic analysis the repli-
cator dynamic can be viewed as a model of payoff-dependent imitation. One revision
protocol that generates this dynamic is pairwise proportional imitation,12

ρij(π�x)= xj[πj −πi]+� (2)

where [d]+ = max{d�0} is the positive part of d. The xj term in this protocol reflects the
fact that a revising agent picks a candidate strategy by observing the current strategy of
a randomly chosen opponent. The agent switches to the opponent’s strategy if its payoff
is higher than that of his own current strategy, doing so with probability proportional
to the payoff difference. Substituting protocol (2) into equation (M) and simplifying the
result yields the replicator dynamic (1).

2.3 Families of evolutionary dynamics

This approach to dynamics via revision protocols also allows us to define families of evo-
lutionary dynamics, where members of the same family are derived from qualitatively
similar protocols.

Example 1. An imitative dynamic is an evolutionary dynamic of the form

ẋi = xiGi(x)� (3)

where the C1 mapG :Rn → R
n satisfies monotone percentage growth rates:

Gi(x)≥Gj(x) if and only if Fi(x)≥ Fj(x)� (4)

as well as the forward invariance condition x′G(x) = 0 (see equation (13) below). The
simplest and best-known imitative dynamic, the replicator dynamic (1), is obtained
whenG(x) is the excess payoff function F̂(x)= F(x)− 1F̄(x), where 1 ∈ R

n is the vector
of ones.

Imitative dynamics can be derived from revision protocols of the imitative form

ρij(π�x)= xjrij(π�x)� where for all i� j�k ∈ S�
πj ≥ πi if and only if rkj(π�x)− rjk(π�x)≥ rki(π�x)− rik(π�x)�

12This protocol is due to Schlag (1998). Other imitative protocols that generate the replicator dynamic
can be found in Björnerstedt and Weibull (1996), Weibull (1995), and Hofbauer (1995a).
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The imitative aspect of these protocols is manifested by the xj term, the presence of
which leads the dynamic (3) to take a simple percentage-growth-rate form. For more
on the foundations of imitative dynamics, see Björnerstedt and Weibull (1996), Weibull
(1995), Hofbauer (1995a), and Sandholm et al. (2008). ♦

Under imitative protocols, agents select candidate strategies by observing their op-
ponents’ behavior.13 Under the protocols to follow, agents instead choose candidate
strategies directly, allowing them to switch to unused strategies whose payoffs are suffi-
ciently appealing.

Example 2. Suppose that the rate at which current strategy i players switch to the can-
didate strategy j depends only on the payoff difference between them, and that switches
to better-performing strategies are the only ones that have positive probability. Such
rules are described by revision protocols of the form

ρij(π�x)=φij(πj −πi)�
where each function φij is sign-preserving, in the sense that sgn(φij(d)) = sgn([d]+).14

Dynamics (M) generated by protocols of this form are called pairwise comparison dy-
namics (Sandholm 2010). We call such a dynamic impartial if φij ≡φj , so that the func-
tion of the payoff difference that describes the conditional switch rate from i to j does
not depend on an agent’s current strategy i. The simplest example of a pairwise com-
parison dynamic is obtained by setting φij(c) = [c]+, which yields the Smith dynamic
(Smith 1984):

ẋi =
∑
j∈S
xj[Fi(x)− Fj(x)]+ − xi

∑
j∈S

[Fj(x)− Fi(x)]+�

Even in this simple case, we obtain an equation of motion that is noticeably more com-
plicated than the general imitative dynamic (3). ♦

Example 3. Suppose that the rate at which agents switch from strategy i to strategy j
is solely a function of strategy j’s excess payoff, and that agents switch only to strategies
whose payoffs exceed the population average. Such rules are represented by protocols
of the form

ρij(π�x)=φj
(
πj −

∑
k∈S

xkπk

)
�

where each function φj is sign-preserving: sgn(φj(d))= sgn([d]+). We call the dynam-
ics (M) generated by protocols of this form separable excess payoff dynamics. Choosing
φj(d)= [d]+ yields the BNN dynamic (Brown and von Neumann 1950):

ẋi = [F̂i(x)]+ − xi
∑
j∈S

[F̂j(x)]+�

13Of course, the decision about whether to actually switch to the candidate strategy will depend on the
current strategy’s payoff, the candidate strategy’s payoff, or both.

14More explicitly, φij(d) > 0 if d > 0 and φij(d)= 0 if d ≤ 0.
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For more on this and other examples of excess payoff dynamics, see Skyrms (1990),
Swinkels (1993), Weibull (1996), Hofbauer (2001), and Sandholm (2005). ♦

Example 4. To obtain a dynamic that reflects myopic optimization, one can suppose
that revising agents always switch to a best response: ρi•(π�x) = arg maxy∈X y ′π. Then
aggregate behavior is described by the best response dynamic (Gilboa and Matsui 1991;
also see Hofbauer 1995b):

ẋ ∈ arg max
y∈X

y ′F(x)− x�

The best response dynamic is not a (single-valued) differential equation, but a (mul-
tivalued) differential inclusion: there may be multiple feasible directions of motion from
states at which more than one strategy is optimal. Therefore, our derivation here is
somewhat informal, taking a multivalued revision protocol as its basis. It is possible,
though, to provide a precise account of evolutionary processes based on multivalued
protocols; see Benaïm et al. (2005) and Gorodeisky (2008, 2009). ♦

3. Evolutionarily stable states

We now introduce our sufficient condition for local stability. To begin, we call x∗ ∈X an
evolutionarily stable state if

(y − x∗)′F(x∗)≤ 0 for all y ∈X (5)

there is a neighborhood O ⊂X of x∗ such that for all y ∈O− {x∗}�
(y − x∗)′F(x∗)= 0 implies that (y − x∗)′F(y) < 0�

(6)

Condition (5) says that x∗ is a Nash equilibrium. Condition (6) requires that if a state
y near x∗ is an alternative best response to x∗, then an infinitesimal group of invaders
whose aggregate behavior is described by x∗ can invade an incumbent population play-
ing y.15 If F(x) = Ax is linear, then the force of condition (6) does not change if we
require the implication to hold for all y ∈ X − {x∗}, as originally specified by Maynard
Smith and Price (1973) in this linear setting.16

To prove their local stability results for the replicator dynamic, Taylor and Jonker
(1978) introduce the slightly stronger notion of a regular ESS, which is defined by the
following two conditions:

Fi(x
∗)= F̄(x∗) > Fj(x∗)whenever x∗

i > 0 and x∗
j = 0 (7)

for all y ∈X − {x∗}� (y − x∗)′F(x∗)= 0 implies that (y − x∗)′DF(x∗)(y − x∗) < 0� (8)

Condition (7) says that x∗ is a quasistrict equilibrium: a Nash equilibrium at which each
unused strategy performs strictly worse than each strategy in use. Condition (8) says

15To see this, notice that the inequality in condition (6) can be rewritten as (x∗)′F(y) > y ′F(y). Other
equivalent characterizations of ESS can be found in Bomze and Weibull (1995).

16This follows from the fact that every y ∈X − {x∗} satisfies y − x∗ = c(w− x∗) for some w ∈O− {x∗} and
c > 0.
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that as the state moves from x∗ toward an alternate best response y (that is, in direction
y − x∗), the payoff advantage of x∗ over y grows at a linear rate. Condition (8) is equiva-
lent to condition (6) when F is linear (e.g., when F is generated by matching in a normal
form game), but is slightly stronger than condition (6) when nonlinear payoffs are al-
lowed.

Example 5. The conditions for regular ESS are only slightly more demanding than
those for ESS, as can be seen by looking at instances of games with nonregular ESSs.
First, consider the two-strategy game defined by F1(x)= 1 and F2(x)= x1 −ε. As long as
ε≥ 0, state e1 = (1�0) is the unique Nash equilibrium of F and an ESS of F . However, for
e1 to be a regular ESS, it must be that ε > 0, so that e1 is a quasistrict (and even a strict)
equilibrium.

Next, consider the two-strategy game defined by F1(x) = (x2 − 1
2)

3 + ε(x2 − 1
2) and

F2(x) = 0. For any ε ≥ 0, state x∗ = ( 1
2 �

1
2) is the unique Nash equilibrium of F and an

ESS of F . However, if ε= 0, then DF(x∗)= 0, so condition (8) clearly fails. For instance,
letting y = e2, we have that (e2 −x∗)′DF(x∗)(e2 −x∗)= 0� In words, this equality says that
if the population begins at equilibrium x∗, and if some agents switch from strategy 1 to
strategy 2, then although the payoff to strategy 2 falls below the payoff to mixed strategy
x∗, strategy 2’s payoff disadvantage initially does not grow at a linear rate. If instead

ε > 0, then

DF(x∗)=
(

0
0
ε

0

)
�

so the payoff disadvantage of strategy 2 relative to x∗ does grow at a linear rate:
(e2 −x∗)′DF(x∗)(e2 −x∗)= − 1

4(∂F1/∂x2)(x
∗)= − 1

4ε < 0. Thus, when ε > 0, condition (8)
is satisfied and x∗ is a regular ESS. The presence of the nonlinear payoff function in this
example is no accident: as we noted above, nonlinear payoffs are necessary for discrep-
ancies between conditions (6) and (8) to occur. ♦

It will be useful to have a more concise formulation of regular ESS. To this end, let
TX = {z ∈ R

n :
∑
j∈S zj = 0} denote the tangent space of X , let S(x) = {j ∈ S :xj > 0} de-

note the support of state x, and let R
n
S(x) = {y ∈ R

n :yj = 0 whenever j /∈ S(x)} denote the
set of vectors in R

n whose nonzero components correspond to strategies in the support
of x.

Observation 1. State x∗ is a regular ESS if and only if it is a quasistrict equilibrium (7)
that satisfies

z′DF(x∗)z < 0 for all nonzero z ∈ TX ∩ R
n
S(x∗)� (9)

In words, state x∗ is a regular ESS if it is a quasistrict equilibrium, and if the pay-
off derivative matrix DF(x∗) is negative definite with respect to TX ∩ R

n
S(x∗), the set of

vectors tangent to the face ofX containing x∗.
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4. Local stability

4.1 The main result

To prepare for our main result, we review the relevant notions of stability for dynamical
systems. Let x∗ be a rest point of the dynamic (M). We say that x∗ is Lyapunov stable
if for every neighborhood O of x∗, there exists a neighborhood O′ of x∗ such that every
solution {xt}t≥0 of (M) that starts in O′ is contained in O: that is, x0 ∈ O′ implies that
xt ∈O for all t ≥ 0. The rest point x∗ is attracting if there is a neighborhood Ô of x∗ such
that every solution that starts in Ô converges to x∗. Finally, x∗ is asymptotically stable if
it is Lyapunov stable and attracting.

Taylor and Jonker (1978) and Hines (1980) prove that any regular ESS is asymptot-
ically stable under the replicator dynamic (1) by showing that the eigenvalues of the
relevant linearized system have negative real parts. Cressman (1997) extends this lin-
earization analysis to general imitative dynamics. We describe these analyses in detail
in Section 4.3.

Members of the other classes of dynamics introduced in Section 2.3 often fail to be
differentiable, so we cannot use linearization to obtain local stability results. Instead, by
constructing suitable Lyapunov functions, we prove that any regular ESS is locally stable
under the classes of dynamics from Examples 2, 3, and 4.

Theorem 1. Let x∗ be a regular ESS of F . Then x∗ is asymptotically stable under

(i) any impartial pairwise comparison dynamic for F ;

(ii) any separable excess payoff dynamic for F ;

(iii) the best response dynamic for F .

4.2 Intuition for the main result

We now provide the intuition behind the proof of Theorem 1. The complete proof is
presented in the Appendix.

The proof of the theorem builds on analyses from Hofbauer and Sandholm (2009) of
evolutionary dynamics in stable games. A population game F is a strictly stable game if

z′DF(x)z < 0 for all nonzero z ∈ TX and all x ∈X�

That is, F is a strictly stable game if at all states x ∈X , the payoff derivative matrixDF(x)
is negative definite with respect to directions tangent toX .

By constructing suitable global Lyapunov functions, Hofbauer and Sandholm (2009)
show that the Nash equilibrium of any strictly stable game is unique and that it is glob-
ally asymptotically stable under the dynamics considered in Theorem 1. The Lyapunov
functions for the three classes of dynamics considered in the theorem are

	(x) =
∑
i∈S

∑
j∈S
xi

∫ Fj(x)−Fi(x)

0
φj(s)ds (10)
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(x) =
∑
j∈S

∫ F̂j(x)

0
φj(s)ds (11)

M(x) = max
y∈X

(y − x)′F(x)�

respectively. In the first two cases, the Lyapunov functions depend not only on the game
F , but also on the exact specification of the dynamic: the latter dependence is through
the appearance of the conditional switch rate functions φj in the formulas for	 and 
.

To see why this analysis is relevant here, recall from Observation 1 that a regular
ESS x∗ is a quasistrict equilibrium whose payoff derivative matrix DF(x∗) is negative
definite with respect to directions in TX ∩ R

n
S(x∗). If all strategies are in use at x∗, this set

of directions is just TX , so that F resembles a stable game near x∗. Thus, if x∗ ∈ int(X),
the global Lyapunov functions for stable games given above also serve as local Lyapunov
functions for the ESS x∗.

Suppose instead that x∗ /∈ int(X), so that at least one pure strategy is unused at x∗.
Because x∗ is a quasistrict equilibrium, all unused strategies earn strictly lower payoffs
than strategies in the support of x∗; because payoffs are continuous, this is true not only
at x∗ itself, but also at states near x∗. Under any dynamic that respects these payoff dif-
ferences, solutions from initial conditions near x∗ should approachXx∗ = {x ∈X :S(x)=
S(x∗)}, the face of X that contains x∗. If x∗ is a pure state (i.e., a vertex of X), and thus
a strict equilibrium, then Xx∗ is simply the singleton {x∗}, and the foregoing argument
suffices to prove local stability.17

Now, assume that x∗ is neither in the interior nor at a vertex of X , and suppose that
we confine our attention to the behavior of the dynamic on face Xx∗ in the vicinity of
x∗. One way to do so is to consider a restricted game in which only the strategies in
the support of x∗ are available. Condition (9) can be interpreted as saying that this re-
stricted game resembles a stable game near x∗. By this logic, the Lyapunov functions
from Hofbauer and Sandholm (2009) can be used to establish convergence to x∗ from
nearby initial conditions on faceXx∗ .

To prove Theorem 1, we need to construct local Lyapunov functions whose value
decreases not only along solutions on face Xx∗ , but also along solutions in the interior
ofX starting near x∗. To do so, we augment each of the Lyapunov functions listed above
by an additional term. For impartial pairwise comparison dynamics, we replace the
original Lyapunov function	 with the function

	x∗(x)=	(x)+C�x∗(x)�

where �x∗(x) = ∑
j /∈S(x∗) xj is the mass placed on strategies outside the support of x∗,

and C > 0 is a constant. For the other classes of dynamics, the term C�x∗(x) is added to
the functions 
 andM above.

When the current state x is in the interior of X , the value of 	 need not decrease.
However, if x is close to x∗, then the value of �x∗ does decrease, because agents playing

17In particular, the function �x∗ introduced below is a local Lyapunov function at x∗ in this case: see
Lemmas 1(ii), 2(ii), and 3(ii) in the Appendix.
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strategies outside of S(x∗) switch to strategies in S(x∗), though the rate of decrease of
�x∗ approaches zero as the state approaches the boundary of X . To prove the theorem,
we must show that if the constant C is large enough, then the value of C�x∗ always falls
fast enough to compensate for any growth in the value of 	, so that all told, the value of
	x∗ falls. The arguments required to accomplish this are somewhat different for each of
the three classes of dynamics considered in the theorem: see Lemmas 1, 2, and 3 in the
Appendix.

The argument just described requires precise estimates of the behavior of 	, 
, M ,
and �x∗ in a neighborhood of x∗, and these estimates take full advantage of the regular
ESS conditions (7) and (8). Still, it seems possible that the conclusions of Theorem 1
could be extended to cases where x∗ only satisfies the ESS conditions, (5) and (6). One
can prove by elementary arguments that when F has just two strategies, any ESS is lo-
cally stable under the dynamics considered in Theorem 1. Moreover, a close examina-
tion of the proof of Theorem 1(iii) reveals that in the case of the best response dynamic,
the quasistrictness condition (7) from the definition of regular ESS can be replaced with
the weaker requirement

there is a neighborhood O ⊂X of x∗ such that for all y ∈O− {x∗}�
Fi(y)≥ Fj(y)whenever x∗

i > 0 and x∗
j = 0� with Fi(y) > Fj(y) if yj > 0�

which allows for unused optimal strategies both at the equilibrium x∗ and elsewhere on
faces of X that contain x∗. Whether the conclusions of Theorem 1 can be extended to
all ESSs of arbitrary population games is an open question.

4.3 Comparison to stability analysis for imitative dynamics

The proofs of asymptotic stability of regular ESS under pairwise comparison dynamics,
excess payoff dynamics, and the best response dynamic, though differing in their de-
tails, all follow the same basic path, using augmented versions of Lyapunov functions
for stable games. In contrast, Cressman’s (1997) proof of asymptotic stability of regu-
lar ESS under imitative dynamics employs a different approach based on linearization.
Here we present a version of Cressman’s (1997) analysis, and contrast it with the analysis
of direct evaluation dynamics proposed here.

Given a dynamic ẋ = V (x) defined on a full-dimensional set in R
n, the asymptotic

stability of the rest point x∗ can be established by showing that all eigenvalues of the
derivative matrix DV (x∗) have negative real parts. Because the state space for evolu-
tionary game dynamics is the simplexX , the local stability of the rest point x∗ can be es-
tablished by showing that the “relevant eigenvalues” ofDV (x∗) have negative real parts,
where by “relevant eigenvalues” we mean those that correspond to eigenvectors in (the
complexification of) the n− 1-dimensional tangent space TX = {z ∈ R

n :z′1 = 0}. If we
let �= I − (1/n)11′ ∈ R

n×n denote the orthogonal projection of R
n onto TX , then these

relevant eigenvalues are also the eigenvalues of DV (x∗)� that correspond to eigenvec-
tors in TX .
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Let us write the general imitative dynamic (3) as

ẋ= V (x)= diag(x)G(x)� (12)

where the C1 functionG satisfies monotone percentage growth rates (4). To ensure that
the simplex is forward invariant under (12), we must have V (x) ∈ TX or, equivalently,

x′G(x)= 0� (13)

Notice that if we setG= F̂ , then (12) becomes the replicator dynamic (1).
We can compute the derivative matrix of V at state x as

DV (x)=Q(x)DG(x)− xG(x)′ + diag(G(x))� (14)

where Q(x) = diag(x)− xx′ ∈ R
n×n. If x∗ ∈ int(X) is an interior Nash equilibrium, then

the monotonicity condition (4) and the identity (13) imply that G(x∗) = 0, and hence
that

DV (x∗)�=Q(x∗)DG(x∗)�� (15)

Because Q(x) is symmetric, positive definite with respect to TX × TX , and maps 1 to
0, a lemma of Hines (1980) implies that the relevant eigenvalues of DV (x∗) will have
negative real parts ifDG(x∗) is negative definite with respect to TX × TX .

Now suppose that x∗ ∈ int(X) is a regular ESS. Then by Observation 1, DF(x∗) is
negative definite with respect to TX × TX . To take advantage of this fact, Cressman
(1997) proves that

�DG(x∗)�= c�DF(x∗)� for some c ≥ 0� (16)

That is, at any interior Nash equilibrium, the linearization of any monotone percentage-
growth-rate function G is a multiple of the linearization of the payoff function F . To-
gether, (15), (16), and the lemma of Hines (1980) imply that in nondegenerate cases
(c �= 0), an interior regular ESS is asymptotically stable.

Suppose next that x∗ is a boundary Nash equilibrium with support {1� � � � �
n∗}, where n∗ < n. In this case, the upper left n∗ × n∗ block of DV (x∗) is an n∗ × n∗
analogue of equation (15). Thus, if x∗ is a regular ESS, a version of the argument above
shows that in nondegenerate cases, this block generates n∗ − 1 relevant eigenvalues of
DV (x∗) with a negative real part. The lower right block of DV (x∗), whose source is the
third summand in (14), is a diagonal matrix with diagonal entries {Gj(x∗)}nj=n∗+1; that
each of these n− n∗ entries can be shown to be a relevant eigenvalue of DV (x∗). How-
ever, if x∗ is a regular ESS, and thus a quasistrict equilibrium (7), then monotonicity
condition (4) implies that Gj(x∗) < 0 for all j > n∗. Therefore, in nondegenerate cases,
all (n∗ − 1)+ (n− n∗) = n− 1 relevant eigenvalues of DV (x∗) have negative real parts,
implying that the regular ESS x∗ is asymptotically stable.

Cressman’s (1997) analysis of imitative dynamics and our analysis of direct evalua-
tion dynamics have some broad features in common. In both cases, the negative defi-
niteness of DF(x∗) is used to control the growth of strategies in the support of x∗, and
the quasistrictness of x∗ is used to show that small incursions by unused strategies are
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eliminated. Thus, in both cases, the full strength of regular ESS is called upon to estab-

lish local stability.

In most other respects, though, the analyses are quite different. Cressman’s (1997)

analysis takes advantage of the simple functional form (12) of imitative dynamics, and

relies on the surprising fact that all of these dynamics behave similarly in the neigh-

borhood of an equilibrium. Moreover, this analysis requires the assumption that the

dynamic is nondegenerately differentiable: when condition (16) holds with c �= 0, lin-

earization allows us to separate the analyses of strategies inside and outside the support

of x∗.

Our analysis of direct evaluation dynamics differs on each of these points. The

dependence of the Lyapunov functions (10) and (11) on the revision protocol φ sug-

gests that different dynamics exhibit different behavior in the vicinity of x∗. More-

over, because all of the basic examples of direct evaluation dynamics—Smith, BNN, best

response—are not differentiable, our stability analysis must be based on Lyapunov func-

tions. Because we do not use linearization, we cannot cleanly separate the analyses of

strategies inside and outside of the support of x∗. Indeed, the role of Lemmas 1, 2, and 3

is to show that the forces that equilibrate the use of strategies in the support of x∗ are not

too badly compromised as the strategies outside the support of x∗ are being eliminated.

An alternate possibility for unifying the analyses of imitative and direct evaluation

dynamics is to construct Lyapunov functions for the former dynamics. In the case of

the replicator dynamic, it is well known from the work of Hofbauer et al. (1979), Zeeman

(1980), and Hofbauer and Sigmund (1988) that the function

Hx∗(x)=
∑

i∈S(x∗)
x∗
i log

x∗
i

xi

serves as a local Lyapunov function for the ESS x∗. However, this function seems unre-

lated to the Lyapunov functions considered in this paper, and no generalizations of this

function for other imitative dynamics are known.

5. Multipopulation games

In this section, we explain how our local stability results extend to multipopulation

settings.

Before proceeding, we should briefly discuss a well-known result of Selten (1980)

(see also Weibull 1995) that shows that in multipopulation games defined by ran-

dom matching, various formulations of ESS are equivalent to strict equilibrium. More

broadly, this equivalence between ESS and strict equilibrium holds in any multipopula-

tion game in which each agent’s payoffs are independent of the choices of other agents

in his own population. Although this form of payoff independence is always present in

random matching contexts, it seems rather exceptional in “playing the field” models, in
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which agents’ payoffs depend directly on opponents’ aggregate behavior.18 In such con-
texts, which are common in applications of population games, the notions of ESS in-
troduced below are not especially more restrictive than those for the single-population
setting.

To define a multipopulation game, we suppose that there are p > 1 populations of
agents, with population p ∈ P = {1� � � � �p} having mass mp > 0. Agents in population
p choose pure strategies from the set Sp = {1� � � � � np}, and the total number of pure
strategies available in all populations is n= ∑

p∈P n
p. Aggregate behavior in population

p is represented by a population state in Xp = {xp ∈ R
np+ :

∑
i∈Sp x

p
i = mp}, where xpi ∈

R+ represents the mass of players in population p choosing strategy i ∈ Sp. Elements
of X = ∏

p∈P X
p = {x = (x1� � � � � xp) ∈ R

n+ :xp ∈ Xp}, the set of social states, describe
behavior in all p populations at once. The tangent spaces ofX andXp are TXp = {zp ∈
R
np :

∑
i∈Sp z

p
i = 0} and TX = ∏

p∈P TX
p, respectively.

We identify a multipopulation game with its C1 payoff function F :X → R
n. The

component Fpi :X → R denotes the payoff function for strategy i ∈ Sp, whereas Fp :X →
R
np denotes the payoff functions for all strategies in Sp. To interpret the definitions be-

low, note that inner products of elements of R
n are defined via sums that range over all

strategies in all populations: for instance, the aggregate payoff over all p populations at
social state x ∈X is given by x′F(x)= ∑

p∈P

∑
i∈Sp x

p
i F

p
i (x).

In this context, a strictly stable game is a game whose derivative matrices that satisfy
the (multipopulation) negative definiteness condition

z′DF(x)z < 0 for all nonzero z ∈ TX and all x ∈X� (17)

The Lyapunov functions introduced in Hofbauer and Sandholm (2009) continue to serve
in multipopulation games in which this condition holds.

To use these functions as the starting point for a local stability analysis, we follow
Taylor (1979) and use a definition of ESS that, like condition (17), makes use of payoff
comparisons that aggregate over all populations. In particular, we call x∗ ∈X a Taylor
ESS if it is a Nash equilibrium that satisfies

there is a neighborhood O ⊂X of x∗ such that for all y ∈O− {x∗}�
(y − x∗)′F(x∗)= 0 implies that (y − x∗)′F(y) < 0�

(18)

Strengthening this definition slightly, we call x∗ a regular Taylor ESS if it is a quasistrict
equilibrium that satisfies

for all y ∈X − {x∗}� (y − x∗)′F(x∗)= 0 implies that (y − x∗)′DF(x∗)(y − x∗) < 0� (19)

By extending arguments from Taylor and Jonker (1978), Taylor (1979) shows that any
regular Taylor ESS is asymptotically stable under the (standard) multipopulation repli-

18For instance, in multipopulation models of traffic congestion, each population corresponds to an ori-
gin/destination pair. Clearly, the delays a driver experiences should depend not only on the behavior of
drivers with other origin/destination pairs, but also on the behavior of other drivers with the same ori-
gin/destination pair.
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cator dynamic. Similarly, a simple extension of our analysis shows that a regular Taylor
ESS is asymptotically stable under multipopulation versions of all of the dynamics con-
sidered in Theorem 1.19

The inequalities in conditions (18) and (19) require that the aggregate payoffs of the
p incumbent populations exceed the aggregate payoffs of the p invading populations.
A less demanding solution concept can be obtained by requiring only that there be at
least one population p ∈ P in which incumbents outperform invaders:

there is a neighborhood O ⊂X of x∗ such that for all y ∈O− {x∗}� there is a p ∈ P
(20)

such that (yp − x∗p)′Fp(x∗)= 0 implies that (yp − x∗p)′Fp(y) < 0�

We call a Nash equilibrium that satisfies condition (20) a Cressman ESS.20

As we noted at the beginning of the paper, Maynard Smith and Price’s (1973) de-
finition of ESS serves as a stability condition in two distinct single-population con-
texts: the monomorphic, mixed-strategist framework these authors envisioned, and the
polymorhphic, pure-strategist framework first studied by Taylor and Jonker (1978). In
multipopulation settings, both of these roles cannot be played by a single definition.
Cressman (1992, 2006) and Cressman et al. (2001) argue convincingly that to capture
stability in the multipopulation analogue of Maynard Smith and Price’s (1973) mixed-
strategist framework, the appropriate solution concept is Cressman ESS.21 However, fol-
lowing Taylor (1979), we have argued here that in the context of multipopulation pure-
strategist dynamics, it is the more demanding notion of Taylor ESS that provides a gen-
eral sufficient condition for local stability.

6. Discussion

We study the evolution of behavior in population games, assuming that agents employ
revision protocols based on the direct evaluation of alternative strategies. We show that
under three classes of dynamics generated by such protocols—impartial pairwise com-
parison dynamics, separable excess payoff dynamics, and the best response dynamic—
any regular ESS is locally stable. To conclude the paper, we now discuss some of the
assumptions maintained throughout the analysis and suggest directions for future re-
search.

19In defining these multipopulation dynamics, we can allow different populations to employ different
revision protocols from the same class (e.g., from the class of protocols that defines impartial pairwise
comparison dynamics). Among other things, this flexibility can be used to offset differences in payoff scales
across populations.

20This concept is called monomorphic ESS in Cressman (1992), and N-species ESS in Cressman et al.
(2001) and Cressman (2006). A related notion for two-population games is that of a Nash–Pareto pair; see
Hofbauer and Sigmund (1988).

21Cressman (1992, 2006) and Cressman et al. (2001) consider a collection of p-dimensional replicator
systems, with one system for each strategy profile y other than the candidate for stability, x∗. The pth com-
ponent of the state variable in the p-dimensional system describes the fraction of the pth population using
the invading mixed strategy yp; the remainder of the population uses the incumbent mixed strategy x∗p. It
is shown that the origin (i.e., the state at which all members of each population p choose the incumbent
mixed strategy x∗p) is asymptotically stable in each such system if and only if x∗ is a Cressman ESS.
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All of our analysis is conducted in a population game framework in which the payoff
Fi(x), which is used as an input of the agents’ revision protocols, represents a realized
payoff. This framework includes congestion games and similar models of multilateral
externalities, the “playing the field” models of Maynard Smith (1982), and contests gen-
erated by the deterministic matching of all pairs of agents in normal form games. If F
were generated instead by a single round of random matching in the normal form game
A, then Fi(x) = (Ax)i would represent the expected payoff to strategy i. In this case,
agents would need to observe the population state and compute expected payoffs in
order to employ the revision protocols studied here. Because these requirements seem
rather stringent for evolutionary modeling, it would be more natural in this context to
assume that each agent employs a revision protocol that conditions directly on the out-
comes of his random matches. Although Schlag (1998) derives the replicator dynamic in
such an environment, little work has been done to formulate direct evaluation dynamics
in this setting, leaving a promising avenue for future research.

The present paper studies local stability in recurrent play of simultaneous-move
games. Understanding local stability in recurring sequential-move games is a topic of
clear importance, but it introduces a number of complications to the analysis. Deriv-
ing evolutionary dynamics for extensive form games from a specification of individual
behavior necessitates the use of revision protocols that incorporate agents’ assessments
of the consequences of diverting play to unreached information sets. Because dynam-
ics developed for simultaneous move games do not account for such possibilities, it is
not surprising that these dynamics can exhibit unexpected properties in extensive form
games, or that few general stability results exist.22 Finally, because unreached infor-
mation sets generate components of observationally equivalent equilibria, set-valued
analogues of the ESS concept can be expected to play a basic role in studies of local sta-
bility for extensive form games.23 Whether the analyses developed in Cressman (1997)
and in the present paper can be adapted to dynamics for extensive form games is thus a
difficult open question.

Appendix

Proof of Theorem 1(i). Let ẋ= VF(x) be an impartial pairwise comparison dynamic
for F defined by revision protocol ρij(π�x)=φj(πj −πi), and let ψk(d)= ∫ d

0 φk(s)ds be
the definite integral of φk. Define the C1 function	x∗ :X → R by

	x∗(x) =	(x)+C�x∗(x)

≡
∑
i∈S

∑
j∈S
xiψj(Fj(x)− Fi(x))+C

∑
j /∈S(x∗)

xj�

22Cressman (2003) provides a thorough account of these issues and takes the first steps toward defining
deterministic dynamics that respect extensive form structure.

23For set-valued versions of ESS, see Thomas (1985), Swinkels (1992), and Balkenborg and Schlag (2001,
2007).
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where the constant C > 0 is determined later. Hofbauer and Sandholm (2009) observe
that the function 	 is nonnegative, with 	(x) = 0 if and only if x ∈ NE(F). It follows
that 	x∗ too is nonnegative, with 	x∗(x) = 0 if and only if x is a Nash equilibrium of
F with support(x) ⊆ support(x∗). Because x∗ is an ESS, it is isolated in the set of Nash
equilibria (see Bomze and Weibull 1995), so there is a neighborhoodO of x∗ on which x∗
is the unique zero of	x∗ . If we can show that there is also a neighborhood O′ of x∗ such
that 	̇x∗(x) < 0 for all x ∈ O′ − {x∗}, then 	x∗ is a strict local Lyapunov function for x∗,
implying that x∗ is asymptotically stable (see Weibull 1995).

To reduce the amount of notation in the analysis to come, let 10 ∈ R
n be the vector

whose jth component equals 0 if j ∈ support(x∗) and equals 1 otherwise, so that (10)′x is
the mass of agents who use strategies outside the support of x∗ at state x. Then we can
write	x∗(x)=	(x)+C(10)′x, and so can express the time derivative of	x∗ as

	̇x∗(x)= 	̇(x)+C(10)′ẋ�

In the course of establishing a global stability result for stable games, Hofbauer and
Sandholm (2009) show that the time derivative of	 satisfies

	̇(x)≤ ẋ′DF(x)ẋ�

with equality holding precisely at the Nash equilibria of F . To finish the proof of Theo-
rem 1(i), it is enough to show that

ẋ′DF(x)ẋ+C(10)′ẋ≤ 0

for all x ∈ O′ − {x∗}. This follows directly from the following lemma and choosing
C ≥M/N .

Lemma 1. Let ẋ= VF(x) be a pairwise comparison dynamic for F and let x∗ be a regular
ESS of F . Then there is a neighborhood O′ of x∗ and constants M�N > 0 such that for all
x ∈O′,

(i) ẋ′DF(x)ẋ≤M(10)′x

(ii) (10)′ẋ≤ −N(10)′x.

Proof. Suppose without loss of generality that S(x∗) = support(x∗) is given by {1� � � � �
n∗}. Then to complement 10 ∈ R

n, let 1∗ ∈ R
n be the vector whose first n∗ components

equal 1 and whose remaining components equal 0, so that 1∗ +10 = 1 ≡ (1� � � � �1)′. Next,
decompose the identity matrix I as I∗ + I0, where I∗ = diag(1∗) and I0 = diag(10), and,
finally, decompose I∗ as�∗ +�∗, where�∗ = (1/n∗)1∗(1∗)′ and�∗ = I∗ −�∗. Notice that
�∗ is the orthogonal projection of R

n onto TX ∩ R
n
S(x∗) = {z ∈ R

n
0 :

∑
j∈S zj = 0� and zj =

0 whenever j /∈ S(x∗)} and that I =�∗ +�∗ + I0. Note also that if x∗ ∈ int(X), then this
decomposition becomes I =�+�+ 0, where�= I − (1/n)11′ and�= (1/n)11′ are the
orthogonal projections of R

n onto TX = {z ∈ R
n :

∑
j∈S zj = 0} and span({1}), respectively.
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Using this decomposition of the identity matrix, we can write

ẋ′DF(x)ẋ = ((�∗ +�∗ + I0)ẋ)′DF(x)((�∗ +�∗ + I0)ẋ)

= (�∗ẋ)′DF(x)(�∗ẋ)+ ((�∗ + I0)ẋ)′DF(x)ẋ (21)

+ (�∗ẋ)′DF(x)((�∗ + I0)ẋ)�

Because x∗ is a regular ESS, we know that z′DF(x∗)z < 0 for all nonzero z ∈ TX ∪ R
n
S(x∗).

Thus, because DF(x) is continuous in x, there is a neighborhood Ô of x∗ on which the
first term of (21) is nonpositive.

Turning to the second term, note that because 1′ẋ= 0 and (10)′ = 1′I0, we have that

(�∗ + I0)ẋ=
(

1
n∗ 1∗(1∗)′ + I0

)
ẋ=

(
− 1
n∗ 1∗(10)′ + I0

)
ẋ=

((
I − 1

n∗ 1∗1′
)
I0

)
ẋ�

Let ‖A‖ denote the spectral norm of the matrix A (see Horn and Johnson 1985, Ex-
ample 5.6.6). Then applying the spectral norm inequalities |Ax| ≤ ‖A‖|x| and ‖AB‖ ≤
‖A‖‖B‖, and the Cauchy–Schwarz inequality |x′y| ≤ |x||y|, we find that

((�∗ + I0)ẋ)′DF(x)ẋ =
((
I − 1

n∗ 1∗1′
)
I0ẋ

)′
DF(x)ẋ

≤ |I0ẋ|
∥∥∥∥I − 1

n∗ 1(1∗)′
∥∥∥∥‖DF(x)‖|ẋ|�

BecauseDF(x), VF(x), and ρij(F(x)�x) are continuous in x, and hence bounded, on
the compact setX , we can find constantsK and R such that∥∥∥∥I − 1

n∗ 1(1∗)′
∥∥∥∥‖DF(x)‖|ẋ| ≤K and max

i�j∈S
ρij(F(x)�x)≤R for all x ∈X� (22)

Now because x∗ is a quasistrict equilibrium, we have that Fi(x∗) = F̄(x∗) > Fj(x∗)
for all i ∈ support(x∗) = {1� � � � � n∗} and all j /∈ support(x∗). Thus, because the protocol
ρij(π�x)=φj(πj −πi) is sign preserving, we have ρij(F(x∗)�x∗)= 0 for such i and j, and
because F is continuous, there is a neighborhood O′ ⊆ Ô of x∗ on which for such i and
j we have Fi(x) > Fj(x), and hence ρij(F(x)�x)= 0. From this argument and the bound
on ρij in (22), it follows that for x ∈O′, we have

|I0ẋ| =
√∑
j>n∗

|ẋj|2

≤
∑
j>n∗

|ẋj|

=
∑
j>n∗

∣∣∣∣∑
k∈S

xkρkj(F(x)�x)− xj
∑
k∈S

ρjk(F(x)�x)

∣∣∣∣
≤

∑
j>n∗

(∑
k∈S

xkρkj(F(x)�x)+ xj
∑
k∈S

ρjk(F(x)�x)

)
(23)
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=
∑
j>n∗

∑
k>n∗

xkρkj(F(x)�x)+
∑
j>n∗

xj
∑
k∈S

ρjk(F(x)�x)

≤ 2Rn
∑
j>n∗

xj

= 2Rn(10)′x�

We therefore conclude that at all x ∈O′,

((�∗ + I0)ẋ)′DF(x)ẋ≤ 2KRn(10)′x�

Essentially the same argument provides a similar bound on the third term of (21), com-
pleting the proof of part (i) of the lemma.

We proceed with the proof of part (ii) of the lemma. Following the line of argument
after equation (22) above, we note that because x∗ is quasistrict and because the pair-
wise comparison dynamic satisfies sign preservation, we have ρji(F(x∗)�x∗) > 0 and
ρij(F(x

∗)�x∗)= 0 whenever i ∈ support(x∗)= {1� � � � � n∗} and j /∈ support(x∗). So, because
F and ρ are continuous, sign preservation implies that there is a neighborhood O′ of
x∗ and an r > 0 such that ρji(F(x)�x) > r and ρij(F(x)�x) = 0 for all i ≤ n∗, j > n∗, and
x ∈O′. Applying this observation and canceling like terms when both j and k are greater
than n∗ in the sums below, we find that for all x ∈O′,

(10)′ẋ =
∑
j>n∗

ẋj

=
∑
j>n∗

(∑
k∈S

xkρkj(F(x)�x)− xj
∑
k∈S

ρjk(F(x)�x)

)

=
∑
j>n∗

( ∑
k>n∗

xkρkj(F(x)�x)− xj
∑
k∈S

ρjk(F(x)�x)

)
(24)

= −
∑
j>n∗

xj
∑
i≤n∗

ρji(F(x)�x)

≤ −rn∗(10)′x�

This completes the proof of the lemma. �

The lemma completes the proof of Theorem 1(i). �

Proof of Theorem 1(ii). Let ẋ = VF(x) be a separable excess payoff dynamic for F
defined by revision protocol ρij(π�x)=φj(πj−x′π). Define theC1 function	x∗ :X → R

by


x∗(x)= 
(x)+C�x∗(x)≡
∑
i∈S

∫ F̂i(x)

0
φi(s)ds+C

∑
j /∈S(x∗)

xj�
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where the constant C > 0 is determined later. Hofbauer and Sandholm (2009) show that
the function 
 is nonnegative, with 
(x)= 0 if and only if x ∈ NE(F), and that


̇(x)≤ ẋ′DF(x)ẋ�

with equality holding precisely at the Nash equilibria of F . Therefore, the result follows
if we can show that

ẋ′DF(x)ẋ+C(10)′ẋ≤ 0

for all x ∈O′ − {x∗}. This inequality follows directly from the following lemma, choosing
C ≥K.

Lemma 2. Let ẋ = VF(x) be the separable excess payoff dynamic for F defined by revi-
sion protocol ρij(π�x) = φj(πj − x′π), and let x∗ be a regular ESS of F . Then there is a
neighborhood O′ of x∗ and aK > 0 such that for all x ∈O′, we have

(i) ẋ′DF(x)ẋ≤KT(x)(10)′x

(ii) (10)′ẋ= −T(x)(10)′x,

where T(x)= ∑
j∈S φj(F̂j(x)).

Proof. The proof of this lemma follows the same lines as that of Lemma 1, but with
inequalities (23) and (24) replaced by (26) and (25) below.

Suppose again that support(x∗)= {1� � � � � n∗}. Because x∗ is quasistrict, we have that
Fi(x

∗)= F̄(x∗) > Fj(x∗) for all i ∈ support(x∗)= {1� � � � � n∗} and all j /∈ support(x∗). Thus,
because the protocol ρij(π�x)= φj(πj − x′π) is sign preserving, we have φj(F̂(x∗

j ))= 0
whenever j /∈ support(x∗), and because F is continuous, there is a neighborhood O′ ⊆ Ô
of x∗ on which for such j we have that F̄(x∗) > Fj(x∗), and hence thatφj(F̂j(x))= 0. This
implies in turn that for x ∈O′, we have

(10)′ẋ =
∑
j>n∗

ẋj

=
∑
j>n∗

(∑
k∈S

xkρkj(F(x)�x)− xj
∑
k∈S

ρjk(F(x)�x)

)

=
∑
j>n∗

(
φj(F̂j(x))− xj

∑
k∈S

φk(F̂(x))

)
(25)

= −
∑
j>n∗

xj
∑
k∈S

φk(F̂(x))

= −T(x)(10)′x�

and so

|I0ẋ| =
√∑
j>n∗

|ẋj|2 ≤
∑
j>n∗

|ẋj| = −
∑
j>n∗

ẋj = T(x)(10)′x� (26)
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The proof otherwise follows that of Lemma 1. �

The proof of Theorem 1(ii) is now complete. �

Proof of Theorem 1(iii). Let ẋ ∈ VF(x) ≡ arg maxy∈X y ′F(x)− x be the best response
dynamic for F . Define the Lipschitz continuous function

Mx∗(x)=M(x)+C�x∗(x)≡ max
y∈X

(y − x)′F(x)+C
∑

j /∈S(x∗)
xj�

Hofbauer (2001) and Hofbauer and Sandholm (2009) show that M is nonnegative, with
M(x) = 0 if and only if x ∈ NE(F), and that along each solution trajectory {xt}t≥0, we
have

Ṁ(xt)= (ẋt)′DF(xt)ẋt −M(xt)
for almost all t ≥ 0. Therefore, by standard results on Lyapunov functions for differential
inclusions (see Theorems A.2 and A.3 of Hofbauer and Sandholm 2009), the result will
follow if we show that

ẋ′DF(x)ẋ+C(10)′ẋ≤ 0

for all x ∈O′ − {x∗} and all ẋ ∈ VF(x). This inequality follows from the following lemma,
setting C ≥K.

Lemma 3. Let ẋ ∈ VF(x)≡ arg maxy∈X y ′F(x)− x be the best response dynamic for F , and
let x∗ be a regular ESS of F . Then there is a neighborhood O′ of x∗ and a K > 0 such that
for all x ∈O′ and ẋ ∈ VF(x), we have

(i) ẋ′DF(x)ẋ≤K(10)′x

(ii) (10)′ẋ= −(10)′x.

Proof. The proof of this lemma follows the same lines as that of Lemma 1, but with
inequalities (23) and (24) replaced by (28) and (27) below.

Suppose once again that support(x∗) = {1� � � � � n∗}. If we choose the neighborhood
O′ as we did in the proof of Lemma 2, then no j > n∗ is optimal at any x ∈ O′. Thus, for
such x and any ẋ ∈ VF(x), we have

(10)′ẋ=
∑
j>n∗

ẋj = −
∑
j>n∗

xj = −(10)′x (27)

and hence

|I0ẋ| =
√∑
j>n∗

|ẋj|2 ≤
∑
j>n∗

|ẋj| = −
∑
j>n∗

ẋj = (10)′x� (28)

The proof otherwise follows that of Lemma 1. �

The proof of Theorem 1(iii) is now complete. �



48 William H. Sandholm Theoretical Economics 5 (2010)

References

Balkenborg, Dieter and Karl H. Schlag (2001), “Evolutionarily stable sets.” International
Journal of Game Theory, 29, 571–595. [42]

Balkenborg, Dieter and Karl H. Schlag (2007), “On the evolutionary selection of sets of
Nash equilibria.” Journal of Economic Theory, 133, 295–315. [42]

Beckmann, Martin, C. B. McGuire, and Christopher B. Winsten (1956), Studies in the
Economics of Transportation. Yale University Press, New Haven. [30]

Benaïm, Michel, Josef Hofbauer, and Sylvain Sorin (2005), “Stochastic approximation
and differential inclusions.” SIAM Journal on Control and Optimization, 44, 328–348.
[33]

Björnerstedt, Jonas and Jörgen W. Weibull (1996), “Nash equilibrium and evolution by
imitation.” In The Rational Foundations of Economic Behavior (Kenneth J. Arrow et al.,
eds.), 155–171, St. Martin’s Press, New York. [28, 31, 32]

Bomze, Immanuel M. and Jörgen W. Weibull (1995), “Does neutral stability imply Lya-
punov stability?” Games and Economic Behavior, 11, 173–192. [33, 43]

Brown, George W. and John von Neumann (1950), “Solutions of games by differential
equations.” In Contributions to the Theory of Games I, volume 24 of Annals of Mathe-
matics Studies (Harold W. Kuhn and Albert W. Tucker, eds.), 73–79, Princeton University
Press, Princeton. [29, 32]

Cressman, Ross (1992), The Stability Concept of Evolutionary Game Theory: A Dynamic
Approach, volume 94 of Lecture Notes in Biomathematics. Springer, Berlin. [27, 41]

Cressman, Ross (1997), “Local stability of smooth selection dynamics for normal form
games.” Mathematical Social Sciences, 34, 1–19. [28, 29, 35, 37, 38, 39, 42]

Cressman, Ross (2003), Evolutionary Dynamics and Extensive Form Games. MIT Press,
Cambridge. [42]

Cressman, Ross (2006), “Uninvadability in N-species frequency models for resident-
mutant systems with discrete or continuous time.” Theoretical Population Biology, 69,
253–262. [27, 41]

Cressman, Ross, József Garay, and Josef Hofbauer (2001), “Evolutionary stability con-
cepts for N-species frequency-dependent interactions.” Journal of Theoretical Biology,
211, 1–10. [27, 41]

Friedman, Daniel (1991), “Evolutionary games in economics.” Econometrica, 59,
637–666. [29]

Gilboa, Itzhak and Akihiko Matsui (1991), “Social stability and equilibrium.” Economet-
rica, 59, 859–867. [28, 33]

Gorodeisky, Ziv (2008), “Stochastic approximation of discontinuous dynamics.” Unpub-
lished paper, Hebrew University. [33]



Theoretical Economics 5 (2010) Local stability under evolutionary game dynamics 49

Gorodeisky, Ziv (2009), “Deterministic approximation of best-response dynamics for the
Matching Pennies game.” Games and Economic Behavior, 66, 191–201. [33]

Hines, W. G. S. (1980), “Three characterizations of population strategy stability.” Journal
of Applied Probability, 17, 333–340. [28, 35, 38]

Hofbauer, Josef (1995a), “Imitation dynamics for games.” Unpublished paper, University
of Vienna. [28, 31, 32]

Hofbauer, Josef (1995b), “Stability for the best response dynamics.” Unpublished paper,
University of Vienna. [28, 33]

Hofbauer, Josef (2001), “From Nash and Brown to Maynard Smith: Equilibria, dynamics,
and ESS.” Selection, 1, 81–88. [28, 29, 33, 47]

Hofbauer, Josef and Ed Hopkins (2005), “Learning in perturbed asymmetric games.”
Games and Economic Behavior, 52, 133–152. [28]

Hofbauer, Josef and William H. Sandholm (2007), “Survival of dominated strategies un-
der evolutionary dynamics.” Unpublished paper, University of Vienna and University of
Wisconsin. [29]

Hofbauer, Josef and William H. Sandholm (2009), “Stable games and their dynamics.”
Journal of Economic Theory, 144, 1665–1693. [29, 35, 36, 40, 43, 46, 47]

Hofbauer, Josef, Peter Schuster, and Karl Sigmund (1979), “A note on evolutionary stable
strategies and game dynamics.” Journal of Theoretical Biology, 81, 609–612. [28, 39]

Hofbauer, Josef and Karl Sigmund (1988), The Theory of Evolution and Dynamical Sys-
tems. Cambridge University Press, Cambridge. [28, 39, 41]

Hopkins, Ed (1999), “A note on best response dynamics.” Games and Economic Behavior,
29, 138–150. [28]

Horn, Roger A. and Charles R. Johnson (1985), Matrix Analysis. Cambridge University
Press, Cambridge. [44]

Maynard Smith, John (1982), Evolution and the Theory of Games. Cambridge University
Press, Cambridge. [42]

Maynard Smith, John and George R. Price (1973), “The logic of animal conflict.” Nature,
246, 15–18. [27, 28, 33, 41]

Samuelson, Larry and Jianbo Zhang (1992), “Evolutionary stability in asymmetric
games.” Journal of Economic Theory, 57, 363–391. [29]

Sandholm, William H. (2001), “Potential games with continuous player sets.” Journal of
Economic Theory, 97, 81–108. [30]

Sandholm, William H. (2005), “Excess payoff dynamics and other well-behaved evolu-
tionary dynamics.” Journal of Economic Theory, 124, 149–170. [29, 33]

Sandholm, William H. (2007), “Evolution in Bayesian games II: Stability of purified equi-
libria.” Journal of Economic Theory, 136, 641–667. [28]



50 William H. Sandholm Theoretical Economics 5 (2010)

Sandholm, William H. (2009), “Evolutionary game theory.” In Encyclopedia of Complex-
ity and Systems Science (Robert A. Meyers, ed.), 3176–3205, Springer, Heidelberg. [27]

Sandholm, William H. (2010), “Pairwise comparison dynamics and evolutionary foun-
dations for Nash equilibrium.” Games, 1, 3–17. [29, 32]

Sandholm, William H., Emin Dokumacı, and Ratul Lahkar (2008), “The projection dy-
namic and the replicator dynamic.” Games and Economic Behavior, 64, 666–683. [32]

Schlag, Karl H. (1998), “Why imitate, and if so, how? A boundedly rational approach to
multi-armed bandits.” Journal of Economic Theory, 78, 130–156. [28, 31, 42]

Selten, Reinhard (1980), “A note on evolutionarily stable strategies in asymmetric animal
conflicts.” Journal of Theoretical Biology, 84, 93–101. [39]

Skyrms, Brian (1990), The Dynamics of Rational Deliberation. Harvard University Press,
Cambridge. [33]

Smith, Michael J. (1984), “The stability of a dynamic model of traffic assignment—an
application of a method of Lyapunov.” Transportation Science, 18, 245–252. [29, 32]

Swinkels, Jeroen M. (1992), “Evolutionary stability with equilibrium entrants.” Journal of
Economic Theory, 57, 306–332. [42]

Swinkels, Jeroen M. (1993), “Adjustment dynamics and rational play in games.” Games
and Economic Behavior, 5, 455–484. [33]

Taylor, Peter D. (1979), “Evolutionarily stable strategies with two types of players.” Jour-
nal of Applied Probability, 16, 76–83. [40, 41]

Taylor, Peter D. and Leo B. Jonker (1978), “Evolutionarily stable strategies and game dy-
namics.” Mathematical Biosciences, 40, 145–156. [28, 31, 33, 35, 40, 41]

Thomas, Bernhard (1984), “Evolutionary stability: States and strategies.” Theoretical
Population Biology, 26, 49–67. [28]

Thomas, Bernhard (1985), “On evolutionarily stable sets.” Journal of Mathematical Biol-
ogy, 22, 105–115. [42]

Weibull, Jörgen W. (1995), Evolutionary Game Theory. MIT Press, Cambridge. [28, 31, 32,
39, 43]

Weibull, Jörgen W. (1996), “The mass action interpretation.” Excerpt from “The work
of John Nash in game theory: Nobel seminar, December 8, 1994.” Journal of Economic
Theory, 69, 165–171. [29, 33]

Zeeman, E. Christopher (1980), “Population dynamics from game theory.” In Global The-
ory of Dynamical Systems (Evanston, 1979), volume 819 of Lecture Notes in Mathematics
(Zbigniew Nitecki and Clark Robinson, eds.), 471–497, Springer, Berlin. [28, 39]

Submitted 2008-11-25. Final version accepted 2009-9-1. Available online 2009-9-6.


	Introduction
	The model
	Population games
	Revision protocols and evolutionary dynamics
	Families of evolutionary dynamics

	Evolutionarily stable states
	Local stability
	The main result
	Intuition for the main result
	Comparison to stability analysis for imitative dynamics

	Multipopulation games
	Discussion
	Appendix
	References

