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Nash implementation with little communication

Ilya R. Segal
Department of Economics, Stanford University

The paper considers the communication complexity (measured in bits or real
numbers) of Nash implementation of social choice rules. A key distinction is
whether we restrict to the traditional one-stage mechanisms or allow multistage
mechanisms. For one-stage mechanisms, the paper shows that for a large and
important subclass of monotonic choice rules—called intersection monotonic—
the total message space size needed for one-stage Nash implementation is es-
sentially the same as that needed for “verification” (with honest agents who are
privately informed about their preferences). According to Segal (2007), the lat-
ter is the size of the space of minimally informative budget equilibria verifying
the choice rule. However, multistage mechanisms allow a drastic reduction in
communication complexity. Namely, for an important subclass of intersection-
monotonic choice rules (which includes rules based on coalitional blocking such
as exact or approximate Pareto efficiency, stability, and envy-free allocations), we
propose a two-stage Nash implementation mechanism in which at most 5 alterna-
tives plus 4N log2 N bits are announced in any play. Such two-stage mechanisms
bring about an exponential reduction in the communication complexity of Nash
implementation for discrete communication measured in bits or a reduction from
infinite- to low-dimensional continuous communication.
Keywords. Monotonic social choice rules, Nash implementation, communica-
tion complexity, verification, realization, budget sets, price equilibria, message
space dimension.

JEL classification. D71, D82, D83.

1. Introduction

This paper considers the problem of Nash implementation of social choice rules, i.e.,
designing a mechanism whose set of Nash equilibria equals the set of socially desir-
able alternatives. As shown by Maskin (1999), any Nash implementable choice rule
must satisfy the property of “monotonicity,” which, together with the “no veto power”
(NVP) property, also proves sufficient for Nash implementation with N ≥ 3 agents. The
sufficiency part is shown by constructing a “canonical” mechanism to implement the
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choice rule. The canonical mechanism has been criticized for its enormous communi-
cation burden: Indeed, it requires each agent to describe the preferences of all the agents
(along with an integer), which is impractical in most settings. A number of papers have
demonstrated that Nash implementation can be achieved with simpler mechanisms,
even much simpler in some special settings.1 However, these papers have not consid-
ered the problem of minimizing the communication cost of Nash implementation ex-
cept in several special settings (such as Pareto, Walrasian, or Lindahl correspondences
in classical economies with convex preferences).2�3

The present paper offers two contributions to this literature: (1) a mechanism for
one-stage Nash implementation at a close to minimal communication cost and (2) a
three-stage mechanism for Nash implementation with a drastically lower communi-
cation cost. The construction does not work for all implementable choice rules, but
for a large class of them (which includes all specific monotonic choice rules examined
previously). Our approach follows the program suggested by Williams (1986), who re-
lates the message space needed for Nash implementation to that needed to verify the
desirability of an alternative when agents know their preferences privately but can be
trusted to report honestly. At first glance, the two problems appear quite different: un-
der Nash implementation, selfish agents with symmetric information send messages,
while under verification, honest agents with private information respond to a message
announced by a hypothetical omniscient oracle. Yet, as observed in Reichelstein (1984)
and Williams (1986), Nash implementation can be viewed a special case of verifica-
tion, since each agent’s acceptance of (lack of profitable deviations from) a candidate
Nash equilibrium depends only on his own preferences. This observation implies that
the communication cost of Nash implementation is bounded below by that of verifica-
tion.4

This paper further exploits the relation between Nash implementation and verifica-
tion, using concepts and results developed in Segal (2007). The latter paper focuses on a
large and important subclass of monotonic choice rules, called intersection monotonic

1See Chakravorti (1991), Dubey (1982), Duggan (2003), Dutta et al. (1995), Hurwicz (1979), Li et al.
(1995), McKelvey (1989), Peleg (1996), Reichelstein and Reiter (1988), Saijo (1988), Saijo et al. (1996, 1999),
Schmeidler (1980), Sjostrom (1996), Suzuki (2009), Svensson (1991), Tian (1989, 1992, 1994), and Yoshihara
(1999).

2Note that if the agents were honest, then under symmetric information we could simply ask one agent to
report a socially desirable outcome, which would entail a low communication cost. Any additional commu-
nication cost of Nash implementation can thus be interpreted as the “communication cost of selfishness.”
Fadel and Segal (2009) examine the communication cost of selfishness for (partial) Bayesian–Nash and ex
post implementation.

3The canonical mechanism has also been criticized for its use of integer or modulo games to eliminate
undesirable equilibrium outcomes (see, e.g., Jackson 1992). While in a number of settings such tricks can
be avoided, in this paper we do not examine this issue, because the communication cost of modulo games
is fairly low.

4Williams (1986) does not attempt a reverse comparison of the communication costs of implementation
and verification: while he “embeds” a verification protocol into an implementation mechanism under some
conditions, he admits that “the strategy space in our construction is rather large, relative to the size of the
message space [used for verification]. Clearly, if the goal is to devise games with small strategy spaces, then
the embedding itself is a key step [� � �]. Within the context of economic theory, this issue has not yet been
studied.” Such an embedding with small strategy spaces is constructed in our Mechanism 1 below.
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(IM), and shows that such rules are verified with minimal communication by announc-
ing a “minimally informative verifying budget equilibrium.” Such an equilibrium de-
scribes a proposed alternative and offers each agent a budget set—an appropriately
restricted subset of alternatives. The fact that the proposed equilibrium is indeed an
equilibrium in a given state—i.e., that each agent cannot improve upon the proposed
alternative within his budget set—must verify the social desirability of the proposed al-
ternative in this state. The budget sets must be chosen carefully: on the one hand, they
must be large enough for the equilibrium to achieve verification; on the other hand, they
must not be too large so that the equilibrium does not reveal more than necessary about
the agents’ preferences. Segal (2007) gives an algorithm for constructing such “mini-
mally informative verifying budget equilibria” for any given IM choice rule.

To apply these ideas to Nash implementation, observe that a Nash equilibrium of
a mechanism describes for each agent a “budget set” consisting of the alternatives he
could achieve by unilateral deviations and that the described budget equilibrium must
verify that the alternative is socially desirable. The only difference from the verification
scenario is that an agent’s budget set must be described by the other agents rather than
by the hypothetical omniscient oracle. This observation leads us to construct a Nash im-
plementation mechanism with small strategy spaces, in which exactly two agents—say,
agents 1 and 2—describe a minimally informative budget equilibrium verifying a choice
rule. In addition, each agent announces an alternative and an integer between 1 and N .
When all the agents agree on an alternative, and agents 1 and 2 also agree on a budget
equilibrium that supports it, the alternative is implemented. When one agent deviates
from such unanimous agreement and proposes another alternative, his proposal is im-
plemented if and only if it lies in his budget set as described by another agent. Thus,
unanimous agreement is a Nash equilibrium in a given state if and only if agents 1 and 2
announce a budget equilibrium for this state, and since only budget equilibria verifying
the choice rule can be announced, unanimous-agreement Nash equilibria yield desir-
able alternatives. To ensure that non-unanimous Nash equilibria do not yield any unde-
sirable alternatives, we use the integers announced by the agents to induce a “modulo
game” when more than one agent disagrees with others, and we make use of the NVP
property, just as it is done in the canonical mechanism.

This construction yields our Mechanism 1, which implements any choice rule that
is IM and NVP with N ≥ 3 agents.5 In this mechanism, two agents send a minimal mes-
sage needed for verification (which takes the form of describing a minimally informative
verifying budget equilibrium), and, in addition, each of the N agents describes an alter-
native and sends �log2 N� bits.6

The proposed mechanism is particularly useful in conjunction with Segal’s (2007) al-
gorithm for constructing minimally informative verifying budget equilibria. When using
such budget equilibria, Mechanism 1 gives us a “close-to-minimal” Nash implementa-
tion mechanism. In many important settings, this mechanism proves to have a much

5Mechanism 1 can be used both for the “weak” versions of the implementation and verification prob-
lems, in which it suffices to implement/verify a nonemtpy subset of desirable outcomes in any given state,
and for the “full” version, in which all desirable alternatives must be implementable/verifiable.

6The notation �z� denotes the smallest integer greater than or equal to z.
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smaller strategy space than what full description of agents’ preferences or even just
their lower contour sets at a given alternative would require. For example, this is true
for the problem of implementing interior Pareto efficient allocations in classical convex
economies with private and public goods, in which the minimally informative verifying
budget equilibria take the familiar form of Walrasian and Lindahl equilibria, respectively
(Segal 2007).7

The second observation of the paper is that while the total size of strategy spaces
describes the communication complexity of a one-stage mechanism, it may severely
overstate the communication complexity of a multistage mechanism. This is because
describing an agent’s (complete contingent) strategy in a multistage game may take a lot
longer than simply playing the game. In fact, we show that multistage mechanisms allow
a huge reduction in the communication complexity of Nash implementation. We do this
for a subclass of IM choice rules, called coalitionally unblocked (CU) rules (Segal 2007),
which still includes all the specific monotonic choice rules that have been considered
in economics (such as the Pareto rule, approximate Pareto, the core, stable matching,
and envy-free rules). We implement such rules with a three-stage mechanism in which
after an alternative is announced (by three agents, in Stage 1), it can be challenged by
any agent proposing another alternative (in Stage 2). Then (in Stage 3) other agents
(at most three of them) are asked to say which agents’ budget sets allow the challenge.
Thus, while the agents’ complete contingent strategies in the mechanism describe all
the budget sets, any single play of the mechanism describes only the placement of a
single alternative into the budget sets.8

This construction yields our Mechanism 2, which implements any choice rule that
is CU and NVP with N ≥ 3 agents. The communication in any play of this mechanism
(both in and out of equilibrium) is bounded by describing no more than five alternatives
plus 4N�log2 N� bits.

To see the potential communication reduction allowed by Mechanism 2, recall from
Segal (2007) that in some social choice problems, the minimally informative verifying
budget equilibria must use all possible subsets of alternatives as budget sets. For exam-
ple, to verify Pareto efficiency on the universal preference domain over X alternatives,
any partition of the alternatives among the N agents must be used as a verifying bud-
get equilibrium. Describing such a partition requires sending roughly X log2 N bits (to

7Low-communication one-stage mechanisms for Nash implementation of general monotonic social
choice rules also are proposed by McKelvey (1989, Section 5) and Hurwicz and Reiter (2006, Section 3.9.2).
Without the benefit of Segal’s (2007) budget-equilibrium characterization of verification of IM choice rules,
these works could not tightly relate the communication requirements of Nash implementation to that
of verification. McKelvey (1989) does not formalize the problem of minimizing communication, while
Hurwicz and Reiter (2006) consider communication in equilibrium, rather than the total size of message
spaces (which must include many message profiles that are never sent in equilibrium). Despite these dif-
ferences, the two constructions are related to our Mechanism 1, as we will point out in greater detail below.

8This is not a complete description of the mechanism: we also need to make sure that agents’ reports
about budget sets are consistent with verifying the choice rule and that in any equilibrium, the strategies of
different agents describe the same budget sets. We achieve both goals without raising the communication
cost. We also use the modulo game to take care of equilibria that involve one or more challenges.
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allocate each alternative into one of the agents’ budget sets).9 Any one-stage Nash im-
plementation mechanism has to have at least as much communication. On the other
hand, Mechanism 2 uses no more than 5�log2 X� + 4N · �log2 N� bits, yielding an expo-
nential reduction in communication complexity from one-stage mechanisms when the
number of alternatives is large.

In a model with continuous communication, multistage mechanisms allow even
more drastic reduction in communication. For example, consider the problem of al-
locating a divisible good among the agents, compensating them with unlimited trans-
fers of the numeraire. Agents have utilities that are quasilinear in the numeraire and
nondecreasing in their consumption of the good. The goal is to find a Pareto efficient
(i.e., surplus-maximizing) allocation. As shown by Calsamiglia (1977), verifying this goal
requires infinite-dimensional communication. In Nisan and Segal (2006), this result is
derived from the observation that verifying efficiency requires describing a nonlinear
personalized pricing function [0�1] → R (for divisible good consumption in terms of
the numeraire) for all agents but one, which is infinite dimensional (even if arbitrary
smoothness is assumed). One-stage Nash implementation is at least as hard. In con-
trast, Mechanism 2 achieves Nash implementation while transmitting only 10(N − 1)
real numbers (and 4N · �log2 N� bits).

We conclude with a philosophical discussion. While current mainstream economic
thinking justifies price mechanisms by the need to provide incentives to selfish agents,
we showed in Segal (2007) that supporting prices (more generally, budget sets, which
could be described by personalized nonlinear prices) must be communicated to attain
many important social goals even if agents are honest but their preference information
is private and must be aggregated to find a socially desirable outcome. An intuition for
this, based on Hayek (1945), is that to achieve social goals that are “sufficiently congru-
ent” with private goals, communication is minimized by asking individuals to maximize
their own preferences within certain “budget sets,” which must be carefully outlined to
coordinate their choices and attain the social goals.

The analysis of one-stage Nash implementation suggests another possible justifica-
tion for prices: they must be used to create incentives even when information is sym-
metric. This justification is not valid, however, once multistage mechanisms are allowed.
Multistage Nash mechanisms with symmetric information need not reveal supporting
prices in any play, and so can have very low communication complexity. In contrast,
multistage mechanisms with private information, even when agents are honest, can-
not do any better than verification mechanisms (Kushilevitz and Nisan 1997, Chap-
ter 2), and therefore according to Segal (2007) must still communicate supporting prices,
which bounds below their communication complexity. In brief, once multistage mech-
anisms are allowed, price revelation becomes unnecessary when information is sym-
metric (even if agents are selfish), but is still necessary when preference information is
private (even if agents are honest). Thus, we conclude that price revelation must arise
due to the need to aggregate distributed preference information, rather than due to the
need to create incentives for selfish agents.

9For other problems, the minimally informative budget equilibria may be described more succinctly. For
example, for Pareto efficiency in smooth convex exchange economies, the budget sets are Walrasian and so
can be described with linear anonymous prices (Segal 2007).
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2. Setup

2.1 The social choice problem

Let X be the set of social alternatives and let N be a finite set of agents, numbered 1
to N . (With a slight abuse of notation, the same letter will denote a set and its cardinal-
ity when this causes no confusion.) Let P denote the set of all preference relations over
set X . The set of agent i’s possible preference relations is denoted by Ri ⊂ P . A state is a
preference profile R = (R1� � � � �RN) ∈ R1 ×· · ·× RN ≡ R, where R is the state space, also
called preference domain. The goal is to realize a choice rule, which is a correspondence
F : R � X . For every state R ∈ R, the rule specifies the set F(R) of “desirable” alterna-
tives in this state.

The following two properties of choice rules, introduced in Maskin (1999), play a
prominent role in Nash implementation. (We use the standard notation L(x�Ri) =
{y ∈ X :x Ri y}—the lower contour set of agent i’s preference relation Ri at alternative
x ∈ X .)

Definition 1. Choice rule F is monotonic if ∀R ∈ R, ∀x ∈ F(R), and ∀R′ ∈ R such that
L(x�Ri) ⊂L(x�R′

i) ∀i ∈N , we have x ∈ F(R′).

Definition 2. Choice rule F has no veto power (NVP) if ∀i ∈ N , ∀R ∈ R, and ∀x ∈ X

such that L(x�Rj) =X ∀j ∈N \ {i}, we have x ∈ F(R).

The next two properties are introduced in Segal (2007):

Definition 3. Choice rule F is intersection-monotonic (IM) if ∀R̃ = R̃1 × · · · × R̃N ⊂
R, ∀x ∈ ⋂

R∈R̃ F(R), and ∀R′ ∈ R such that
⋂

Ri∈R̃i
L(x�Ri) ⊂ L(x�R′

i) ∀i ∈ N , we have
x ∈ F(R′).

Note that this property implies monotonicity by taking R̃ to be a singleton. In addi-
tion to monotonicity, it requires, in particular, that if the desirability of alternative x is
preserved by making an agent strictly prefer alternative y or alternative z to x (holding
the other preferences fixed), then it should also be preserved by making the agent strictly
prefer both y and z to x (assuming all the relevant preference profiles are feasible). (In
fact, IM is characterized by this requirement and monotonicity when R = PN and X is
finite.)

Definition 4. Choice rule F is a coalitionally unblocked (CU) choice rule if there exists
a blocking correspondence β :X × 2N �X for which

F(R) =
{
x ∈X :β(x�S) ⊂

⋃
i∈S

L(x�Ri) ∀S ⊂N

}
∀R ∈ R�

We can interpret β(x�S) as the set of alternatives that coalition S ⊂ N is allowed to
use to block candidate alternative x ∈ X . The choice rule consists of candidate alter-
natives for which no coalition can find a strictly Pareto improving blocking. Note that
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CU implies, in particular, that if the desirability of alternative x is preserved by either
making agent i strictly prefer either alternative y over x or making agent j strictly prefer
alternative z �= y over x (holding the other preferences fixed), then it should also be pre-
served by implementing both of these preference reversals at once (assuming all the rel-
evant preference profiles are feasible). (In fact, CU is characterized by this requirement
and monotonicity when R = PN and X is finite.) See Segal (2007) for further analysis,
which formally establishes that every CU rule is IM, every IM rule is monotonic, and
both inclusions are strict. The class of CU rules is still large enough to include all spe-
cific monotonic rules that have been considered, such as exact or approximate Pareto
efficiency, the core, stable matchings, or envy-free rules.

2.2 Nash implementation

In the Nash implementation problem, all agents observe the state of the world and play
a Nash equilibrium of the mechanism offered to them.

Definition 5. A mechanism (“game form”) G = 〈M1� � � � �MN�h〉 describes a strategy
space Mi for each agent and an outcome function h :

∏
i Mi → X . The Nash equilibrium

correspondence of the mechanism is given by

νG(R) = {m ∈M :g(m) Ri g(m
′
i�m−i) ∀i ∈N ∀m′

i ∈Mi}�
Mechanism G fully implements choice rule F if h(νG(R)) = F(R) ∀R ∈ R; G weakly im-
plements F if ∅ �= h(νG(R)) ⊂ F(R) ∀R ∈ R.10

Note that we can also allow multistage mechanisms, whose normal form can still
be described by mechanism G above. Since Nash equilibrium is defined on the normal
form, allowing multistage mechanisms does not affect the implementability of choice
rules. The usefulness to us of multistage mechanisms stems from their substantially
lower communication costs than their normal-form representations.

2.3 Verification

Now we consider the communication problem in which each agent i observes only his
own “type”—in our case, preference relation Ri—but can be prescribed to follow an ar-
bitrary strategy, rather than being selfish. Furthermore, we focus on a special kind of
communication, called verification (or nondeterministic communication in computer
science). In the verification problem, an omniscient oracle knows the true state R and,
consequently, knows the desirable alternatives. However, he needs to prove to an ig-
norant outsider that alternative x ∈ F(R) is indeed desirable. He does this by publicly
announcing a message m ∈M . Each agent i either accepts or rejects the message, doing
so on the basis of his own type Ri. The acceptance of message m by all agents must prove
to the outsider that alternative x is desirable.

Formally, verification is defined as follows.

10We use the standard notation for the image of a set: h(A) = ⋃
m∈A h(m) (Aliprantis and Border 1999,

p. 3).
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Definition 6. A verification protocol is a triple �= 〈M�μ�h〉, where

• M is the message space

• μ : R � M is the message correspondence, which must satisfy privacy preserva-
tion,

μ(R) =
⋂
i∈N

μi(Ri) ∀R ∈ R� where μi : Ri �M ∀i ∈N

• h :M → X is the outcome function.

Verification protocol � fully verifies choice rule F if h(μ(R)) = F(R) ∀R ∈ R; � weakly
verifies F if ∅ �= h(μ(R)) ⊂ F(R) ∀R ∈ R.

While the verification scenario is patently unrealistic, it still proves quite useful. The
key reason to consider verification is that it offers a lower bound on the communication
requirements of any multistage communication protocol (Kushilevitz and Nisan 1997,
Chapter 2). Formally, a multistage communication protocol consists of (i) an extensive-
form game in which agents’ moves are their messages, (ii) agents’ strategies in the game
that are contingent on their types as well as observed histories, and (iii) a function as-
signing alternatives to the game’s terminal nodes. Observe that any multistage commu-
nication protocol can be represented as a weak verification protocol by letting all the
messages be sent by the oracle instead of the agents, and by having each agent accept
the message sequence if and only if all the messages the oracle sent in his stead are con-
sistent with his strategy given his type. The oracle’s message space M thus consists of
the protocol’s possible message sequences (terminal nodes). Therefore, the communi-
cation cost of weak verification bounds below the communication cost of computing an
alternative in the choice rule. The lower bound is tight in some cases but weak in some
other cases, where communication requires a lot more than verification.

In addition, note that verification gives a lower bound on the one-stage Nash im-
plementation problem, since any Nash implementation protocol G = 〈M1� � � � �MN�h〉
can be viewed as a verification protocol � = 〈M1 × · · · × MN�νG�h〉. Indeed, note that
the Nash equilibrium correspondence νG by construction satisfies privacy preservation:
νG(R) = ⋂

i ν
i
G(Ri), where

νiG(Ri)= {m ∈ M :g(m) Ri g(m
′
i�m−i) ∀m′

i ∈Mi}

is the best-response correspondence of agent i, which depends only on this agent’s pref-
erences Ri. Thus, the oracle can announce a candidate Nash equilibrium strategy pro-
file, and each agent accepts the announcement if and only if he cannot find a profitable
unilateral deviation from this profile.

We show in this paper that the relation between verification and Nash implementa-
tion is quite tight (unlike the relation between verification and communication). Intu-
itively, this is because in the implementation problem, each agent has full information
and so can send the oracle’s message by himself as long as he does not have an incentive
to misrepresent it.
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2.4 Measures of communication cost

In the case of discrete communication, the communication cost is naturally defined as
“communication complexity,” which is the (worst-case) number of bits needed to en-
code the messages (Kushilevitz and Nisan 1997).11 In the case of verification, the oracle
needs �log2 M� bits to encode his message from M . The minimal communication com-
plexity of a verification protocol offers a lower bound on the communication complexity
without an oracle (Kushilevitz and Nisan 1997).

For continuous communication, the communication cost can be defined naturally
as the total dimension of the messages sent. However, for a meaningful concept of di-
mension, we need to rule out “smuggling” a multidimensional message in a single di-
mension with a 1-to-1 function such as the inverse Peano function. The economic liter-
ature on message space dimension suggests various topological concepts of dimension
that prevent such smuggling. In particular, Segal (2007) defines the topological dimen-
sion of the message space using a topology on messages defined based on their “mean-
ing,” i.e., the set of states in which they are sent. For the sake of brevity, we do not repeat
the definitions of Segal (2007) in this paper; instead we use the concept of dimension in
its intuitive sense.

These concepts of communication cost can be applied naturally to Nash imple-
mentation mechanisms. First consider one-stage mechanisms. In a discrete one-stage
mechanism, each agent i needs �log2 Mi� bits to encode his strategy from Mi, so the total
communication complexity of the game can be defined as

∑
i�log2 Mi�. For a continu-

ous one-stage mechanism �, we can define the total dimension of the mechanism as the
sum of the dimensions of the individual agents’ message spaces.12

Now consider multistage mechanisms and note that the communication cost of a
mechanism whose normal form is G could be drastically lower than that of the one-
stage mechanism G. For example, consider the discrete case in which the agents’ moves
in the multistage extensive-form game can be represented as announcing bits. Suppose
that the maximum number of bits sent in the game is d. This game can have up to 2d − 1
decision nodes, and to describe agents’ contingent strategies in it requires 1 bit per de-
cision node and so up to 2d − 1 bits in total. Thus, the communication complexity of
describing strategies in a multistage game can be exponentially higher than that of play-
ing the game. In a continuous mechanism, the increase can be even more drastic: even a
very simple multistage mechanism can have an infinite-dimensional strategy space. For
example, consider the two-stage mechanism in which first agent 1 announces x1 ∈ [0�1]

11Using bits is merely a normalization, because an elementary message in any finite alphabet could be
coded with a fixed number of bits. What is important for the definition is that the coding and the commu-
nication protocol can be selected optimally for the problem at hand: if instead agents could only commu-
nicate using messages with preexisting meanings, this might raise the communication cost substantially.

12Hurwicz and Reiter (2006, Section 3.9.2) instead consider the “in-equilibrium” communication cost,
which only counts message profiles that can ever arise in equilibrium. Since the message profiles that
never arise in equilibrium must still be allowed to eliminate undesirable Nash equilibria, we do count such
messages profiles, following the spirit of worst-case communication cost measures (even if the worst case
has probability zero of arising in equilibrium). As we will point out, the in-equilibrium communication cost
of mechanisms proposed in this paper will be even lower than the worst-case cost that we define.
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and then agent 2 announces x2 ∈ [0�1]. Agent 2’s strategy in this mechanism is an ar-
bitrary function [0�1] → [0�1] and so it is infinite-dimensional. In contrast, only two
numbers are communicated in any play of the mechanism. While these examples are
abstract, we will construct examples of similar reduction in the communication com-
plexity of Nash implementation.

2.5 Role of budget equilibria

A famous economic example of verification is Walrasian equilibrium. The role of the
oracle is played by the “Walrasian auctioneer,” who announces the equilibrium prices
and allocations. Each agent accepts the announcement if and only if his announced
allocation constitutes his optimal choice from the budget set given by the announced
prices. This concept can be generalized to that of a “budget equilibrium,” in which the
oracle’s message consists of a proposed alternative x ∈ X and a budget set Bi ⊂ X for
each agent i. Each agent i ∈ N accepts message (B1� � � � �BN�x) if and only if there is
no alternative in his budget set Bi that he strictly prefers to the proposed alternative x.
Message (B1� � � � �BN�x) is a budget equilibrium in state R ∈ R if it is accepted by all
agents in this state. Formally, the budget equilibrium correspondence E : R � 2XN ×X

is described as

E(R) = {(B�x) ∈ 2XN ×X :Bi ⊂ L(x�Ri) ∀i ∈N}�
The correspondence E satisfies privacy preservation because each agent’s acceptance
depends only on his own preferences.

The oracle’s message space M in a budget protocol is a collection of budget equilib-
ria that he is allowed to announce, and the outcome function simply implements the
proposed alternative.

Definition 7. Protocol 〈M�μ�h〉 is a budget protocol if M ⊂ 2XN ×X , μ(R) = E(R)∩M

∀R ∈ R, and h(B�x)= x ∀(B�x) ∈M .

Clearly, the space M of budget equilibria used is important for whether the protocol
verifies F . In particular, for the protocol to verify F (either fully or weakly), it must use
only budget equilibria of the following kind.

Definition 8. The message (B�x) ∈ 2XN × X is a budget equilibrium verifying F if
μ−1(B1� � � � �BN�x) ⊂ F−1(x).

However, the message space need not include all the budget equilibria verifying F .
In fact, it turns out that for IM choice rules, the size of the message space can be reduced
while restricting attention to the following budget equilibria.

Definition 9. Suppose IM choice rule F on preference domain R extends to an IM
choice rule on the universal preference domain PN . Then (B�x) ∈ 2XN × X is a mini-
mally informative budget equilibrium verifying F if for some R ∈ PN ,

Bi =L(x�Ri) =
⋂

R′
i∈Ri:x∈F(R′

i�R−i)

L(x�R′
i) ∀i ∈N� (1)
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In Segal (2007), this concept is not postulated, but is derived by constructing mes-
sages that verify F while revealing minimal information about the state of the world. It is
shown that when F is IM on PN , these messages can be characterized as budget equilib-
rium messages of the form (1).13 Furthermore, Segal (2007) offers an algorithm for con-
structing these minimally informative budget equilibria for a given social choice prob-
lem. Application of this algorithm yields such familiar budget equilibria as Walrasian
and Lindahl equilibria for the problem of verifying interior Pareto efficient allocations
in smooth convex economies with private and public goods, respectively; price equi-
libria with nonlinear personalized prices for efficient allocation problems with general
nonconvex utilities or in combinatorial auctions; or “prematchings” for stable-matching
problems, in which an agent’s budget set is a subset of his potential matching partners.

Letting EF be the space of all minimally informative budget equilibria verifying F ,
the following proposition follows from Segal (2007).

Proposition 1. The minimal message space size for fully or weakly verifying an IM
choice rule F is achieved with a budget equilibrium protocol whose message space is a
subset of EF .

3. One-stage mechanisms

Recall that a Nash implementation protocol can be viewed as a verification pro-
tocol. (Furthermore, it can be viewed as a budget protocol, with message space
{B1(m)� � � � �BN(m)�g(m)}m∈M1×···×MN , where Bi(m) = {g(m′

i�m−i) :m′
i ∈ Mi}.) Thus, we

have the following lemma.

Lemma 1. The minimal total size of strategy spaces required for full/weak Nash imple-
mentation is at least as high as the minimal size of message space for full/weak verifica-
tion.

We also provide an upper bound for the communication cost of Nash implementa-
tion relative to that of verification by starting with a budget equilibrium protocol with
message space E ⊂ 2XN × X and constructing a mechanism in which two agents an-
nounce a budget equilibrium from E , so that each agent’s budget set is described by
another agent.

Mechanism 1. The strategy spaces are M1 = M2 = E ×X ×N and Mi =X ×N for i ≥ 3.
When the messages are mi = (Ei� yi� li) ∈ Mi, for i = 1�2 and mi = (yi� li) ∈ Mi for i ≥ 3,
the outcome function h is specified as follows.

(a) If ∃E = (B1� � � � �BN�x) ∈ E such that (yi� li) = (x�1) ∀i ∈ N and E1 = E2 = E, then
h(m) = x.

13In general, a preference profile R ∈ PN that satisfies (1) need not be a feasible state in R. When it is,
then it is an “F-minimal state” as defined by McKelvey (1989). McKelvey’s definition applies for general
monotonic choice rules. However, if F is not IM, the F-minimal states are not characterized by (1) and do
not generate minimally informative messages verifying F (indeed, such messages are no longer equivalent
to announcing a supporting budget equilibrium).
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(b) If not case (a) but ∃i ∈ N and ∃E = (B1� � � � �BN�x) ∈ E such that Ej = E

∀j ∈ {1�2} \ {i} and (yj� lj) = (x�1) ∀j ∈N \ {i}, then

(i) if yi ∈ Bi, then h(m)= yi

(ii) if yi /∈ Bi, then h(m)= x.

(c) Otherwise h(m) = yi for i = (
∑

j lj modN)+ 1.

Proposition 2. Suppose that choice rule F is NVP and N ≥ 3. If the budget equilibrium
protocol with equilibrium space E weakly/fully verifies F , then Mechanism 1 weakly/fully
implements F .

Proof. We begin by demonstrating some Nash equilibria (NE) of the mechanism.

Claim 1. If E = (B1� � � � �BN�x) ∈ E is a budget equilibrium in state R ∈ R, then the mes-
sage profile with E1 =E2 =E and (yi� li)= (x�1) is a NE of the mechanism.

Proof. The outcome for this message profile is x. An agent i can unilaterally affect the
outcome only by deviating to case (b)(i) and implementing an alternative yi ∈ Bi, but
such a deviation would not be profitable since (B1� � � � �BN�x) is a budget equilibrium in
state R. �

In the case of full/weak verification, in any state R ∈ R, for any/some x ∈ F(R) there
exist budget sets B1� � � � �BN ⊂ X such that (B1� � � � �BN�x) ∈ E is a budget equilibrium in
state R; hence by Claim 1, any/some x ∈ F(R) can arise in a NE of the mechanism.

It remains to show that any NE outcome of the mechanism in state R is in F(R),
which is done in the following two claims:

Claim 2. Any case (a) NE outcome x in a state R ∈ R is in F(R).

Proof. Since each agent i can unilaterally deviate to case (b)(i) to implement any alter-
native yi ∈ Bi, for this to be a NE, E must be a budget equilibrium in state R. Now, by the
(full or weak) verification assumption, E verifies F , hence x ∈ F(R). �

Claim 3. Any case (b) or case (c) NE outcome x in a state R ∈ R is in F(R).

Proof. From any case (b) or case (c) message profile, each agent i except possibly
one can deviate to attain any alternative yi ∈ X in case (c) by choosing li, hence for
this message profile to be a NE we must have L(x�Ri) = X . By NVP, this implies that
x ∈ F(R). �

This completes the proof of the proposition. �

By Proposition 1, for an IM choice rule F we can choose the space E to be a minimal
subspace of minimally informative budget equilibria needed to weakly/fully verify F .
Thus, using Proposition 2 and examining the size of strategy spaces in Mechanism 1
yields the following result.
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Corollary 1. Suppose choice rule F is IM and NVP, and N ≥ 3. Then for discrete com-
munication, using Mechanism 1 we can fully/weakly Nash implement F with a one-stage
mechanism whose communication complexity is twice the communication complexity of
full/weak verification plus N · (�log2 X� + �log2 N�) bits. For continuous communication,
we can fully/weakly Nash implement F with a one-stage mechanism in which the total di-
mensionality of the agents’ strategy spaces is twice the minimal message space dimension
needed for full/weak verification plus N times the dimension of X .

The corollary gives an upper bound on the communication cost of one-stage Nash
implementation that is pretty close to the verification lower bound of Lemma 1. The
upper bound can be tightened a bit more in some typical cases. For example, instead of
asking each agent to announce the whole social outcome (which might be costly if the
number of agents is large), it suffices to have each agent announce only the part of the
outcome that his preferences are concerned with (e.g., his own consumption of goods).
Also, the duplication of budget set descriptions can be improved upon in some settings,
as long as we still ensure that each agent’s budget set is described by the other agents’
reports. For example, Reichelstein and Reiter (1988) show that for Nash implementation
of Walrasian allocations in classical convex exchange economies with L goods, the addi-
tional cost relative to verification is roughly L/(N − 1) real numbers, which is enough to
ensure price taking by each agent, while duplicate announcement of a Walrasian price
vector as required by Mechanism 1 would require L − 1 numbers. However, such addi-
tional improvements over Mechanism 1 appear to be possible only in special settings,
so we do not pursue them here.

We could alternatively consider the communication cost of only “in-equilibrium”
communication, as proposed by Hurwicz and Reiter (2006, Section 3.9.2). For simplicity,
restrict attention to environments in which there does not exist an alternative in X that
is simultaneously optimal for N − 1 agents, and so the NVP property holds vacuously.
(This includes any environment with a private good that all agents desire.) In such en-
vironments, Mechanism 1 has only case (a) Nash equilibria, the description of which is
the same as describing a budget equilibrium from E . Since the verification lower bound
of Lemma 1 also applies to in-equilibrium communication (the oracle can replicate the
mechanism using only the message profiles that are potential Nash equilibria), we see
that the in-equilibrium communication cost of one-stage Nash implementation of such
choice rules exactly equals the communication cost of verification.14 In contrast, the
minimal total size of the agents’ message spaces required for Nash implementation may
strictly exceed the verification lower bound, as demonstrated by Reichelstein and Reiter
(1988).

4. Multistage mechanisms

Considering multistage games allows substantial savings in communication. The idea
is that while the agents’ complete contingent strategies in the extensive-form mecha-

14Note that this conclusion does not hold for monotonic choice rules that are not IM: the communication
cost of verification of such rules may be minimized using messages that do not correspond to describing
supporting budget sets, whereas Nash implementation is always a budget equilibrium protocol.
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nism must still describe supporting budget sets (as is the case in any verification mech-
anism), these strategies need not be revealed in any single play of the mechanism. Thus,
the communication cost of a multistage mechanism can be substantially lower than the
cost of its normal-form representation, i.e., the cost of describing the agent’s complete
contingent strategies in the mechanism.15

Applying this idea to the revelation of budget sets, we see that a multistage mecha-
nism need not reveal the budget sets in any single play. Instead, it suffices that whenever
a candidate equilibrium alternative x is described and then challenged by a single agent
proposing another alternative x′, other agents are asked to “approve” the challenge (thus
confirming that x′ is in the challenger’s budget set) or “disapprove” it (protest that x′ is
outside his budget set). Then, while the complete approval strategies contingent on all
possible challenges x′ describe all the budget sets, these strategies and the correspond-
ing budget sets are not revealed in any single play of the mechanism (either in or out of
equilibrium).

The tricky part of the construction is restricting the agents to approve sufficiently
many challenges so that the corresponding budget sets are large enough to verify the
choice rule. (Recall that if the budget sets are too small, the budget equilibrium would
not verify the choice rule and so it would not be implemented by the mechanism. For
an extreme example, if agents’ strategies disapprove any challenge of a candidate equi-
librium outcome x, this yields budget sets Bi = {x} for all i, and x is sustained in equilib-
rium in any state of the world, regardless of whether it is socially desirable.) This is not
straightforward to ensure because the entire approval strategies and the corresponding
budget sets are not revealed in any play of the mechanism (and so, in general, we can-
not verify that the budget sets described by the strategies satisfy characterization (1)).
We are able to accomplish this for the class of CU choice rules defined in Section 2, for
which the following observation holds:

Lemma 2. The CU choice rule given by a blocking rule β is fully verified with the budget
protocol whose message space consists of budget equilibria (B1� � � � �BN�x) ∈ 2NX ×X that
satisfy16

β(x�T) ⊂
⋃
i∈T

Bi for all T ⊂N� (2)

Proof. If (B1� � � � �BN�x) is a budget equilibrium in state R ∈ R and satisfies (2), we
must have β(x�T) ⊂ ⋃

i∈T Bi ⊂ ⋃
i∈T L(x�Ri) for all T ⊂ N and, therefore, x ∈ F(R).

Hence, any budget equilibrium that satisfies (2) verifies F . Furthermore, in any state

15Multistage implementation mechanisms were previously considered by Moore and Repullo (1988),
who used the subgame-perfection refinement to implement choice rules that are not Nash implementable.
Our goal is quite different since we still consider Nash implementation and use multistage mechanisms to
reduce the communication complexity of implementing those choice rules that are Nash implementable.
Note also that our Mechanism 2 has imperfect information and no proper subgames, and so subgame per-
fection has no bite in it.

16Budget equilibria of the form (2) are typically not minimally informative budget equilibria verifying F

(and so do not satisfy (1)). We are not concerned about this as we can still use them to construct a low-
communication multistage mechanism.
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R ∈ R for any x ∈ F(R), (L(x�R1)� � � � �L(x�RN)�x) is a budget equilibrium that satis-
fies (2). �

The advantage of condition (2) is that it can be checked one alternative x′ ∈ X at a
time—namely, by checking that each alternative x′ belongs to the budget sets of “suf-
ficiently many” agents so that each coalition T ⊂ N that satisfies x′ ∈ β(x�T) contains
an agent whose budget set contains x′. We can impose this restriction on an agent’s
approval strategy by showing him only the proposed challenge x′ but not the identity
of the challenger and by restricting him to list “sufficiently many” agents for whom this
challenge should be approved.

Example 1. The weak Pareto efficient choice rule is described by the blocking rule
β(x�S) = X if S = N and = ∅ otherwise. For this choice rule, condition (2) takes the
form X ⊂ ⋃

i Bi, which can be checked by verifying that each alternative in X belongs to
some agent’s budget set. ♦

Just as in the previous section, we do not need the budget sets to be described by all
the agents, as long as each agent’s budget set is described by other agents. Here it will
suffice to have just three agents describe all the budget sets, i.e., to approve deviations.
We need to ensure that in equilibrium the three agents describe exactly the same bud-
get sets, i.e., use the same approval strategies. For this purpose, we reward an agent who
challenges with an alternative x′ on whose approval other agents disagree by letting him
implement any alternative. Similarly, it suffices for just three agents to describe a candi-
date equilibrium alternative, as long as any agent is allowed to challenge it. Finally, just
as in the previous section, we use the modulo game to make sure that potential equilib-
ria that involve a challenge do not yield undesirable outcomes.

Formally, consider the following three-stage mechanism, which has imperfect infor-
mation: the only information the agents observe about each other’s previous messages
are the public “revelations” by the mechanism.17

Mechanism 2.

Stage 1. Each agent i ∈ {1�2�3} announces xi ∈ X and li ∈ N . Each agent i ≥ 4 an-
nounces li ∈ N .

(a) If li = 1 ∀i ∈N and ∃x ∈X such that xi = x ∀i ∈ {1�2�3}, implement x.

(b) If not case (a) but ∃i ∈N (“the challenger”) and ∃x ∈X such that lj = 1 ∀j ∈
N \{i} and xj = x ∀j ∈ {1�2�3}\{i}, then reveal “b,” reveal x, and continue.

Stage 2b. Agent i (the challenger) announces x′� y ∈ X . Only x′ is re-
vealed.

17The mechanism can be converted into a two-stage mechanism by letting the agents in Stage 1 also
announce their contingent strategies in Stage 2, which would require describing 2N +3 alternatives instead
of just five. This conversion would preserve the huge communication savings exemplified below, which
are due to economizing on budget set descriptions using Stage 3 strategies rather than on descriptions of
alternatives.



66 Ilya R. Segal Theoretical Economics 5 (2010)

Stage 3b. Each agent j ∈ {1�2�3}/{i} announces Sj ∈ �(x�x′), where

�(x�x′) = {S ⊂N :∀T ⊂N , x′ ∈ β(x�T) ⇒ S ∩ T �= ∅}�

(i) If Sj = S for all j ∈ {1�2�3}/{i} and i ∈ S, implement x′.

(ii) If Sj = S for all j ∈ {1�2�3}/{i} and i /∈ S, implement x.

(iii) Otherwise implement y.

(c) Otherwise reveal “c” and continue.

Stage 2c. Agent i = (
∑

j lj)modN + 1 announces y ∈ X , which is imple-
mented.

Proposition 3. If F is a CU choice rule described by the blocking rule β, F satisfies NVP,
and N ≥ 3, then Mechanism 2 fully Nash implements F .

Proof. We start by describing the agents’ complete contingent strategies in the mech-
anism. For simplicity, we restrict attention to strategies that do not condition on the
agent’s own earlier actions. (We can do it because any strategy with such conditioning
is equivalent in the normal-form representation of the game to one without it.)

The strategy of each agent i ≥ 4 can then be described as 〈li� x′
i� y

b
i � y

c
i 〉, where li ∈ N

is the integer he announces in Stage 1, x′
i� y

b
i ∈ X are the alternatives x′� y he announces

in Stage 2b when he is the challenger, and yci ∈ X is the alternative he announces in
Stage 2c.

As for an agent i ∈ {1�2�3}, his strategy in addition describes his Stage 1 announce-
ment xi ∈ X and also a function σi :X → 2N satisfying σi(x

′) ∈ �(xi�x
′) ∀x′ ∈X that gives

his announcement Si = σi(x
′) in Stage 3b when someone else challenged xi with an al-

ternative x′ in Stage 1. We interpret σi(x
′) as the set of agents whose challenges x′ are

approved by agent i. The function σi can be equivalently described by defining for each
agent j the budget set Bi

j = {x′ ∈ X : j ∈ σi(x
′)}—the set of agent j’s challenges that are

approved by agent i. The restriction σi(x
′) ∈ �(xi�x

′) for all x′ ∈ X is then equivalent to

requiring that (Bi
1� � � � �B

i
N�xi) satisfy (2). Thus, we describe a feasible strategy of agent

i ∈ {1�2�3} as 〈li� xi�Bi
1� � � � �B

i
N�x′

i� y
b
i � y

c
i 〉 satisfying (2) (from which we can deduce for

each x′, σi(x
′)= {j ∈N :x′ ∈ Bi

j} ∈ �(xi�x
′)).

Now the result is proved with the following three claims.

Claim 1. If x ∈ F(R) in state R ∈ R, then x is a case (a) NE outcome in state R.

Proof. Consider the strategy profile given by

〈li� xi�Bi
1� � � � �B

i
N�x′

i� y
b
i � y

c
i 〉 = 〈1�x�L(x�R1)� � � � �L(x�RN)�x�x�x〉 for all i ∈ {1�2�3}

〈li� x′
i� y

b
i � y

c
i 〉 = 〈1�x�x�x〉 for all i ≥ 4�
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The strategies of agents i ∈ {1�2�3} are feasible because the described budget sets sat-
isfy (2) due to the fact that x ∈ F(R). These strategies result in case (a) and yield out-
come x. To see that these strategies form a NE, note that each agent i ∈ N can unilater-
ally change the outcome only by challenging it and going to case (b)(i), in which he can
only attain an outcome x′ ∈L(x�Ri). �

Claim 2. Each case (a) NE in state R ∈ R yields an outcome x ∈ F(R).

Proof. (i) If B1
i = B2

i = B3
i = Bi for each i ∈ N , then each agent i ∈ N can deviate to

implement any alternative x′ ∈ Bi by announcing li > 1 and inducing case (b)(i). Thus,
(B1� � � � �BN�x) must be a budget equilibrium in state R, and since it satisfies (2), x ∈
F(R). (ii) If, on the contrary, there exist x′ ∈ X , an agent i ∈ N , and agents j�k ∈ {1�2�3}
such that x′ ∈ B

j
i \Bk

i , then each agent r except possibly one (if the other agent in {1�2�3}
describes the same budget sets as j or k) can deviate to attain any alternative ybr ∈ X by
announcing lr > 1 and x′

r = x′, inducing case (b)(iii). Hence, to have a NE, we must have
L(x�Rr)= X , thus, by NVP, x ∈ F(R). �

Claim 3. Each case (b) or case (c) NE in state R ∈ R yields an outcome x ∈ F(R).

Proof. Each agent i except one possibly one (the challenger in case (b)) can deviate to
attain any alternative yci ∈ X in case (c) by choosing li; hence, to have a NE, we must
have L(x�Ri) =X , and thus by NVP, x ∈ F(R). �

This completes the proof of the proposition. �

Observe that in any play of Mechanism 2, agents describe at most five alternatives
and, in addition, send no more than N · �log2 N� + 3N ≤ 4N · �log2 N� bits (the longest
communication takes place in case (b)). This offers a potentially huge reduction in
communication relative to one-stage implementation mechanisms, which, as we know,
must describe budget sets—subsets of alternatives. Below we offer two examples of such
reduction—for discrete and for continuous communication problems. (Note also that if
we were just interested in in-equilibrium communication, and restricted our attention
to economic environments in which the NVP property holds vacuously, any Nash equi-
librium of Mechanism 2 would be a case (a) equilibrium, describing which amounts to
describing a single alternative.)

4.1 Discrete communication: Exponential reduction

It is known in the communication complexity literature that going from one-stage to
two-stage communication protocols sometimes allows an exponential reduction in the
communication complexity measured in bits (Kushilevitz and Nisan 1997, Section 4.2).
Using Mechanism 2, we can see that such exponential reduction can also be achieved
for the Nash implementation problem. (Note that multistage mechanisms cannot gen-
erate a more than exponential reduction in communication complexity, because every
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extensive-form game can be converted into a one-stage normal form with at most an
exponential increase in communication by the argument given in Section 2.4.)

For example, take the Pareto efficient choice rule

F(R) =
{
x ∈X :X =

⋃
i∈N

L(x�Ri)

}
∀R ∈ R

and consider the universal preference domain R = PN . For this domain, the minimally
informative verifying budget equilibria (1) are the partitional equilibria (B�x) that sup-
port x, i.e., those in which

⋃
i Bi = X and Bi ∩ Bj = {x} for all i� j ∈ N . (In words, each

alternative in X \ {x} must belong to exactly one agent’s budget set.) Furthermore, any
such partitional equilibrium must be used for full verification of F . Indeed, for every
partitional equilibrium (B�x), we can find a state R ∈ PN in which L(x�Ri) = Bi for all
i and thus x ∈ F(R). Then (B�x) is a unique partitional equilibrium verifying the desir-
ability of alternative x in state R.

There are XNX−1 partitional equilibria (choose x ∈ X and allocate each of the al-
ternatives in X \ {x} to a budget set). Describing such an equilibrium thus requires
�log2(XNX−1)� = �log2 X + (X − 1) log2 N� bits. As X grows large, this communication
cost is asymptotically proportional to X , which is exponentially larger than that of sim-
ply naming an alternative (which takes �log2 X� bits). In fact, the communication cost
is comparable to that of full revelation of an agent’s preferences, which is asymptotically
equivalent to log2 X! ∼ X log2 X bits as X → ∞. By Lemma 1, this communication cost
also bounds below the communication complexity of a one-stage mechanism that fully
Nash implements F .

Compare this with the multistage Mechanism 2, whose communication complex-
ity is at most 5�log2 X� + 4N · �log2 N� bits—exponentially lower as the number X of
alternatives grows. Intuitively, the exponential savings arise because instead of describ-
ing budget sets, we simply allocate a given alternative to a budget set in any play of the
mechanism.

4.2 Continuous communication: From infinite to finite dimensional

Consider the problem of implementing Pareto efficiency with quasilinear preferences
in which a unit of a divisible good is to be allocated among the agents, along with the
transfers of numeraire. Thus,

X =
{
(q� t) ∈ R

N+ × R
N :

∑
i

qi = 1�
∑
i

ti = 0
}
�

where qi ≥ 0 is agent i’s allocation of the nonmonetary good and ti is his consumption
of numeraire. Thus, X is a 2(N − 1)-dimensional space.

Each agent i’s preferences are described by a quasilinear utility function of the form
ui(qi) + ti, where ui can be an arbitrary nondecreasing function. Note that the space of
such utility functions is infinite-dimensional (even if we impose arbitrary smoothness
restrictions on the functions). The Pareto efficient allocations (q� t) ∈ X in this setting
are characterized by maximizing the total surplus

∑
i ui(qi).
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Calsamiglia (1977) shows that the problem of verifying efficiency in this setting re-
quires infinite-dimensional communication. Segal (2007) rederives the result using
the fact that any verification protocol, even with two agents, must reveal an infinite-
dimensional nonlinear price function [0�1] → R for consumption of the good for one
agent in terms of the numeraire. This result implies that the one-stage Nash implemen-
tation problem also requires infinite-dimensional communication.

However, for multistage Nash implementation, we can use Mechanism 2, in which
only 5 alternatives are described in any play, using a total of 10(N − 1) real numbers
(sending bits is “free” relative to the real numbers). Intuitively, instead of describing nu-
meraire prices for all possible allocations of the divisible good, in any (off-equilibrium)
play of Mechanism 2 the agents’ approval strategies only need to describe, for one pro-
posed challenge, which agents can afford this challenge. Thus, we learn only about the
prices of at most one nonmoneraty allocation q instead of the prices of all possible allo-
cations, which makes the communication finite- instead of infinite-dimensional.
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