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Strategic experimentation with Poisson bandits

Godfrey Keller
Department of Economics, University of Oxford

Sven Rady
Department of Economics, University of Munich

We study a game of strategic experimentation with two-armed bandits where the
risky arm distributes lump-sum payoffs according to a Poisson process. Its inten-
sity is either high or low, and unknown to the players. We consider Markov perfect
equilibria with beliefs as the state variable and show that all such equilibria exhibit
an “encouragement effect” relative to the single-agent optimum. There is no equi-
librium in which all players use cutoff strategies. Owing to the encouragement
effect, asymmetric equilibria in which players take turns playing the risky arm
before all experimentation stops Pareto dominate the unique symmetric equilib-
rium. Rewarding the last experimenter with a higher continuation value increases
the range of beliefs where players experiment, but may reduce the intensity of
experimentation at more optimistic beliefs. This suggests that there is no equilib-
rium that uniformly maximizes the players’ average payoff.

Keywords. Strategic experimentation, two-armed bandit, Poisson process,
Bayesian learning, piecewise deterministic process, Markov perfect equilibrium,
differential-difference equation.
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1. Introduction

When firms cooperate in a research joint venture, each faces a dynamic problem in
which it can perform repeated costly experiments (that is, spend time, effort, and money
on the purported innovation) but also learn from the experimental observations of the
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others. Such a game of strategic experimentation arises in a variety of economic con-
texts; besides firms’ research and development (R&D) activities, consumer search or
experimental consumption of a new product are prominent examples. Academic re-
searchers pursuing a common research agenda or simply working on a joint paper are
also effectively engaged in strategic experimentation.

In this paper we analyze a game of strategic experimentation where a finite number
of players face identical two-armed bandit problems. There is a safe arm that offers a
known and constant flow payoff and a risky arm whose lump-sum payoffs are driven by
a Poisson process of unknown intensity. The risky arm can be either good or bad: if it
is good, the lump sums arrive more frequently than if it is bad. While all risky arms are
of the same type (all good or all bad), lump sums arrive independently across players.
Each player is endowed with a stream of one unit of a perfectly divisible resource and,
at each point in time, must decide how to split this resource between the two arms.
Players’ actions and outcomes are publicly observed, so there are perfect informational
spillovers between players.

With Poisson bandits, news arrives in a “lumpy” fashion. Examples are the occa-
sional breakthrough in research and development, a completed research paper in a
longer-term research agenda, or one of a sequence of crucial proofs in a paper. Beliefs
jump to a more optimistic level whenever a “news event” or “success” occurs, whereas
they gradually become more pessimistic in between such events.

A single success on the risky arm does not fully reveal its type. This stands in marked
contrast to the experimentation model of Keller et al. (2005). There, a good risky arm
also generates lump-sum payoffs according to some Poisson process, but a bad risky
arm never generates any payoffs, so the belief jumps all the way to certainty as soon as
the first lump sum arrives, irrespective of the belief held immediately before.1 In the
present model, there is never certainty about the state of the risky arm, and the belief
held immediately after a success varies with the belief held immediately before. As a
consequence, when the players in our model use Markov strategies with the posterior
belief as the state variable, their payoff functions solve first-order differential-difference
equations. Despite this technical complication, these equations can be analyzed by ele-
mentary methods and admit closed-form solutions.

While all Markov perfect equilibria (MPE) of the experimentation game are ineffi-
cient because of free-riding, our first main contribution is to show that they always ex-
hibit an encouragement effect: the presence of other players encourages at least one of
them to continue experimenting with the risky arm at beliefs where a single agent would
already have given up. This effect rests on two conditions: the experimentation by any
pioneer contemplating the use of the risky arm beyond the single-agent optimum must
increase the likelihood that other players will return to the risky arm in the future, and
these future actions must be valuable to the pioneer. The encouragement effect was first
described by Bolton and Harris (1999) in a model where the risky arm yields a flow pay-
off with Brownian noise. Focusing on the symmetric MPE of their model, however, they

1For any time-invariant positive allocation of resources to the risky arms, this resolution of uncertainty
happens at an exponentially distributed random time. Following Keller et al. (2005), we therefore refer to
that model as the exponential model and to the present model as the Poisson model.
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obtain the encouragement effect for this particular equilibrium only. In contrast, we are
able to establish this effect for all Markov perfect equilibria of the Poisson model.

We then show that there is no MPE in which all players use cutoff strategies, i.e., use
the risky arm exclusively when the probability they assign to the risky arm being good
is above some cutoff, and use the safe arm when it is below. In fact, the player who is
supposed to use the least optimistic cutoff in a purported MPE in cutoff strategies always
has an incentive to deviate to the safe action at the second least optimistic cutoff, where
one of the other players is supposed to switch action.

A symmetric MPE thus necessarily requires the players to choose an interior alloca-
tion of their resource at some beliefs. We show that the Poisson model admits a unique
symmetric MPE. As in its counterpart in the Bolton–Harris model, all players use the
risky arm exclusively when they are sufficiently optimistic, the safe arm when they are
sufficiently pessimistic, and both arms simultaneously at intermediate beliefs. Further,
the acquisition of information is slowed down so severely near the lower bound of the
intermediate range that the players’ beliefs cannot reach this bound in finite time.

This strongly suggests that asymmetric equilibria where a last experimenter keeps
the rate of information acquisition bounded away from zero at pessimistic beliefs ought
to be more efficient than symmetric equilibrium. Bolton and Harris (2000), who study
the undiscounted limit of the Brownian model, and Keller et al. (2005) confirm this by
constructing a variety of asymmetric MPE that dominate the symmetric MPE in terms
of aggregate payoffs. However, they do so in environments without the encouragement
effect. In both cases, it is the second of the two conditions stated above that fails. In the
undiscounted Brownian model, the catching-up criterion implies that best responses
do not depend on players’ continuation values, so there is no channel through which
the opponents’ future actions can influence a player’s current optimal choice. In the
exponential model, the only way for the pioneer to make the other players return to the
risky arm is to have a success himself, but since such a success is fully revealing, he will
then not benefit at all from his opponents’ future actions.

The construction of asymmetric equilibria in Keller et al. (2005) relies on a backward-
induction approach anchored at the single-agent cutoff belief. The presence of the en-
couragement effect obviously rules out such an approach in the Poisson model. The
construction of asymmetric equilibria is further complicated by the “nonlocal” nature
of the problem: each player’s payoff depends not only on the action profiles and con-
tinuation values prevailing in a neighborhood of the current belief, but also on the con-
tinuation value at the belief that would be reached after a success on a risky arm. Our
second main contribution is to provide a constructive solution to this problem.

The approach that we use here rests on two ideas. The first is to give the players a
common continuation value after any success on a risky arm; the second is to let them
alternate finitely many times between the roles of experimenter and free-rider before all
experimentation stops. Assigning common continuation values after successes allows
us to construct the players’ average payoff function before assigning individual strate-
gies, which simplifies the problem considerably. Letting players take turns playing risky
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allows us to achieve an overall intensity of experimentation higher than in the symmet-
ric equilibrium, hence higher average equilibrium payoffs. We show that this alterna-
tion can actually be performed in a way that leads to a Pareto improvement over the
symmetric equilibrium.

In the exponential model, finite switching between the safe and the risky arms is
also able to generate higher average equilibrium payoffs than the symmetric MPE, but
not a Pareto improvement over this equilibrium. The reason is that in the absence of the
encouragement effect, the last experimenter quits at the same belief (the single-agent
cutoff) at which all players stop experimenting in the symmetric equilibrium; bearing
all the costs of experimentation on his own, the last experimenter is then necessarily
worse off than under symmetry immediately to the right of this cutoff. Because of the
encouragement effect in the Poisson model, by contrast, sufficiently frequent but finite
switching between the roles of experimenter and free-rider brings every player’s payoff
function close enough to the average payoff function so that even the last experimenter
is better off than in the symmetric MPE.2

Ideally, we would like to have a complete characterization at any given belief of the
set of payoff profiles and average payoffs that can be achieved in a Markov perfect equi-
librium of the experimentation game. In the exponential model with finite switching,
such a characterization is available at least in the two-player case. Our third main con-
tribution is to explore whether a similar characterization can be obtained in the Poisson
model.

With two players, the exponential model actually admits uniformly best and worst
equilibria that achieve the maximal (resp. minimal) intensity of experimentation and
the maximal (resp. minimal) average payoff compatible with Markov perfection and fi-
nite switching, and do so on the entire unit interval. While the worst MPE is the sym-
metric one, the best equilibria have the same structure as the asymmetric MPE that we
construct in the Poisson model; all these equilibria are thus easily seen to be the limits
of two-player equilibria of the Poisson model for vanishing arrival rates of lump-sum
payoffs on a bad risky arm.

Moreover, there is a “most inequitable” two-player MPE in the exponential model
such that the payoffs achieved by the last experimenter and the last free-rider constitute
a uniform lower and upper bound, respectively, on the individual equilibrium payoffs
that are compatible with Markov perfection and finite switching. These equilibria in-
volve what we call simple strategies, that is, strategies that have each player use one
or the other arm exclusively at any given belief. To investigate whether these most in-
equitable equilibria can also be obtained as limits of two-player equilibria of the Poisson
model, we first construct a benchmark simple MPE where the players obtain common
continuation payoffs after any success on a risky arm. In a numerical example, we then
progressively diverge from this benchmark by rewarding the last experimenter, that is,

2To obtain a Pareto improvement over the symmetric MPE in the exponential model, one has to con-
struct an equilibrium without a last experimenter, that is, one where players switch actions infinitely often
over a finite time interval; cf. Section 6.2 of Keller et al. (2005). As infinite switching is not required for such a
Pareto improvement in the Poisson model, we do not consider it here and instead restrict players to Markov
strategies with finitely many discontinuities.
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by giving him a higher continuation value after a success than his opponent. This yields
equilibria with progressively increasing payoff asymmetry between the players and in
the limit replicates the most inequitable equilibria of the exponential model.

We find that rewarding the last experimenter raises average payoffs at relatively pes-
simistic beliefs (because the last experimenter is willing to play risky over a larger range
of beliefs), but lowers them at optimistic beliefs (because the intensity of experimenta-
tion drops from 2 to 1 earlier when the difference between the players’ equilibrium pay-
offs increases). This means, in particular, that although we can approach the best two-
player equilibria of the exponential model arbitrarily closely with asymmetric equilibria
of the Poisson model, the latter do not constitute uniformly best equilibria themselves.
More generally, to the extent that we can always reward the last experimenter some-
what more, this suggests the conjecture that the Poisson model admits no uniformly
best MPE.3

In the alternation phase of some of the examples we calculate, we observe an an-
ticipation effect that is already present in the infinite-switching equilibria of Keller et
al. (2005): the value function of a lone experimenter decreases in the current belief over
some range. The intuition for this effect is that, conditional on no impending success
on his own risky arm, the player will soon be able to enjoy a free ride, and the lower the
current belief, the sooner this time will come.

For each type of equilibrium that we construct, we provide representations of the
players’ payoff functions that are explicit up to some constant of integration. While
these representations cannot be used to derive comparative statics results, say, they
greatly simplify the computation of numerical examples. Asymmetric equilibria with
common continuation values after a success just require a one-dimensional search for
an implicitly defined constant of integration. In the two-player equilibria that reward
the last experimenter, we have to solve for two of these constants. Either task is easily
carried out in a spreadsheet.

The Poisson model is a natural analog in continuous time of the two-outcome bandit
model in Rothschild (1974), the first paper to use the bandit framework in economics;
see Bergemann and Välimäki (2008) for a survey of the ensuing literature. Through its
focus on bandit learning as a canonical model of strategic experimentation in teams, our
paper is most closely related to Bolton and Harris (1999, 2000) and Keller et al. (2005),
sharing with them the assumption that the players face risky arms of a common type.
Klein and Rady (2008) and Klein (2010), by contrast, consider two players who face risky
arms of opposite types, one good and one bad. Strulovici (2010) studies majority voting
in a collective decision problem where the type of the risky arm varies across individuals.

Our paper is further related to a strand of the industrial organization literature that
studies R&D investment games under learning. Malueg and Tsutsui (1997) investigate a
model of a patent race with learning where the arrival time of an innovation is exponen-
tially distributed given the stock of knowledge, implying the same deterministic belief

3This does not preclude the possibility that for each belief, there exists a Markov perfect equilibrium
that maximizes average payoffs when the game is started at this particular belief. An investigation of this
possibility and of the upper envelope of average equilibrium payoffs is beyond the scope of this paper.
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revision prior to the innovation as our model exhibits in between lump sums. Build-
ing on the exponential bandit framework of Keller et al. (2005), Besanko and Wu (2008)
study the effects of post-innovation market structure on cooperative and competitive
R&D investments, respectively. Décamps and Mariotti (2004), Hopenhayn and Squin-
tani (2008), and Moscarini and Squintani (2007) all analyze models where news arrives
in the form of the increments of a (compound) Poisson process; as they consider stop-
ping games with private information, however, the resulting strategic interactions are
very different from that in our model.

The remainder of the paper is organized as follows. Section 2 sets up the Poisson
bandit model. Section 3 establishes the efficient benchmark. Section 4 introduces the
strategic problem, establishes the encouragement effect, and proves the impossibility
of cutoff equilibria. Section 5 presents the unique symmetric MPE. Section 6 constructs
asymmetric equilibria in which players take turns playing the risky arm before all ex-
perimentation stops. Section 7 studies two-player equilibria that reward the last exper-
imenter. Section 8 contains concluding remarks. Proofs for all of the corollaries and for
Proposition 7 are relegated to the Appendix.

2. Poisson bandits

The setup of the model is similar to that of Keller et al. (2005), the principal difference
being that here a bad risky arm yields positive payoffs (as opposed to zero), which means
that a success does not reveal the risky arm to be good. For mathematical details on Pois-
son bandits, see Presman (1990) or Presman and Sonin (1990); for the optimal control of
piecewise deterministic processes more broadly, see Davis (1993).

Time t ∈ [0�∞) is continuous, and the discount rate is r > 0. There are N ≥ 1 play-
ers, each endowed with one unit of a perfectly divisible resource per unit of time and
each facing a two-armed bandit problem. Lump-sum rewards on the risky arm R are
independent draws from a time-invariant distribution on R \ {0} with a known mean
h > 0. If a player allocates the fraction kt ∈ [0�1] of her resource to R over an interval of
time [t� t + dt[ and, consequently, the fraction 1 − kt to the safe arm S, then she receives
the expected payoff (1 − kt)s dt from S, where s > 0 is a constant known to all players.
The probability that she receives a lump-sum payoff from R at some point in the inter-
val is ktλθ dt, where θ = 1 if R is good, θ = 0 if R is bad, and λ1 > λ0 > 0 are constants
known to all players. Therefore, the overall expected payoff increment conditional on θ

is [(1 − kt)s + ktλθh]dt. We assume that λ0h < s < λ1h, so each player prefers R to S if R
is good and prefers S to R if R is bad.

However, players do not know whether the risky arm is good or bad; they start with
a common prior belief about θ. Thereafter, all players observe each other’s actions and
outcomes, so they hold common posterior beliefs throughout time. With pt denoting
the subjective probability at time t that players assign to the risky arm being good, a
player’s expected payoff increment conditional on all available information is [(1−kt)s+
ktλ(pt)h]dt with

λ(p) = pλ1 + (1 −p)λ0�
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Given a player’s actions {kt}t≥0 such that kt is measurable with respect to the informa-
tion available at time t, her total expected discounted payoff, expressed in per-period
units, is

E
[∫ ∞

0
re−rt[(1 − kt)s + ktλ(pt)h]dt

]
�

where the expectation is over the stochastic processes {kt} and {pt}. We note that a
player’s payoff depends on others’ actions only through their effect on the evolution of
beliefs, which constitute a natural state variable.

To derive the law of motion of beliefs, suppose that over the interval of time [t� t+�t[,
player n allocates the constant fraction kn�t of her resource to her risky arm. The sum
Kt = ∑N

n=1 kn�t measures how much of the overall resource is allocated to risky arms; we
call this number the intensity of experimentation. Conditional on the type of the risky
arm, the arrival of lump sums is independent across players. If the risky arms are good,
the probability of none of the players receiving a lump-sum payoff is e−Ktλ1�t , and if
they are bad, this probability is e−Ktλ0�t . Therefore, given no lump-sum payoff arriving
in [t� t +�t[, the belief at the end of that time period is

pt+�t = pte
−Ktλ1�t

(1 −pt)e−Ktλ0�t +pte−Ktλ1�t

by Bayes’ rule. As long as no lump sum arrives, the belief thus evolves smoothly with
infinitesimal increment dpt = −Kt�λpt(1 − pt)dt, where �λ = λ1 − λ0. However, if any
of the players receives a lump sum at time t, the belief jumps up from pt− (the limit of
beliefs held before the arrival of the lump sum) to

pt = lim
�t↓0

pt−[1 − e−Ktλ1�t]
(1 −pt−)[1 − e−Ktλ0�t] +pt−[1 − e−Ktλ1�t] = λ1pt−

λ(pt−)
�

which is independent of the intensity of experimentation. We write

j(p)= λ1p

λ(p)

for the function that describes beliefs after a success on a risky arm.
We restrict players to Markovian strategies kn : [0�1] → [0�1] with the left limit belief

pt− as the state variable, so that the action player n takes at time t is kn(pt−).4 We im-
pose the following restrictions on these strategies: (i) kn is left-continuous; (ii) there is a
finite partition of [0�1] into intervals of positive length on each of which kn is Lipschitz-
continuous. By standard results, each profile (k1�k2� � � � �kN) of such strategies induces
a well defined law of motion for players’ common beliefs and well defined payoff func-
tions. A simple strategy is one that takes values in {0�1} only, meaning that the player
uses one arm exclusively at any given point in time. Finally, a strategy kn is a cutoff
strategy if there is a belief p̂ such that kn(p) = 1 for all p> p̂ and kn(p)= 0 otherwise.

4By definition, p0− = p0. Note that pt− = pt at almost all t. Working with pt− instead of pt merely
enforces the informational restriction that the action taken at time t cannot be conditioned on the arrival
of a lump sum at that time.
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As a benchmark, a myopic agent simply weighs the short-run payoff from playing
the safe arm, s, against what he expects from playing the risky arm, λ(p)h. So he uses
the cutoff belief

pm = s − λ0h

�λh
�

playing R for p>pm and S for p ≤ pm.

3. Joint maximization of average payoffs

Consider N players jointly maximizing their average expected payoff. By the same ar-
guments as in Keller et al. (2005), the value function for the cooperative, expressed as
average payoff per agent, satisfies the Bellman equation

u(p) = s + max
K∈[0�N]

K{b(p�u)− c(p)/N}�

where K is the intensity of experimentation,

c(p)= s − λ(p)h

is the opportunity cost of playing R, and

b(p�u)= [
λ(p)

(
u(j(p))− u(p)

) −�λp(1 −p)u′(p)
]
/r

is the expected benefit of playing R. The latter has two parts: a discrete improvement in
the overall payoff after a success and a marginal decrease otherwise.5

If the shared opportunity cost of playing R exceeds the full expected benefit, the
optimal choice is K = 0 (all agents use S exclusively) and u(p) = s. Otherwise, K = N is
optimal (all agents use R exclusively) and u satisfies the first-order ordinary differential-
difference equation (henceforth ODDE)

�λp(1 −p)u′(p)− λ(p)
[
u(j(p))− u(p)

] + r

N
u(p) = r

N
λ(p)h� (1)

A particular solution to this equation is u(p) = λ(p)h, the expected per capita payoff
from all agents using the risky arm forever.

The option value of being able to change to the safe arm is then captured by the
solution to the homogeneous equation, for which we try u0(p) = (1 −p)�(p)μ for some
μ> 0 to be determined, where

�(p)= 1 −p

p

5Infinitesimal changes of the belief are always downward, so it is, in fact, the left-hand derivative of the
value function that matters here. This observation will turn out to be of relevance in asymmetric equilibria
of the strategic experimentation game.
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is the odds ratio.6 Now,

u′
0(p)= − μ+p

p(1 −p)
u0(p) and u0(j(p)) = λ0

λ(p)

(
λ0

λ1

)μ

u0(p)�

Inserting these into the homogeneous equation and simplifying leads to the require-
ment that

r

N
+ λ0 −μ�λ = λ0

(
λ0

λ1

)μ

� (2)

As a function of μ, the left-hand side of (2) is a negatively sloped straight line that cuts the
vertical axis at r/N +λ0. The right-hand side is a decreasing exponential function which
tends to 0 as μ → +∞, tends to ∞ as μ → −∞, and cuts the vertical axis at λ0. Thus
the above equation in μ has two solutions, one positive and one negative; we write μN

for the positive solution, which obviously lies between r/(N�λ) (the value of μ where the
left-hand side of (2) equals λ0) and r/(N�λ)+λ0/�λ (the value of μ where it equals 0). As
the left-hand side of (2) rises with r/N , we also see that μN is increasing in the discount
rate and decreasing in the number of agents.

The solution to the ODDE for K =N is thus

VN(p) = λ(p)h+C(1 −p)�(p)μN � (3)

where C is a constant of integration.7

Proposition 1 (Cooperative solution). In the N-agent cooperative problem, there is a
cutoff belief p∗

N < pm given by

p∗
N = μN(s − λ0h)

(μN + 1)(λ1h− s)+μN(s − λ0h)
(4)

such that below the cutoff it is optimal for all to play S exclusively and above the cutoff it
is optimal for all to play R exclusively. The value function V ∗

N for the N-agent cooperative
is given by

V ∗
N(p) = λ(p)h+ c(p∗

N)

(
1 −p

1 −p∗
N

)(
�(p)

�(p∗
N)

)μN

(5)

when p>p∗
N and by V ∗

N(p) = s otherwise.

6This guess can be obtained by extrapolation from the limiting case λ0 = 0 studied in Keller et al. (2005).
In this case, j(p) = 1 and u(j(p)) = λ1h, so (1) becomes a linear differential equation; the above function
u0 is easily seen to solve the corresponding homogeneous equation for μ = r/(Nλ1). A more systematic
approach is to write the solution of the homogeneous equation as 1 −p times some unknown function, re-
flecting the fact that the option to switch from R to S is valuable only if the risky arm is bad. After a change
of the independent variable from p to ln�(p), this unknown function then solves a linear ODDE with con-
stant coefficients and constant delay to which results from Bellman and Cooke (1963) can be applied.

7The planner’s solution in Bolton and Harris (1999) has the same structure. Only the expression for the
expected current payoff from a risky arm and the exponent of the odds ratio differ across setups. Cohen and
Solan (2009) show that this continues to be true when the risky arm generates payoffs according to a Lévy
process (that is, a continuous-time process with stationary independent increments) with a binary prior on
its characteristics.
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Proof. The expression for p∗
N and the constant of integration in (5) are obtained by

imposing V ∗
N(p∗

N) = s (value matching) and (V ∗
N)′(p∗

N) = 0 (smooth pasting). Then
b(p�V ∗

N) falls short of c(p)/N to the left of p∗
N , coincides with it at p∗

N , and exceeds it to
the right of p∗

N . So V ∗
N solves the Bellman equation, with the maximum being achieved

at the intensity of experimentation stated in the proposition. �

The above proposition determines the efficient strategies. As in Bolton and Harris
(1999) and Keller et al. (2005), it is efficient to use a common cutoff strategy; the cutoff
increases in s and μN (and hence in r/N). The efficient intensity of experimentation
exhibits a bang-bang feature, being maximal when the current belief is above p∗

N and
minimal when it is below.

4. The strategic problem

From now on, we assume that there are N ≥ 2 players acting noncooperatively. Our solu-
tion concept is Markov perfect equilibrium with the common belief as the state variable.

With K¬n(p) = ∑
�
=n k�(p), and b(p�un) and c(p) as defined in Section 3 above,

player n’s payoff function un is continuous, piecewise differentiable, and satisfies

un(p)= s +K¬n(p)b(p�un)+ kn(p){b(p�un)− c(p)}
on [0�1], with the second term on the right-hand side measuring the benefit of the in-
formation generated by the other players.

A strategy k∗
n for player n is a best response against his opponents’ strategies if and

only if the resulting payoff function un solves the Bellman equation

un(p)= s +K¬n(p)b(p�un)+ max
kn∈[0�1]

kn{b(p�un)− c(p)}

on [0�1], and k∗
n(p) achieves the maximum on the right-hand side at each belief p. It is

straightforward to show that if player n plays a best response, his benefit of experimen-
tation b(p�un) is nonnegative at all beliefs, and his payoff function un is nondecreasing
in the other players’ experimentation schedule K¬n. Standard results further imply that
a best-response payoff function un is once continuously differentiable at any point of
continuity of K¬n.

At the boundaries of the unit interval, the obvious optimal actions are k∗
n(0) = 0

and k∗
n(1) = 1, which implies un(0) = s and un(1) = λ1h for the player’s payoff function.

More generally, player n’s best response is obtained by comparing the opportunity cost
of playing R with the expected private benefit. If c(p) > b(p�un), then k∗

n(p) = 0, and
the Bellman equation implies un(p) = s + K¬n(p)b(p�un) < s + K¬n(p)c(p). If c(p) =
b(p�un), then k∗

n(p) is arbitrary in [0�1], and un(p) = s + K¬n(p)c(p). Finally, if c(p) <
b(p�un), then k∗

n(p) = 1, and un(p) = s+ (K¬n(p)+ 1)b(p�un)− c(p) > s+K¬n(p)c(p).
Thus, exactly as in Keller et al. (2005), player n’s best response to a given intensity of
experimentation K¬n depends on whether in the (p�u) plane, the point (p�un(p)) lies
below, on, or above the line

DK¬n = {(p�u) ∈ [0�1] × R+ | u= s +K¬nc(p)}�
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For K¬n > 0 this is a downward sloping diagonal that cuts the safe payoff line u= s at the
myopic cutoff pm; for K¬n = 0, it coincides with the safe payoff line.

The following two observations also carry over verbatim from Keller et al. (2005).
First, no profile of Markov strategies can generate an average payoff that exceeds V ∗

N ,
and the payoff of a player using a best response to her opponents’ strategies cannot
fall below V ∗

1 . The upper bound follows immediately from the fact that the cooperative
solution maximizes the average payoff. The intuition for the lower bound is that an
agent can only benefit from the information generated by others. Second, all Markov
perfect equilibria are inefficient. Along the efficient experimentation path, the benefit
of an additional experiment tends to 1/N of its opportunity cost as p approaches p∗

N .
A self-interested player compares the benefit of an additional experiment with the full
opportunity cost and so has an incentive to deviate from the efficient path by using S

instead of R.
It is also easy to see that in any Markov perfect equilibrium, the set of beliefs at which

the intensity of experimentation is positive must be an interval, and that it must contain
the half-open interval ]p∗

1�1], where p∗
1 is the single-agent cutoff. The interesting ques-

tion is whether experimentation continues below p∗
1, i.e., whether there is an encour-

agement effect. Bolton and Harris (1999) show that the encouragement effect is present
in the symmetric Markov perfect equilibrium of their model. The next result shows that
all MPE of our model exhibit the encouragement effect.

Proposition 2 (Encouragement effect). In any Markov perfect equilibrium, at least one
player experiments at some beliefs below p∗

1.

Proof. Suppose to the contrary that all players play S at all beliefs p ≤ p∗
1. Then each

player’s payoff function satisfies un(p
∗
1) = s with the left-hand derivative u′

n(p
∗
1−) = 0.

For S to be optimal, we must have b(p∗
1�un) ≤ c(p∗

1)= b(p∗
1� V

∗
1 ), and hence un(j(p

∗
1)) ≤

V ∗
1 (j(p∗

1)), which must in fact hold as an equality. Thus, the difference un − V ∗
1 assumes

its minimum (of 0) at j(p∗
1), which implies u′

n(j(p
∗
1)−) ≤ (V ∗

1 )′(j(p∗
1)−). As un(j2(p∗

1)) ≥
V ∗

1 (j2(p∗
1)), this implies b(j(p∗

1)�un) ≥ b(j(p∗
1)�V

∗
1 ) and hence b(j(p∗

1)�un) > c(j(p∗
1)).

So all players must use R at the belief j(p∗
1). By the ODDE for V ∗

1 and the explicit so-
lution in Proposition 1, we have b(j(p∗

1)�V
∗

1 ) = V ∗
1 (j(p∗

1)) − s + c(j(p∗
1)) = V ∗

1 (j(p∗
1)) −

λ(j(p∗
1))h > 0. Each player’s Bellman equation now yields

un(j(p
∗
1)) = s +Nb(j(p∗

1)�un)− c(j(p∗
1))

≥ s +Nb(j(p∗
1)�V

∗
1 )− c(j(p∗

1))

> s + b(j(p∗
1)�V

∗
1 )− c(j(p∗

1))

= V ∗
1 (j(p∗

1))�

which contradicts the equality un(j(p
∗
1)) = V ∗

1 (j(p∗
1)) derived earlier. �

The idea behind the proof is that the only way that all experimentation could stop at
p∗

1 is for the “jump benefit” to be the same for each of the N players as for a lone agent,
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given the same opportunity cost and the same “slide disbenefit”; but this would imply
that un and V ∗

1 matched in value not only at p∗
1 but also at j(p∗

1). This is not possible,
since at j(p∗

1) the benefit of a further jump up is no less and the disbenefit of a slide
down is no worse for player n than for a lone agent, and if a lone agent has an incentive
to experiment, then so do each of the N players—the positive externality resulting in a
higher value at j(p∗

1).
Our second general result on Markov perfect equilibria concerns the nonexistence

of equilibria where all players use cutoff strategies.

Proposition 3 (No MPE in cutoff strategies). In any Markov perfect equilibrium, at
least one player uses a strategy that is not of the cutoff type.

Proof. Suppose to the contrary that there is an MPE where all players use a cutoff strat-
egy. For n = 1� � � � �N , let pn denote the belief at which player n switches from using R

exclusively to using S exclusively. Clearly, pn ≤ pm for all n. Without loss of generality,
we can assume that p1 ≤ p2 ≤ · · · ≤ pN−1 ≤ pN . Moreover, we must have p1 <pm, since
each player would have an incentive to deviate to the optimal strategy of a single player
otherwise.

Suppose that p1 = p2. Immediately to the right of this cutoff, both u1 and u2 must
then lie below D1, so players 1 and 2 playing R are not best responses. This proves that
p1 <p2.

Now, u2 must lie below D1 immediately to the left of p2 (as player 2 finds it optimal to
free-ride on one opponent who plays R) and above D1 immediately to the right of p2 (as
player 2 finds it optimal to join in with at least one opponent who plays R), so u2 crosses
D1 at p2. (In fact, one can iterate this argument to establish that all cutoffs are different,
and that un crosses Dn−1 at pn.)

Since a player’s payoff function is weakly increasing in the intensity of experimenta-
tion provided by the other players, we have u1 ≤ u2, and so u1 is either below or exactly
on D1 at p2. In the first case, there is an interval ]p2�p2 + ε[, where player 1 (who is as-
sumed to play R) is not responding optimally to the other players’ combined intensity of
experimentation K¬1 = 1. In the second case, u1 = u2 on [p2�1] and u′

1(p2−)≥ u′
2(p2−),

hence b(p2�u1) ≤ b(p2�u2). But then, u2(p2) = s + b(p2�u2) > s + b(p2�u1) − c(p2) =
u1(p2), a contradiction. �

We now turn to a detailed investigation of Markov perfect equilibria.

5. Symmetric equilibrium

In view of Proposition 3, a symmetric MPE necessarily requires the players to choose an
interior allocation of their resource at some beliefs. When this happens, the indifference
condition b(p�u)= c(p) implies that the common payoff function solves the ODDE

�λp(1 −p)u′(p)− λ(p)
[
u(j(p))− u(p)

] = rλ(p)h− rs� (6)
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Otherwise, either all players play S exclusively and the common payoff is u(p) = s or all
players play R exclusively and the common payoff function u satisfies (1), hence is of the
form VN given in (3).

In the (p�u) plane, the region where all players use the risky arm exclusively and the
region where they use both arms simultaneously are separated by the diagonal DN−1.
Given the post-jump value u(j(p)), we have smooth pasting of the solutions to (1) and
(6) along DN−1. Smooth pasting also occurs at the boundary of the region where all play-
ers use S exclusively with the region where they use both arms. In other words, u must be
of class C1. To see this, suppose we had a symmetric equilibrium with a payoff function
that hits the level s at the belief p̃ with slope u′(p̃+) > 0. Then, at beliefs immediately to
the right of p̃, we would have b(p�u)= c(p) or

λ(p)
[
u(j(p))− u(p)

]
/r = c(p)+�λp(1 −p)u′(p)/r�

implying

λ(p̃)
[
u(j(p̃))− s

]
/r = c(p̃)+�λp̃(1 − p̃)u′(p̃+)/r > c(p̃)

by continuity. Immediately to the left of p̃, continuity of u(j(p)) and the fact that
u′(p) = 0 would then imply b(p�u) = λ(p)[u(j(p)) − s]/r > c(p), so there would be an
incentive to deviate from S to R.

Proposition 4 (Symmetric equilibrium). The N-player experimentation game has a
unique symmetric Markov perfect equilibrium with the common posterior belief as the
state variable. The corresponding payoff function is the unique function WN : [0�1] →
[s�λ1h] of class C1 with the following properties: WN(p) = s on an interval [0� p̃N ]
with p∗

N < p̃N < p∗
1; WN(p) > s on ]p̃N�1]; WN solves (6) on an interval ]p̃N�p

†
N [ with

p̃N < p†
N < pm and solves (1) on ]p†

N�1[. The players’ common equilibrium strategy is
continuous in the posterior belief and satisfies k(p) = 0 for p ≤ p̃N ,

k(p)= 1
N − 1

WN(p)− s

c(p)
∈ ]0�1[

for p̃N < p < p†
N , and k(p) = 1 for p ≥ p†

N . The payoff function WN is increasing on

[p̃N�1] and the strategy k is increasing on [p̃N�p†
N ].

Proof. We first show that there is at most one symmetric MPE. Suppose that we have
two symmetric equilibria with different payoff functions u and û, respectively, both of
which must be of class C1. Let u − û assume a negative global minimum at the belief
p, which by necessity must lie in the open unit interval. At this belief, u′(p) = û′(p)
and u(j(p)) − û(j(p)) ≥ u(p) − û(p), so b(p�u) ≥ b(p� û). We cannot have both u(p)

and û(p) above DN−1, since in this region both u and û are of the form (3) and the
difference u − û is increasing to the right of DN−1. Further, if û(p) is above DN−1
and u(p) is on or below, then b(p� û) > c(p) = b(p�u) in contradiction to what we de-
rived before. Consequently, we must have both û(p) and u(p) on or below DN−1, so
b(p� û) = c(p) = b(p�u). This in turn yields u(j(p))− û(j(p)) = u(p)− û(p), so the dif-
ference u − û is also at its minimum at the belief j(p). Iterating the argument until we
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get to the right of pm (and hence to the right of DN−1), we obtain another contradiction,
which proves that u≥ û. By the same arguments, û−u cannot assume a negative global
minimum either, and so u= û.

Next, we sketch the construction of the symmetric equilibrium; for details, see the
Appendix. Varying the point of intersection with the diagonal DN−1, one first constructs
a family of candidate value functions that solve the ODDE (1) (N players using R ex-
clusively) above DN−1 and the ODDE (6) (indifference between R and S) below. Using
an intermediate-value argument, we then establish the existence of one such function
that reaches the level s with zero slope as we move down from p = pm to lower beliefs.
This function is easily seen to solve each player’s Bellman equation. Finally, the identity
un(p) = s+K¬n(p)c(p) uniquely determines the common intensity of experimentation
in the range of beliefs where the value function lies below DN−1 but above the level s. �

We can represent the equilibrium payoff function WN in closed form up to some
constants of integration that are implicitly determined by p†

N .

Corollary 1. Define intervals J0 = [p†
N�1] and Ji = [j−i(p†

N)� j−(i−1)(p†
N)[ for i =

1�2� � � � . If μN 
= λ0/�λ,8 then

WN(p) = λ(p)h+ i

[
r

λ1
(λ1h− s)p− r

λ0
(s − λ0h)(1 −p)

]

+C(0)
(
λ0(λ0/λ1)

μN

λ0 −μN�λ

)i

(1 −p)�(p)μN

+
i−1∑
η=0

C(i−η)

η!
(

−λ0(λ0/λ1)
λ0/�λ

�λ
ln[(λ0/λ1)

η−1�(p)]
)η

(1 −p)�(p)λ0/�λ

on Ji ∩ {p | WN(p) > s} for some constants C(i−η) (η = 0� � � � � i − 1), chosen to ensure con-
tinuity of WN . The constant C(0) ensuring that (p†

N�WN(p†
N)) ∈ DN−1 is given by

C(0) =Nc(p†
N)(1 −p†

N)−1�(p†
N)−μN �

The proof (given in the Appendix) shows how the constants C(i) can be calculated
recursively given C(0).

Figure 2 in Section 6 below depicts the intensity of experimentation in the symmetric
equilibrium with two players (rightmost solid curve). The dotted step function is the
efficient intensity.

The symmetric equilibrium of the Poisson model shares the main features with its
counterpart in the Brownian model of Bolton and Harris (1999). First, because of the in-
centive to free-ride, experimentation stops for good inefficiently early (the lower thresh-
old p̃N is above the cooperative cutoff p∗

N ), and the intensity of experimentation is ineffi-

ciently low at any belief between p∗
N and p†

N . Second, there is the encouragement effect
(p̃N is below the single-agent cutoff p∗

1). Third, both the incentive to free-ride and the

8The proof makes it obvious how to modify this result in the knife-edge case where μN = λ0/�λ.
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encouragement effect become stronger as the number of players increases.9 Fourth, the
acquisition of information is slowed down so severely near p̃N that the players’ beliefs
cannot reach this threshold in finite time.

Corollary 2. Starting from a prior belief above p̃N , the players’ common posterior belief
never reaches this threshold in the symmetric Markov perfect equilibrium.

This result strongly suggests that asymmetric equilibria where the rate of informa-
tion acquisition stays bounded away from zero before all experimentation ceases ought
to be more efficient than symmetric equilibrium. The next section confirms this.

6. Asymmetric equilibria

Our construction of asymmetric Markov perfect equilibria rests on two ideas. The first
is to give the players a common continuation value after any success on a risky arm; this
allows us to construct the players’ average payoff function before assigning individual
strategies. The second is to let them alternate between the roles of experimenter and
free-rider before all experimentation stops; this allows us to achieve an overall intensity
of experimentation higher than in the symmetric equilibrium, yielding higher equilib-
rium payoffs.

In fact, for points (p�u) below the diagonal D1−1/N , the common action that keeps
all players indifferent between R and S, and gives them u as the common continuation
value, k = (u − s)/[(N − 1)c(p)], implies an intensity of experimentation K = Nk < 1.
In contrast, the equilibria we construct have K = 1 over some range of beliefs where the
graph of the average payoff function lies below D1−1/N . We achieve this by partitioning
the range in question into a finite number of intervals, on each of which exactly one
player plays risky.

If the last of these “lone experimenters” stops using the risky arm at the belief p̄,
his value function u satisfies λ(p̄)[u(j(p̄)) − s]/r = c(p̄) as the left derivative u′(p̄) = 0.
When all players have a common continuation value after a success on a risky arm,
this equation also holds for the players’ average payoff function ū and so λ(p̄) ×
[ū(j(p̄))− s]/r = c(p̄). Varying p̄, we can trace out the locus D̄ of all possible post-jump
points (j(p̄)� ū(j(p̄))) in the (p�u) plane that satisfy this condition:

D̄ = {
(p�u) ∈ [0�1] × R+ | λ(j−1(p))[u− s]/r = c(j−1(p))

}
�

Using the fact that λ(j−1(p)) = λ0λ1/[pλ0 + (1 − p)λ1], it is straightforward to show
that D̄ is a downward sloping straight line through the points (0� s + r[s − λ0h]/λ0) and
(j(pm)� s).

To ensure both a common continuation value after any success and an increase in
the intensity of experimentation relative to the symmetric MPE, we start our construc-
tion of the average equilibrium payoff function at some point (p��u) on the lower en-
velope D̄ ∧ D1−1/N of the diagonals D̄ and D1−1/N . This lower envelope coincides with

9As N increases, each player obtains a higher payoff at all beliefs where the risky arm is used some of

the time, and p̃N falls. The diagonal DN−1 rotates clockwise, tending to increase p†
N , but since the payoff

function shifts upward, the overall effect on p†
N is ambiguous.
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D1−1/N if and only if r/λ0 ≥ 1 − 1/N , so D̄ is relevant only for sufficiently high λ0, that is,
for sufficiently small jumps of beliefs after successes. To the right of p�, we proceed as in
the construction of the symmetric MPE. To the left of p�, we solve for the average pay-
off function when one player out of N is playing risky. Varying p�, we then ensure that
the average payoff hits the level s at a belief p�, where the last experimenter is indeed
indifferent between playing risky and playing safe. If the point (p��u) thus determined
lies below D̄ (and hence on D1−1/N ), we have j(p�) > p�; if this point lies on D̄, we have
j(p�) = p�. In either case, a success at any belief to the right of p� makes the belief jump
to the right of p�, where the equilibrium involves symmetric actions and continuation
payoffs that coincide with the average. Between p� and p�, moreover, the graph of the
average payoff function lies below D1−1/N , and so an intensity of experimentation equal
to 1 is indeed more than would be compatible with symmetric behavior.

For N = 2, Figure 1 illustrates the payoff functions that can arise in the equilibria we
construct and gives the corresponding intensity of experimentation in various regions
of the (p�u) plane. The faint straight lines ending in (pm� s) are the diagonals D1 and
D1/2; the faint straight line ending on D1/2 is the part of D̄ ∧ D1/2 that lies below D1/2;
the solid kinked line is the myopic payoff. The solid curves are the graphs of the players’
payoff functions. The equilibrium intensity of experimentation varies along the graph of
the average equilibrium payoff function. The intensity is 2 when the graph is above D1,
between 1 and 2 when the graph lies between D1/2 and D1, etc. The intensity of experi-
mentation is continuous in beliefs at p� if the graph crosses D̄ ∧ D1/2 on D1/2, as in the
figure. If the graph crosses D̄ ∧ D1/2 below D1/2, the intensity jumps at the belief p�.

Figure 2 compares the intensity of experimentation with that in the symmetric two-
player equilibrium. The dotted step function is the efficient intensity; the rightmost
solid curve is the intensity in the symmetric MPE.

For arbitrary N , we have the following result.

Figure 1. Equilibrium payoffs in a two-player asymmetric equilibrium.
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Figure 2. Intensity of experimentation in the cooperative solution, the equilibria of Proposi-
tion 5, and the symmetric equilibrium with two players.

Proposition 5 (Asymmetric MPE). The N-player experimentation game admits Markov
perfect equilibria with three thresholds, p�

N , p�
N , and p‡

N , where p∗
N < p�

N < p�
N < p‡

N <

pm and j(p�
N) ≥ p�

N such that on [p�
N�1], the players have a common payoff function;

on [p‡
N�1], all players play R; on ]p�

N�p‡
N [, the players allocate a common interior frac-

tion of the unit resource to R, and this fraction increases in the belief; on ]p�
N�p

�
N ], the

intensity of experimentation equals 1 with players taking turns playing R on consecutive
subintervals; on [0�p�

N ], all players play S. The intensity of experimentation is continu-

ous in beliefs on ]p�
N�1] with the possible exception of a jump at p�

N . The average payoff
function is increasing on [p�

N�1] and once continuously differentiable on the unit interval

except for the beliefs p�
N and, if the intensity of experimentation has a jump there, p�

N . On
]p�

N�1[, the average payoff is higher than in the symmetric MPE, and p�
N lies to the left of

the cutoff p̃N at which all experimentation stops in that equilibrium.

Proof. We just sketch the construction of the equilibrium here; details can be found in
the Appendix. First, we construct the players’ average payoff function ū in the purported
equilibria, using an approach similar to the proof of Proposition 4. This function is in-
creasing on [p�

N�1]. Its graph crosses D̄ ∧ D1−1/N at p�
N and DN−1 at p‡

N . It has a kink

at p�
N with ū′(p�

N−) > ū′(p�
N+) if and only if the intersection with D̄ ∧ D1−1/N is below

D1−1/N . It satisfies ū(p) = s + b(p� ū)− c(p)/N between p�
N and p�

N , solves the indiffer-

ence ODDE (6) between p�
N and p‡

N , and is of the form (3) above p‡
N . The average jump

benefit λ(p�
N)[ū(j(p�

N))− s]/r exactly equals the opportunity cost c(p�
N). As all players’

payoff functions have a zero left-hand derivative at p�
N and a common value of ū(j(p�

N))

at j(p�
N), each player will, therefore, be indifferent between R and S at p�

N .
Second, we construct the players’ payoff functions and strategies. To this end, we

split the interval ]p�
N�p�

N ] into finitely many subintervals ]p��i�pr�i] and in turn partition
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each of them into N intervals I1�i� � � � � IN�i. We let player n use R on all intervals In�i
and use S on ]p�

N�p�
N ] \ ⋃

i In�i. Using intermediate-value arguments, we can choose
the intervals I1�i� � � � � IN�i such that each player’s payoff function coincides with ū at the
boundaries of each subinterval ]p��i�pr�i]. By increasing the number and reducing the
size of these subintervals, moreover, we can ensure that the vertical distance |un − ū|
remains below some given real number δ > 0 for all n.

Third, we verify that for sufficiently small δ, that is, for sufficiently frequent alter-
nation between the roles of free-rider and experimenter on ]p�

N�p�
N ], the strategies we

have constructed are mutually best responses.
As to the comparison of the average payoff function ū with that of the symmet-

ric equilibrium, WN , suppose that ū − WN assumes a negative global minimum at the
belief p in the open unit interval. Note that ū must be differentiable there, since a
kink with ū′(p�

N−) > ū′(p�
N+) is incompatible with even a local minimum of ū − WN at

p�
N . At the belief p, therefore, W ′

N(p) = ū′(p) and ū(j(p)) − WN(j(p)) ≥ ū(p) − WN(p),
so b(p� ū) ≥ b(p�WN). We cannot have both WN(p) and ū(p) above D1, since in
this region both WN and ū are of the form (3) and so the difference ū − WN is in-
creasing. Further, if WN(p) is above D1 and ū(p) is on or below that diagonal, then
b(p�WN) > c(p) ≥ b(p� ū), in contradiction to what we derived before (to the left of
p�
N , ū(p) = s + b(p� ū) − c(p)/N < s + (1 − 1/N)c(p) and hence b(p� ū) < c(p)). Con-

sequently, we must have both WN(p) and ū(p) on or below D1, which translates into
b(p�WN) = c(p) ≥ b(p� ū) and hence, by what we saw above, b(p�WN) = b(p� ū). This
in turn yields ū(j(p))−WN(j(p)) = ū(p)−WN(p), so the difference ū−WN is also at its
minimum at the belief j(p). Iterating the argument until we get to the right of pm (and
hence to the right of D1), we again obtain a contradiction. This establishes ū ≥WN . Now,
if we had ū(p) = WN(p) at some p ∈]p�

N�1[, this would again imply b(p� ū) = b(p�WN)

at a global minimum of ū−WN and, by the iterative argument just given, lead to another
contradiction. This proves that ū > WN on ]p�

N�1[. In particular, p�
N ≤ p̃N , the belief at

which all experimentation stops in the symmetric MPE. The equality p�
N = p̃N would

entail λ(p�
N)[ū(j(p�

N))− s]/r = c(p�
N)= λ(p�

N)[WN(j(p�
N))− s]/r and hence ū(j(p�

N)) =
WN(j(p�

N)), which we have already shown to be impossible. �

The gain in average payoffs relative to the symmetric equilibrium stems from the fact
that, owing to the alternation between the roles of lone experimenter and free-rider, the
intensity of experimentation is bounded away from zero immediately above the belief
where all experimentation stops. In the symmetric equilibrium, a player who deviates
to the safe action slows down the gradual slide of beliefs toward more pessimism; as
the opponents’ strategies are increasing functions of the level of optimism, the devia-
tion causes them to experiment more than they would on the equilibrium path. When
players use beliefs to coordinate their alternation between experimentation and free-
riding, by contrast, a deviation from the risky to the safe action freezes the belief in its
current state and delays the time at which another player takes over the burden of exper-
imentation. Deviations are thus more attractive under symmetric strategies than under
alternation. This explains why the equilibrium intensity under the latter can be higher.
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For beliefs above p�
N , the players’ common payoff function permits an explicit rep-

resentation of the form given in Corollary 1. For beliefs between p�
N and p�

N , we have
the following result.

Corollary 3. For p ∈]p�
N�p

�
N ], let ι be the smallest integer such that jι+1(p) ≥ p‡

N , i.e.,
ι+1 consecutive successes would result in all the players playing R exclusively. Then, with
kn = 1 for an experimenter and kn = 0 for a free-rider, the payoff functions are

un(p) = λ(p)h+ (ι+ kn − 1)
[

r

r + λ1
(λ1h− s)p− r

r + λ0
(s − λ0h)(1 −p)

]

+C(0)
(
λ0(λ0/λ1)

μN

λ0 −μN�λ

)ι
λ0(λ0/λ1)

μN

r + λ0 −μN�λ
(1 −p)�(p)μN

+ 1
r

{
ι−1∑
η=0

C(ι−η)

η!
(

−λ0(λ0/λ1)
λ0/�λ

�λ

)η

λ0(λ0/λ1)
λ0/�λ

×
( η∑
γ=0

(
�λ

r

)η−γ
η!
γ!

(
ln[(λ0/λ1)

γ�(p)])γ
)}

(1 −p)�(p)λ0/�λ

+C(ι+1)
n (1 −p)�(p)(r+λ0)/�λ

for appropriately chosen constants of integration C(ι+1)
n ; the constants C(i), i = 0� � � � � ι,

are from the common payoff function for beliefs above p�
N .

With sufficiently frequent turns between the roles of experimenter and free-rider,
the players’ payoff functions in the equilibria of Proposition 5 become arbitrarily close
to the average payoff function. This leads to a Pareto improvement over the symmetric
equilibrium.

Proposition 6 (Pareto improvement over the symmetric MPE). The N-player exper-
imentation game admits Markov perfect equilibria as in Proposition 5 in which each
player’s payoff exceeds the symmetric equilibrium payoff on ]p�

N�1[.

Proof. Let δ = (1/2)max
p̃N≤p≤p

�
N
[ū(p) − WN(p)], where ū is the average payoff func-

tion associated with the equilibria of Proposition 5 and WN is the players’ common pay-
off function in the symmetric equilibrium. Choose the subintervals ]p��i�pr�i] such that
|un − ū| is bounded above by δ for all n. Then un > s = WN on ]p�

N� p̃N ], un ≥ ū− δ >WN

on ]p̃N�p�
N ], and un = ū > WN on ]p�

N�1]. �

It deserves to be stressed that it is the encouragement effect that permits Pareto im-
provements over the symmetric equilibrium. Without it, the last experimenter quits at
the same belief (the single-agent cutoff) at which all players stop experimenting in the
symmetric equilibrium; bearing all the costs of experimentation on his own, the last ex-
perimenter is then necessarily worse off than under symmetry immediately to the right
of this cutoff.
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There clearly is scope for further improvements in players’ equilibrium payoffs, over
and above those embodied in the equilibria of Proposition 5. As we move down from the
diagonal DN−2+1/N to DN−2, the intensity of experimentation in these equilibria gradu-
ally falls from N − 1 to N(N − 2)/(N − 1). Using exactly the same approach as on the
interval ]p�

N�p�
N ] above, we could instead let players take turns between the roles of ex-

perimenter and free-rider such that the intensity of experimentation remains constant
at level N − 1 in between these diagonals.

This raises the question as to whether there exists a best Markov perfect equilibrium,
in a sense to be made precise. To shed some light on this question, we focus on the two-
player case from now on and take the corresponding results for the exponential model
as our starting point.

First, the exponential model admits uniformly best and worst two-player equilibria
that achieve the maximal (resp. minimal) intensity of experimentation and the maximal
(resp. minimal) average payoff compatible with Markov perfection and finite switch-
ing, irrespective of the players’ initial belief. The worst equilibrium is the symmetric
MPE, whereas the best equilibria have the same structure as the two-player equilibria of
Proposition 5, with the intensity of experimentation being the limit as λ0 tends to 0 of
the intensity described in that proposition.10

Second, the exponential model admits most inequitable equilibria that give the two
players extremal individual payoffs. These equilibria involve simple strategies, so that
each player uses one arm exclusively at any given belief.11 Here there are three thresh-
olds p̄ = p∗

1 < p̂s < p̂2 such that both players play risky above p̂2, one of the players
plays risky between p̂s and p̂2, the other player plays risky between p̄ and p̂s, and both
play safe below p̄. The payoffs achieved by the last experimenter and the last free-rider
in these equilibria constitute a uniform lower and upper bound, respectively, on the
individual equilibrium payoffs that are compatible with Markov perfection and finite
switching.

Our next aim is to investigate whether these most inequitable equilibria can also be
obtained as the limit of two-player equilibria of the Poisson model for vanishing λ0 > 0.
To this end, we first demonstrate the existence of a benchmark simple MPE that gives
the players common continuation payoffs after any success on a risky arm. In a nu-
merical example, we then progressively diverge from this benchmark by rewarding the
last experimenter, that is, by giving him a higher continuation value after a success than
his opponent. This yields equilibria with progressively increasing payoff asymmetry be-
tween the players. It also suggests that we cannot expect a uniformly best Markov perfect
equilibrium to exist in the Poisson model—not even in the two-player case.

7. Rewarding the last experimenter

We start with the observation that for λ0 sufficiently close to zero, any success on a risky
arm makes the players so optimistic that playing risky is the dominant action for all of

10See Proposition 6.3 and footnote 5 of Keller et al. (2005). While the symmetric MPE remains the worst
equilibrium of the exponential model for N > 2, existence and structure of a best MPE are open questions
in this case.

11See Proposition 6.1 of Keller et al. (2005).
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them. More precisely, as any two-player MPE must have an average payoff function in
between the single-agent optimum V ∗

1 and the cooperative solution V ∗
2 , the infimum

of the set {p | K(p) > 0} must be at least p∗
2. If j(p∗

2) ≥ pm, a success on any risky arm
will make players optimistic enough for all of them to revert to exclusive use of the risky
arm, and the players’ post-jump equilibrium payoffs as well as their average will be of
the form V2(j(p)) with V2 as given in (3).

A necessary and sufficient condition for j(p∗
2) ≥ pm is that μ2/(μ2 + 1) ≥ λ0/λ1 or,

equivalently, that μ2 ≥ λ0/�λ. Using (2) with N = 2, this holds if and only if

λ0

(
λ0

λ1

)λ0/�λ

≤ r

2
� (7)

Clearly, since λ0/λ1 < 1 and λ0/�λ > 0, a sufficient condition for (7) is that λ0 ≤ r/2.
When (7) holds, the same approach as in the previous section allows us to construct

simple equilibria with symmetric post-jump continuation values. Figure 3 shows the
best response correspondence for N = 2 and illustrates the simplest possible configura-
tion of payoff functions that can arise in the type of equilibrium we construct.

Proposition 7 (Simple MPE for N = 2). Under condition (7), the two-player experimen-
tation game admits simple Markov perfect equilibria with the following features. There
are two thresholds, p̄ and p̂, with p∗

2 < p̄ < p̂ < pm, such that on ]p̂�1], both players play
R and their payoff functions coincide; on ]p̄� p̂], the intensity of experimentation equals 1,
and there is at least one belief in the interior of this interval where both players change
action; on [0� p̄], they both play S.

We cannot rule out the possibility that the payoff of the last free-rider is non-
monotonic immediately to the right of a switch point (a belief where both players change

Figure 3. Best responses for N = 2 and possible payoffs in a simple equilibrium.
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action).12 However, Figure 3 illustrates an equilibrium that does have a monotonic pay-
off function for the last free-rider (the higher of the two payoff functions). This case
arises, for example, with the parameter values r = 1, s = 1�5, h= 2, λ0 = 0�5, and λ1 = 1�5.
With these values, the lower threshold p̄ is smaller than the belief p̃2 at which all ex-
perimentation stops in the symmetric equilibrium, and the average payoff function is
greater than the common payoff function in the symmetric equilibrium; this improve-
ment stems again from the fact that the intensity of experimentation remains constant
at the level 1 just below D1/2, whereas the symmetric equilibrium intensity falls below 1
as soon as D1/2 is crossed.13

Using condition (7), we can give the following explicit representations for the two
players’ payoff functions in the equilibria of Proposition 7.

Corollary 4. On ]p̂�1], where both players experiment, their common payoff function
is

u(p) = λ(p)h+C(0)(1 −p)�(p)μ2�

the constant C(0) being given by

C(0) = 2c(p̂)(1 − p̂)−1�(p̂)−μ2 �

On ]p̄� p̂], where one player experiments and the other free-rides, and with kn = 1 for an
experimenter and kn = 0 for a free-rider, the payoff functions are

un(p) = λ(p)h+ (kn − 1)
[

r

r + λ1
(λ1h− s)p− r

r + λ0
(s − λ0h)(1 −p)

]

+C(0)
(

λ0(λ0/λ1)
μ2

r + λ0 −μ2�λ

)
(1 −p)�(p)μ2 +C(1)

n (1 −p)�(p)(r+λ0)/�λ�

with appropriately chosen constants of integration C(1)
n .

Maintaining assumption (7), suppose now that we give the last experimenter a
higher payoff at j(p̄) than the other player. This has two effects. On the one hand, we
can no longer achieve the maximal intensity of K = 2 immediately to the right of the
belief at which the graph of the average payoff function crosses D1, since there the last
free-rider’s payoff function is necessarily below D1, implying that his best response is to
play safe; this lowers average payoffs. On the other hand, the last experimenter is now
willing to continue playing R somewhat to the left of p̄, which increases average payoffs.
We explore this trade-off numerically.

We refer to the last experimenter as player 1 and the last free-rider as player 2. We
continue to let p̄ denote the belief where all experimentation stops, and let ps denote
the switch point where both players change actions; however, as their payoff functions
cross D1 at different points, we let p̂1 and p̂2 denote the corresponding beliefs.

12For more on this nonmonotonicity, see the remarks about anticipation near the end of this section.
13However, it is not the case that each player is individually better off than in the symmetric MPE; in fact,

the last experimenter (the player with the lower of the two payoff functions) is worse off in a neighborhood
of the switch point. Subsequently, we present simple equilibria for the above parameter values that are
better than the symmetric one for both players.
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Construction of equilibria

The strategies for the players are the following: on ]p̂2�1], both players play R; on
]p̂1� p̂2], player 1 plays R and player 2 plays S; on ]ps� p̂1], player 1 plays S and player 2
plays R; on ]p̄�ps], player 1 plays R and player 2 plays S; on [0� p̄], both players play S.14

We need to determine p̄ < ps < p̂1 < p̂2, and to build continuous functions u1 and u2

that (a) connect the points (0� s) and (1�λ1h) in the (p�u) plane, that (b) satisfy the ap-
propriate ODDEs, and that (c) have the following properties: u1 is above D1 on ]p̂1�1],
below D1 but above s on ]p̄� p̂1], at s on [0� p̄], and is smooth at p̄; u2 is above D1 on
]p̂2�1], below D1 but above s on ]p̄� p̂2], and at s on [0� p̄].

Relative to the upper threshold p̂ and the average payoff function ū from Proposi-
tion 7, choose a point (p̂2� ǔ) in [0�1] × [s�λ1h] with p̂2 to the right of p̂ and ǔ above
ū(p̂2). First, we construct player 1’s payoff function piecewise.

On ]p̂2�1], both players play R, so u1 is of the form given in equation (3) with
N = 2, the constant of integration being chosen so that u1(p̂2) = ǔ. The belief p̄ where
player 1 quits can now be determined from equation (1) with N = 1, using value match-
ing (u1(p̄) = s) and smooth pasting (u′

1(p̄) = 0), and knowing the form of u1(j(p̄)) since
j(p̄) > p̂2. Just to the left of p̂2, player 1 is the only one playing R, so u1 is of the form
given in Corollary 4, the constant of integration being chosen to ensure continuity at p̂2;
p̂1 is the belief to the left of p̂2 where u1 crosses D1. On an interval to the left of that,
player 1 is free-riding, u1 is again of the form given in Corollary 4, and the constant of
integration is chosen to ensure continuity at p̂1. Further, on an interval to the right of p̄,
player 1 is again the lone experimenter and now the constant of integration is chosen to
ensure that u1(p̄) = s. Player 1’s switch point is where the graph of u1 coming down and
to the left from (p̂1�u1(p̂1)) intersects the curve going up and to the right from (p̄� s).

Player 2’s payoff function is also constructed piecewise. On ]p̂2�1], u2 is also of the
form given in equation (3) with N = 2, the constant of integration being chosen so that
u2(p̂2) is on D1. Between p̄ and p̂2, u2 is of the form given in Corollary 4: player 2 is free-
riding on the interval ]p̂1� p̂2] and we ensure continuity at p̂2; on an interval to the left
of that, player 2 is the lone experimenter and we ensure continuity at p̂1; on an interval
to the right of p̄, player 2 free-rides and the constant of integration is chosen to ensure
that u2(p̄) = s. Player 2’s switch point is where the graph of u2 coming down and to the
left from (p̂1�u2(p̂1)) intersects the curve going up and to the right from (p̄� s).

For this to be an equilibrium, we need to have the players switching at the same
belief: this involves adjusting (p̂2� ǔ) and iterating until the switch points coincide.

14Note that this strategy pair requires the players to swap roles once more than in the most inequitable
MPE of the exponential model. There, the last experimenter plays risky on the largest possible inter-
val of beliefs ]p̄� p̂s], which makes his payoff lower than his opponent’s at all beliefs in ]p̄�1[. This is
impossible here. In fact, optimal behavior of player 1 requires c(p̄) = b(p̄�u1) = λ(p̄)[u1(j(p̄)) − s]/r
as the left derivative u′

1(p̄) = 0. If player 2’s payoff were higher than player 1’s at j(p̄), we would have
b(p̄�u2) = λ(p̄)[u2(j(p̄))− s]/r > c(p̄), and player 2 would act suboptimally on [p̄− ε� p̄] for some ε > 0. To
reward player 1, therefore, we need to shorten the interval ]p̄�ps] on which he acts as the last experimenter
and let him free-ride to the right of it. This in turn requires a further switch in actions at the belief p̂1 where
player 1’s payoff function crosses D1.
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Findings

Using the same parameter values we referred to in the discussion of Figure 3 after Propo-

sition 7 (namely, r = 1, s = 1�5, h = 2, λ0 = 0�5, λ1 = 1�5), we numerically solved for six

equilibria as well as the simple one with common payoffs above D1 (the base case), giv-

ing the last experimenter progressively higher payoffs above D1. Figure 4 illustrates the

players’ payoffs in the base case and in three of these equilibria, the tick labels on the

Figure 4. Equilibrium payoffs of the last experimenter (upper panel) and the last free-rider
(lower panel). Open circles mark points corresponding to where the other player’s value function
crosses D1.
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belief axis being for the base case (which exhibits the lowest equilibrium payoffs for the
last experimenter and highest for the last free-rider).

We find that as we improve player 1’s post-jump payoff, the fall in p̄ is about 5 times
smaller than the shifts in p̂1 and p̂2, with p̂1 moving to the left and p̂2 moving to the right.
(The drop in the switch point is more dramatic, being about 25 times that of p̄.) The net
effect is that the interval of beliefs where exactly one player is experimenting widens,
and although the average payoff is higher on an interval to the right of p̄, it dips below
that of the base case very close to p̂1 and remains there at all higher beliefs. Player 1 is
progressively better off than in the base case at all beliefs to the right of p̄, but player 2 is
progressively worse off at beliefs greater than approximately ps , and the absolute differ-
ences between the average payoff in the base case and those in the other six equilibria
become more pronounced as the asymmetry increases. Indeed, in the two most asym-
metric of the equilibria that we calculated, player 2’s payoff function is below the payoff
function in the symmetric equilibrium in a neighborhood of p̂1, whereas the payoffs in
the other four intermediate equilibria are Pareto improvements on the symmetric equi-
librium. Moreover, in the most asymmetric of these equilibria, player 2’s payoff function
is decreasing in an interval immediately to the right of the switch point (although this is
hard to discern visually).

Put another way, in this very asymmetric equilibrium as the players approach the
switch point from the right, where player 2 is experimenting alone, beliefs are becoming
more pessimistic, yet player 2’s payoff is going up. If we put this down to the fact that,
conditional on no impending success, player 2 will soon be able to enjoy a free ride, then
we can call this an anticipation effect.

More broadly, these findings suggest that by simultaneously letting ps tend to p̄ and
λ0 tend to 0, it is possible to construct a sequence of equilibria that converge to the most
inequitable two-player equilibrium of the exponential model. Moreover, as the idea of
rewarding the last experimenter can also be applied to the equilibria of Proposition 5,
they do not constitute uniformly best equilibria of the Poisson model—not even when
N = 2. By the same token, one is led to conjecture that in marked contrast to the expo-
nential model, the Poisson model does not admit any uniformly best MPE.

8. Concluding remarks

The asymmetric equilibria that we constructed in the Poisson framework raise the ques-
tion of whether similar equilibria exist in the Brownian model of Bolton and Harris
(1999). The elementary constructive method that we used here is likely to apply to the
Brownian case as well. Our proof of the result that there exist no equilibria in cutoff
strategies should also carry over. We intend to explore this in future work.

Our model can easily be adapted to situations where an event is bad news: a break-
down rather than a breakthrough. For example, we can interpret s as the expected flow
cost of keeping the current safe machine running. Players have access to new risky ma-
chines that break down and thereby cause lump-sum costs at exponentially distributed
times: a high failure rate of λ1 favors the old machine; a low rate of λ0 < λ1 favors the
new one. The aim is to minimize the expected sum of discounted costs of breakdowns.
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The longer the machines do not fail, the more optimistic the players become about their
reliability, but whenever one does fail, the belief jumps to more pessimistic levels. Given
enough pessimism, another failure will be the last straw. Thus, the continuous part of
the belief dynamics always keeps the state variable in the continuation region where
at least some player uses the new machine, whereas the discontinuous part can cause
the state variable to jump into the stopping region. Despite the superficial symmetry
between the good-news and the bad-news versions of the model, therefore, the formal
analysis of the single-agent optimum, the efficient benchmark, and best responses is
rather different from that in the present paper. We defer such analysis to a separate
paper.

By constructing simple asymmetric equilibria, our work also prepares the ground
for an analysis of strategic experimentation by asymmetric players who might differ, for
example, with respect to their innate abilities to achieve breakthroughs, the average size
of lump-sum payoffs, or their safe payoffs. This is again left to future work.

Appendix

Proof of Proposition 4 (Details). Let p̂N�N−1 denote the belief where the graph of V ∗
N

cuts DN−1 and let p̂1�N−1 denote the belief where the graph of V ∗
1 cuts DN−1. By conti-

nuity, there is an open interval I ⊃ [p̂N�N−1� p̂1�N−1] such that for all p̂ ∈ I, the unique
solution to (1) that crosses DN−1 at the belief p̂ has positive slope there.

Fix a belief p̂ ∈ I and let (p̂� û) be the corresponding point on the diagonal DN−1. On
[p̂�1], we define u(0) as the unique solution to (1) that assumes the value û at belief p̂.
Now consider the ordinary differential equation (ODE)

�λp(1 −p)u′(p)+ λ(p)u(p) = rλ(p)h− rs + λ(p)u(0)(j(p))� (A.1)

Standard results imply that this ODE has a unique solution u(1) on [j−1(p̂)� p̂] with
u(1)(p̂) = u(0)(p̂) and, by construction, (u(1))′(p̂) = (u(0))′(p̂).

Iterating this step, we construct functions u(i+1) defined on [j−(i+1)(p̂)� j−i(p̂)] for
i = 1�2�3� � � � by choosing u(i+1) as the unique solution of the ODE

�λp(1 −p)u′(p)+ λ(p)u(p) = rλ(p)h− rs + λ(p)u(i)(j(p)) (A.2)

subject to the condition u(i+1)(j−i(p̂)) = u(i)(j−i(p̂)). Setting up̂(p) = u(i)(p) whenever
j−(i+1)(p̂) ≤ p < j−i(p̂), we thus obtain a function up̂ of class C1 on ]0�1] that solves (6)
to the left of p̂ and solves (1) to the right of p̂. Standard results imply that up̂ depends
in a continuous fashion on p̂. In particular, M(p̂), the minimum of up̂ on [p∗

N�pm], is
continuous in p̂.

For p̂ ∈ I with p̂ < p̂N�N−1, the function up̂ lies above V ∗
N on at least [p̂�1[. If up̂ and

V ∗
N assumed the same value at some belief p� ∈ [p∗

N� p̂[, then the restriction of up̂ − V ∗
N

to [p��1] would have a positive global maximum at some belief pr ∈ ]p��1[. In fact, we
would have pr ∈ ]p�� p̂[, since up̂ −V ∗

N , being the difference of two functions of the form
(3), has a negative first derivative on [p̂�1[. As (up̂)

′(pr) = (V ∗
N)′(pr) and up̂(j(pr)) −
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V ∗
N(j(pr)) ≤ up̂(pr) − V ∗

N(pr), we would thus have b(pr�V
∗
N) ≥ b(pr�up̂) = c(pr), hence

V ∗
N(pr) = s + Nb(pr�V

∗
N) − c(pr) ≥ s + (N − 1)c(pr), which is inconsistent with the fact

that V ∗
N is below DN−1 at pr . Consequently, up̂ lies above V ∗

N on [p∗
N�1[.

By continuity, ûN , the function up̂ obtained for p̂ = p̂N�N−1, lies weakly above V ∗
N

on [p∗
N�1]. While the two functions are identical on [p̂N�N−1�1] by construction, they

cannot be identical on the whole of [p∗
N� p̂N�N−1[ as V ∗

N does not solve (A.1) immediately
to the left of p̂N�N−1, for example. Arguing exactly as in the previous paragraph, we see
that the restriction of ûN −V ∗

N to [p∗
N�1] must assume its positive global maximum at p∗

N .
This establishes ûN(p∗

N) > V ∗
N(p∗

N) = s. As V ∗
N(p) > s for p>p∗

N , we thus have ûN > s on
[p∗

N�1], hence M(p̂N�N−1) > s.
For p̂ ∈ I with p̂ > p̂1�N−1, the function up̂ lies below V ∗

1 in a neighborhood of p̂.
If up̂ and V ∗

1 assumed the same value at some belief p� ∈ [p∗
1� p̂[, then the restriction

of V ∗
1 − up̂ to [p��1] would have a positive global maximum at a belief pr ∈ ]p��1[. As

(V ∗
1 )′(pr) = (up̂)

′(pr) and V ∗
1 (j(pr))−up̂(j(pr)) ≤ V ∗

1 (pr)−up̂(pr), we would thus have
b(pr�up̂)≥ b(pr�V

∗
1 ). As s < V ∗

1 (pr)= s+b(pr�V
∗

1 )−c(pr), this would imply b(pr�up̂) >

c(pr) and pr > p̂. But then up̂(pr) = s + Nb(pr�up̂) − c(pr) > s + b(pr�V
∗

1 ) − c(pr) =
V ∗

1 (pr), which is a contradiction. Consequently, up̂ lies below V ∗
1 on [p∗

1� p̂].
By continuity, û1�N , the function up̂ obtained for p̂ = p̂1�N−1, lies weakly below V ∗

1
on [p∗

1� p̂1�N−1]. While the two functions are identical at p̂1�N−1 by construction, they
cannot be identical on the whole of [p∗

1� p̂1�N−1[. Arguing exactly as in the previous para-
graph, we see that the restriction of V ∗

1 − û1�N to [p∗
1�1] must assume its positive global

maximum at p∗
1. In particular, û1�N(p∗

1) < V ∗
1 (p∗

1) = s, hence M(p̂1�N−1) < s.

So there exists a p†
N ∈ ]p̂N�N−1� p̂1�N−1[ such that M(p†

N) = s. With u† denoting the

solution up̂ corresponding to p̂ = p†
N , let p̃N be the highest belief in [p∗

N�pm] at which
u† assumes the value s. By construction, p̃N < p†

N < pm. Define the function WN by
WN(p) = s on [0� p̃N ] and by WN(p) = u†(p) > s on ]p̃N�1]. This is the common payoff
function when all players use the strategy k described in the proposition. As a conse-
quence, WN ≤ V ∗

N and, in particular, p̃N ≥ p∗
N .

If we had p̃N = p∗
N , then WN(p∗

N) = s = V ∗
N(p∗

N), WN(j(p∗
N)) ≤ V ∗

N(j(p∗
N)), and

W ′
N(p∗

N−) = 0 = (V ∗
N)′(p∗

N), implying b(p∗
N�V ∗

N) ≥ b(p∗
N�WN). As b(p∗

N�V ∗
N) = c(p∗

N)/N ,
b(p∗

N�WN) = c(p∗
N), and c(p∗

N) > 0, this is a contradiction. So we have p∗
N < p̃N < pm,

hence W ′
N(p̃N+) = (u†)′(p̃N) = 0 because the minimum of u† on [p∗

N�p
m] is achieved at

an interior point. Thus, the function WN is of class C1.
It is straightforward to check from the explicit representation of WN above DN−1

that this function is convex and increasing on [p†
N�1]. Suppose WN is not increasing

on [p̃N�p†
N ]. Then it must assume both a local maximum and a local minimum in the

interior of that interval, and there exist beliefs p′ < p′′ in ]p̃N�p†
N [ such that W ′

N(p′) =
W ′

N(p′′) = 0, WN(p′) ≥ WN(p′′), and WN is weakly decreasing on [p′�p′′] and increasing
on [p′′�1]. We now have b(p′�WN) = λ(p′)[WN(j(p′)) − WN(p′)]/r = c(p′) > 0, hence
WN(j(p′)) > WN(p′) and j(p′) > p′′. As a consequence, WN(j(p′′)) > WN(j(p′)) and
b(p′′�WN) = λ(p′′)[WN(j(p′′)) − WN(p′′)]/r > λ(p′)[WN(j(p′)) − WN(p′)]/r = c(p′) >
c(p′′), which is a contradiction. This establishes that WN is increasing on [p̃N�1], and
k is increasing on [p̃N�p†

N ].
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We thus have b(p�WN) > c(p) on ]p†
N�1], b(p�WN)= c(p) on [p̃N�p†

N ] and, because
of the monotonicity of WN on [p̃N�1], b(p�WN) < c(p) on [0� p̃N [. So all players using
the strategy k constitutes an equilibrium. Finally, p̃N < p∗

1 by Proposition 2.
Uniqueness was already shown in the main text. �

Proof of Corollary 1. With u(0)(p) = λ1hp+λ0h(1−p)+C(0)(1−p)�(p)μ (see (3)),
we seek a sequence of functions u(i+1) for i = 0�1� � � � , defined recursively as solutions to
the ODE (A.2). Let α = λ0/�λ and, for i ≥ 0, let

u(i)(p) = d
(i)
1 p+ d

(i)
0 (1 −p)+m(i)(1 −p)�(p)μ

+ (1 −p)�(p)α
i−1∑
η=0

l(i−η)
(
ln[(λ0/λ1)

η−1�(p)])η�
where d(i)1 , d(i)0 , m(i), and l(i−η) are constants to be determined—we will show that the
functions u(i) form just such a sequence. Clearly we need

d(0)1 = λ1h� d
(0)
0 = λ0h� and m(0) = C(0)

with C(0) being the constant that fixes payoffs above the diagonal where everyone
plays R. The final (summed) term in the above equation defining u(i) is vacuous for
i = 0.

First note that

u(i)(j(p)) = d
(i)
1

λ1

λ(p)
p+ d(i)0

λ0

λ(p)
(1 −p)+m(i) λ0

λ(p)

(
λ0

λ1

)μ

(1 −p)�(p)μ

+ λ0

λ(p)

(
λ0

λ1

)α

(1 −p)�(p)α
i−1∑
η=0

l(i−η)
(
ln[(λ0/λ1)

η�(p)])η�
so that the right-hand side of (A.2) becomes

G(i)(p) = D(i)
1 p+D(i)

0 (1 −p)+M(i)(1 −p)�(p)μ

+ (1 −p)�(p)α
i−1∑
η=0

L(i−η)
(
ln[(λ0/λ1)

η�(p)])η�
where

D(i)
1 = d(i)1 λ1 + r(λ1h− s)� D(i)

0 = d(i)0 λ0 − r(s − λ0h)

and

M(i) =m(i)λ0(λ0/λ1)
μ� L(i−η) = l(i−η)λ0(λ0/λ1)

α�

The homogeneous equation, �λp(1 −p)u′(p)+ λ(p)u(p) = 0, has the solution

u0(p)= (1 −p)�(p)α�
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Using the method of variation of constants, we now write u(p) = a(p)u0(p) so that

�λp(1 −p)u′(p)+ λ(p)u(p) = �λp(1 −p)u0(p)a
′(p)�

The ODE thus transforms into the following equation for the first derivative of the un-
known function a:

�λa′(p) = G(i)(p)

p(1 −p)u0(p)

= D(i)
1 �(p)−α(1 −p)−2 +D(i)

0 �(p)−α+1(1 −p)−2 +M(i)�(p)μ−α+1(1 −p)−2

+�(p)(1 −p)−2
i−1∑
η=0

L(i−η)
(
ln[(λ0/λ1)

η�(p)])η�
Make the substitution ω= �(p) and define A(ω) = a(p), so a′(p) = −A′(ω)/p2. Then

−�λA′(ω) =D(i)
1 ω−α−2 +D(i)

0 ω−α−1 +M(i)ωμ−α−1 +ω−1
i−1∑
η=0

L(i−η)
(
ln[(λ0/λ1)

ηω])η�
so

A(ω) = D(i)
1
λ1

ω−α−1 + D(i)
0
λ0

ω−α + M(i)

λ0 −μ�λ
ωμ−α

−
i−1∑
η=0

L(i−η)

(η+ 1)�λ
(
ln[(λ0/λ1)

ηω])η+1 +C(i+1)�

where C(i+1) is a constant of integration (and assuming μ 
= α, else we have another
logarithmic term). Multiplying by u0(p) = (1 −p)ωα and substituting ω= �(p) leads to

u(i+1)(p) = D
(i)
1
λ1

p+ D
(i)
0
λ0

(1 −p)+ M(i)

λ0 −μ�λ
(1 −p)�(p)μ

+ (1 −p)�(p)α
i∑

η=1

−L(i+1−η)

η�λ

(
ln[(λ0/λ1)

η−1�(p)])η + (1 −p)�(p)αC(i+1)�

The above iterative step shows that

d
(i+1)
1 = d

(i)
1 + r

λ1
(λ1h− s)� d

(i+1)
0 = d

(i)
0 − r

λ0
(s − λ0h)�

and

m(i+1) = m(i)

(
λ0(λ0/λ1)

μ

λ0 −μ�λ

)

and so, in general,

d(i)1 = λ1h+ r

λ1
(λ1h− s)i� d(i)0 = λ0h− r

λ0
(s − λ0h)i�
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and

m(i) = C(0)
(
λ0(λ0/λ1)

μ

λ0 −μ�λ

)i

�

After a little algebra, we find that the constants in the summation are given by

l(i−η) = C(i−η)

η!
(

−λ0(λ0/λ1)
α

�λ

)η

for η= 0� � � � � i− 1�

The constants C(i−η) (η= 0� � � � � i− 1) are chosen to ensure continuity. In particular,
writing ĵ−i for j−i(p†

N), C(i+1) is chosen such that u(i+1)(ĵ−i) = u(i)(ĵ−i) for i ≥ 0 and
satisfies

C(i+1)(1 − ĵ−i)�(ĵ−i)α = − r

λ1
(λ1h− s)ĵ−i + r

λ0
(s − λ0h)(1 − ĵ−i)

+C(0)
(

1 − λ0(λ0/λ1)
μ

λ0 −μ�λ

)(
λ0(λ0/λ1)

μ

λ0 −μ�λ

)i

(1 − ĵ−i)�(ĵ−i)μ

+
{

i−1∑
η=0

C(i−η)

[
1
η!

(
−λ0(λ0/λ1)

α

�λ
ln[(λ0/λ1)

η−1�(ĵ−i)]
)η

− 1
(η+ 1)!

(
−λ0(λ0/λ1)

α

�λ
ln[(λ0/λ1)

η�(ĵ−i)]
)η+1]}

× (1 − ĵ−i)�(ĵ−i)α� �

Proof of Corollary 2. Close to the right of p̃N , the dynamics of the belief p given no
success are

dp= −�λ
N

N − 1
WN(p)− s

c(p)
p(1 −p)dt�

(A success merely causes a delay before the belief decays to near p̃N again.) As WN is
of class C2 to the right of p̃N with WN(p̃N) = s, W ′

N(p̃N) = 0, and W ′′
N(p̃N+) ≥ 0, we can

find a positive constant C such that

�λ
N

N − 1
WN(p)− s

c(p)
p(1 −p) < C(p− p̃N)2

in a neighborhood of p̃N . Starting from an initial belief p0 > p̃N in this neighborhood,
consider the dynamics dp= −C(p− p̃N)2 dt. The solution with initial value p0,

pt = p̃N + 1
Ct + (p0 − p̃N)−1 �

does not reach p̃N in finite time. Since the modified dynamics decrease faster than the
original, this result carries over to the true evolution of beliefs. �

Proof of Proposition 5 (Details). Let p̂N�N−1 denote the belief where the graph of V ∗
N

cuts DN−1, and consider I = [p̂N�N−1 − ε�pm] with ε > 0 small enough that for all p̂ ∈ I,
the unique solution to (1) that crosses DN−1 at the belief p̂ has positive slope there.
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Step 1: Construction of the average payoff function. Fix a belief p̂ ∈ I. On [p̂�1], we
define up̂ as the unique solution to (1) that starts on DN−1 at p̂. Starting from this initial
condition, we then proceed iteratively as in the proof of Proposition 4, solving “forward”
towards lower beliefs and eventually to p∗

N . Between DN−1 and D̄ ∧ D1−1/N , we solve the
indifference ODDE (6); below D̄ ∧ D1−1/N , we solve the ODDE

�λp(1 −p)u′(p) = λ(p)
[
u(j(p))− u(p)

] − r[u(p)− s] + r

N
[λ(p)h− s]�

In this manner, we obtain a continuous function up̂ on [p∗
N�1] such that (i) up̂(p) =

s + Nb(p�up̂) − c(p) and b(p�up̂) > c(p) on ]p̂�1]; (ii) b(p�up̂) = c(p) at all beliefs
p ∈]p∗

N� p̂] where the point (p�up̂(p)) lies on or below DN−1 and above D̄ ∧ D1−1/N ;
(iii) up̂(p) = s + b(p�up̂) − c(p)/N and b(p�up̂) ≤ c(p) at all beliefs p ∈]p∗

N� p̂] where
(p�up̂(p)) lies on or below D̄ ∧ D1−1/N .

Again proceeding as in the proof of Proposition 4, we establish the existence of a
p̂ ∈ ]p̂N�N−1�p

m[ such that the corresponding function up̂ has an interior global min-
imum equal to s at some belief p̆ ∈ ]p∗

N� p̂[. As u′
p̂
(p̆) = 0, we have λ(p̆)[up̂(j(p̆)) −

s]/r = b(p̆�up̂) = c(p̆)/N < c(p̆). For p̂ = pm, alternatively, the corresponding func-
tion up̂ assumes value s at pm. As its slope there is positive and c(pm) = 0, we have
λ(pm)[up̂(j(pm)) − s]/r > b(pm�up̂) = c(pm)/N = c(pm). By continuity of up̂ with re-

spect to p̂, there exists p‡
N ∈ ]p̂N�N−1�p

m[ such that u
p‡
N

, the function up̂ obtained for

p̂ = p‡
N , has the following property: there is a belief p�

N ∈ ]p̆�p‡
N [ such that u

p‡
N
(p�

N) = s,
u
p‡
N
(p) > s for p>p�

N , and λ(p�
N)[u

p‡
N
(j(p�

N))− s]/r = c(p�
N).

We define a function ū on [0�1] by taking ū = u
p‡
N

on [p�
N�1] and ū = s everywhere

else. We want to establish that ū is increasing on [p�
N�1]. The explicit representa-

tion (3) makes this obvious on [p‡
N�1]. Moreover, the argument given in the proof of

Proposition 4 shows that ū is also increasing on [p�
N�p‡

N ], where p
�
N is the rightmost

belief at which the graph of ū crosses D̄ ∧ D1−1/N . Suppose now that ū is not increas-

ing on [p�
N�p�

N ]. Then there exist beliefs p′ < p′′ in ]p�
N�p�

N ] such that ū′(p′−) ≥ 0,

ū′(p′′−)≤ 0, and ū is weakly decreasing on [p′�p′′]. As j(p′′) > j(p′) > j(p�
N) ≥ p�

N ,
we have ū(j(p′′)) > ū(j(p′)), hence ū(j(p′′)) − ū(p′′) > ū(j(p′)) − ū(p′) and b(p′′� ū) >
b(p′� ū). This implies ū(p′)= s+b(p′� ū)− c(p′)/N < s+b(p′′� ū)− c(p′′)/N = ū(p′′)—a
contradiction.

Monotonicity immediately implies that ū is the average payoff function associ-
ated with the intensity of experimentation: K(p) = N for p ≥ p‡

N ; K(p) = Nū(p)/

[(N − 1)c(p)] < N for p�
N < p < p‡

N ; K(p) = 1 for p�
N < p ≤ p�

N ; K(p) = 0 for p ≤ p�
N .

Using the explicit form of the relevant ODDE to the left and right of p�
N , respectively, we

see that �λp�
N(1 − p

�
N)[ū′(p�

N+) − ū′(p�
N−)] = r[ū(p�

N) − s − (1 − 1/N)c(p
�
N)], so ū has

a kink at p�
N with ū′(p�

N−) > ū′(p�
N+) if and only if the intersection with D̄ ∧ D1−1/N is

below D1−1/N . This kink then corresponds to a jump in the intensity of experimentation

with K(p�
N−) = 1 >K(p�

N+). By construction, K always jumps at p�
N and ū always has a

kink there. At all other beliefs, K is continuous and ū is once continuously differentiable.
Step 2: Construction of the players’ payoff functions and strategies. We define

b̄(p�u) = [
λ(p)

(
ū(j(p))− u(p)

) −�λp(1 −p)u′(p)
]
/r
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for any left-differentiable real-valued function u on ]0�1]. (This is the benefit of experi-
mentation when the value after a success is given by the payoff function ū.)

Fix any two beliefs p� < pr in [p�
N�p�

N ] and consider the four functions u�F , u�E ,
urF , and urE on [p��pr] that are uniquely determined by the properties u�F(p�) =
u�E(p�) = ū(p�); urF(pr) = urE(pr) = ū(pr); on ]p��pr], u�F and urF solve the free-
rider ODE u(p) = s + b̄(p�u), while u�E and urE solve the experimenter ODE u(p) =
s + b̄(p�u) − c(p). By construction, [(N − 1)u�F + u�E]/N coincides with ū at p� and
solves the same ODE as ū on ]p��pr], namely u(p) = s + b̄(p�u) − c(p)/N , so it must
coincide with ū on [p��pr]. The same argument applies to [(N −1)urF +urE]/N . We can
thus conclude that (N − 1)u�F + u�E = (N − 1)urF + urE on [p��pr].

Next, we have u′
�F(p�+) > ū′(p�+) since limp↓p� b̄(p�u�F) = b̄(p�� ū) − c(p�)/N <

b̄(p�� ū) and limp↓p�[ū(j(p)) − u�F(p)] = ū(j(p�)) − ū(p�). Thus, u�F(p) > ū(p) im-
mediately to the right of p�. Now there cannot exist a belief p′ ∈ ]p��pr] such that
u�F(p

′) = ū(p′) and u′
�F(p

′) ≤ ū′(p′), because we would then have c(p′)/N = b(p′� ū) −
b̄(p′�u�F) = −�λp′(1 − p′)[ū′(p′) − u′

�F(p
′)]/r ≤ 0—a contradiction. This implies that

u�F > ū on the entire interval ]p��pr]. Analogous arguments establish that u�E < ū on
]p��pr] as well as urF < ū and urE > ū on [p��pr[.

In particular, there exists a belief p ∈ ]p��pr[ such that u�E(p) = urF(p). Let p1 de-
note the lowest such belief and define a continuous function u1(·|p��pr) on [p��pr] by
setting u1(·|p��pr)= u�E on [p��p1] and u1(·|p��pr) = urF on [p1�pr]. Using the identity
(N − 1)u�F +u�E = (N − 1)urF +urE , we see that urE(p1)−u�F(p1) = (N − 2)[u�F(p1)−
urF(p1)]. If N = 2, we define a continuous function u2(·|p��pr) on [p��pr] by setting
u2(·|p��pr)= u�F on [p��p1] and u2(·|p��pr) = urE on [p1�pr].

If N > 2, we consider the function u[2] that coincides with u�F at p1 and solves the
experimenter ODE u(p) = s + b̄(p�u) − c(p) on ]p1�pr]. As urE(p1) > u�F(p1), there
is a belief p ∈ ]p1�pr[ such that u[2](p) = urF(p). Let p2 denote the lowest such belief
and define a continuous function u2(·|p��pr) on [p��pr] by setting u2(·|p��pr)= u�F on
[p��p1], u2(·|p��pr) = u[2] on [p1�p2], and u2(·|p��pr) = urF on [p2�pr]. By the same
argument as above, (N − 2)u�F + u[2] + urF = (N − 1)urF + urE on [p1�p2], which is
easily seen to imply urE(p2)− u�F(p2)= (N − 3)[u�F(p2)− urF(p2)]. If N = 3, we define
a continuous function u3(·|p��pr) on [p��pr] by setting u3(·|p��pr) = u�F on [p��p2]
and u3(·|p��pr)= urE on [p2�pr].

If N > 3, we proceed as in the previous paragraph to determine a belief p3 ∈ ]p2�pr[,
and determine a continuous function u3(·|p��pr) that coincides with u�F on [p��p2],
solves the experimenter ODE on ]p2�p3], and coincides with urF on [p3�pr]. Perform-
ing as many steps as necessary, we end up with beliefs p0 = p� < p1 <p2 < · · · <pN−1 <

pN = pr and continuous functions u1(·|p��pr)� � � � � uN(·|p��pr) on [p��pr] such that
un(·|p��pr) coincides with u�F on [p��pn−1], solves the experimenter ODE on ]pn−1�pn],
and coincides with urF on [pn�pr]. By construction, the average of these N functions
coincides with ū.

Now consider a finite family of contiguous intervals ]p��i�pr�i] whose union equals
]p�

N�p�
N ]. For each of these intervals, let pn�i denote the corresponding belief pn as de-

termined in the previous paragraph. Define functions u1� � � � � uN on the unit interval by
setting un = s on [0�p�

N ], un = un(·|p��i�pr�i) on ]p��i�pr�i], and un = ū on ]p�
N�1]. For
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n = 1� � � � �N , define a strategy kn as kn(p) = 1 if p lies in ]p‡
N�1] or one of the inter-

vals ]pn−1�i�pn�i]; kn(p) = 0 if p lies in [0�p�
N ] or one of the intervals ]p��i�pn−1�i] and

]pn�i�pr�i]; kn(p) = ū(p)/[(N − 1)c(p)] everywhere else. Clearly, un is player n’s pay-
off function associated with the strategy profile (k1� � � � �kN), and ū is the correspond-
ing average payoff function. Note that by construction, u1 is differentiable at p�

N with
u′

1(p
�
N) = 0.

Step 3: Ensuring mutually best responses. The following arguments establish that
player n plays a best response against K¬n as implied by the strategy profile con-
structed in Step 2. First, the graph of un is above DN−1 on ]p‡

N�1], so playing R is
optimal against K¬n(p) = N − 1 there. Second, b(p�un) = c(p) on ]p�

N�p‡
N ], making

kn(p) = ū(p)/[(N − 1)c(p)] trivially optimal on this interval. Third, after increasing the
number and reducing the size of the intervals ]p��i�pr�i] if necessary, the graph of un is
above level s and below D1 on ]p�

N�p�
N [, so it is optimal for player n to play R whenever

all other players play S, and to play S whenever one other player plays R. Fourth, we
have b(p�

N�un) = λ(p�
N)[un(j(p�

N)) − s]/r = λ(p�
N)[ū(j(p�

N)) − s]/r = c(p�
N) as the left-

hand derivative of un at p�
N is zero, so playing S is optimal at this belief. Fifth, un(j(p))

is at least weakly increasing and c(p) is decreasing on [0�p�
N [; therefore, b(p�un) < c(p)

on this interval, again implying the optimality of S. �

Proof of Corollary 3. The proof follows the same lines as for Corollary 1. Here we
consider the case where exactly 1 of the N players is playing R and where a success
results in the players playing symmetrically as in that corollary. The relevant ODE is

�λp(1 −p)u′(p)+ [r + λ(p)]u(p)= krλ(p)h+ (1 − k)rs + λ(p)w(j(p))

with k = 0 for a free-rider and k = 1 for an experimenter, and where w is the function
u(ι) derived in Corollary 1.

We obtain equations for un of the form

un(p) = d
(ι+1)
1 (kn)p+ d

(ι+1)
0 (kn)(1 −p)+m(ι+1)(1 −p)�(p)μN

+ 1
r

ι−1∑
η=0

l(ι−η)λ0(λ0/λ1)
λ0/�λ

×
( η∑
γ=0

(
�λ

r

)η−γ
η!
γ!

(
ln[(λ0/λ1)

γ�(p)])γ
)
(1 −p)�(p)λ0/�λ

+C(ι+1)
n (1 −p)�(p)(r+λ0)/�λ�

where

d
(ι+1)
1 (k) = λ1

r + λ1

[
λ1h+ r

λ1
(λ1h− s)ι

]
+ r

r + λ1
[kλ1h+ (1 − k)s]

d(ι+1)
0 (k) = λ0

r + λ0

[
λ0h− r

λ0
(s − λ0h)ι

]
+ r

r + λ0
[kλ0h+ (1 − k)s]

m(ι+1) = C(0)
(
λ0(λ0/λ1)

μ

λ0 −μ�λ

)ι
λ0(λ0/λ1)

μ

r + λ0 −μ�λ
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and

l(ι−η) = C(ι−η)

η!
(

−λ0(λ0/λ1)
λ0/�λ

�λ

)η

for η= 0� � � � � ι− 1�

This leads to the representation stated in the corollary. �

Proof of Proposition 7. The proof proceeds in four steps, two of which are simpler
versions of the corresponding steps in the proof of Proposition 5. Let p̂2�1 denote the
belief where the graph of V ∗

2 cuts D1, and consider I = [p̂2�1 − ε�pm] with ε > 0 small
enough that for all p̂ ∈ I, the unique solution to (1) with N = 2 that crosses D1 at the
belief p̂ has positive slope there.

Step 1: Construction of the average payoff function. Fix a belief p̂ ∈ I. On [p̂�1], we
define up̂ as the unique solution to (1) with N = 2 that starts on D1 at p̂. On [p∗

2� p̂[, we
define up̂ as the unique solution to the ODE

�λp(1 −p)u′(p)+ [r + λ(p)]u(p) = r
2 [s + λ(p)h] + λ(p)up̂(j(p))

that ends on D1 at p̂. By construction, up̂ is continuous, up̂(p)= s+ 2b(p�up̂)− c(p) on
]p̂�1], and up̂(p) = s + b(p�up̂)− 1

2c(p) on ]p∗
2� p̂].

Proceeding as in the proof of Proposition 5, we establish the existence of a p̂ ∈
]p̂2�1�p

m[ such that the corresponding function up̂ has the property that there is a belief
p̄ ∈ ]p∗

2� p̂[ such that up̂(p̄) = s, up̂(p) > s for p> p̄, and λ(p̄)[up̂(j(p̄))− s]/r = c(p̄).
We define a function ū on [0�1] by taking ū equal to the function up̂ just determined

on [p̄�1], and ū = s everywhere else. We want to establish that ū is increasing on [p̄�1].
The explicit representation (3) makes this obvious on [p̂�1]. Suppose now that ū is not
increasing on [p̄� p̂]. Then there exist beliefs p′ < p′′ in ]p̄� p̂] such that ū′(p′−) ≥ 0,
ū′(p′′−) ≤ 0, and ū is weakly decreasing on [p′�p′′]. As j(p′′) > j(p′) > pm, we have
ū(j(p′′)) > ū(j(p′)), hence ū(j(p′′)) − ū(p′′) > ū(j(p′)) − ū(p′) and b(p′′� ū) > b(p′� ū).
This implies ū(p′) = s + b(p′� ū) − c(p′)/2 < s + b(p′′� ū) − c(p′′)/2 = ū(p′′)—a contra-
diction.

Step 2: Construction of the players’ payoff functions and strategies. We define

b̄(p�u) = [
λ(p)

(
ū(j(p))− u(p)

) −�λp(1 −p)u′(p)
]
/r

for any left-differentiable real-valued function u on ]0�1].
For any two beliefs p� < pr in [p̄� p̂], Step 2 in the proof of Proposition 5 yields a

belief ps ∈]p��pr[ (denoted by p1 there) as well as continuous functions u1(·|p��pr)

and u2(·|p��pr) on [p��pr]. Both functions coincide with ū at the beliefs p� and pr ;
u1(·|p��pr) solves u(p) = s+ b̄(p�u)− c(p) on ]p��ps] and u(p)= s+ b̄(p�u) on ]ps�pr];
u2(·|p��pr) solves u(p) = s+ b̄(p�u) on ]p��ps] and u(p) = s+ b̄(p�u)− c(p) on ]ps�pr];
the average of these two functions coincides with ū on all of [p��pr].

It is easily seen that u1(·|p��pr) < ū < u2(·|p��pr) on ]p��pr[. Moreover, using sim-
ilar arguments as for the average payoff function, it is straightforward to show that
u1(·|p��pr) is increasing on [p��pr] and u2(·|p��pr) is increasing on [p��ps]. However,
these arguments do not preclude the possibility that the function u2 is decreasing on
some interval [ps�ps + ε].
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Now consider a finite family of contiguous intervals ]p��i�pr�i] whose union equals
]p̄� p̂]. For each of these intervals, let ps�i denote the corresponding belief ps as deter-
mined above. Define functions u1 and u2 on the unit interval by setting un = s on [0� p̄],
un = un(·|p��i�pr�i) on ]p��i�pr�i], and un = ū on ]p̂�1]. Define a simple strategy k1 by
setting k1(p) = 1 if and only if p lies in ]p̂�1] or one of the intervals ]p��i�ps�i], and a
simple strategy k2 by setting k2(p) = 1 if and only if p lies in ]p̂�1] or one of the inter-
vals ]ps�i�pr�i]. Clearly, u1 and u2 are the payoff functions associated with the strategies
k1 and k2, and ū is the corresponding average payoff function. By construction, u1 is
differentiable at p̄ with u′

1(p̄) = 0.
Step 3: Establishing that u′

2(p̂) > −�λh. Unlike u1, the function u2 is not necessarily
increasing on [p̄� p̂], so we do not know whether its graph lies below the diagonal D1 to
the left of p̂, which will be important to establish the mutual best-response property in
Step 4 below. Our next aim, therefore, is to show that u′

2(p̂) > −�λh, implying that u2
stays below D1 to the immediate left of p̂.

We have u2(p̂) = s + b̄(p̂�u2) − c(p̂) = s + c(p̂), hence b̄(p̂�u2) = 2c(p̂) and �λp̂ ×
(1 − p̂)u′

2(p̂) = λ(p̂)[ū(j(p̂)) − s − c(p̂)] − 2rc(p̂). As ū(p) = λ(p)h + 2c(p̂)(1 − p)/

(1 − p̂)(�(p)/�(p̂))μ2 on [p̂�1], equation (2) for N = 2 implies λ(p̂)ū(j(p̂)) = λ2
1hp̂ +

λ2
0h(1 − p̂)+ 2[r/2 + λ0 −μ2�λ]c(p̂). Straightforward computations now reveal that

u′
2(p̂) = �λh− 2

(
μ2 + r

2�λ
+ p̂

)
c(p̂)

p̂(1 − p̂)

and that u′
2(p̂) > −�λh if and only if p̂ is larger than

p+ = (s − λ0h)
(
μ2 + r

2�λ

)
λ1h− s +�λh

(
μ2 + r

2�λ

) �
which is easily seen to lie between p∗

2 and pm. As p̂ > p̂2�1 (the belief where the graph
of V ∗

2 cuts D1), a sufficient condition for u′
2(p̂) > −�λh is that p̂2�1 ≥ p+ or, equivalently,

V ∗
2 (p+) ≤ s + c(p+). Further computations show that the latter is the case if and only if

μ2 + r
2�λ + 1

μ2 + 1

(
μ2

μ2 + 1
μ2 + r

2�λ + 1
μ2 + r

2�λ

)μ2

≤ 2�

Now, since r/(2�λ) < μ2 and the function h(x) = (μ2 +x+1)μ2+1(μ2 +x)−μ2 is increasing
for x≥ 0, the left-hand side of this inequality is bounded above by

2μ2 + 1
μ2 + 1

(
μ2

μ2 + 1
2μ2 + 1

2μ2

)μ2

�

which is clearly smaller than 2.
Step 4: Ensuring mutually best responses. As u1 is increasing on [p̄�1], player 1 is

easily seen to play a best response against k2, irrespective of the choice of intervals
[p��i�pr�i]. First, u1 is above D1 on ]p̂�1]. Second, it is above s and below D1 on ]p̄� p̂[.
Third, we have b(p̄�u1) = λ(p̄)[u1(j(p̄)) − s]/r = λ(p̄)[ū(j(p̄)) − s]/r = c(p̄) as the left-
hand derivative of u1 at p̄ is zero. Fourth, u1(j(p)) is at least weakly increasing and c(p)

is decreasing on [0� p̄[; therefore, b(p�u1) < c(p) on this interval.
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Turning to player 2, the fact that u′
2(p̂) > −�λh allows us to choose a finite family

of intervals [p��i�pr�i] for any δ > 0 such that the graph of u2 is below the diagonal D1
on ]p̄� p̂[ and the vertical distance u2 − u1 is at most δ at any belief in this interval (and
hence on [0�1]). If we take δ sufficiently small, player 2 is now also seen to play a best re-
sponse. On [p̄�1], the arguments are exactly the same as for player 1. On [j−1(p̂)� p̄[,
u2(j(p)) = ū(j(p)) is increasing and c(p) is decreasing, hence b(p�u2) < c(p). On
[0� j−1(p̂)[, finally, u2(j(p)) ≤ u1(j(p)) + δ and b(p�u1) ≤ b(j−1(p̂)�u1) < c(j−1(p̂)),
hence b(p�u2) ≤ b(p�u1)+ λ(p)δ/r < c(j−1(p̂)) < c(p) for δ sufficiently small. �

Proof of Corollary 4. The proof parallels that of Corollary 1. Here we consider the
general case where K of the N players are playing R, for which the relevant ODE is

�λp(1 −p)u′(p)+
[
r

K
+ λ(p)

]
u(p) = k

r

K
λ(p)h+ (1 − k)

r

K
s + λ(p)u(0)(j(p))

with k = 0 for a free-rider and k = 1 for an experimenter. As in the proof of Corollary 1,
we take u(0)(p) = λ(p)h+C(0)(1−p)�(p)μN with C(0) being the constant that fixes pay-
offs above the diagonal where everyone plays R. Having noted that under condition (7)
the recursion ends after just one iteration, i.e., with u(1), we obtain equations for un of
the form

un(p) =
(
λ1h

λ1

rK−1 + λ1
+ rK−1

rK−1 + λ1

[
kn(p)λ1h+ (1 − kn(p))s

])
p

+
(
λ0h

λ0

rK−1 + λ0
+ rK−1

rK−1 + λ0

[
kn(p)λ0h+ (1 − kn(p))s

])
(1 −p)

+C(0)
(

λ0(λ0/λ1)
μN

rK−1 + λ0 −μN�λ

)
(1 −p)�(p)μN +C(1)

n (1 −p)�(p)(rK
−1+λ0)/�λ�

and setting K = 1, N = 2 leads to the representations stated in the corollary. �
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