
Theoretical Economics 5 (2010), 215–239 1555-7561/20100215

Efficiency and marginal cost pricing in dynamic competitive
markets with friction
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This paper examines a dynamic general equilibrium model with supply friction.
With or without friction, the competitive equilibrium is efficient. Without fric-
tion, the market price is completely determined by the marginal production cost.
If friction is present, no matter how small, then the market price fluctuates be-
tween zero and the “choke-up” price, without any tendency to converge to the
marginal production cost, exhibiting considerable volatility. The distribution of
the gains from trading in an efficient allocation may be skewed in favor of the
supplier, although every player in the market is a price taker.
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1. Introduction

The production of any commodity is subject to a number of constraints that are collec-
tively known as friction. Examples abound. In a large organization such as a hospital
or a call center, a large workforce must be maintained to ensure effective delivery of
services. New employees are required to increase capacity of service, but proper talent
must be identified and trained to be placed in position, which takes time. In supplying
a seasonal fashion product, the retailer maintains a small inventory that is available at
short notice, while maintaining a contract with the supplier for deliverables in case of
an unexpected surge in demand. It is more economical to have such a contract than to
maintain inventory, but it takes some time to deliver the product from the supplier to
the retailer if demand increases unexpectedly (Dasgupta et al. 2005).
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If there is an unexpected increase in demand, then it will take some time for supply
to catch up with demand. However, one might still expect the market price to hover
near the marginal production cost as long as the supply side friction is not severe. This
reasoning leads to the conclusion that extreme price volatility, or a persistent deviation
of the market price away from the marginal cost, is evidence of market failure or the
presence of noncompetitive behavior. In this paper we ask whether these conclusions
are truly justified.

This research project was motivated in part by events in the California wholesale
electricity market between 1998 and 2000, which apparently did not function as envi-
sioned by policy makers. As early as 1998, the ancillary service market repeatedly expe-
rienced dramatic price spikes, followed by extended periods of near zero prices, which
is considered as early evidence of market dysfunction (Wolak et al. 1998, Fels and Lindh
2001, and Navarro and Shames 2003). This prompted a series of attempts to improve the
market design (e.g., Borenstein et al. 2002, Wood et al. 2002, Oren 2002, and Federal En-
ergy Regulatory Commission 2004). The challenge is eloquently described by Borenstein
(2001):

The difficulties that have appeared in California and elsewhere are intrinsic to the design of
current electricity markets: Demand exhibits virtually no price responsiveness and supply
faces strict production constraints and very costly storage. Such a structure will necessarily
lead to periods of surplus and of shortage, the latter resulting from both real scarcity of
electricity and from sellers exercising market power. Extreme volatility in prices and profits
will be the outcome.

The main objective of this paper is to address two fundamental questions. Suppose
that observed market prices show repeated upward spikes followed by extended periods
in which prices are essentially zero, showing no tendency to converge to the marginal
production cost. Suppose in addition that the data show that suppliers extract surplus
exceeding what they would obtain if the market price matched the marginal production
cost.

First is a positive question. Can a perfectly competitive market with a small amount
of friction generate such an outcome? Based on these observations, can we conclude
that the market is dysfunctional and some suppliers are exercising market power? Sec-
ond is a normative question. Are wild fluctuations of market prices harmful for social
welfare? Can the market achieve an efficient allocation?

We formulate our questions in terms of a dynamic general equilibrium model in
which market demand evolves in continuous time and a consumer realizes a surplus
only if the service is delivered. If the service cannot be delivered despite the standing
order, the consumer suffers “inconvenience,” which is quantified as negative utility. The
supplier can provide the service instantaneously up to its capacity at zero marginal cost.
The supplier must pay for the cost of capacity. We assume that all agents are price tak-
ers, rigorously eliminating any room for market manipulation. The market is subject to
supply side friction: Capacity cannot be increased instantaneously, although capacity
can be shut down instantaneously without incurring any extra cost (free disposal).

We rigorously analyze the competitive equilibrium and explore its properties. Under
the assumption of linear capacity cost and a finite ramping rate on supply, we obtain
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a closed form solution for the equilibrium price functional, which clearly reveals how
small supply friction combined with small volatility in demand can result in wild price
fluctuations.

Based on these results, we conclude that the marginal production cost is no longer a
determining factor for the market clearing price. Moreover, fluctuations of market prices
are implied rather than refuted by an efficient market.

Depending upon the initial condition of the economy, it is possible that the sup-
plier extracts a seemingly excessive portion of the gains from trading, while the market
remains efficient and free from strategic behavior.

In some markets where demand is unpredictable and the consumer must bear the
cost of inconvenience, it is a common practice for the consumer to purchase an ex-
tra amount of the good over the instantaneous demand as a precautionary measure.
This is known as the reserve. If the consumer cannot purchase extra units for future use
since the good is not storable, then the consumer makes a contract with the supplier to
maintain extra capacity so that the supplier can offer service immediately in response
to a sudden increase in demand. While this extra capacity serves as the reserve in the
conventional sense, it is the supplier rather than the consumer who keeps the excess
capacity and who is paid for the extra capacity by the consumer.

Theorem 1 contains a complete characterization of the competitive equilibrium out-
come, while Theorem 2 describes its welfare properties. The closed form solution for
the equilibrium price functional is represented as a function of simple equilibrium state
variables, rather than the entire history of outcomes. If the costs are linear, then the
equilibrium price at time t can be expressed as a function of the equilibrium reserve
Re(t) and demand D(t) via Pe(t) = pe(Re(t)�D(t)). The equilibrium price functional is
a piecewise constant function of the equilibrium reserve process,

pe(re�d)= (v + cbo)I{re < 0}� (1)

where cbo is the marginal cost of inconvenience imposed upon the consumer in case
demand is not met and v is the reservation value of the consumer. The sum cbo + v is, in
fact, the maximum price the consumer is willing to pay, often called the choke-up price.

A sample path of the three dimensional process (Pe(t)�Re(t)�D(t)) is illustrated in
Figure 1 for a discrete-time model in which D is a random walk on R.1

The equilibrium price functional has three most surprising features. First, the real-
ized prices fluctuate between the choke-up price and zero, with no tendency to converge
to the marginal production cost, regardless of the size of the friction. If the market does
not have sufficient reserve (re < 0), then the market price hits the choke-up price. Alter-
natively, the market price falls to zero if there is excess capacity (re > 0). Wild swings of
prices arise even if the market is free from any strategic manipulation.

Second, the equilibrium allocation is efficient. The deviation of the market price
from the marginal production cost is often suggested as evidence of market dysfunction

1It can be shown that the optimal reserve process is obtained using a hedging-point policy in this case
(Meyn 2007). The hedging-point value r∗ used in this simulation was obtained using the diffusion heuristic
of Meyn (2007), which coincides with the value given in Proposition 1 that follows.
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Figure 1. Price dynamics with Brownian demand.

(Fels and Lindh 2001). This observation is accurate in a market without any supply side
friction. But in the presence of supply side friction, the supplier has a reason to increase
the reserve, even if the spot market price for the reserve is zero, because a large reserve
can meet a large demand in the future.

Third, the marginal production cost is irrelevant in determining (1) (or its generaliza-
tion given in Theorem 1), however large the ramping rate constraint might be, because
only two extreme prices will be realized along the sample paths: zero and the choke-up
price. However, the link between the market price and the marginal production cost
is not completely lost. If the demand evolves according to a Brownian motion, we can
characterize the distribution of reserve in an efficient allocation and compute the ex-
pected price, which depends on the initial condition of the economy. For sufficiently
large initial reserves, the expected discounted average price coincides with the marginal
production cost. The expected price increases with decreasing initial reserves (approxi-
mating the choke-up price in the limit as normalized initial reserves approach −∞). The
potentially higher prices mean that a firm can generate a positive profit for an extended
period, if not indefinitely.

The dramatic swings of market prices are a consequence of the lack of tradable ca-
pacity that can adjust its level of service instantaneously in response to fluctuations in
demand. Unless we have a market in which the fast service can fetch a high price, no
firm would be willing to provide such a service. Thus, it is not unreasonable to pre-
sume that the competitive outcome without a market for the ramping rate should be
inefficient.

Our analysis shows otherwise. The spot market for the service perfectly emulates the
market for the ramping rate, thus compensating for the absence of the latter to achieve
an efficient allocation. A fast ramping rate is valuable only if the society is short on
reserve (i.e., Re(t) < 0). Because the service is not storable, the price the consumer is
willing to pay on the spot is v + cbo, which is exactly the same price obtained from (1).

This paper examines a market in which the number of active firms is fixed. However,
the key insights extend to a market without entry barriers, with some notable differences
from the long-run static competitive equilibrium. One can differentiate an inside firm
from an outside firm, depending upon the location of its production capacity. One can
model entry as a service provided by a firm outside of the market for the consumers
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Figure 2. Examples of prices in the electric power industry.

inside of the market. Similarly, exit can be formulated as a reduction of service provided
by the outside firms. The new service provided by the outside firm helps the market
respond to the demand more rapidly, which leads to a lower discounted average market
price. If the outside firms can enter and exit instantaneously without any friction, the
market price will then coincide with marginal production cost.

The prices obtained from the equilibrium price functional (1) replicate the impor-
tant qualitative features of the price dynamics shown in Figure 2 for four different whole-
sale electricity markets in Europe and North America. Note that the prices of power in
Ontario and Europe are recent, and the severe volatility shown in the European market
is typical behavior that has persisted for several years. However, we do not assert that the
recent episodes in California were not caused by strategic behavior of the participants—
there is ample evidence of noncompetitive behavior. Rather, the main result of this pa-
per should serve as a reminder that the insights built around a static analysis can be
fragile. The welfare evaluation of dynamic markets with friction requires new analytic
tools and a fresh perspective.

In contrast to most existing results based on a static analysis (e.g., Wolfram 1998 and
Hortacsu and Puller 2004), Mansur (2008) examines the dynamic decision problem of
the generator subject to upward and downward ramping constraints to show that the
resulting optimal policy of the price-taking generator may deviate from marginal cost
pricing. Our model differs from Mansur (2008) as we obtain the deviation from marginal
cost pricing as a consequence of the upward ramping rate constraint alone. Scoring and
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settlement rules are proposed in Chao and Wilson (2002) to implement an efficient allo-
cation in the ancillary service market. Our model suggests that even without an elabo-
rate auction mechanism, the competitive market can internalize the supply side friction
to achieve an efficient allocation in a dynamic sense.

Throughout this paper, by capacity, we mean online capacity that can respond to the
demand instantaneously. This is distinct from the physical production capacity that de-
termines the maximum supply of service. The physical production capacity is implicitly
assumed to be so large that the change of the online capacity is not constrained, so as to
ensure that the ramping constraint is the only friction in the economy.

Constraints on the physical production capacity fundamentally affect the mar-
ket outcome. The nature of this dependency is the topic of the recent paper by
Garcia and Stachetti (2008), which considers the investment decision of duopoly firms
facing stochastically increasing demand. Short-run friction such as ramping con-
straint are assumed away, and instead the authors examine long-run production expan-
sion/contraction. Instead of the competitive market, Garcia and Stachetti (2008) ex-
plores a dynamic game built upon the duopoly market of Kreps and Scheinkman (1983),
in which the firms compete in price in each period subject to the physical production
capacity, followed by the investment decision to change the production capacity in the
next round. The Bertrand competition between firms producing homogeneous goods
does not sufficiently reward a firm with a large market share, and fails to provide incen-
tive for firms to invest efficiently to meet the increasing demand. In the end, the market
does not have sufficient reserve capacity and often generates high equilibrium prices.2

The management of reserves is very similar to inventory management in manufac-
turing applications. While the bulk of research has concentrated on joint pricing and in-
ventory control in a single-period model,3 dynamic versions of this problem are treated
in recent work (Paschalidis and Tsitsiklis 2000, Kleywegt 2001, Monahan et al. 2004, and
Bertsimas and de Boer 2005). In some special cases it is found that price is roughly in-
dependent of state (Paschalidis and Tsitsiklis 2000), in sharp contrast to what is found in
this paper. A two period inventory control problem is introduced in Van Mieghem (1999)
to show that under certain conditions, a unique price process exists that can support the
efficient allocation; the present paper investigates an infinite-horizon model.

Several recent papers analyze energy markets by applying dynamic programming
techniques. Sethi et al. (2005) investigate a stochastic model for an electricity market,
while Wu and Chen (2005) examine dynamic competitive equilibria for a model of the
petroleum market. A key conclusion is that the competitive market is efficient and that
prices coincide with marginal cost. However, to obtain these conclusions the authors
explicitly assume that no hard constraints are active. The finite ramping constraint is
often binding in the model considered here, which is shown to generate discontinuities
in the market outcomes.

The remainder of the paper is organized as follows. Section 2 formally describes the
model. Section 3 contains a characterization of the competitive equilibrium outcome
and its welfare properties. The properties of the competitive equilibrium are further
analyzed in Section 4. Section 5 concludes the paper.

2For a stochastic dynamic treatment of the centralized problem, see Bohn et al. (1984).
3See surveys in McGill and van Ryzin (1999), Petruzzi and Dada (1999), and Bertsimas and de Boer (2005).
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2. Model

We examine a market consisting of a single consumer and supplier who are price tak-
ers. These two price-taking agents actually represent an aggregate of a continuum of
identical infinitesimally small consumers and suppliers.

2.1 Demand

We let G(t) denote the available capacity, D(t) denote the demand, and

R(t) =G(t)−D(t)

denote the reserve at time t. Let G be the process of the available capacity. We often refer
to the commodity as the service since it is not storable. Once g = G(t) units of capacity
are built, the supplier can deliver up to g units of service freely and instantaneously at
time t.

It is assumed that consumer demand is perfectly inelastic. Throughout the paper,
by demand, we mean a normalized demand obtained by subtracting the forecasted de-
mand from the actual demand in each period. Thus, the (normalized) demand can be
negative, if the actual demand is less than its forecast. It is assumed that actual demand
at t = 0 is known, which is normalized to 0.

For computation it is convenient to consider the Gaussian model

D(t) =N(t)� (2)

where N is a driftless Brownian motion with instantaneous variance σ2 and N(0) = 0.
Throughout this paper, we use a bold-faced letter to represent a stochastic process,

an uppercase letter to denote a random variable, and a lowercase letter for its realized
value. For example, we write D = {D(t) | t ≥ 0} for the stochastic demand process and let
d ∈ R denote a possible value of D(t) for a given t ≥ 0.

2.2 Supply

Production is subject to friction, in the sense that the production capacity cannot in-
crease instantaneously: There exists ζ ∈ (0�∞) such that for all t ≥ 0 and all t ′ > t,

G(t ′)−G(t)

t ′ − t
≤ ζ� (3)

Alternatively, we maintain the assumption of free disposal so that no corresponding
lower bound is imposed.4 Finally, we assume that G(t) is progressively measurable with
respect to the history {G(0)�D(s) | s ≤ t}.

4In the power industry, generators are also subject to downward ramping constraints, which prevents
a generator from dropping the supply instantaneously. The free disposal assumption actually strengthens
the conclusions of this paper: Even if the generator is allowed to drop the supply instantaneously in case of
excess supply, our analysis shows that the generator will not do so. Instead, it will let the market price drop
to zero.
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The production technology of the supplier is subject to a production cost c(G(t)) for
the production capacity G(t) made available at time t ≥ 0. The cost is incurred, regard-
less of the delivery of the goods. We assume that the cost is a linear function of G(t),
of the form cG(t) for some constant c > 0. For each unit of the good delivered, the con-
sumer obtains v units of utility. Thus, the utility of the consumer is vmin(D(t)�G(t)). Al-
ternatively, if the demand is not met (R(t) < 0), the consumer suffers utility loss cboR(t)

for some cbo > 0.
Linearity is imposed on both the production cost of the producer and the inconve-

nience cost of the consumer so as to obtain the closed form solution for the equilibrium
and to highlight the structure of the equilibrium outcome. Many of the key insights of
this paper can be obtained for nonlinear, convex cost functions, but this requires more
cumbersome notation.

2.3 Equilibrium and efficiency

The (spot) price at which the service is traded is denoted P(t) at time t. For a given
price process P, the payoffs of the supplier and the consumer in period t are defined,
respectively, as

WS(t) := P(t)G(t)− cG(t)

WD(t) := vmin(D(t)�G(t))− cbo max(0�−R(t))− P(t)G(t)�

It is assumed for simplicity that the consumer and the supplier have the same time pref-
erence, represented by discount rate γ > 0. The consumer’s and the supplier’s objective
function is the long-run discounted expected profit with discount rate γ, represented
for a given initial reserve R(0) = r by

KS(r) := E

[∫
e−γt WS(t)dt

]
and KD(r) := E

[∫
e−γt WD(t)dt

]
� (4)

Whenever the meaning is clear from the context, we suppress the initial condition.
A goal of this paper is to construct price and reserve processes that form a competi-

tive equilibrium.

Definition 1. A competitive equilibrium is a pair of price and supply processes {Pe�Ge}
satisfying

Ge ∈ arg max
G

E

[∫
e−γt WS(t)dt

]
(5)

subject to the ramping constraint (3) and

Ge ∈ arg max
G

E

[∫
e−γt WD(t)dt

]
� (6)

In this case, Pe is called a competitive equilibrium price process, and we let Re = Ge − D
denote the equilibrium reserve process.
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The supplier and consumer are each subject to the measurability constraint in their
respective optimization problems (5) and (6). The set of feasible strategies for the sup-
plier is subject to the ramping constraint (3), but the consumer’s optimization problem
is not affected by the ramping constraint in (6). The absence of the ramping constraint
in the consumer’s optimization problem is critical for our analysis.

We use efficiency as the criterion for evaluating the welfare performance of the mar-
ket. For an initial condition r =R(0), define

K(r)= E

[∫
e−γt W(t)dt

]
�

Definition 2. A social planner’s problem is

max
G

K(r) (7)

subject to the ramping constraint (3), where

W(t) = WS(t)+ WD(t)�

and its solution G∗ is called an efficient allocation.

We assume that the social planner’s problem (7) has a solution, which is indeed the
case if the demand process evolves according to (2). The proof of Proposition 1 is con-
tained in the Appendix.

Proposition 1. Suppose that D evolves according to (2) and that all costs are linear. For
a given discount rate γ > 0, let θ+ denote the positive solution to the quadratic equation

1
2σ

2θ2 − ζθ− γ = 0

and define the positive threshold r∗ via

r∗ = 1
θ+

log
(
cbo + v

c

)
� (8)

Then the social planner’s problem has a solution and the efficient allocation is character-
ized as a threshold policy, so that R∗ is a reflected Brownian motion on (−∞� r∗] satisfying

dG∗(t)
dt

= ζ if R∗(t) < r∗�

Let {Pe�Ge} be a competitive equilibrium. If Ge is an efficient allocation, then we say
that the equilibrium is efficient. If every competitive equilibrium is efficient, then we
say that the first welfare theorem holds.
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2.4 Economy without ramping constraint: Benchmark

Suppose that the supplier can adjust the production capacity instantaneously at each
period (ζ = ∞). Then, in the competitive equilibrium, the production capacity must be
such that it can provide the demand at each point of time, and the market price must
be precisely the marginal capacity cost (as long as it is less than the choke-up price). In
case of linear cost satisfying c < v + cbo, the following identities hold:

Pe(t) = c and Ge(t) =D(t)� t ≥ 0�

Note that the supplier’s optimal strategy is myopic: Produce the service as long as the
marginal production cost does not exceed the choke-up price.

As a result, the market outcome of the dynamic model is little more than the rep-
etition of the static outcomes. Since the supplier can produce each unit at the same
marginal cost, the market price is equal to c for each t. The competitive equilibrium is
efficient in an economy without friction. In particular, if the cost function is linear, then
the supplier’s surplus is 0 and the market clearing price should show no volatility.5

If ζ < ∞ is very large, then the economy is “close” to an economy without any fric-
tion, because the supplier can respond to the excess demand quickly, if not instanta-
neously. An important question is whether the market outcome is close to the outcome
realized when the supply is frictionless. The answer is anything but expected.

3. Analysis

For given initial condition R(0) = r, we denote the maximized expectations in (4) by,
respectively,

K∗
S(r) = sup E

[∫
e−γt WS(t)dt

]

and

K∗
D(r) = sup E

[∫
e−γt WD(t)dt

]
� (9)

The price process P is given, which determines the welfare function WD(t) =
wD(R(t)� t) with wD defined in (14). The value function (9) admits the simple upper
bound

K∗
D(r) = max

GD
E

[∫ ∞

0
e−γt WD(t)dt

]
≤ E

[∫ ∞

0
max
GD(t)

{e−γt WD(t)}dt
]
� (10)

We see in Lemma 1 that this upper bound is attained, which implies that the consumer
is myopic. Lemma 1 is the key result used in Theorem 1 to prove that the market price is
completely determined by the demand side of the market.

5For a general smooth convex cost function, the equilibrium price volatility should be the same order of
magnitude as the demand volatility.
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Lemma 1. The solution to the consumer’s problem is myopic: For each t > 0 we have
GD(t) ∈ arg max WD(t) and

WD(t) = w∗
D(t) := max

r
wD(r� t)� (11)

Proof. This is a consequence of the assumption that the consumer does not impose
rate constraints in the optimization (9). Hence the upper bound in (10) can be realized
by enforcing (11) for any t > 0. �

The myopic nature of the consumer’s solution implies that the value function is in-
dependent of r.

Lemma 2. The value function for the consumer is independent of r:

K∗
D(r) = K∗

D(0)� r ∈ R�

Proof. For any initial condition r = R(0), an optimal solution maximizes R(0+) over
all initial conditions to achieve

max
r′

K∗
D(r

′)�

The value of K∗
D(r) coincides with this maximum, and is hence independent of r. �

We can easily calculate the demand correspondence rD(p(t)) of the consumer,
where p(t) is the market clearing price at t:

rD(p(t)) =

⎧⎪⎪⎨
⎪⎪⎩

−∞ if p(t) > cbo + v

(−∞�0] if p(t) = cbo + v

0 if 0 <p(t) < cbo + v

[0�∞) if p(t) = 0.

(12)

Note that if Re(t) is an equilibrium reserve at time t, then (Re(t)�Pe(t)) must be
located in the graph of the demand correspondence where Pe(t) is the market clearing
price. Hence, if Pe(t) is a competitive equilibrium price, inverting (12) gives

Pe(t) =
⎧⎨
⎩
cbo + v if Re(t) < 0
[0� cbo + v] if Re(t) = 0
0 if Re(t) > 0.

(13)

The first main result of this paper characterizes the possible competitive equilibrium
price processes.

Theorem 1. Suppose that there is a competitive equilibrium {Pe�Ge}. Then the com-
petitive equilibrium price process must satisfy Pe(t) = pe(Re(t)�D(t)) for t ≥ 0 given by
(13), where Re is the reserve process in the competitive equilibrium, and the function
pe :R2 → R+ is (1).
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Proof. Define, for each t and r,

w̃D(r� t)= vmin(D(t)� r +D(t))− cbo max(0�−r)− P(t)(r +D(t))� (14)

Lemma 1 states that the solution to the consumer’s optimization problem is myopic:
For each t > 0, we have WD(t) = maxr′ w̃D(r

′� t). If at some time t, the welfare function is
differentiable, then we can take derivatives to compute the maximizer in a competitive
equilibrium, which gives (1). �

It is helpful to recall the nature of the contract that is being traded in this market. If
the consumer purchases g > 0 units of capacity, paying the total sum of peg, then he is
entitled to the amount of service up to g > 0 for no additional cost. The marginal price
of the service is 0, as long as the demand for service is less than the available capacity
g > 0.

To secure g > 0 units of supply, the consumer has to pay peg, which becomes a sunk
cost by the time the capacity produces the service. We can regard the price as a two
part tariff that consists of two components: the price for the marginal unit and the price
for the fixed component. In this case, the marginal price is set to zero and the fixed
component is peg. In this sense, pe is not the price paid for the marginal service, but the
price of capacity.

The market price hits the choke-up price cbo + v whenever demand exceeds the
available production capacity (Re(t) < 0). Alternatively, the price falls to zero rather
than to the marginal cost whenever Re(t) > 0. Because the production cost has already
been generated, the supplier is willing to provide the service at any positive price, and
the market price drops down to zero. Because the commodity is not storable, the sup-
plier cannot withdraw the service from the market for later sales nor can the consumer
demand more than what he needs today for future consumption, leaving no room for
smoothing the price dynamics.

Next, we prove the existence of a competitive equilibrium and characterize its prop-
erties.

The conventional approach to construct the competitive equilibrium is first to cal-
culate the supply schedule and find the intersection with the demand schedule. Instead,
we take a detour by proving the next lemma, which will later be combined with Lemma 2
to prove the first welfare theorem and establish the existence of a competitive equilib-
rium.

Lemma 3. If (Re�Pe) is a competitive equilibrium, then the three value functions satisfy,
for each Re(0) = r,

K∗(r)= K∗
D(r)+K∗

S(r)�

Proof. A bound in one direction always holds:

K∗(r) := max
R

E

[∫ T

0
e−γt[WD(t)+ WS(t)]dt

]
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≤ max
RD

E

[∫ T

0
e−γt WD(t)dt

]
+ max

RS
E

[∫ T

0
e−γt WS(t)dt

]

= K∗
D(r)+K∗

S(r)�

A bound in the reverse direction is obtained by applying the assumption that a compet-
itive equilibrium (Re�Pe) exists:

K∗
D(r)+K∗

S(r) = E

[∫ T

0
e−γt[WD(t)+ WS(t)]dt

]∣∣∣∣
R=Re

≤ max
R

E

[∫ T

0
e−γt[WD(t)+ WS(t)]dt

]
=K∗(r)� �

We are ready to prove the first welfare theorem.

Theorem 2. Any competitive equilibrium is efficient.

Proof. Let Re denote the reserve process in the competitive equilibrium and let K(r)

denote the resulting social welfare. To prove the result, we establish that K(r)= K∗(r).
Combining Lemma 3 with Lemma 2 gives

K(r) = E

[∫
e−γt[w∗

D(t)+ WS(t)]dt
]∣∣∣∣

R=Re

= max
RS

E

[∫
e−γt[w∗

D(t)+ WS(t)]dt
]∣∣∣∣

R=RS

(15)

≥ max
RS

E

[∫
e−γt[WD(t)+ WS(t)]dt

]∣∣∣∣
R=RS

= K∗(r)� (16)

where w∗
D(t) is defined in (11). The equality in (15) is implied by the fact that w∗

D(t)

is independent of RS. The inequality of (16) follows from the fact that the consumer’s
optimization problem is myopic, so that (11) holds. By definition of K∗(r), this bound
implies that K(r)= K∗(r) as claimed. �

It is challenging to calculate a supply schedule because of the ramping constraint
appearing in the producer’s optimization problem. Yet, we can prove that if Re solves
the social planner’s problem (7), then De = Re +D constitutes a competitive equilibrium
together with Pe given by (13).

Proposition 2. Let G∗ be the solution of (7). If Pe is given by (13), {Pe�G∗} is a competi-
tive equilibrium.

Proof. Recall that WS(t) = P(t)G(t)− c(G(t)) and

W(t)= vmin(D(t)�G(t))+ cbo min(R(t)�0)− c(G(t))�
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If P(t) = Pe(t) is given by (13), then the difference of these welfare functions can be
expressed as a function of exogenous variables:

W(t)− WS(t) = (v − P(t))D(t)+ (v + cbo)min(0�R(t))− P(t)R(t)

= (v − P(t))D(t)�

Since (v − P(t))D(t) is beyond the control by a price-taking producer, then

R∗ ∈ arg max
G

E

[∫
e−γt WS(t)dt

]

if and only if

R∗ ∈ arg max
G

E

[∫
e−γt W(t)dt

]

while both optimization problems are subject to the same ramping constraint. Thus, G∗
is the supply schedule induced by Pe.

It remains to prove that R∗ = G∗ − D solves the consumer optimization problem.
Note that if Pe(t) = v + cbo, which occurs when R∗(t) ≤ 0, then any R(t) ≤ 0 maximizes
the consumer utility and, in particular, R∗(t) ≤ 0 does. Similarly, if Pe(t) = 0, which
occurs when R∗(t) ≥ 0, any R(t) ≥ 0 maximizes the consumer utility, including R∗(t) ≥ 0.
This concludes the proof. �

4. Properties of competitive equilibria

It is remarkable that the marginal production cost is irrelevant in determining (1), how-
ever large the ramping rate constraint ζ > 0 might be. The equilibrium price functional
(1) reveals that a competitive equilibrium entails extreme price volatility. The efficient
equilibrium price can fluctuate between zero and the choke-up price as the market
demand fluctuates. Thus, one cannot deduce market failure based on extreme price
volatility or persistent deviation from the marginal production cost.

The high market price signals the shortage of the reserves, which prompts the pro-
ducer to ramp up the supply of service. However, the low price does not necessarily lead
to a reduction in supply. If there exist abundant reserves, say R(t) > r∗, where r∗ is de-
fined by (8), then the market clearing price is zero and the producer will ramp down the
supply quickly. However, if 0 <R(t) < r∗, the producer instead ramps up the supply, de-
spite the fact that the market price is zero. The large reserve serves two purposes. First, a
large reserve can meet a large demand today. Second, with the presence of the ramping
constraint, a large reserve today is useful to meet a potentially large demand tomorrow.
If R(t) < r∗, the benefit from maintaining a large reserve outweighs the cost of providing
the additional reserve, and the producer increases supply.

Let us examine how the equilibrium outcome depends on key factors such as the
ramping constraint. First, note that the threshold r∗ decreases as the ramping rate ζ > 0
increases. Hence the value of additional reserve decreases as the producer can respond
more rapidly to a sudden increase in demand.
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Next we examine the distribution of welfare in the competitive equilibrium by apply-
ing Theorem 2 and properties of the efficient allocations summarized in Proposition 1.
For this, we recall the representation for K(r) given in (25), based on the exponential ran-
dom variable T . Using the fact that r̄∗ −R(T) has an exponential distribution combined
with the definition of the parameter θ∗, we obtain

P{R(T) ≤ 0 | Re(0) ≥ r∗} = e−θ∗r∗ = e− log((cbo+v)/c) = c

cbo + v
�

Again assuming Re(0) ≥ r∗, the average price can be computed as

E[Pe(T) | Re(0) ≥ r∗] = (cbo + v)P{R(T) ≤ 0} + 0P{R(T) > 0}
(17)

= (cbo + v)
c

cbo + v
+ 0 = c�

Consequently, assuming large initial reserves, the discounted average expected price is
exactly the marginal production cost of the service in a competitive equilibrium, which
is consistent with the conclusion that the outcome is efficient.

Similar arguments show that the expected price is strictly increasing as reserves de-
crease, for any initial r < r∗, so that E[Pe(T) | Re(0) = r] > c for such r. The expected
price approaches the maximum value cbo + v as r tends to negative infinity. As a result,
if the economy severely lacks reserve capacity at t = 0, then the long-run discounted av-
erage payoff of the supplier may exceed what he would have obtained in the economy
without friction. By the same token, the fact that the distribution is skewed in favor of
the supplier does not necessarily imply the presence of market power.

A positive profit induces entry, as the firms outside of the market are willing to pro-
vide service to the market. To highlight how the insights of the present analysis can be
extended, let us consider a particularly simple model of entry and exit. We differentiate
the inside firms from the outside firms according to the location of the production ca-
pacity. Entry is the increase of the service provided by the outside firms, and exit is its
reduction.

Let us assume that all outside firms and all inside firms share a common production
technology, and that the outside firm can enter the market at the rate of κ ≥ 0 at any
instant. The model coincides with the one without entry when κ = 0. At the other ex-
treme, when κ = ∞ the outside firm can respond instantly to an increase in demand. In
a certain sense, κ <∞ models another form of friction in the economy: the difficulty for
outside firms to provide service.

With the service provided by outside firms, the (aggregate) ramping rate is ζ(1 + κ).
The increment of ζ comes from the incumbent firms, while ζκ is provided by the outside
firms. The economy is essentially the one with a higher ramping rate, thanks to the out-
side firms. We can invoke exactly the same analysis to show that the competitive equi-
librium with entry is efficient. For the same initial condition on reserve, the discounted
average price in the competitive equilibrium is nonincreasing with increasing κ.

Friction vanishes as κ → ∞, and in the limit the market price coincides with the
marginal production cost. However, κ is finite in any typical service industry with a large
capital investment, so that wild swings in the equilibrium market price can be expected
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(between zero and the choke-up price in this model). Consequently, price volatility can-
not be used as evidence of a strategic barrier to entry.

5. Concluding remarks

Although the model is highly stylized, the message is very much relevant to observations
of deregulated electricity markets around the world. We have seen that a simple example
can replicate the extreme volatility seen in today’s power markets. What is remarkable is
that extreme volatility is an intrinsic part of the competitive market equilibrium, and the
degree of volatility has little to do with the welfare properties of the market outcomes.

Because the marginal pricing rule can be recovered in the competitive market in
a weak sense, as described by (17), we can diagnose the presence of noncompetitive
behavior by estimating the expected delivery price of the commodity and the expected
consumer surplus. While (17) offers a testable implication of the model, we must point
out that this is only a mild implication. It is still possible that observed market data can
show extremely low consumer surplus, even if the market is efficient. We believe that the
diagnosis of market power should be based on a well calibrated dynamic model and its
equilibrium outcomes, which includes the collection of feasible price processes. A focus
of the dissertation by Ruiz (2008) is the construction of dynamic models that explicitly
address ramping rate constraints, based on observed power market data.

We have noted that the existence of a centralized optimal outcome is established
in Cho and Meyn (2009) for the model with Brownian demand (2). The analysis allows
multiple generators with heterogeneous ramping constraints. The optimal solution is
characterized by computable thresholds, much like classical solutions to centralized
optimal control in inventory models (Scarf 1963, Meyn 2007). The paper by Chen et
al. (2006) contains extensions of the main result of Cho and Meyn (2009) to a network
of generators and consumers connected by constrained power lines. Even in the case
of Brownian demand, a closed form expression for the social planner’s problem is not
possible when there are constraints on links. However, it is possible to obtain struc-
tural properties of the optimal solution. These results can be applied to understand the
competitive benchmark in future market analysis.

Appendix: Proof of Proposition 1

Proposition 1 states that the optimal reserve process is a reflective Brownian motion
(RBM) on (−∞� r∗]. To characterize the optimal policy, we first focus on a class of poli-
cies under which the reserve process is characterized by an RBM on (−∞� r̄] for some
r̄ ∈ R. Such a policy is called a barrier policy, with barrier r̄. To prove Proposition 1, we
first characterize the optimal barrier r∗ within the class of barrier policies, and we then
demonstrate that this policy is optimal among all feasible policies.

A.1 Preliminaries

The welfare function can be expressed as

W(t)= (v − c)D(t)+ (v + cbo)min(0�R(t))− cR(t)�
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On defining the social cost of R(t) as

C(R(t)) = cR(t)− (v + cbo)min(0�R(t)) =
{
cR(t) if R(t) > 0
−(v + cbo − c)R(t) if R(t) ≤ 0,

we express the maximization of expected welfare as the minimization of the expected
cost using the identity

−E[W(t)] = −E[(v − c)D(t)] + E[C(R(t))] = E[C(R(t))]�
The control variable of the social planner is the sample path of G(t), subject to (3).

For a given r̄ > 0, the barrier policy is defined as a policy under which the reserve
process becomes an RBM on (−∞� r] for any initial condition R(0). We shall give an
explicit representation for a barrier policy, but first we recall a few key properties of an
RBM.

It is convenient to introduce the transformation

Y(t) = r̄ −R(t)

so that Y is an RBM on [0�∞) under the barrier policy. The evolution of Y on R+ can be
expressed as

Y(t) = y − ζt + I(t)+D(t)� t ≥ 0� (18)

where y = Y(0) = r̄ −R(0) is the initial condition. The process I is known as the idleness
(or reflection) process. The idleness process is nondecreasing, with I(0) = 0, and satisfies

∫ ∞

0
Y(t)dI(t) = 0� (19)

This makes precise the notion that I(t) can increase only when Y(t) = 0 (equivalently,
when R(t) = r̄).

By an exponential distribution with parameter θ∗ > 0, we mean the probability dis-
tribution supported on R+, with density given by

pY(y) = θ∗e−θ∗y� y ≥ 0�

It is known that the RBM has a stationary distribution of this form.

Proposition 3. The reflected Brownian motion (18) has a unique stationary distribu-
tion. It is exponential with parameter θ∗, where

θ∗ = 2ζ
σ2 �

For the proof, see Harrison and Williams (1987).
These expressions can be mapped to the reserve process, providing an explicit con-

struction of a barrier policy. Define I(t) as the gap between the maximum rate of pro-
duction and the actual generation:

I(t) = r + ζt −G(t)� (20)
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This definition of I is consistent with (18). Since r + ζt is exogenous, we can treat I(t) as
a control instead of G(t). Since R(t) =G(t)−D(t), we can write

R(t) = r + ζt − I(t)−D(t)� t ≥ 0�

where r =R(0).
We claim that the barrier policy can be expressed in terms of the observed demand

process as

I(t) = max
0≤τ≤t

max(0�−(r̄ − r)+ ζτ −D(τ))� t ≥ 0� (21)

It is clear from this representation that I is nondecreasing and nonnegative. Moreover,
under the assumption that r ≤ r̄, it follows that I(0) = 0.

To verify that (21) is indeed a barrier policy, we recall the standard representation
of an RBM via the Skorokhod map (cf. Chapter 3 of Meyn 2007). Assume that a barrier
policy has been applied, so that Y(t) = r̄ − R(t) is an RBM on [0�∞). The free process
describes how Y(t) would have evolved without reflection, that is,

F(t) := (r̄ − r)− ζt +D(t)� t ≥ 0�

Note that F is a Brownian motion with drift −ζ. The Skorokhod map representation of
the RBM Y is given by

Y(t) = max
0≤τ≤t

max(F(t)�F(t)− F(τ))� t ≥ 0� (22)

Comparing (18) and (22), we conclude that the idleness process is given by

I(t) = Y(t)− F(t)

= max
0≤τ≤t

max(0�−F(τ))� t ≥ 0�

which is exactly (21). This proves that (21) describes the barrier policy with barrier r̄.
Proposition 3 implies that the stationary distribution of R(t) under a barrier policy

is the shifted exponential

pR(r) =
{
θ∗e−θ∗(r̄−r) if r ≤ r̄

0 if r > r̄.
(23)

A.2 Without discounting

It is instructive to apply Proposition 3 to characterize the optimal policy for the case
without discounting. The objective function of the social planner is the average cost

C0(r̄) = lim sup
T→∞

1
T

∫ T

0
E[C(R(t))]dt�
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If R(0) is distributed according to the stationary distribution, then

C0(r̄) = E[C(R(T))]
(24)

=
∫ 0

−∞
(v + cbo − c)|x|θ∗eθ∗(x−r̄) dx+

∫ r̄

0
cxθ∗eθ∗(x−r̄) dx�

where the first equality holds for any T by stationarity, and the second follows from the
Law of Large Numbers combined with (23).

On writing the average cost as the convolution,

C0(r̄)=
∫ ∞

0
C(−(r̄ − y))pY (y)dy�

we see that C0(r̄) is convex and differentiable as a function of r̄. We obtain a formula
for the value of r̄ minimizing C0(r̄) by setting the derivative of the right hand side of (24)
equal to zero:

r̄∗ = 1
θ∗ log

(
v + cbo

c

)
�

Section 7 of Wein (1992) proves that the barrier policy using r̄∗ is, in fact, an optimal
policy among all feasible policies. The proof can be obtained by appealing to the con-
vexity of the relative value function that arises in the associated average-cost dynamic
programming equations. In the next section, the value function is constructed under
the discounted cost criterion, and we find that it is convex as a function of the initial
condition of R.

A.3 With discounting

Let us denote the discount factor as e−γ . We initially restrict analysis to barrier policies,
as represented in (21). On establishing convexity of the value function, we can conclude
as in Section 7 of Wein (1992) that the optimal barrier policy is, in fact, optimal over all
policies.

A critical bridge between this problem and the average-cost problem is the inter-
pretation of the discount term e−γt as an unnormalized exponential density. We let T
denote an exponential random variable with parameter γ, independent of the demand
process. For a given barrier policy with barrier r̄ and a given initial condition r = R(0),
the resulting discounted cost can be expressed as

Cγ(r; r̄) = E

[∫ ∞

0
e−γtC(R(t))dt

∣∣∣ R(0) = r

]
= γ−1E

[
C(R(T)) | R(0) = r

]
� (25)

Note that the only substantive difference between (25) and (24) is that T in (25) is
a specially constructed random time, while in (25) the time T is deterministic and the
process R is assumed to be stationary. To compute the optimal policy under discount-
ing, we need only to know the distribution of R(T) when T is an exponentially distrib-
uted random variable with parameter γ > 0. We find that its form is similar to (23) when
R(0) = r̄.
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Proposition 4. Suppose that a barrier policy is applied and that R is initialized with
R(0) = r̄. Suppose that T is an exponential random variable with parameter γ, indepen-
dent of D. Then the random variable Y(T) = r̄ − R(T) has an exponential distribution
whose parameter θ+ is the positive root of the quadratic equation

1
2σ

2θ2 − δθ− γ = 0� (26)

Note that as γ ↓ 0, we have θ+ → θ∗, which is the parameter for the exponential
distribution that defines the steady-state distribution of Y(t).

Proof of Proposition 4. To prove the proposition, it suffices to compute the moment
generating function of Y(T) and to show that for ϑ ≤ 0 it coincides with the moment
generating function of an exponential random variable with parameter θ+:

E[eϑY(T) | Y(0) = 0] = θ+
θ+ −ϑ

�

To this end, we construct solutions to dynamic programming equations for the RBM.
The differential generator for Y is defined by

Dh= −ζh′ + 1
2σ

2h′′�

Lemma 4 provides a dynamic programming equation for the scaled moment generating
function for an arbitrary initial condition, that is,

h(y) = γ−1E
[
cϑ(Y(T)) | Y(0) = y

]
� (27)

where T is distributed according to the exponential distribution with parameter γ. The
derivative condition h′(0) = 0 in Lemma 4 is a special case of the boundary condition
imposed in Theorem 2 of Harrison and Reiman (1981), and equation (30) of Harrison
and Reiman (1981) is similar to the conclusion of the lemma.

Lemma 4. Let cϑ(y) = eϑy . Suppose that h :R+ → R is a twice continuously differentiable
function for which h and h′ are bounded, and also satisfying

Dh = γh− cϑ (28)

h′(0) = 0� (29)

Then h coincides with (27). Equivalently,

h(y) = E

[∫ ∞

0
e−γτcϑ(Y(τ))dτ

∣∣∣ Y(0) = y

]
�

Proof. Define

g(y� t) = e−γth(y) and G(t) = g(Y(t)� t)�
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An application of Itô’s formula gives

dG(t)= gt(Y(t)� t)dt + gy(Y(t)� t)dY(t)+ 1
2σ

2gyy(Y(t)� t)dt

= (−γe−γth(Y(t))+ e−γt
[−ζh′(Y(t))+ 1

2σ
2h′′(Y(t))

])
dt

+ e−γth′(Y(t))dI(t)+ e−γth′(Y(t))dD(t)

= (−γh(Y(t))+ Dh(Y(t))
)
e−γt dt + e−γth′(Y(t))dI(t)+ e−γth′(Y(t))dD(t)�

By the dynamic programming equation (28), we have

−γh(Y(t))+ Dh(Y(t)) = −cϑ(Y(t))�

The property (29) combined with (19) implies

h′(Y(t))dI(t) = 0�

Thus, we have

dG(t) = −e−γtcϑ(Y(t))+ e−γth′(Y(t))dD(t)�

which is equivalent to the integral equation

e−γth(Y(t))− h(Y(0)) =G(t)−G(0) = −
∫ t

0
e−γτcϑ(Y(τ))dτ +

∫ t

0
e−γτh′(Y(τ))dD(τ)�

Since h and h′ are bounded, we can take expectations of each side and let t → ∞ to
obtain the desired formula:

h(y) = E

[∫ ∞

0
e−γrcϑ(Y(τ))dτ

∣∣∣ Y(0) = y

]
� �

Next we construct a solution to (28) and (29). Since −2γ/σ2 < 0, the quadratic equa-
tion (26) has two real roots: the parameter θ+ > 0 defined in Proposition 4 and a second
root θ− < 0. That is, we can write

ϑ2 − 2ζ
σ2ϑ− 2γ

σ2 = (ϑ− θ−)(ϑ− θ+)� (30)

Moreover, a small amount of algebra shows that

θ+θ− = −2γ
σ2 < 0� (31)

We now show that a solution to (28) and (29) is

h(y) = κ

(
eϑy − ϑ

θ−
eθ−y

)
� y ≥ 0�

where κ > 0 is a constant to be determined. Clearly, (29) holds. To obtain (28), we require

κ
((−ζϑ+ 1

2σ
2ϑ2)eϑy − (−ζϑ+ 1

2σ
2ϑθ−

)
eθ−y) = γh(y)− eϑy� y ≥ 0�
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After arranging the terms, this becomes

(
κ
[
γ + ζϑ− 1

2σ
2ϑ2] − 1

)
eϑy − ϑκ

θ−
[
γ + ζθ− − 1

2σ
2θ2−

]
eθ−y = 0�

Since θ− is a solution of (26), we have

γ + ζθ− − 1
2σ

2θ2− = 0�

Therefore, to solve (28), the constant κ should be selected to make the first term equal
to 0:

κ= (
γ + ζϑ− 1

2σ
2ϑ2)−1

� (32)

The final step is to evaluate γh(0) to show that it coincides with the moment gener-
ating function of the exponential distribution with parameter θ+:

γh(0) = θ+
θ+ −ϑ

�

We obtain the desired formula by substituting the expression for κ in (32) into the defi-
nition of h and applying the identities (30) and (31):

γh(0) = γκ

(
1 − ϑ

θ−

)
= γ(θ− −ϑ)

θ−
(
γ + ζϑ− 1

2σ
2ϑ2

)

= γ(θ− −ϑ)[− 1
2σ

2θ−
]
(θ− −ϑ)(θ+ −ϑ)

=
[
− 2γ
σ2θ−

][
1

θ+ −ϑ

]
= θ+

θ+ −ϑ
� �

The next step in the proof of Proposition 1 is the derivation of the formula (8). This
follows exactly the same steps as in the case without discounting, after we replace θ∗
by θ+.

These arguments demonstrate only that (8) induces a barrier policy that is optimal
among all barrier policies, subject to the constraint that the reserve process is initial-
ized with R(0) = r̄∗. The final step in the proof of Proposition 1 is to remove these re-
strictions: We must generalize to arbitrary initial conditions and demonstrate that the
optimal policy is indeed a barrier policy. For this, we apply dynamic programming ar-
guments. Combining (20) and the ramping constraint (3), we regard

I = {I | I is adapted to G, and nondecreasing, with I(0) = 0}
as the set of all feasible controls. Let H∗ :R → R denote the discounted value function,
defined consistently with (4):

H∗(r) := inf
I

E

[∫ ∞

0
e−γtC(R(t))dt

∣∣∣R(0) = r

]
� r ∈ R�

Following the proof of Proposition 9.8.1 in Meyn (2007), we can show that H∗(r) is a
convex nonincreasing function of r. In fact, H∗(r) can be computed explicitly: Follow-
ing the same steps as in the proof of Proposition 3.4.13 in Meyn (2007), we obtain the



Theoretical Economics 5 (2010) Efficiency and marginal cost pricing 237

following representation. The value function is constant on [r̄∗�∞) and, for r ≤ r̄∗,

H∗(r) = γ−1C(r)+ γ−2C ′(r)+
{
a−e−θ−r if r < 0
b−e−θ−r + b+e−θ+r if 0 ≤ r ≤ r̄∗,

where (θ+� θ−) satisfy (30). The derivative C ′ is defined as the piecewise constant func-
tion

C ′(r)=
{−(v + cbo − c) if r < 0
c if r ≥ 0.

The three constants (a−� b−� b+) are specified by the three constraints

H∗(0+) =H∗(0−)�
d

dr
H∗(0+) = d

dr
H∗(0−)�

d

dr
H∗(r̄∗)= 0�

This function solves the dynamic programming equation for this optimal control prob-
lem, as described in Atar and Budhiraja (2006):

DH∗(r) = −c(r)+ γH∗(r)� r < r̄∗� d

dr
H∗(r̄∗) = 0�

It follows from Theorem 2.1 of Atar and Budhiraja (2006) that the associated barrier pol-
icy is optimal over all policies for any initial condition.
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