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Supermodular mechanism design

Laurent Mathevet
Department of Economics, University of Texas

This paper introduces a mechanism design approach that allows dealing with the
multiple equilibrium problem, using mechanisms that are robust to bounded ra-
tionality. This approach is a tool for constructing supermodular mechanisms, i.e.,
mechanisms that induce games with strategic complementarities. In quasilinear
environments, I prove that if a social choice function can be implemented by a
mechanism that generates bounded strategic substitutes—as opposed to strate-
gic complementarities—then this mechanism can be converted into a supermod-
ular mechanism that implements the social choice function. If the social choice
function also satisfies some efficiency criterion, then it admits a supermodular
mechanism that balances the budget. Building on these results, I address the
multiple equilibrium problem. I provide sufficient conditions for a social choice
function to be implementable with a supermodular mechanism whose equilibria
are contained in the smallest interval among all supermodular mechanisms. This
is followed by conditions for supermodular implementability in unique equilib-
rium. Finally, I provide a revelation principle for supermodular implementation
in environments with general preferences.

Keywords. Implementation, mechanisms, multiple equilibrium problem, learn-
ing, strategic complementarities, supermodular games.
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1. Introduction

For the economist designing contracts, taxes, or other institutions, there is a dilemma
between the simplicity of a mechanism and the multiple equilibrium problem. On the
one hand, simple mechanisms often restrict attention to the “right” equilibria. In public
good contexts, for example, most tax schemes overlook inefficient equilibrium situa-
tions, provided that one equilibrium outcome is a social optimum. On the other hand,
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elaborate mechanisms guarantee that all equilibria yield a desired outcome, but they
often are unreasonably complex. Why would agents play the right equilibrium or how
could they play an equilibrium of a game they may not understand? The question of
equilibrium play in mechanism design combines the multiple equilibrium problem and
bounded rationality. If agents are fully rational and knowledgeable, then equilibrium
play is not an issue; however, there are many design problems where these assumptions
are too strong. Unfortunately, while some mechanisms solve the multiplicity problem,
many do not stand up to departures from full rationality.1

In this paper, I develop supermodular mechanism design. This approach is a tool
for constructing mechanisms that lead the agents to play supermodular games. These
mechanisms, which I call “supermodular mechanisms,” are both equipped to handle
the multiple equilibrium problem, and robust to bounded rationality.

Supermodular mechanisms provide a way to address the multiple equilibrium prob-
lem. In these mechanisms, agents’ strategies are complements, meaning that an agent
wants to take a higher strategy when others do the same. In view of Milgrom and Roberts
(1990), supermodular mechanisms have extremal equilibria, and the interval in between
gives the amplitude of the multiple equilibrium problem. Using this interval, it be-
comes possible to minimize the multiplicity problem, to measure it, and sometimes
to solve it. This paper describes how to build supermodular mechanisms where this
interval and so the multiplicity problem are minimized. It also uncovers a method for
approximating and computing this interval, thereby measuring the multiplicity prob-
lem. This is particularly useful for measuring the welfare loss from agents playing an
unintended equilibrium. Finally, it gives sufficient conditions for equilibrium unique-
ness.

Supermodular mechanisms are robust to boundedly rational behaviors. The interval
between the extremal equilibria contains all the iteratively undominated strategy pro-
files, and all the limit points of adaptive and sophisticated learning dynamics (Milgrom
and Roberts 1990, 1991).2 These theoretical properties are corroborated by strong ex-
perimental evidence, showing how convergence to the equilibrium is significantly bet-
ter for supermodular games. Chen and Gazzale (2004) run experiments on a game for
which they control supermodularity. They show how convergence in that game is strik-
ingly better when it is supermodular. Healy (2006) tests five public goods mechanisms
and observes that subjects learn to play the equilibrium only in those mechanisms that
induce a supermodular game.3 As such, supermodular mechanisms contribute to fill
the gap in the literature emphasized by Jackson (2001): “Issues such as how well various
mechanisms perform when players are not at equilibrium but learning or adjusting are

1Theoretical works by Muench and Walker (1983), Cabrales (1999), and Cabrales and Ponti (2000) show
that learning and stability may be serious issues in the Groves–Ledyard (1977), Abreu–Matsushima (1994),
and Sjöström (1994), mechanisms. Healy (2006) and Chen and Tang (1998) provide experimental evidence
that convergence of learning dynamics may fail in various mechanisms, such as Proportional Tax or the
paired-difference mechanism.

2Vives (1990) reports a related result for learning à la Cournot.
3Experiments on the Groves–Ledyard mechanism establish that convergence is far better when some

parameter is high, values at which the mechanism is supermodular (Chen and Plott 1996, Chen and Tang
1998).



Theoretical Economics 5 (2010) Supermodular mechanism design 405

quite important [. . . ] and yet have not even been touched by implementation theory.
[This topic] has not been looked at from the perspective of designing mechanisms to
have nice learning or dynamic properties.” There are many examples where supermod-
ular mechanisms could be used to approach an objective through iterations: a principal
designing supermodular contracts to approach revenue maximization, a government
applying a supermodular tax system to approach the efficient public goods level, the
traffic authorities setting up toll systems (Sandholm 2002, 2005) to minimize congestion,
and so forth.4

Supermodular games are also attractive in an implementation framework, because
their mixed strategy equilibria are locally unstable under monotone adaptive dynam-
ics, such as Cournot dynamics and fictitious play (Echenique and Edlin 2004). Ruling
out mixed strategy equilibria is common in implementation theory and often arbitrary,
but it is sensible in supermodular implementation. To the contrary, many pure-strategy
equilibria are stable. In a parameterized supermodular game, all equilibria that are in-
creasing in the parameter are stable, such as the extremal equilibria (Echenique 2000).

In quasilinear environments, I develop the theory of supermodular mechanism de-
sign along three types of results. First, I show that many social choice functions can
be implemented with a supermodular mechanism. Essentially, all social choice func-
tions for which strategic substitutability—as opposed to strategic complementarity—is
bounded are supermodular implementable; this class includes all twice-continuously
differentiable social choice functions and all social choice functions on finite type
spaces. The result is established by turning an existing mechanism into one that in-
duces a supermodular game. The transformation technique is constructive and simple,
yet powerful. I explain it in the next section in a public goods example. A function is
added to each agent’s transfer. These functions turn the agents’ announcements into
complements and they vanish in expectation; thus the original equilibrium remains af-
ter adding the functions, and implementability prevails.

Second, I prove that (under bounded substitutes) if there are at least three agents
and if the social choice function satisfies some efficiency criterion, then it is imple-
mentable by a supermodular mechanism that balances budget. Budget balancing re-
quires that there be no transfers into or out of the system, which is important for full
efficiency. Achieving budget balancing is difficult under dominant-strategy implemen-
tation (Green and Laffont 1979), but possible under Bayesian implementation (Arrow
1979, d’Aspremont and Gérard-Varet 1979). When there are three or more agents, bal-
ancing transfers under supermodular implementation is nearly as general as Bayesian
implementation allows.

Interestingly, there are cases where dominant-strategy implementation cannot bal-
ance the budget, whereas it is possible to balance the budget and induce a supermodular
game with a unique equilibrium.

Third, I deal with the multiple equilibrium problem. I show that if a social choice
function satisfies some basic smoothness properties, then it is implementable with a su-
permodular mechanism whose equilibria are contained in the smallest interval among

4Other examples include a procurement department running an auction to allocate jobs, a group of
scientists creating a control system for planetary exploration vehicles (see Parkes 2004, Tumer and Wolpert
2004 for issues related to cognitive intelligence).
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all supermodular mechanisms. This result applies to all social choice functions that are
twice-differentiable and depend on types through an aggregate. The proof relies on de-
signing a supermodular mechanism that generates the weakest complementarities. The
interval between the extremal equilibria will be shown to decrease with the amount of
complementarities, hence such a mechanism produces the tightest interval. The main
interest of a “small” interval is that it leads agents to play a profile whose outcome is
close to the desired outcome. Furthermore, I give sufficient conditions for equilibrium
uniqueness. The game is thus dominance-solvable and all learning dynamics converge
to the equilibrium. As a by-product, it implies coalition-proof Nash implementation by
Milgrom and Roberts (1996). Finally, this paper offers an explicit method for computing
bounds on the equilibrium set, which is useful when the uniqueness conditions do not
hold. This allows us to measure how serious is the multiple equilibrium.

The theory applies broadly to well known models with quasilinear preferences:
Public goods (Section 3), principal multiagents (Section 8.1), auctions, and bargaining
(Myerson and Satterthwaite 1983, Section 8.2). For example, I present an application to
team production where a principal contracts with two agents to maximize net profits.
The social choice function is uniquely supermodular implementable. This paper also
considers (in Section 7) approximate implementation to extend the applicability of the
framework. The objective becomes to supermodularly implement social choice func-
tions that are arbitrarily close to the “target social choice function.” It turns out that
most bounded social choice functions admit nearby social choice functions that are su-
permodular implementable.

Finally, this paper provides a revelation principal for supermodular mechanism de-
sign. It says that if there is a mechanism that supermodularly implements a social choice
function and if the range of the equilibrium strategies in the desired equilibrium has a
particular structure—lattice—then there is a direct mechanism that supermodularly im-
plements that social choice function truthfully. The existence of a revelation principle
for supermodular implementation is a particularly relevant question to examine, be-
cause the paper limits attention to direct mechanisms and because the space of mech-
anisms to consider is very large. This allows us to identify situations where direct mech-
anisms cause no loss of generality and when they do, which restrictions they impose.

The remainder of the paper is organized as follows. The next section is a literature re-
view. Section 3 presents the leading public goods example. Section 4 lays out the frame-
work of supermodular mechanism design. Section 5 contains the main results. Section 8
provides several applications of the theory to traditional models and introduces approx-
imate supermodular implementation. Section 9.1 presents the supermodular revelation
principle. Finally, Section 9.2 discusses issues related to dominant strategies and the in-
terpretation of learning in Bayesian games.

2. Literature review

There are a number of papers related to robustness issues in mechanism design such
as equilibrium multiplicity or learning. Abreu and Matsushima (1992) show that for any
social choice function, there exist arbitrarily close social choice functions that can be
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implemented by iterative deletion of strictly dominated strategies. Although their re-
sult is strong and general,5 their mechanism remains too complex. As nearby social
choice functions get closer to the desired one, the dimension of the message space goes
to infinity, and more steps of iterated deletion are necessary to reach the equilibrium.
Furthermore, the Abreu–Matsushima mechanism does not perform well in experiments
(Sefton and Yavaş 1996). In contrast, this paper studies exact implementation with di-
rect mechanisms for which there is experimental support. Supermodular mechanisms
are, at least, a simple way to obtain dominance properties and a valuable alternative to
more complex mechanisms in many situations.

Chen (2002) provides one of the first papers explicitly aimed at improving learning
in mechanism design. In a complete information environment with quasilinear util-
ities, she constructs a mechanism that Nash implements Lindahl allocations and in-
duces a supermodular game. My paper introduces supermodular implementation in
Bayesian contexts and generalizes Chen’s result in incomplete information. Cabrales
(1999) and Serrano and Cabrales (2007) study implementation with boundedly rational
agents. The learning dynamics they consider require players to strictly randomize over
all improvements on past play.6 This rules out many natural dynamics considered here.
There are also general impossibility results related to stability in Nash implementation
(Jordan 1986, Kim 1986).

The existing literature on robustness uses methodologies that differ from the
methodology of this paper. Most approaches rely on equilibrium concepts, such as Eliaz
(1999) and Saijo et al. (2005). Instead, this paper adopts the methodology advocated in
Jackson (1992), which restricts the class of admissible mechanisms, given a solution con-
cept. The solution concept adopted in the paper is weak—Bayesian equilibrium—and
the focus is on supermodularity. Similarly, Sandholm (2002, 2005) uses implementation
in potential games to obtain evolutionary properties of the mechanism.

3. Motivation and intuition

This section provides a simple economic example where the natural mechanism to
use—the expected externality mechanism of Arrow (1979) and d’Aspremont and Gérard-
Varet (1979)—has poor properties: It is not dominance-solvable and convergence to the
equilibrium fails under many dynamics. In contrast, the resulting supermodular mech-
anism has a unique globally stable equilibrium and is dominance-solvable.

Consider a principal who needs to decide the level of a public good, such as public
safety or the time or money spent on some event. Let X = [0�2] denote the possible
values of the public good. There are two agents, 1 and 2, whose type spaces are �1 =
�2 ⊂ [0�1]. Types are independently uniformly distributed. The agents’ preferences are
quasilinear, ui(x�θi) = Vi(x�θi)+ ti, where x ∈ X , θi ∈ �i, and ti ∈ R is the transfer from

5The solution concept is strong enough to predict convergence of many learning dynamics to the unique
equilibrium outcome (see, e.g., Milgrom and Roberts 1991). Note, however, that some adaptive dynamics
from Milgrom and Roberts (1990) do not converge to a uniquely rationalizable profile.

6This feature allows players to exit the integer or modulo game.
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the principal to agent i. The valuation functions are V1(x�θ1) = θ1x− x2 and V2(x�θ2) =
θ2x+ x2/2.

The principal wishes to make an allocation-efficient decision, i.e., she aims to max-
imize the sum of the valuation functions by choosing x∗(θ) = θ1 + θ2. To this end, she
wants the agents to reveal their true type. She opts for the expected externality mecha-
nism, which gives the transfers7

t1(θ̂1� θ̂2)= 1
2 + 1

2 θ̂2 + θ̂2
2 + θ̂1 + 1

2 θ̂
2
1� t2(θ̂1� θ̂2) = −t1(θ̂1� θ̂2)�

Given these transfers, agent i’s expected utility in the mechanism is

E[ui] = − 1
2 θ̂

2
i + (θi +Bi)θ̂i� (1)

where Bi is the expectation of a function of j’s strategy. From (1), i’s best response is
to announce θi + Bi, where Bi can be interpreted as agent i’s bias for over- or under-
reporting. The only strategic variable is the bias, because only biases depend on what
the opponent does. It turns out that an agent’s bias depends on her opponent’s strategy
through her bias only:

B1 ≈ −2B2� B2 ≈ B1� (2)

Agent 2 wants the same bias as agent 1, whereas 1 wants an opposite bias. This game
has a flavor of “matching pennies,” because one agent essentially tries to match another
agent who tries to mismatch.

Although truthtelling is an equilibrium,8 it is unclear whether and how the agents
arrive at that equilibrium. For the sake of argument, consider a game with integer biases
and best responses described by (2). Such a game cannot be dominance-solvable. Thus
the epistemic conditions that would guarantee that agents play truthfully are too strong
for many design settings. Furthermore, a study of stability will reveal that truthtelling
also has scant dynamic foundations, because many learning dynamics fail to converge.

Consider a learning model (Fudenberg and Levine 1998) applied to the game in-
duced by the mechanism. Time proceeds in discrete periods. At each period, both
agents look at the past history of play, use this to formulate beliefs on the other agent’s
future strategy, and then announce a best response (fully characterized by a bias) to their
beliefs.9 For simplicity, think of the equivalent situation where agents announce a bias
at each period. For each t ∈ N, a learning rule for agent i, such as fictitious play, takes as
input the history of biases (of agent j) from 0 to t − 1 and produces beliefs about which
biases agent j will announce at t. Given these beliefs, agent i (myopically) chooses an
optimal bias.

There are many learning rules for which, not only do the agents not converge to
truth-revealing, but the play cycles forever. First, this is the case for weighted fictitious

7This mechanism allows truthful implementation of allocation-efficient decision rules (see Arrow 1979,
d’Aspremont and Gérard-Varet 1979, or Section 23.D in Mas-Colell et al. 1995), i.e., truthtelling is a Bayesian
equilibrium of the mechanism.

8Note that null biases, B1 = B2 = 0, are best responses to each other.
9Alternatively, we could think of a situation where types are drawn independently every period and

agents announce a type rather than a strategy.
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play (see, e.g., Ho 2008).10 This is also the case for Cournot dynamics, where cycling
prevails wherever the dynamic starts (except truthtelling); for this dynamic the slight-
est belief perturbations destabilize the truthful equilibrium. Cycling also plagues many
families of dynamics with a longer memory. For example, consider dynamics where
players remember the last T periods. They assign a probability π to the strategy played
at t − 1 and assign (1 − π)δk/C to the strategy played at t − k, k = 2� � � � �T , where C is
normalized so that the probabilities add up to 1. Simulations reveal that learning can
fail under many values of the parameters. For T ∈ {2�3}� δ = �9, and π ≥ �5, the process
enters a cycle for many starting points. Increasing the memory size does not always im-
prove learning. For T = 4� δ = �8, and π ≤ �65, the profile converges to the truthful equi-
librium, but it cycles for π ≥ �7. A larger memory does not necessarily improve learning,
because cycling reappears when T = {5�6}� δ = �8, and π ≤ �65. At last, cycling is also an
issue for sophisticated learning dynamics (Milgrom and Roberts 1991).

To fix the problem, this paper advocates converting the mechanism into one that
induces a supermodular game. In this example, the budget balancing assumption is
dropped, but it will be treated in the main text.

The main insight is to use transfers to align agents’ biases by creating complementar-
ities between their announcements. Say that from agent i’s viewpoint, j reports a large
type if j’s reported type exceeds the average (truthful) type: θ̂j ≥ Eθj [θj]. By appending

ρiθ̂i(θ̂j −Eθj [θj]) with ρi > 0 to the original transfers,

tSM
i (θ̂) =Eθj [ti(θ̂i� θj)] + ρiθ̂i(θ̂j −Eθj [θj])� (3)

agent i receives an extra reward for announcing large types when j does so as well (θ̂j ≥
Eθj [θj]) and she is taxed if she still reports large types when j does not (θ̂j < Eθj [θj]).

Parameter ρi captures the intensity of the punishment or reward. Intuitively, there
should be ρi large enough such that both agents want to bias their report in the same
direction, because the reward (punishment) for (not) conforming to their opponent
becomes high, regardless of the original incentives. By doing so, the mechanism has
actually become supermodular. Note ∂2tSM

i (θ̂)/∂θ̂i ∂θ̂j = ρi. If ∂2Vi(xi(θ̂)� θi)/∂θ̂i ∂θ̂j is
bounded below, a condition called bounded substitutes, then there is ρi large enough
such that

∂2Vi(xi(θ̂i� θ̂j)� θi)

∂θ̂i ∂θ̂j
+ ∂2tSM

i (θ̂i� θ̂j)

∂θ̂i ∂θ̂j
≥ 0 for all θ̂� θi� (4)

which means that the game is supermodular.11

10To apply this model here, type spaces need to be finite, so that strategy spaces are also finite. The
results are given for types in {0� �5�1}. Strategies are initially assigned arbitrary weights, and beliefs are
updated each period by multiplying all weights by 1 − π, 0 < π < 1, and by adding 1 to the weight of the
opponent’s strategy that was played last.

11If the complete information payoffs define a supermodular game for each θ ∈ �, then the (ex ante)
Bayesian game is supermodular. Loosely speaking, supermodular games are characterized by compact
strategy spaces and utility functions whose cross-partial derivatives between own action and others’ actions
are positive.
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Truthtelling was an equilibrium of the original mechanism, and so it must still be
an equilibrium under the modified mechanism, because it has left the expected utility
functions unchanged: Eθj [tSM

i (·� θj)] = Eθj [ti(·� θj)]. Furthermore, there exist ρ1 and ρ2

for which this is the unique equilibrium (Theorem 5 of Section 6). Supermodular games
with a unique equilibrium are dominance-solvable, most learning dynamics converge
to the equilibrium, and the equilibrium is stable.

4. Supermodular mechanism design: The framework

4.1 The environment

Consider n agents, each endowed with quasilinear preferences over a set of alterna-
tives. An alternative is a vector (x� t) = (x1� � � � � xn� t1� � � � � tn), where xi is an element
of a compact set Xi ⊂ R

mi and ti ∈ R for all i. In this environment, xi is interpreted as
agent i’s allocation and ti is the money transfer i receives. Each agent i has a compact
type space �i ⊂ R (finite or infinite) endowed with the usual order and information is
incomplete. There is a common prior with density φ on � known to the mechanism
designer. Types are assumed to be independently distributed and φ has full support.
Each agent i’s preferences over alternatives are represented by a bounded utility func-
tion ui(xi� ti� θi) = Vi(xi� θi) + ti, where Vi :Xi × �i → R is a bounded function called i’s
valuation.

A mechanism designer wishes to implement an allocation for each realization of
types. This objective is represented by a decision rule x :� 	→ (xi(θ))i. To this end, the
designer sets up a transfer scheme ti :� → R for each i. A mechanism is denoted by � =
({�i}� (x� t)) and it describes the strategic situation into which agents are put. Agents are
asked to announce a type; from the vector of announced types, an allocation and a trans-
fer accrue to each agent.12 The pair f = (x� t) is called a social choice function. Letting θ̂i
be i’s announced type, i’s (ex post) utility function in � is u�i (θ̂� θi) = Vi(xi(θ̂)� θi)+ ti(θ̂).
A pure strategy for agent i under incomplete information is a function θ̂i :�i → �i that
maps true types into announced types. Strategy θ̂i(·) is called a deception. Agent i’s (ex
ante) utility function in � is U�

i (θ̂i(·)� θ̂−i(·)) =Eθ[u�(θ̂(θ)�θi)].
This paper is concerned with supermodular mechanisms. To define these mecha-

nisms, several definitions are in order. A function g :R × R
n−1 → R such that g : (y� z) 	→

g(y� z) has increasing (decreasing) differences in (y� z) if, whenever y ≥ y ′ and z ≥ z′,
g(y� z)− g(y ′� z)≥ (≤)g(y� z′)− g(y ′� z′); g satisfies the single-crossing property in (y� z)

if, whenever y ≥ y ′ and z ≥ z′, g(y� z′) ≥ g(y ′� z′) implies g(y� z) ≥ g(y ′� z) and g(y� z′) >
g(y ′� z′) implies g(y� z) > g(y ′� z). If g has decreasing differences in (y� z), then variables
y and z are said to be substitutes. If g has increasing differences or satisfies the single-
crossing property in (y� z), then y and z are said to be complements.

A game is a tuple (N� {Si�ui}), where N is a finite set of players; each i ∈ N has a
strategy space Si ⊂ R and a payoff function ui :

∏
i∈N Si → R. Generic elements of Si are

denoted si and s−i = (s1� � � � � si−1� si+1� � � � � sn). Subsets of the real line are endowed with
the Euclidean topology.

12Most of the paper is concerned with direct mechanisms.
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Definition 1. A game G = (N� {Si�ui}) is supermodular if, for all i ∈ N , the following
statements hold.

(i) Space Si ⊂ R is compact.

(ii) Payoff ui is bounded, and has increasing differences in (si� s−i).

(iii) Payoff ui is upper semicontinuous in si for each s−i and continuous in s−i for
each si.

There are three stages at which it is relevant to formulate the game induced by
mechanism �: ex ante, interim, and ex post (complete information). Let G(θ) =
(N� {�i�u

�
i (·� θi)}) be the game induced by mechanism � ex post. Let G = (N� {��i

i �U�
i })

be the ex ante Bayesian game induced by �. Among these three formulations of the
game, the paper considers supermodularity at the ex post level, because this is the
strongest requirement. If the ex post game is always supermodular, then the game will
be supermodular in its ex ante and interim formulations.

Definition 2. A social choice function f = (x� t) is (truthfully) supermodular imple-
mentable if truthtelling, i.e., θ̂i(θi)= θi for all i, is a Bayesian equilibrium of G and if G(θ)

is supermodular for each θ.

4.2 Payoff assumptions

This section contains the main assumptions on payoffs that are used throughout the pa-
per. Most definitions impose conditions on the composition of the valuation functions
and the decision rule.

As suggested in Section 3, the intuition behind most results is that transfers should
add complementarities to compensate for the substitute effects coming from the valu-
ation functions. To be able to compensate, these substitute effects should be bounded:
∂2Vi(xi(θ̂)� θi)/∂θ̂i ∂θ̂j ≤ Ti for all θ̂ and θi. Given that the type sets are compact, this as-
sumption is trivially satisfied if the valuation functions and the decision rule are twice-
continuously differentiable.13

It will be useful to generalize the previous condition to nondifferentiable environ-
ments. For any θ′′

i � θ
′
i� θi ∈ �i and θ−i ∈ �−i, let �Vi(θ′′

i � θ
′
i� θ−i� θi) = Vi(xi(θ

′′
i � θ−i)� θi) −

Vi(xi(θ
′
i� θ−i)� θi), In general environments, say that the valuation functions and the de-

cision rule have bounded substitutes if for each i and θi, there is a real number Ti(θi) such
that �Vi(θ′′

i � θ
′
i� θ

′′
−i� θi)−�Vi(θ

′′
i � θ

′
i� θ

′
−i� θi) ≥ Ti(θi)(θ

′′
i − θ′

i)
∑

j �=i(θ
′′
j − θ′

j) for all θ′′
i ≥ θ′

i,
θ′′

−i ≥ θ′
−i, and θi. The valuations and the decision rule generate uniformly bounded

substitutes if the previous inequality admits a uniform lower bound Ti. Note that the
assumption of bounded substitutes is always satisfied when type sets are finite.

Unless otherwise stated, the valuation functions and the decision rule are assumed
to form a continuous family throughout the paper: For all i and θi, Vi(xi(θ̂)� θi) is con-
tinuous in θ̂−i for fixed θ̂i and Vi(xi(θ̂)� θi) is upper semicontinuous in θ̂i for fixed θ̂−i.

13The valuation functions and the decision rule are (twice-) continuously differentiable if for all i, there
exist open sets Oi ⊃ �i and Ui ⊃ Xi , such that Vi :Ui × Oi → R and xi :

∏
i∈N Oi → Ui are (twice-) continu-

ously differentiable.
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5. Supermodular implementable social choice functions and

budget balancing

This section delineates the set of supermodular implementable social choice functions
with and without budget balancing. The paper builds on these results to address the
multiple equilibrium problem in the next section.

5.1 A general result

The class of supermodular implementable social choice functions constitutes the start-
ing point of the analysis. The first result identifies mild boundedness and continuity
conditions under which the class of supermodular implementable social choice func-
tions is the same as that of implementable social choice functions.

Theorem 1. Suppose the valuation functions and decision rule x generate uniformly
bounded substitutes. Assume Eθ−i [ti(·� θ−i)] is upper semicontinuous.

(i) There exist transfers t such that f = (x� t) is implementable if and only if there are
transfers tSM such that (x� tSM) is supermodular implementable.

(ii) Agents receive the same interim expected utility in equilibrium under (x� t) and
(x� tSM), and Eθ−i [ti(·� θ−i)] = Eθ−i [tSM

i (·� θ−i)].

According to this theorem, if the decision rule and the utility functions are relatively
well behaved in the sense of continuous families and bounded substitutes, then a social
choice function is implementable if and only if it can be converted into a supermodular
implementable social choice function. So the class of supermodular implementable so-
cial choice functions is large. Transfers are at the heart of the result: It is always possible
to add complementarities into the transfers without affecting the incentives that appear
in the expected value. It is also interesting to note that if the original social choice func-
tion f satisfies some ex ante or interim participation constraints, then so does (x� tSM),
because agents receive the same interim expected utility in equilibrium.

The assumptions of uniformly bounded substitutes and continuity are generally sat-
isfied. This is the case when type sets are finite and in twice-continuously differentiable
environments. This leads to the following important corollaries that cover many cases
of interest.

Corollary 1. Let type spaces be finite. For any valuation functions, if the social choice
function f = (x� t) is implementable, then there exist transfers tSM such that (x� tSM) is
supermodular implementable.

Corollary 2. If f = (x� t) is an implementable social choice function such that the de-
cision rule x and the valuations are twice-continuously differentiable, then there exist
transfers tSM such that (x� tSM) is supermodular implementable.
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Most results in the paper take implementable social choice functions as starting
points, because there exist well known conditions under which a social choice function
is implementable with continuous transfers.14 The next proposition combines Theo-
rem 1 and those implementability conditions.

Proposition 1. Let type spaces be compact intervals. Suppose the decision rule x and
the valuations generate uniformly bounded substitutes. If Eθ−i [Vi(xi(θ̂i� θ−i)� θi)] is con-
tinuous in (θ̂i� θi) and ∂Eθ−i [Vi(xi(θ̂i� θ−i)� θi)]/∂θi is increasing in θ̂i, then there are
transfers tSM such that (x� tSM) is supermodular implementable.

In smooth environments, supermodular implementable decision rules are those
rules that lead each agent i’s expected marginal valuation to be nondecreasing.

5.2 Adding the budget constraint

This section investigates supermodular implementation under budget balancing. In
some design problems, the planner should not realize a net gain from the mecha-
nism. Since the planner cannot sustain deficits, this implies that transfers are balanced:∑

ti = 0. If a social choice function combines an efficient decision with balanced trans-
fers, then it is fully efficient. That is, it maximizes the sum of the utility functions subject
to feasibility

∑
ti ≤ 0. The next example shows that complementarities between agents’

announcements might be irreconcilable with budget balancing.

Example 1. Consider the public goods example of Section 3. In this example, if there
exist transfers {tSM

i (·)}i=1�2 such that the resulting social choice function (x� tSM) is su-
permodular implementable, then inequality (4) must hold for both agents. That is, the
cross-partial derivatives of t1(θ̂) must be greater than 2 and the cross-partial derivatives
of t2(θ̂) must be greater than −1; hence their sum will be strictly greater than 0. The
budget balance condition requires

∑
i=1�2 ti(θ̂) = 0, so the sum of the cross-partial deriv-

atives of the transfers must be null. As a result, budget balancing must be violated in this
example, if there is supermodular implementation. ♦

This example points to the difficulty of balancing the budget in some situations with
two players. The next theorem provides sufficient conditions for supermodular imple-
mentation with balanced transfers with at least three agents. Say that a decision rule x

is allocation-efficient if x(θ) ∈ arg maxx∈X
∑

i∈N Vi(xi� θi) for all θ ∈�.

Theorem 2. Let n ≥ 3. Suppose the valuation functions and the decision rule generate
uniformly bounded substitutes. If the decision rule is allocation-efficient, then there are
balanced transfers tBB such that (x� tBB) is supermodular implementable.

Basically, if substitutes are bounded, any allocation-efficient decision rule can be
paired with a transfer scheme to give a fully efficient supermodular implementable so-
cial choice function. The proof is constructive and appears in Appendix B. Transfers

14See, e.g., Proposition 23.D.2 in Mas-Colell et al. (1995) for linear utility functions.
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tBB correspond to a transformation of the transfers in the expected externality mecha-
nism (Arrow 1979, d’Aspremont and Gérard-Varet 1979). This transformation is similar
to that in Theorem 1, as it adds complementarity between agents’ announcements in
a pairwise fashion. It then becomes possible to subtract from each individual’s trans-
fer those complementarities that come from the other agents’ transfers and that do not
concern that individual, thus balancing the whole system. Note that this transformation
does not use any agent as a “sink” that absorbs the others’ deficit or surplus; the budget
balancing effort is shared by all. Moreover, not all supermodular transformations would
allow balancing the budget.15

It is important to keep in mind that these supermodular transformations, while leav-
ing the (interim) expected utility unchanged, add risk into the transfers by creating in-
terdependencies between agents. This is particularly noticeable in the above, because
the expected externality mechanism has no interdependencies between agents.

6. Optimal and unique supermodular implementation

This section deals with the multiple equilibrium problem in supermodular implemen-
tation. In Section 3, the linear transformation in (3) is one possible way to obtain a
supermodular mechanism. In general, among all the possible ways to turn a mecha-
nism into a supermodular mechanism, that is, among all supermodular mechanisms
that implement a decision rule, which one has the smallest equilibrium set? This ques-
tion is important, because even if a mechanism has an equilibrium outcome with some
desirable property, it may have other equilibrium outcomes that are undesirable. This
is particularly relevant for supermodular implementation, because the truthful equilib-
rium is the only equilibrium known to have the desired outcome. This section provides
a closed form for the supermodular mechanism whose equilibrium set size is minimal.
If the size of the equilibrium set, called interval prediction, is small, then agents should
play a profile close to truthtelling and to the desired outcome. This section also contains
conditions for truth-revealing to be the unique equilibrium—a case in which supermod-
ular implementation is particularly powerful.

6.1 Optimal implementation

I begin with an example that explains the foundations of optimal supermodular imple-
mentation. This example suggests that the equilibrium set enlarges as complementar-
ities become stronger. This observation will be the centerpiece of the main result, be-
cause minimizing the size of the equilibrium set then comes down to minimizing the
complementarities, which is more tractable. This key observation warrants a series of
definitions and a proposition, which lead to the main result.

Example 2. Consider the public goods example of Section 3. If transfers tSM
i , i = 1�2,

are set with ρ1 = 2 1
2 and ρ2 = − 1

2 , the game induced by the mechanism is supermodular

15Theorem 2 can be modified to apply to situations where, for every realization of types, enough taxes
need to be raised to pay the cost of x. This constraint takes the form

∑
i∈N ti(θ) ≥ C(x(θ)) for all θ (see

Ledyard and Palfrey 2007).
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and truthtelling is the unique equilibrium. For ρ1 = 3 1
5 and ρ2 = 1

2 , the supermodular
induced game now has a smallest and a largest equilibrium. In the smallest equilib-
rium, agent 1 announces 0 for any type below c1 ≈ �47 and announces θ1 − c1 for types
above; agent 2 announces 0 for any type below c2 ≈ �55 and announces θ2 − c2 for types
above. In the largest equilibrium, agent 1 announces θ1 +c1 for any type below 1−c1 and
announces 1 for types above; agent 2 announces θ2 + c2 for any type below 1 − c2 and
announces 1 for types above. By increasing ρ1 to 4 and ρ2 to 1, the following situation
occurs: The smallest equilibrium is now the smallest profile of the entire space (each
agent always announces her smallest type), and the largest equilibrium is the largest
profile (each agent always announces her largest type). Increasing ρ1 and ρ2 has had
three negative consequences: (i) By increasing these parameters above 5/2 and −1/2,
two new equilibria have been generated. By increasing them more, (ii) the interval pre-
diction has enlarged to become the whole space, and (iii) the truthful equilibrium has
become locally unstable. To see this, think of a (symmetric) scenario with an increasing
best response function from [−1�1] into [−1�1]—a mapping from biases into biases—
that intersects the 45-degree line three times. The middle intersection occurs at 0 and
represents the truthtelling equilibrium. Then the extremal equilibria are stable, but the
truthtelling equilibrium is unstable. Most adaptive dynamics starting off the truthful
equilibrium move away from it toward an extremal equilibrium. ♦

One way to measure the degree of complementarity between the variables of a func-
tion is by looking at its cross-partial derivatives. Large cross-partials mean that the de-
gree of complementarity is high and vice versa. In Example 2, the degree of complemen-
tarities of the transfers is ρi. Optimal supermodular implementation involves designing
a mechanism whose induced supermodular game has the weakest complementarities
among all supermodular mechanisms. The rationale behind it is clear from Example 2,
as there is evidence that extremal equilibria move apart with the degree of complemen-
tarities. Thus, optimal implementation should provide the best compromise between
complementarities and equilibrium set size.

As mentioned above, the cross-partial derivatives offer a way to measure comple-
mentarities in twice-differentiable environments. It is natural to say that a transfer func-
tion t̃ generates larger complementarities than t, denoted t̃ 
ID t, if ∂2 t̃i(θ̂)/∂θ̂i ∂θ̂j ≥
∂2ti(θ̂)/∂θ̂i ∂θ̂j for all θ̂, j, and i. The next definition formalizes this idea and extends
it to nondifferentiable transfers. Let >−i be the product order on R

n−1.

Definition 3. Define the ordering relation 
ID on the space of transfer functions such
that t̃ 
ID t if, for all i ∈ N and for all θ′′

i > θ′
i and θ′′

−i >−i θ
′
−i, t̃i(θ

′′
i � θ

′′
−i) − t̃i(θ

′′
i � θ

′
−i) −

t̃i(θ
′
i� θ

′′
−i)+ t̃i(θ

′
i� θ

′
−i) ≥ ti(θ

′′
i � θ

′′
−i)− ti(θ

′′
i � θ

′
−i)− ti(θ

′
i� θ

′′
−i)+ ti(θ

′
i� θ

′
−i).

While 
ID is transitive and reflexive on the space of transfer functions, it is not anti-
symmetric. Consider the set of 
ID equivalence classes of transfers, denoted T .16

The next proposition provides the foundations for the definition of optimal imple-
mentation. It is also interesting in itself for the theory of supermodular games.17 It

16Any quasi-order is transformed into a partial order using equivalence classes.
17See Milgrom and Roberts (1995, pp. 189–190) for a related result.
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shows that if a transfer function t ′′ generates more complementarities than a transfer
function t ′, then t ′′ induces a game whose interval prediction is larger than the interval
prediction of the game induced by t ′. As such, the objective of minimizing the comple-
mentarities coincides with the objective of minimizing the interval prediction.

For any t ∈ T and supermodular implementable f = (x� t), let θt(·) and θt(·) denote
the extremal (Bayesian) equilibria of the game induced by the mechanism.

Proposition 2. Let the decision rule and the valuation functions be such that
Eθ−i [Vi(xi(θ̂i� θ−i)� θi)] is continuous in (θ̂i� θi). For any supermodular implementable
social choice functions (x� t ′′) and (x� t ′), if t ′′ 
ID t ′, then [θt ′(·)�θt ′(·)] ⊂ [θt ′′(·)�θt ′′(·)].

A social choice function will be optimally supermodular implementable if it is super-
modular implementable with transfers that generate the weakest complementarities. By
the previous proposition, this gives the tightest interval prediction around the truthful
equilibrium among all supermodular mechanisms.

Definition 4. A social choice function f = (x� t∗) is optimally supermodular imple-
mentable if it is supermodular implementable and t 
ID t∗ for all transfers t ∈ T such
that (x� t) is supermodular implementable.

The main theorem determines which decision rules are optimally supermodular im-
plementable. The conclusion is rather powerful: In twice-continuously differentiable
environments, all implementable social choice functions whose decision rule satisfies
some dimensionality condition are optimally supermodular implementable. This di-
mensionality condition is defined as follows. A decision rule x :� 	→ (xi(θ)) is dimen-
sionally reducible if, for each i ∈N , there are twice-continuously differentiable functions
hi :R2 →Xi and ri :�−i → R such that ri(·) is increasing and xi(θ)= hi(θi� ri(θ−i)) for all
θ ∈ �. The condition is trivially true when there are two individuals. If there are more
than two, a player’s decision rule can depend on her own type directly, but it must de-
pend on her opponents’ types indirectly through a real-valued aggregate.18 Examples 3
and 7 provide examples of dimensionally reducible (and efficient) decision rules.

Theorem 3. Let the valuation functions be twice-continuously differentiable and let
f = (x� t) be a social choice function where x is dimensionally reducible. If f is imple-
mentable, then there exist t∗ such that (x� t∗) is optimally supermodular implementable.

There are many possible ways to transform a mechanism into a supermodular
mechanism. This section elicits a particular transformation that generates the smallest
equilibrium set among all possible conversions, hence all supermodular mechanisms.

It is worth pointing out that weakening the complementarities does not always slow
down learning; actually the opposite is often true. A “flatter” best response function
increases the rate of convergence toward the equilibrium set.

18Taking types in [0�1], it excludes, for example, x for which x1(θ) = θ
θ2θ3
1 + θ1 + θ2 + θ3.
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6.2 Unique implementation

In this section, I provide sufficient conditions for a social choice function to be uniquely
supermodular implementable. After giving conditions for minimizing the interval pre-
diction, it is natural to study situations where truthtelling is the unique equilibrium.
The induced game is then dominance-solvable and all learning dynamics converge to
the equilibrium. As a by-product, coalition-proof Nash implementation is implied via
Milgrom and Roberts (1996).

Definition 5. A social choice function f is uniquely supermodular implementable if
it is supermodular implementable and the truthful equilibrium is the unique Bayesian
equilibrium.

Before providing the sufficient conditions, some definitions are in order. The val-
uations and the decision rule have strong differences if, for each i and θi, there is
a real number γi(θ−i) such that ∂2Vi(xi(θ̂i� θ−i)� θi)/∂θ̂i ∂θi ≥ γi(θ−i) for all θ̂i, θ. In
the nondifferentiable case, the condition becomes that for all θ̂′′

i ≥ θ̂′
i and θ′′

i ≥ θ′
i,

�Vi(θ̂
′′
i � θ̂

′
i� θ−i� θ

′′
i )−�Vi(θ̂

′′
i � θ̂

′
i� θ−i� θ

′
i)≥ γi(θ−i)(θ̂

′′
i − θ̂′

i)(θ
′′
i − θ′

i).
The previous condition is derived exogenously from the primitives of the model.

The next condition is determined endogenously from the transfers in the mechanism.
A mechanism � = ({�i}� (x� t)) generates bounded complements if, for each i and θi,
there is a real number Ki(θi) such that �ui(θ′′

i � θ
′
i� θ

′′
−i� θi)−�ui(θ

′′
i � θ

′
i� θ

′
−i� θi) ≤Ki(θi)×

(θ′′
i −θ′

i)
∑

j �=i(θ
′′
j −θ′

j) for all θ′′
i ≥ θ′

i and θ′′
−i ≥ θ′

−i. The mechanism generates uniformly

bounded complements if there is a uniform upper bound Ki. The valuation functions
and the decision rule are said to generate bounded complements if the mechanism
� = ({�i}� (x� t0)) generates bounded complements, where t0 is the transfer function
that is identically zero.

6.2.1. Sufficient conditions

The sufficient conditions for unique supermodular implementation are imposed on
a matrix, which I call the matrix of complementarities. To define this matrix, assume
strong differences and suppose that the mechanism ({�i}� f ) generates bounded com-
plements (see Section 4). The matrix of complementarities is the n× n matrix whose ith
row contains −Eθ−i [γi(θ−i)] as the ith entry and Eθi [Ki(θi)] as the other entries:

C =

⎛
⎜⎜⎜⎝

−Eθ−1[γ1(θ−1)] Eθ1[K1(θ1)] · · · Eθ1[K1(θ1)]
Eθ2[K2(θ2)] −Eθ−2[γ2(θ−2)] · · · Eθ2[K2(θ2)]

���
���

� � �
���

Eθn[Kn(θn)] Eθn[Kn(θn)] · · · −Eθ−n[γn(θ−n)]

⎞
⎟⎟⎟⎠ �

The matrix of complementarities is determined endogenously by the mechanism
through the bounds on complements (Ki’s). The matrix indicates how sensitive agents
are as a whole to their own type versus their opponents’ announcements. On the one
hand, when the complementarities between own announcement and type are strong
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(large E[γ(·)]), agents tend to announce high types regardless of their opponents’ strate-
gies. This favors uniqueness. On the other hand, when the complementarities between
agents’ announcements are strong (large E[K(·)]), it is source of multiplicity. The dom-
inating effect is captured by the definiteness of the matrix of complementarities. If it is
negative-definite, the first effect is stronger. For example, if the sum of the entries on
each row is negative, then the matrix is negative-definite.

Proposition 3. Let f be a supermodular implementable social choice function. Let the
valuation functions and the decision rule be continuously differentiable. If the matrix of
complementarities is negative-definite, then f is uniquely supermodular implementable.

The previous proposition is mostly useful a posteriori, that is, after building it, the
designer can check whether the mechanism has a unique equilibrium. But one would
also like to know about the size of the equilibrium set beforehand, based on the primi-
tives of the design problem. The following corollary accomplishes this goal by using the
optimal transfers. Since the optimal transfers are built from the primitives of the model,
they can be used within Proposition 3. Since they give the smallest equilibrium set, they
are the natural candidates to lead to unique implementation.

Corollary 3. Let the valuation functions be twice-continuously differentiable. Let
f = (x� t) be an implementable social choice function with a dimensionally reducible de-
cision rule. Denote

Ki(θi) = max
j∈N�θ̂∈�

(
∂2Vi(xi(θ̂)� θi)

∂θ̂i ∂θ̂j
− min

θi∈�i

∂2Vi(xi(θ̂)� θi)

∂θ̂i ∂θ̂j

)
� (5)

If the matrix of complementarities obtained from (5) is negative-definite, then there are
transfers t∗ such that (x� t∗) is uniquely supermodular implementable.

This corollary points to the heterogeneity of complementarities across types (within
the valuations) as being responsible for multiplicity of equilibria. Since the designer has
to make the induced game supermodular for each realization,19 she may have to add
complementarities for some realizations of types that are unnecessarily high for others,
thus generating multiple equilibria.

Negative-definiteness of the matrix of complementarities is a convenient condition
for unique implementation, but it is not necessary. The gap between necessary and suf-
ficient conditions is essentially a computational matter. To help close the gap, I provide
a way to compute bounds on the equilibrium set. This gives an alternative method to
check for uniqueness, but it goes beyond, since it can be used to get an idea of the size of
the equilibrium set when the uniqueness condition fails. Finding these bounds involves

19It is sufficient but not necessary that the ex post game be supermodular for each realization so that the
ex ante Bayesian game is supermodular. For example, if the prior is mostly concentrated on some subset
�′ of �, it may not be necessary to make the ex post payoffs supermodular for types in �\�′. Of course, the
possibility of neglecting �\�′ depends on how unlikely that set is compared to how submodular the utility
function may be for types in that set.
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solving systems of equations formed exclusively from the primitives of the model. For
example, the ability to compute bounds on the equilibrium set is attractive for welfare
analysis, as it becomes possible to measure the maximal loss in efficiency caused by the
existence of many equilibria.

Proposition 4. Let f = (x� t) be a supermodular implementable social choice function.
Let the valuations and the decision rule be continuously differentiable. Assume bounded
substitutes and suppose mechanism ({�i}� f ) generates bounded complements. Then
there exist two systems of 2n equations: one whose lowest solution bounds the equilib-
rium set from below; the other whose largest solution bounds the equilibrium set from
above.

These two systems of equations, which figure in (25) and (27) in Appendix B, are
constructed by approximating the game induced by the mechanism. The approximated
game is a supermodular game whose interval prediction includes the equilibrium set
of the original game. In the approximated game, agents have utility functions that are
quadratic approximations of their real utility functions. Hence these conditions are nec-
essary for uniqueness if utilities are indeed quadratic. If types are distributed uniformly,
these systems are simple systems of 2n quadratic equations. Example 3 is an illustration
how useful this method can be.

Example 3. Consider the public goods setting of Section 3 with a third player whose
type is uniformly and independently distributed in [0�1]. Her valuation function is
V3(x�θ3) = θ3x− x3/10. The decision rule x(θ) = 5/3(

√
1 + 6/5(

∑
i θi)− 1) is allocation-

efficient and dimensionally reducible. The designer can choose the budget balanc-
ing transfers tBB or the optimal transfers t∗. If she prefers full efficiency, then she
chooses ρ1 ≥ 8, ρ2 ≥ 5, and ρ3 ≥ 6, and transfers tBB. However, the interval prediction
of the resulting game is always the entire space, so she may prefer to minimize the in-
terval prediction by using t∗. These transfers give Ki(θi) = 3/5(1 − θi) and γi(θ−i) =
1/

√
1 + 6/5(1 + ∑

θj). It is easy to check that the corresponding matrix of complemen-
tarities is not negative-definite. Proposition 4 becomes a crucial tool to find bounds on
the equilibrium set. This is done by solving two simple systems of 2n quadratic equa-
tions. The following system corresponds to (27) (see Appendix B) and should be solved
for (Ai�Bi)

n
i=1:

Ai = 1 − 1�1
(∑

j �=i

(Aj −Bj)
2

2Aj
− 1

)
� i = 1� � � � � n

Bi = 1�1
(∑

j �=i

(Aj −Bj)
2

2Aj
− 1

)
� i = 1� � � � � n�

The solution defines piecewise affine functions according to (26) that are bounds on
the equilibrium set. The solution of the above is roughly (1�1� �1)i and that of (25) is
(1�0)i, which corresponds to truthtelling. Thus, all the equilibria are contained in a small
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strip below truthtelling. Welfare analysis reveals that profiles in that interval prediction
can at most result in a �03 loss in total utility under the optimal transfers (compared to
truthtelling). ♦

Next I apply the uniqueness results to the leading public goods example, where any
mechanism can be converted into a supermodular mechanism with a unique equilib-
rium, even if the original mechanism has many equilibria. This shows how weak imple-
mentation can be turned into strong implementation.

Example 4. Consider the model of Section 3. If the designer had used transfers t̂i(θ̂) =
ti(θ̂) − 3θ̂iθ̂j + 3

2 θ̂i, i = 1�2, instead of starting with the expected externality transfers,
then she would have induced a game with many equilibria. There are two equilib-
ria where one agent always reports 0 while the other always reports 1. Furthermore,
truthtelling is an unstable equilibrium; any perturbation results in a departure from it.
Yet (x� t∗) is uniquely supermodular implementable. To see why, note ∂xi(θ)/∂θi = 1 and
∂2Vi(x�θi)/∂x∂θi = 1, which implies γi(θ−i) = 1, i = 1�2. Since ∂2Vi(x(θ̂)� θi)/∂θ̂1 ∂θ̂2 is
constant in θi for i = 1�2, Ki(θi) = 0. Proposition 3 completes the proof. ♦

As a final remark on uniqueness, it is worth mentioning that if types are assumed to
be independent, which is standard in mechanism design, then the information structure
can hardly be used as a tool to obtain uniqueness.20 So one has to impose conditions on
payoffs, which necessarily imply a trade-off involving complementarities. The way to
measure complementarities creates a gap between necessity and sufficiency. This gap
depends on how tight the bounds on complementarities (Ki’s and γi’s) are.

6.2.2. Unique implementation and full efficiency

This section deals with the multiple equilibrium problem under the budget balance
condition. As previous results show, making sure that the equilibrium set is minimal
requires some flexibility in designing the transfers. But this flexibility is not always com-
patible with balancing the budget, as suggested by the functional form of the balanced
transfers. As a result, in some environments (see Example 3 below), there will be a con-
flict between full efficiency and robustness. Example 1 already delivered the message:
Sometimes the designer must sacrifice one or the other. Either the designer uses the
supermodular mechanism with a unique equilibrium at the price of a balanced budget
(full efficiency) or she loses robustness by balancing the budget via the expected exter-
nality mechanism. Nonetheless, there are situations where the design problem admits
a supermodular mechanism with unique equilibrium, and this robustness can be auto-
financed by the agents. This is formalized in the next proposition.

Proposition 5. Let n ≥ 3. Consider valuation functions and an allocation-efficient de-
cision rule that are continuously differentiable, and generate strong differences. Suppose
that these valuations and the decision rule produce substitutes and complements that

20For example, we cannot use the global games argument of Frankel et al. (2003), which heavily relies on
correlation across types.
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are uniformly bounded, respectively, by Ti and τi. If τi − Ti < Eθi [γi(θi)], then there are
balanced transfers tBB such that (x� tBB) is uniquely supermodular implementable.

The proposition gives sufficient conditions for the balanced transfers identified in
Theorem 2 to yield truthtelling as a unique equilibrium. The following example is an
application.

Example 5. Consider the same setting as the public goods example of Section 3 with
an additional player, player 3, whose type is independently distributed from the other
players’ types in �3 = [0�1]. Player 3’s valuation function is V3(x�θ3)= θ3x. Let X = [0�3]
and x(θ) = ∑

i θi; x is allocation-efficient and γi(θi) = 1 for all i. The valuations and
the decision rule produce complements and substitutes that admit the same bounds.
Proposition 5 says that there exist {ρi}, for example ρi = 1/2 for all i, such that (x� tBB) is
uniquely supermodular implementable with a balanced budget. ♦

This paper does not answer, in general, the question of reaching uniqueness and
supermodularity with the budget constraint. This is a difficult issue that requires the
use of more general mechanisms.

7. Approximate supermodular implementation

I generalize some results within the context of approximate (or virtual) implementa-
tion.21 In well behaved environments, the results so far have been quite general. They
apply to a variety of contexts, such as principal multiagent (Section 8) and public goods
models. However, there are interesting situations with discontinuities that fall outside
the scope of the current results. A way around this problem is approximate implementa-
tion; the objective becomes to supermodularly implement (well behaved) social choice
functions that are arbitrarily close to a “target social choice function.” After describ-
ing the failure of bounded substitutes in the basic auction setting, I present results that
accommodate these situations.

Consider the following auction model. There is one unit of an indivisible good to be
allocated among two buyers {1�2} whose types lie in [θ�θ]. An outcome is represented
by the vector (x1�x2), where xi = 1 if i gets the good and 0 otherwise. Buyer i’s utility
function is ui(xi� θi) = θixi + ti. The allocation-efficient decision rule x∗ attributes the
good to the buyer with the highest type:

x∗
1(θ)=

{
1 if θ1 ≥ θ2

0 otherwise
and x∗

2(θ)= 1 − x∗
1(θ)� (6)

Note that for any types such that θ′′
2 > θ′′

1 > θ′
2 > θ′

1, x1(θ
′′
1� θ

′′
2)− x1(θ

′
1� θ

′′
2)− x1(θ

′′
1� θ

′
2)+

x1(θ
′
1� θ

′
2) = −1. Hence, the assumption of bounded substitutes requires the existence

of T such that −θ1 ≥ T(θ′′
1 − θ′

1)(θ
′′
2 − θ′

2) for all θ1 ∈ �1. This is clearly impossible, as
the above order of types can be maintained while θ′

1 ↑ θ′
2 and θ′′

1 ↓ θ′
2. Substitutes are

unbounded and none of the results applies.

21See Abreu and Matsushima (1992) and Duggan (1997).
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Clearly, the problem is caused by the lack of smoothness of the decision rule. So the
idea is to approximate the social choice function by smooth implementable functions
that are known to satisfy the desired conditions. Let ‖ · ‖p be the Lp norm.

Definition 6. A decision rule x is approximately (optimally) supermodular imple-
mentable if there exists a sequence of (optimally) supermodular implementable social
choice functions {(xn� tn)} such that, for 1 ≤ p< ∞, limn→∞ ‖xn�i − xi‖p = 0 for all i.

The next results provide conditions so that a social choice function can be ap-
proached by a sequence of supermodular implementable social choice functions. The
intuition is that the space of smooth functions is dense in Lp spaces, hence a smooth
approximation exists for any Lp function. Smooth social choice functions satisfy the
bounded substitutes assumption, so there remains only to establish that incentive com-
patibility can be preserved along the sequence. Furthermore, if the decision rule also
satisfies the dimensionality condition from Section 6.1, then it is approachable by social
choice functions whose supermodular game form gives the tightest interval prediction.

Proposition 6. Let the valuation functions be twice-continuously differentiable such
that ∂Vi(xi� θi)/∂θi is increasing in xi for all i. If the decision rule is such that xi ∈ Lp is
increasing in θ̂i for all i, then it is approximately supermodular implementable.

Proposition 7. Let the valuation functions be twice-continuously differentiable such
that ∂Vi(xi� θi)/∂θi is increasing in xi for all i. If the decision rule is such that, for all i,
there exist hi :R2 →Xi and ri :�−i → R such that

(i) hi is bounded and increasing in its first variable

(ii) ri is continuous and strictly increasing22

(iii) xi(θ) = hi(θi� ri(θ−i)),

then it is approximately optimally supermodular implementable.

These results apply to many discontinuous models of interest such as public goods,
auctions, and bilateral trading (Section 8). In the above auction, for example, let
ri(θ−i) = max{θj : j �= i}, and let hi(θi� ri) = 1 if θi > ri, and 0 otherwise. Since all the con-
ditions are satisfied, Proposition 7 applies. In addition, these results suggest a dilemma
between close implementability and robustness of equilibrium play. I develop this idea
in Section 10; Section 8.2 provides an illustration.

8. Applications

8.1 Principal–multiagent problem

This section applies the theory to the traditional principal–multiagent problem with
hidden information. A principal contracts with n agents. Agent i’s type lies in [θi� θi].

22Function ri is strictly increasing if ri(θ′′
−i) > ri(θ

′
i) whenever θ′′

−i � θ′
−i.
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Types are independently distributed according to a common prior. Each agent i exerts
some observable effort xi ∈ Xi and bears a cost ci(xi� θi) when her type is θi. From all
the efforts x= (x1� � � � � xn) and types, the principal receives utility w(x�θ). The principal
faces the problem of designing a profit-maximizing contract, subject to incentive and
reservation-utility constraints. A contract is a function that maps types into effort and
transfer levels for each agent. The principal’s problem can be stated as

(x̂� t̂) ∈ arg max
f=(x�t)

Eθ

[
w(x(θ)�θ)−

n∑
i=1

ti(θ)

]
(7)

subject to

Eθ−i

[
ti(θi� θ−i)− ci(xi(θi� θ−i)� θi)

] ≥Eθ−i

[
ti(θ

′
i� θ−i)− ci(xi(θ

′
i� θ−i)� θi)

]
(8)

for all θi and θ′
i, and

Eθ−i

[
ti(θi� θ−i)− ci(xi(θi� θ−i)� θi)

] ≥ ui (9)

for all θi. Condition (8) requires truthtelling to be an equilibrium. Condition (9) is an
interim participation constraint, as agents may opt out of the mechanism if it does not
meet their reservation utility.

If the underlying functions w and ci, and the prior are smooth and guarantee the
existence of a (dimensionally reducible) solution, then the contract is (optimally) super-
modular implementable. In words, if the principal is in a position to engage in a smooth
revenue-maximizing, and incentive-compatible contract, which allows voluntary par-
ticipation, then she can turn that contract into a supermodular contract that retains
properties (7), (8), and (9), and minimizes the size of the equilibrium set.

8.2 Auctions, bilateral trading, and allocation schemes

Auctions are notorious for lacking complementarities. Consider the auction setting of
Section 7. Two buyers, 1 and 2, have utility function v(θi)xi+ ti, i = 1�2, where v is strictly
increasing. The allocation-efficient decision rule x∗ is unchanged and equal to (6). Ac-
cording to Proposition 7,23 it is approachable by a sequence of optimally supermodular
implementable decision rules. An example of such a sequence is

x1�ε(θ̂) = c

∫ ∑
i(aiθ̂i+bi)/ε

0

1
1 + t2 dt + k and x2�ε = 1 − x1�ε�

where constants c, k, ai, and bi, i = 1�2, are chosen appropriately. The allocation of the
good under the approximate mechanism is probabilistic. The smaller is ε, the larger is
the probability that the highest announcement receives the good. This is illustrated in
Figure 1. The step function represents the efficient allocation rule x1 (assuming agent
2’s type is θ2) and the curve is the approximation.

The transfer t∗i�ε to agent i is the expected transfer that i would receive under a
second-price auction—if i made the same announcement and others played truthfully—

23In the case with n ≥ 3, let hi(θi� ri) = 1 if θi > ri and 0 otherwise for all i. Note that hi is bounded and
increasing in θi. Now choose ri(θ−i)= max{θj : j �= i}, which is continuous and strictly increasing.
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Figure 1. Approximate allocation.

plus the optimal supermodular transformation (see (14) and (15) in Appendix B). The
matrix of complementarities Cε can be formed. Since substitutes are unbounded in the
exact case, it is not surprising that they have a lower bound that decreases to infinity
as ε → 0 in the approximate case. To compensate for this, the transfers add more com-
plementarities as ε vanishes, which leads complementarities to explode on those parts
of the space where reports were already complements. As a consequence, the interval
prediction of the game induced by {xε� t∗ε } must be the entire space in the limit. What
is interesting, however, is to find the smallest amount of inefficiency ε for which Cε is
still negative-definite and uniqueness is preserved. This illustrates nicely the forces at
work in Proposition 3. Letting v(θ)= θω with ω> 0, it always takes a larger ω to obtain a
smaller ε. That is, the more sensitive an agent is to her own type, the higher is the degree
of complementarities that can be compatible with uniqueness; hence the lower ε can
be. In the standard case with ω = 1, ε ≈ �45. When ω = 6, ε ≈ �15. Though uniqueness
fails for some ε, the approximate approach is useful when the equilibrium set is small
(Theorem 3).

The results for approximate implementation also apply to public goods situations
where a society of agents decide whether to undertake a public project. The bargaining
mechanism of Myerson and Satterthwaite (1983, p. 274) also satisfies the assumptions of
Proposition 7 and, as such, the decision rule is approachable by a sequence of optimally
supermodular implementable decision rules. The expected gains from trade along the
sequence converge to the maximal expected gains.

9. Discussion

9.1 A revelation principle for general preferences

I present a revelation principle for supermodular mechanism design. This paper has
limited attention to direct supermodular mechanisms, and they widely apply in quasi-
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linear environments. For general preferences, however, how restrictive are direct mech-
anisms?

To study this question, one has to extend the framework of Section 4 to environ-
ments with general preferences, type spaces, and mechanisms (see Mathevet 2007). This
generality carries over to the definition of a supermodular game, because the message
spaces are no longer subsets of the real line, hence an ordering relation—beyond the
usual order on the reals—is required.

For general supermodular design problems, the challenge is to specify an ordered
message space and an outcome function so that agents adopt monotone best responses.
The existence of a revelation principle for supermodular design is a relevant question,
because the set of all possible message spaces and orders on those spaces is so large that
the task seems difficult. This principle gives conditions so that, if a social choice function
is supermodular implementable, then there exists a direct-revelation mechanism that
supermodularly implements this social choice function truthfully.

The question pertains to the existence of orders on type spaces that make the (in-
duced) direct game supermodular. Although the resulting orders on type sets may be
very complex, the agents do not need to know them to play the mechanism.24 The de-
signer herself only needs to know that some orderings exist, not their definition. A proof
of this result can be found in Mathevet (2007).

Theorem 4 (The supermodular revelation principle for finite types). Let �i be finite for
all i. If there exists a mechanism ({Mi}� g) that supermodularly implements the social
choice function f such that there is an equilibrium m∗(·) for which g ◦m∗ = f and m∗

i (�i)

is a lattice, then f is truthfully supermodular implementable.25

According to the supermodular revelation principle, limiting attention to direct
mechanisms amounts to restricting one’s scope to mechanisms where the equilibrium
strategies are lattice-ranged. The proof works by constructing an order on each player’s
type space that is order-isomorphic to the range of her equilibrium strategy.

How tight is the condition imposed on the range of the equilibrium strategies? Ex-
ample 8 in Appendix A suggests that it is somewhat minimally sufficient. The example
presents a supermodular implementable social choice function where this range is not
a lattice and that cannot be supermodularly implemented by any direct mechanism. At
the same time, it shows that the revelation principle fails to hold, in general, for super-
modular mechanism design.

The theorem also states conditions that are verifiable a posteriori; it may indeed
be useful to know when a complex mechanism can be replaced with a simpler direct
mechanism. The next corollary identifies situations where direct mechanisms cause no
loss of generality.

24Orders are useful for the analyst, but not for the players, much in the same way as differentiability of
the utility functions.

25General—possibly non-Euclidean—message spaces are endowed with an order and m∗
i (�i) is a lattice

under that order. Mathevet (2007) generalizes the theorem to infinite type spaces.
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Corollary 4. Let �i be finite for all i ∈ N . If there is a mechanism ({Mi}� g) with totally
ordered message sets that supermodularly implements a social choice function f , then f

is truthfully supermodular implementable.

If the designer is interested only in mechanisms where the message spaces are totally
ordered, then she can look at direct mechanisms without loss of generality.

Theorem 4 gives only sufficient conditions for revelation, but in those cases where a
supermodular direct mechanism exists, while the lattice condition is violated, the exis-
tence of an order has little or nothing to do with a revelation principle, because super-
modularity cannot be shown to be transmitted from the indirect mechanism.

9.2 Dominant-strategy versus supermodular implementation

This section highlights the advantage of supermodular implementation over dominant-
strategy implementation. One of the main arguments in favor of supermodular mech-
anisms is the existence of a subset of profiles, the interval prediction, which provides a
robust forecast of what agents will play. But equilibrium play is also quite robust un-
der dominant-strategy implementation, although it, too, is not immune to the multiple
equilibrium problem.26

First, strategy proofness, requiring truthtelling to be a dominant-strategy, is not
always possible, even in smooth environments. Mookherjee and Reichelstein (1992,
Proposition 2 and Definition 5) have shown that a sufficient and “nearly” necessary con-
dition for strategy-proofness is that the valuation functions and the decision rule satisfy
some single-crossing property. They make an assumption, the one-dimensional con-
densation property, which makes it easier to satisfy that necessary condition.

The next example, inspired by McAfee and McMillan (1991), violates the one-
dimensional condensation property, and the necessary condition for strategy-proofness.
So the decision rule is not dominant-strategy implementable, yet it is uniquely super-
modular implementable.

Example 6. Two agents, 1 and 2, whose types are independently and uniformly distrib-
uted in [0�3], exert some effort to produce an observable contribution xi. The amount
of effort ei necessary for x is e1(x�θ1) = (3 − θ1)(x1 − x2) + x1 + 9

2 and e2(x�θ2) =
(3 − θ2)(x2 + x1). Agent 2 has positive externalities on her counterpart, whereas
agent 1 has negative externalities. Before transfers, the principal has utility w(x�θ) =
u(x�θ) − cp(x�θ), where cp represents the production costs. The principal’s objective
is to solve (7) subject to (8) and the ex ante minimum wage Eθ[ti(θ)] ≥ 0 on the econ-
omy. Let function u and the production costs be such that the optimal decision rule
is x∗(θ) = (θ2θ1 − 3/2θ1� θ2 − θ1).27 Agent i’s valuation is Vi(x�θi) = −ei(x�θi). Propo-
sition 8 in Appendix B applies, so there exist transfers that implement x∗. Construct-
ing optimal transfers from (14) and (15) gives t∗1 (θ̂) = − 1

2 θ̂
2
1 − 3θ̂1 + 2θ̂2θ̂1 + 27

18 and

26Dominant strategies do not rule out the existence of weakly dominated strategies. So agents can very
well play another dominant-strategy equilibrium or a Nash equilibrium whose outcome differs from the
social choice function. Also, learning dynamics may converge to those “unwanted” equilibria. Saijo et al.
(2005) report situations where dominant-strategy implementation has serious drawbacks.

27For example, let u(x�θ) = θ2(θ1x1 + x2) and cp(x�θ) = (x2
1 + x2

2)/2 + θ1(3/2x1 + x2).
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t∗2 (θ̂) = − 5
4 θ̂

2
2 + 3θ̂2 + 3θ̂2θ̂1 − 675

72 . Since Ki(θi) = θi, γ1(θ2) = θ2 − 1
2 , and γ2(θ1)= θ1 + 1,

we can check that the matrix of complementarities

C =
( −1 3/2

3/2 −5/2

)

is negative-definite and so truthtelling is the unique equilibrium. ♦

Second, it is well known that dominant-strategy implementation is often incompat-
ible with balancing budget (Green and Laffont 1979, Laffont and Maskin 1980). The next
example depicts a situation where unique supermodular implementation allows bal-
ancing the budget in a case where dominant strategies cannot. In other words, by weak-
ening the solution concept and putting some structure on the game form, it is possible
to balance the budget and maintain a high likelihood of equilibrium play.

Example 7. In the public goods example of Section 3, let �1 = �2 = [2�3]. Add a third
player, player 3, whose type is independently distributed from the other players’ types in
�3 = [2�3]. Player 3’s valuation function is V3(x�θ3) = θ3x− lnx. Letting X = [5�10], the

allocation-efficient decision rule is x(θ) = 1
2(

∑
i θi +

√
(
∑

i θi)
2 − 4). By Theorem 3.1 in

Laffont and Maskin (1980), the decision rule is dominant-strategy implementable only
if transfers are of the Groves form. However, these transfers cannot balance the budget,
because they violate the necessary condition from Theorem 4.1 in Laffont and Maskin
(1980). Nevertheless, since τi − Ti < �03 and γi > 1 for all i, Proposition 5 implies that x
is uniquely supermodular implementable with a balanced budget. ♦

Ideally, one would like all strategy-proof social choice functions to be uniquely su-
permodular implementable, but such a result is not known.

10. Conclusion

This paper introduces a mechanism design approach that allows dealing with the mul-
tiple equilibrium problem by using simple mechanisms that are robust to bounded ra-
tionality. The main motivation behind this approach is the question of the likelihood of
the desired equilibrium outcome. If the design problem satisfies the rationality and the
epistemic conditions that ensure equilibrium play, then this question is irrelevant, as
there already exist elaborate mechanisms that solve the multiple equilibrium problem.
However, the more complex the mechanism, the more unlikely it is to satisfy these con-
ditions. In most design problems, these conditions are unrealistic, hence robustness to
less than full rationality is crucial. Yet, this has been neglected in the mechanism design
and implementation literature. This paper presents a possible answer. The methodol-
ogy consists in inducing supermodular games. While supermodularity induces prop-
erties of dominance-solvability, it has stronger theoretical28 and experimental implica-
tions (Camerer 2003, Sefton and Yavaş 1996).

28See footnote 5.
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Beyond the results, this paper brings out basic questions about robustness and the
design problem. Robustness here means the existence of a small subset of strategy pro-
files that provide a good prediction of what agents will play. In view of Section 6.2, one
may wonder whether there is a price to pay for robustness in terms of efficiency. The
trade-off appears quite clearly in this framework; sometimes the designer must sacrifice
robustness for full efficiency or vice versa. In the public goods example, the designer
can modify the expected externality mechanism and secure dominance-solvability at
the price of a balanced budget or she can use the expected externality mechanism to bal-
ance the budget but she loses dominance-solvability. This may be related to the specifics
of supermodular implementation, but it is an interesting issue. One may also wonder
whether there is a price to pay for robustness in terms of closeness of the decision rule
implemented. This has obvious implications in terms of efficiency. If one accepts some
imprecision around the social choice function, then supermodular implementability
extends, even in its optimal version. This evokes the trade-off between close imple-
mentability and stability raised by Cabrales (1999), regarding the Abreu–Matsushima
(1992, 1994) mechanism.

This paper raises issues that have not been discussed. The multiple equilibrium
problem in supermodular mechanisms suggests an alternative solution, namely strong
implementation. Strong implementation requires all equilibria of the mechanisms to
yield desired outcomes. Healy and Mathevet (2008) show that the Lindahl and the Wal-
rasian social choice functions are uniquely implementable with a contractive mecha-
nism.

Like many Bayesian mechanisms, the present mechanisms are parametric in the
sense that they rely on agents’ prior beliefs. Thus the designer uses information other
than that received from the agents (Hurwicz 1972). It may be interesting to design
nonparametric supermodular mechanisms. This is yet another justification for indirect
mechanisms, as nonparametric direct Bayesian mechanisms impose dominant-strategy
incentive compatibility (Ledyard 1978).

Finally, it is important to pursue testing supermodular games. Since this paper pro-
vides a general framework, it is a good candidate for experimental tests. From a practical
viewpoint, discretizing type spaces may simplify the players’ task of announcing decep-
tions at each round. There are also simple environments with continuous types where
announcing a strategy is equivalent to choosing a real number, such as the leading pub-
lic goods.29

Appendix A

This example shows that the revelation principle fails to hold in general for supermod-
ular Bayesian implementation.

Example 8. Consider two agents, 1 and 2, with type spaces �1 = {θ1
1� θ

2
1} and �2 =

{θ1
2� θ

2
2� θ

3
2}. The prior assigns probability 1/6 to each θ ∈ �. Let X = {x1� � � � � x12} be

29In the public goods example of Section 3, announcing best reply comes down to choosing an intercept
in a compact set (see (1)).
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the outcome space. Agent 1’s preferences are given by utility function u1(xn�θ1):

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

u1(·� θ1
1) −10 0 16 −13 −2 33 −21 −2 18 −19 0 36

u1(·� θ2
1) −10 0 16 −21 −2 18 −13 −2 33 −19 0 36

Agent 2 has constant utility function u2. Let the social choice function f be defined as

f (·� ·) θ1
2 θ2

2 θ3
2

θ1
1 x4 x5 x6

θ2
1 x7 x8 x9

Consider the mechanism � = ({M1�M2}� g). Agent 1’s message space is M1 = {m1�m
1
1�

m2
1�m1}. Endow M1 with 
1 such that m1

1 and m2
1 are unordered, m1 is the greatest el-

ement, and m1 is the smallest element. Agent 2’s message space is M2 = {m2�m
1
2�m2}.

Endow M2 with 
2 such that m2 
2 m
1
2 
2 m2. The outcome function g is given by

g(·� ·) m2 m1
2 m2

m1 x1 x2 x3

m1
1 f (θ1

1� θ
1
2) f (θ1

1� θ
2
2) f (θ1

1� θ
3
2)

m2
1 f (θ2

1� θ
1
2) f (θ2

1� θ
2
2) f (θ2

1� θ
3
2)

m1 x10 x11 x12

I show that mechanism � supermodularly implements f . Consider strategy m∗
2(·) such

that m∗
2(θ

1
2) = m2, m∗

2(θ
2
2) = m1

2, and m∗
2(θ

3
2) = m2. Given u2 is constant, this strategy is a

best response to any strategy of 1. For all m1, we have∑
m2

u1(g(m
1
1�m2)�θ

1
1) >

∑
m2

u1(g(m
1�m2)�θ

1
1)

∑
m2

u1(g(m
2
1�m2)�θ

2
1) >

∑
m2

u1(g(m1�m2)�θ
2
1)�

Thus 1’s best response m∗
1(·) to m∗

2(·) is such that m∗
1(θ

1
1) = m1

1 and m∗
1(θ

2
1) = m2

1.
So (m∗

1(·)�m∗
2(·)) is a Bayesian equilibrium and g ◦ m∗ = f . Moreover, for each θ1,

u1(g(m1�m2)�θ1) is supermodular in m1 and has increasing differences in (m1�m2). So
mechanism � supermodularly implements f .

Does this imply that there exists a direct mechanism ({�i}� f ) that truthfully imple-
ments f in supermodular game form? By means of contradiction, suppose there is such
a mechanism. Then, for (�1�≥1) to be a lattice, it must be totally ordered. Assume
θ2

1 >1 θ
1
1. Let θki (·) = θki regardless of i’s true type. Let θT1 (·) be the truthful strategy for 1

and let θL1 (·) be constant lying. Note θ1
1(·) <1 θ

T
1 (·)�θL1 (·). Since �2 must be a lattice, θ1

2
and θ2

2 must be ordered. Hence θ1
2(·) and θ2

2(·) are ordered.

Let u
f
1(θ̂1(·)� θ̂2(·)) = Eθ[u1(f ((θ̂1(·)� θ̂2(·))�θ1)]. Since the direct mechanism

must induce a supermodular game, u
f
1 must satisfy the single-crossing property in
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(θ̂1(·)� θ̂2(·)). Given

−2 = u
f
1(θ

T
1 (·)�θ2

2(·)) ≥ u
f
1(θ

1
1(·)�θ2

2(·)) = −2

−13 = u
f
1(θ

T
1 (·)�θ1

2(·)) > u
f
1(θ

1
1(·)�θ1

2(·)) = −17�

u
f
1 satisfies the single-crossing property in (θ̂1(·)� θ̂2(·)) only if θ1

2 >2 θ
2
2. But

−2 = u
f
1(θ

L
1 (·)�θ2

2(·)) ≥ u
f
1(θ

1
1(·)�θ2

2(·)) = −2

does not imply −21 = u
f
1(θ

L
1 (·)�θ1

2(·)) ≥ u
f
1(θ

1
1(·)�θ1

2(·)) = −17. The single-crossing prop-
erty is violated. A similar contradiction is reached if, instead, we assume θ1

1 >1 θ
2
1. Con-

sequently, the single-crossing property is violated. The social choice function f is not
truthfully supermodular implementable, although it is supermodular implementable.
This example suggests that the conditions of Theorem 4 are somewhat minimally suffi-
cient. ♦

Appendix B

Proof of Theorem 1. Sufficiency is immediate. So suppose that f = (x� t) is (Bayesian)
implementable. Since truthtelling is an equilibrium, it implies

Eθ−i [Vi(xi(θi� θ−i)� θi)] +Eθ−i [ti(θi� θ−i)]
≥Eθ−i [Vi(xi(θ̂i� θ−i)� θi)] +Eθ−i [ti(θ̂i� θ−i)]

(10)

for all θ̂i. For ρi ∈ R, let

δi(θ̂i� θ̂−i) =
∑
j �=i

ρiθ̂iθ̂j

and define

tSM
i (θ̂i� θ̂−i)= δi(θ̂i� θ̂−i)+Eθ−i [ti(θ̂i� θ−i)] −Eθ−i [δi(θ̂i� θ−i)]�

Note that transfers ti and tSM
i have the same expected value: Eθ−i [tSM

i (·� θ−i)] =
Eθ−i [ti(·� θ−i)]. Thus, (x� tSM) is implementable by (10). The payoffs Vi + tSM

i sat-
isfy the continuity requirements, because δi :� → R is continuous and bounded, and
Eθ−i [ti(·� θ−i)] is upper semicontinuous. Next, I show that it is possible to choose ρi so
that Vi(·� θi) + tSM

i (·) has increasing differences in (θ̂i� θ̂−i) for all θi. Since substitutes
are uniformly bounded, there exists Ti such that, for all θ′′

i ≥ θ′
i and θ′′

−i ≥ θ′
−i,

�Vi(θ
′′
i � θ

′
i� θ

′′
−i� θi)−�Vi(θ

′′
i � θ

′
i� θ

′
−i� θi) ≥ Ti(θ

′′
i − θ′

i)
∑
j �=i

(θ′′
j − θ′

j) (11)

for all θi ∈ �i. Set ρi > −Ti. It follows from (11) that

�Vi(θ
′′
i � θ

′
i� θ

′′
−i� θi)−�Vi(θ

′′
i � θ

′
i� θ

′
−i� θi)+ ρi(θ

′′
i − θ′

i)
∑
j �=i

(θ′′
j − θ′

j) ≥ 0
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or, equivalently,

�Vi(θ
′′
i � θ

′
i� θ

′′
−i� θi)−�Vi(θ

′′
i � θ

′
i� θ

′
−i� θi)+

∑
j �=i

ρi(θ
′′
i θ

′′
j + θ′

iθ
′
j − θ′′

i θ
′
j − θ′

iθ
′′
j ) ≥ 0�

Thus, Vi(·� θi)+ tSM
i (·) has increasing differences in (θ̂i� θ̂−i) for all θi. Finally, since �i is

a chain, ufi is supermodular in θ̂i(·). �

The next proposition is a standard result, so the proof is omitted (see Proposi-
tion 23.D.2 in Mas-Colell et al. 1995).

Proposition 8. Consider valuation functions and a decision rule x such that
Eθ−i [Vi(xi(θ̂i� θ−i)� θi)] is continuous in (θ̂i� θi).

(i) If the social choice function f = (x� t) is implementable, then for all θ̂i,

Eθ−i [ti(θ̂i� θ−i)] = −Eθ−i [Vi(xi(θ̂i� θ−i)� θ̂i)]

+
∫ θ̂i

θi

∂Eθ−i [Vi(xi(s� θ−i)� s)]
∂θi

ds + ε(θi)�

(12)

(ii) Let the decision rule be such that ∂Eθ−i [Vi(xi(θ̂i� θ−i)� θi)]/∂θi is increasing in θ̂i for
each θi and i. If transfers t satisfy (12), then f = (x� t) is implementable.

Proof of Proposition 2. Let (x� t ′′) and (x� t ′) be any supermodular implementable
social choice functions such that t ′′� t ′ ∈ T and t ′′ 
ID t ′. For any supermodular imple-
mentable social choice function, the induced game has a smallest and a greatest equi-
librium along with a truthful equilibrium in between. Denote the truthtelling strategy
by θTi (·), i.e., θTi (θi) = θi, and abusing notation, let θi and θi be constant strategies where
agent i always announces his lowest or highest type. Let G� be the same game as G except
that the strategy spaces are restricted from �

�i
i to [θi� θTi (·)]. Likewise, let Gu be the game

G , where the strategy spaces are restricted from �
�i
i to [θTi (·)�θi]. Since G is supermodu-

lar, by definition, those modified games G� and Gu are also supermodular. As such, each
of G� and Gu has a largest and a smallest equilibrium. Furthermore, G� has the same least
equilibrium as game G , and the largest equilibrium of G� is truthtelling. Likewise, Gu has
the same largest equilibrium as G , and the smallest equilibrium of Gu is truthtelling. De-
fine Ui(θ̂(·)� t) = Eθ[Vi(xi(θ̂(θ))�θi) + ti(θ̂(θ))]. I show that (i) Ui(θ̂(·)� t) has decreasing
differences in (θ̂i(·)� t) in game G�; (ii) Ui(θ̂(·)� t) has increasing differences in (θ̂i(·)� t)
in game Gu. By Theorem 6 in Milgrom and Roberts (1990), this shows how the extremal
equilibria in each modified game vary in response to change in transfers with respect to

ID. In the end, since one extremal equilibrium is always truthtelling in each modified
game, this shows how the untruthful equilibrium—which is actually an extremal equi-
librium of G —varies with respect to 
ID. Before proving (i) and (ii), note that Proposi-
tion 8 implies that all transfers ti such that (x� t) is implementable have the same ex-
pected value Eθ−i [ti(θ̂i� θ−i)] up to a constant. Therefore, all implementing transfers can
be written δi(θ̂i� θ̂−i) − Eθ−i [δi(θ̂i� θ−i)] + Eθ−i [ti(θ̂i� θ−i)] for some function δi :� → R,
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where t is any arbitrary transfers such that (x� t) is implementable. First, consider G�.
Let δ′

i(·) be the function such that t ′i(θ̂) = δ′
i(θ̂) − Eθ−i [δ′

i(θ̂i� θ−i)] + Eθ−i [ti(θ̂i� θ−i)] and
define δ′′

i (·) similarly for t ′′. Choose any deceptions θ′′
i (·) > θ′

i(·) and any θ̂−i(·) such that
θ̂j(θj)≤ θj for all θj and j �= i, so we are in G�. Note t ′′ 
ID t ′ implies δ′′ 
ID δ′. That is, for
all i and all θ,

δ′′
i (θ

′′
i (θi)� θ−i)− δ′′

i (θ
′′
i (θi)� θ̂−i(θ−i))− δ′′

i (θ
′
i(θi)� θ−i)+ δ′′

i (θ
′
i(θi)� θ̂−i(θ−i))

− δ′
i(θ

′′
i (θi)� θ−i)+ δ′

i(θ
′′
i (θi)� θ̂−i(θ−i))+ δ′

i(θ
′
i(θi)� θ−i)− δ′

i(θ
′
i(θi)� θ̂−i(θ−i)) ≥ 0�

which implies

Eθ
[
δ′′
i (θ

′′
i (θi)� θ−i)− δ′′

i (θ
′′
i (θi)� θ̂−i(θ−i))

] −Eθ
[
δ′′
i (θ

′
i(θi)� θ−i)− δ′′

i (θ
′
i(θi)� θ̂−i(θ−i))

]
−Eθ

[
δ′
i(θ

′′
i (θi)� θ−i)− δ′

i(θ
′′
i (θi)� θ̂−i(θ−i))

] +Eθ
[
δ′
i(θ

′
i(θi)� θ−i)− δ′

i(θ
′
i� θ̂−i(θ−i))

]
(13)≥ 0�

But (13) is equivalent to

Ui(θ
′′
i (·)� θ̂−i(·)� t ′′)+Ui(θ

′
i(·)� θ̂−i(·)� t ′)−Ui(θ

′′
i (·)� θ̂−i(·)� t ′)−Ui(θ

′
i(·)� θ̂−i(·)� t ′′)≤ 0

for all θ̂−i(·). That is, Ui(θ̂(·)� t) has decreasing differences in (θ̂i(·)� t) for each θ̂−i(·). It
follows from Theorem 6 in Milgrom and Roberts (1990) that the smallest equilibrium in
G� is decreasing in t. The same argument applies to Gu. There, we look at all strategies
such that θ̂j(θj) ≥ θj for all θj and j �= i. As a result, the sign in (13) is reversed, which
implies Ui(θ̂(·)� t) has increasing differences in (θ̂i(·)� t) for each θ̂−i(·). The greatest
equilibrium in Gu is thus increasing in t. �

Proof of Theorem 3. Suppose f = (x� t) is implementable and x is dimensionally re-
ducible. Letting

δi(θ̂i� θ̂−i) = −
∫ θ̂i

θi

∫ ri(θ̂−i)

ri(θ−i)
min
θi∈�i

∂2Vi(hi(si� ri)� θi)

∂ri ∂si
dri dsi (14)

for all θ̂ ∈ �, I show that

t∗i (θ̂i� θ̂−i) = δi(θ̂i� θ̂−i)−Eθ−i [δi(θ̂i� θ−i)] +Eθ−i [ti(θ̂i� θ−i)] (15)

is well defined and that (x� t∗) is optimally supermodular implementable. By Proposi-
tion 1, Eθ−i [ti(θ̂i� θ−i)] is well defined and given by (12). Since Vi and hi are C2 on an
open set containing compact set �i, minθi∈�i

∂2Vi(hi(si� ri)� θi)/∂ri ∂si exists, is contin-
uous in (ri� si) by the Maximum Theorem, and is bounded; hence it is integrable and
δi :� → R is continuous. Since δi is also bounded, Eθ−i [δi(·� θ−i)] is well defined and
so is t∗i :� → R. The next step is to verify the continuity requirements. As a continu-
ous function on a compact set, δi is uniformly continuous in θ̂, and so Eθ−i [δ(θ̂i� θ−i)]
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is continuous in θ̂i. Since Vi is C2, Eθ−i [ti(θ̂i� θ−i)], defined as (12), is upper semi-
continuous in θ̂i. Put together, the utility functions satisfy all the continuity require-
ments. Finally, I prove that (x� t∗) is optimally supermodular implementable. Note that
Eθ−i [t∗i (θ̂i� θ−i)] = Eθ−i [ti(θ̂i� θ−i)] and thus (x� t∗) is implementable. By construction, t∗i
is twice-differentiable and

∂2t∗i (θ̂i� θ̂−i)

∂θ̂i ∂θ̂j
= ∂2δi(θ̂i� θ̂−i)

∂θ̂i ∂θ̂j

= ∂

∂θ̂j

∫ ri(θ̂−i)

ri(θ−i)
− min

θi∈�i

∂2Vi(hi(θ̂i� ri)� θi)

∂ri ∂si
dri

= −
(

min
θi∈�i

∂2Vi(hi(θ̂i� ri(θ̂−i))� θi)

∂ri ∂si

)
∂ri(θ̂−i)

∂θ̂j
�

Since ri(·) is an increasing function,

− min
θi∈�i

∂2Vi(xi(θ̂i� θ̂−i)� θi)

∂θ̂i ∂θ̂j
≡ − min

θi∈�i

(
∂2Vi(hi(θ̂i� ri(θ̂−i))� θi)

∂ri ∂si

∂ri(θ̂−i)

∂θ̂j

)

= −
(

min
θi∈�i

∂2Vi(hi(θ̂i� ri(θ̂−i))� θi)

∂ri ∂si

)
∂ri(θ̂−i)

∂θ̂j

= ∂2t∗i (θ̂i� θ̂−i)

∂θ̂i ∂θ̂j
�

Therefore,

∂2(Vi(xi(θ̂)� θi)+ t∗i (θ̂))
∂θ̂i ∂θ̂j

≡ ∂2Vi(xi(θ̂i� θ̂−i)� θi)

∂θ̂i ∂θ̂j
+ ∂t∗i (θ̂)

∂θ̂i ∂θ̂j

= ∂2Vi(xi(θ̂i� θ̂−i)� θi)

∂θ̂i ∂θ̂j
− min

θi∈�i

∂2Vi(xi(θ̂i� θ̂−i)� θi)

∂θ̂i ∂θ̂j
≥ 0

for all θ̂, θi and j, i, and so (x� t∗) is supermodular implementable. Moreover, for all
transfers t ∈ T such that (x� t) is supermodular implementable, it must be that

∂2ti(θ̂)

∂θ̂i ∂θ̂j
≥ − min

θi∈�i

∂2Vi(xi(θ̂i� θ̂−i)� θi)

∂θ̂i ∂θ̂j
= ∂2t∗i (θ̂)

∂θ̂i ∂θ̂j

for all θ̂ and j, i. This implies that (x� t∗) is optimally supermodular implementable. �

Proof of Theorem 3. (i) Since the social choice function is supermodular imple-
mentable, there exist a greatest and a smallest equilibrium in the game induced by
the mechanism. By way of contradiction, suppose that the truthful equilibrium is not
the unique Bayesian equilibrium. Then one of the extremal equilibria must be strictly
greater/smaller than the truthful one. Suppose that the greatest equilibrium, denoted
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(θi(·))i∈N , is strictly greater than the truthful equilibrium. That is, for all i, θi(θi) ≥ θi for
almost everywhere θi and there exists N∗ �= ∅ such that, for all i ∈ N∗, θi(θi) > θi for all
θi in some subset of types with positive measure.

I evaluate the first-order condition of agent i’s maximization program at the greatest
equilibrium. Then, I bound it from above by an expression that cannot be positive for
all players (hence the contradiction). Consider player i’s interim utility at type θi against
θ−i(·):

Eθ−i

[
Vi(xi(θ̂i� θ−i(θ−i))� θi)

] +Eθ−i [ti(θ̂i� θ−i(θ−i))]� (16)

Since Vi, xi, and ti (by Proposition 8) are continuously differentiable, we can show that
for any deception θ̂−i(·), the first derivative of (16) with respect to θ̂i is

Eθ−i

[
∂Vi(xi(θ̂i� θ−i(θ−i))� θi)

∂θ̂i

]
+Eθ−i

[
∂ti(θ̂i� θ−i(θ−i))

∂θ̂i

]
� (17)

By assumption, the utility functions and the decision rule produce bounded comple-
ments, so we have

Eθ−i

[
∂Vi(xi(θ̂i� θ−i(θ−i))� θi)

∂θ̂i
+ ∂ti(θ̂i� θ−i(θ−i))

∂θ̂i

− ∂Vi(xi(θ̂i� θ−i)� θi)

∂θ̂i
− ∂ti(θ̂i� θ−i)

∂θ̂i

]
(18)

≤
∫
�−i

Ki(θi)
∑
j �=i

(θj(θj)− θj)φ−i(θ−i) dθ−i =Ki(θi)
∑
j �=i

Eθj [θj(θj)− θj]�

By (18),

(17) ≤Ki(θi)
∑
j �=i

Eθj [θj(θj)− θj] +Eθ−i

[
∂Vi(xi(θ̂i� θ−i)� θi)

∂θ̂i

]
+Eθ−i

[
∂ti(θ̂i� θ−i)

∂θ̂i

]
� (19)

By part (i) of Proposition 8,

Eθ−i

[
∂ti(θ̂i� θ−i)

∂θ̂i

]
= −Eθ−i

[
∂Vi(xi(θ

′
i� θ−i)� θ̂i)

∂θ′
i

∣∣∣∣
θ′
i=θ̂i

]
�

Therefore, (19) implies

(17) ≤ Ki(θi)
∑
j �=i

Eθj [θj(θj)− θj] +Eθ−i

[
∂Vi(xi(θ̂i� θ−i)� θi)

∂θ̂i
− ∂Vi(xi(θ̂i� θ−i)� θ̂i)

∂θ′
i

]
(20)

≤ Ki(θi)
∑
j �=i

Eθj [θj(θj)− θj] +Eθ−i [γi(θ−i)](θi − θ̂i)�

where the last inequality follows from strong differences.
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Since it is optimal for each player i to play θi(θi) for almost everywhere type θi, then
the right-hand side of (20), evaluated at θ̂i = θi(θi), must be positive for almost every-
where θi and all i. To see why, let �∗

i ⊂ �i be the set of θi for which the right-hand
side of (20) is strictly negative when playing θi(θi). Note that �∗

i is measurable by de-
finition, because the right-hand side of (20) is a measurable function in θi when plug-
ging in θi(θi). If there were a player i for whom �∗

i had strictly positive measure, then
playing θi(θi) would lead (17) to be strictly negative for all θi ∈ �∗

i . But for types in �∗
i ,

the player can announce types in [θi� θi(θi)] and so she would strictly prefer playing
θ∗
i (θi)= θi(θi)− ε1�∗

i
for some small ε.30

Since the right-hand side of (20) is positive for almost everywhere θi when playing
θi(θi), then it must be true in expectation for all i that

0 ≤ Eθi [Ki(θi)]
∑
j �=i

Eθj [θj(θj)− θj] +Eθ−i [γi(θ−i)]Eθi [θi − θi(θi)]� (21)

Letting

C =

⎛
⎜⎜⎜⎝

−Eθ−1[γ1(θ−1)] Eθ1[K1(θ1)] · · · Eθ1[K1(θ1)]
Eθ2[K2(θ2)] −Eθ−2[γ2(θ−2)] · · · Eθ2[K2(θ2)]

���
���

� � �
���

Eθn[Kn(θn)] Eθn[Kn(θn)] · · · −Eθ−n[γn(θ−n)]

⎞
⎟⎟⎟⎠ �

(21) implies the existence of a positive solution w∗ to the system C · w ≥ 0. But then it
must be that w∗T C · w∗ ≥ 0, a contradiction because C is the matrix of complementar-
ities and it is negative-definite. The same argument applies to show that there is no
equilibrium that is smaller than the truthful equilibrium.

(ii) Let ai and bi be real numbers such that Ki(θi) ≤ aiθi + bi for all θi. Define

Qi(θ̂i� θ̂−i(·)�θi) = (aiθi + bi)θ̂i
∑
j �=i

Eθj [θ̂j(θj)− θj] +Eθ−i [γi(θ−i)]θ̂i
(
θi − 1

2 θ̂i

)
� (22)

From now on, only consider strategies where all agents announce types above their true
types (see the proof of Proposition 2 for a similar restriction). Following the same rea-
soning as the one leading to (20), we have

∂Qi(θ̂i� θ̂−i(·)�θi)
∂θ̂i

≥ ∂ui(θ̂i� θ̂−i(·)�θi)
∂θ̂i

�

This implies that the game (N� {��i
i �Qi}) has a greatest equilibrium31 that is larger than

the greatest equilibrium of G (the argument is the same as in the proof of Proposition 2).
However, given the quadratic nature of the payoffs in (N� {��i

i �Qi}), the greatest equi-
librium in this game is easier to compute than in G . Now I show how to compute it.
Let

Ai = 1 + ai(
∑

j �=i Eθj [θ̂j(θj)] −Eθj [θj])
Eθ−i [γi(θ−i)] � Bi =

bi(
∑

j �=i Eθj [θ̂j(θj)] −Eθj [θj])
Eθ−i [γi(θ−i)] � (23)

30Note that θ∗
i (·) ∈ �i(�i) because θi(·) ∈ �i(�i), so θ∗

i (·) is a possible choice of deception.
31From (22), this game is obviously supermodular.
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From (22) (and since Ki(θi) ≥ 0), i’s best response to θ̂−i(·) in (N� {��i
i �Qi}) is

bri[θ̂−i(·)] =
⎧⎨
⎩Aiθi +Bi if θi ≤ θi ≤ θi −Bi

Ai

θi otherwise.
(24)

Let

ej[Aj�Bj] =Aj

∫ (θj−Bj)/Aj

θj

θjφj(θj)dθj +�j

(
θj −Bj

Aj

)
(Bj − θj)+ θj�

From (24), compute the expected value of j’s best response, and note that

Eθj [brj[θ̂−j(·)]] = ej[Aj�Bj]�

All equilibria in (N� {��i
i �Qi}) are piecewise affine functions of the form (24) and each is

characterized by a vector (A∗
i �B

∗
i )i that satisfies (23):

A∗
i = 1 +

ai(
∑

j �=i ej[A∗
j �B

∗
j ] −Eθj [θj])

Eθ−i [γi(θ−i)] � B∗
i =

bi(
∑

j �=i ej[A∗
j �B

∗
j ] −Eθj [θj])

Eθ−i [γi(θ−i)] �

To find the upper bound on the equilibrium set of G , we need to solve the following
system of 2n equations for (Ai�Bi)i:

Ai = 1 + ai(
∑

j �=i ej[Aj�Bj] −Eθj [θj])
Eθ−i [γi(θ−i)]

(25)

Bi = bi(
∑

j �=i ej[Aj�Bj] −Eθj [θj])
Eθ−i [γi(θ−i)] �

This system has at least one solution where Ai = 1 and Bi = 0 for i = 1� � � � � n and it cor-
responds to the truthtelling equilibrium. There also exists a solution that corresponds
to the greatest equilibrium of (N� {��i

i �Qi}). This solution defines strategies that bound
the equilibrium set of G from above. To finish the proof, we apply the same argument,
but we restrict agents to play strategies below truthtelling. That is, we consider only
those strategies where all agents announce types below their true types. We do so, be-
cause the smallest equilibrium of (N� {��i

i �Qi}) is smaller than the smallest equilibrium
of G . Consider best responses of the form

bri[θ̂−i(·)] =
{
θi if θi < θi < θi −

Bi

Ai
Aiθi +Bi otherwise,

(26)

where Bi ≤ 0. Let

ej[Aj�Bj] = Aj

∫ θj

θj−Bj/Aj

θjφj(θj)dθj +Bj +�j

(
θj − Bj

Aj

)
(θj −Bj)�
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A similar argument to the above shows that the smallest solution to the following system
provides a lower bound for the equilibrium set of G : For i = 1� � � � � n,

Ai = 1 + ai(
∑

j �=i ej[Aj�Bj] −Eθj [θj])
Eθ−i [γi(θ−i)]

(27)

Bi = bj(
∑

j �=i ej[Aj�Bj] −Eθj [θj])
Eθ−i [γi(θ−i)] � �

Proof of Corollary 3. By assumption, Eθ−i [Vi(xi(θ̂i� θ−i)� θi)] is continuous in
(θ̂i� θi). So Proposition 8 and Theorem 3 imply that (x� t∗) is supermodular imple-
mentable, where t∗i , i = 1� � � � � n, is defined by (15) using (12). By construction, the
mechanism ({�i}� (x� t∗)) produces bounded complements, where each bound κi on
complements is computed as

κi = max
j �=i

max
(θ̂�θi)∈�×�i

(
∂2Vi(xi(θ̂)� θi)

∂θ̂i ∂θ̂j
− min

θi∈�i

∂2Vi(xi(θ̂)� θi)

∂θ̂i ∂θ̂j

)
�

Since the valuation functions and the decision rule are twice-continuously differen-
tiable, the assumption of strong differences holds. Theorem 3 completes the proof. �

Proof of Theorem 2. Let

Hi(θ̂−i) = −
(

1
n− 1

)∑
j �=i

Eθ̃−j

[∑
k�=j

Vk(xk(θ̂j� θ̃−j)� θ̃k)

]

and, for ρi ∈ R, let

δi(θ̂i� θ̂−i)=
∑
j �=i

ρiθ̂iθ̂j�

Define

tBB
i (θ̂i� θ̂−i) = δi(θ̂i� θ̂−i)−Eθ−i [δi(θ̂i� θ−i)] +Eθ̃−i

[∑
j �=i

Vj(xj(θ̂i� θ̃−i)� θ̃j)

]

+Hi(θ̂−i)− 1
n− 2

∑
j �=i

∑
k�=i�j

ρjθ̂jθ̂k + 1
n− 2

∑
j �=i

∑
k�=i�j

ρjθ̂jE(θk)�

(28)

First, (x� tBB) is implementable, because x is allocation-efficient and

Eθ−i [tBB
i (θ̂i� θ−i)] =Eθ̃−i

[∑
j �=i

Vj(xj(θ̂i� θ̃−i)� θ̃j)

]
+Eθ−i [Hi(θ−i)]�

which is the expectation of the transfers in the expected externality mechanism. Second,
since for all θ, we have

∑
i∈N

(
δi(θi� θ−i)− 1

n− 2

∑
j �=i

∑
k�=i�j

ρjθjθk

)
=

∑
i∈N

δi(θi� θ−i)− 1
n− 2

∑
i∈N

∑
j �=i

(n− 2)ρiθiθj = 0
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and

∑
i∈N

(
1

n− 2

∑
j �=i

∑
k�=i�j

ρjθjE(θk)−Eθ−i [δi(θi� θ−i)]
)

= 1
n− 2

∑
i∈N

∑
j �=i

(n− 2)ρiθiE(θj)−
∑
i∈N

Eθ−i [δi(θi� θ−i)] = 0�

then ∑
i∈N

tBB
i (θ)=

∑
i∈N

Eθ̃−i

[∑
j �=i

Vj(xj(θi� θ̃−i)� θ̃j)

]
+

∑
i∈N

Hi(θ−i) = 0�

where the last equality follows from balancedness of transfers in the expected external-
ity mechanism. The continuity requirements are clearly satisfied, as tBB

i is continuous
in θ̂−i for each θ̂i and is upper semicontinuous in θ̂i for each θ̂−i. Next, I show how
to pick ρi to have increasing differences in (θ̂i� θ̂−i). Since substitutes are uniformly
bounded, there exists Ti such that, for all θ′′

i ≥ θ′
i and θ′′

−i ≥ θ′
−i, �Vi(θ

′′
i � θ

′
i� θ

′′
−i� θi) −

�Vi(θ
′′
i � θ

′
i� θ

′
−i� θi) ≥ Ti(θ

′′
i − θ′

i)
∑

(θ′′
j − θ′

j) for all θi ∈ �i. Set ρi > −Ti. Choose any
θ′′

−i ≥−i θ
′
−i and θ′′

i > θ′
i. From (28), note that

tBB
i (θ′′

i � θ
′′
−i)− tBB

i (θ′′
i � θ

′
−i)− tBB

i (θ′
i� θ

′′
−i)+ tBB

i (θ′
i� θ

′
−i)

= δi(θ
′′
i � θ

′′
−i)− δi(θ

′′
i � θ

′
−i)− δi(θ

′
i� θ

′′
−i)+ δi(θ

′
i� θ

′
−i)�

Therefore, Vi(·� θi)+ tBB
i (·) has increasing differences in (θ̂i� θ̂−i) if for all θi,

�Vi(θ
′′
i � θ

′
i� θ

′′
−i� θi)−�Vi(θ

′′
i � θ

′
i� θ

′
−i� θi)+

∑
j �=i

ρi(θ
′′
i θ

′′
j + θ′

iθ
′
j − θ′′

i θ
′
j − θ′

iθ
′′
j ) ≥ 0�

That this inequality holds follows similarly to the proof of Theorem 1. �

Proof of Proposition 5. Take any ε > 0 such that ε < Eθ−i [γi(θ−i)] + Ti − τi. Define
balanced transfers tBB

i as in (28) with ρi = −Ti + ε. Since substitutes are bounded by Ti,
∂2Vi(·� θi)+ tBB

i (·)/∂θ̂i ∂θ̂j ≥ ε; hence (x� tBB) is supermodular implementable. Since the
valuation functions and the decision rule yield complements that are bounded by τi, the
mechanism ({�i}� (x� t∗)) generates complements that are bounded by τi − Ti + ε. The
matrix of complementarities produced by this mechanism must be negative-definite,
because τi − Ti + ε < Eθ−i [γi(θ−i)] by assumption. Proposition 3 completes the proof. �

Proof of Proposition 6. Let O ⊃ � be some open set. Define the extension of x(·)
from � to O. For any θ ∈ O, let N∗(θ) = {j ∈ N :θj ∈ [θj�θj]}, N(θ) = {j ∈ N :θj < θj}, and

N(θ) = {j ∈N :θj > θj}. Let pi : O →�i be defined as

pi(θ)=
⎧⎨
⎩
θi if i ∈N∗(θ)
θi if i ∈N(θ)

θi if i ∈N(θ).
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The extension of x(·), denoted xe, is the function xe(i�k)(θ) = x(i�k)(p1(θ)� � � � �pn(θ)) for

all θ ∈ O, dimension k, and i ∈ N . Note that xe(i�k) ∈ Lp(O) and it is increasing in θ̂i be-

cause x(i�k) is increasing in θ̂i. By Theorem 12.10 in Aliprantis and Border (1999), the
space of C2 functions on O is norm dense in Lp(O); hence there exists a sequence
{xn} of C2 functions from O into R such that limn→∞(

∫
O |xn�(i�k) − xe(i�k)|p)1/p = 0 for

all k and i. This implies limn→∞(
∫
� |xn�(i�k) − x(i�k)|p)1/p = 0 for all k and all i. More-

over, we can take {xn} such that xn�(i�k) is increasing in θi on Oi for all k and i.32

Since each �i is compact, and Vi and xn are C2, then they form a continuous family,
∂Eθ−i [Vi(xn�(i�k)(θ̂)� θi)]/∂θi = Eθ−i [∂Vi(xn�(i�k)(θ̂)� θi)/∂θi] is increasing in θ̂i on �i, and
substitutes are bounded. Proposition 1 and Theorem 1 imply that, for all n, there exist
tSM
n such that f = (xn� t

SM
n ) is supermodular implementable. �

Proof of Proposition 7. I start by approximating the functions h(i�k) :R2 → R and
ri :Rn → R by C2 functions. Then I study the convergence of the resulting composite
function. Let μn denote the Lebesgue measure on R

n. Because type sets are compact
and hi is bounded, Theorems 12.10 and 12.6 in Aliprantis and Border (1999) guarantee
that there exists a sequence {hm

(i�k)} of C2 functions that converges pointwise to h(i�k) for

μ2-almost all (θi� ri). Consider function ri(·) for any i ∈N . By the Stone–Weierstrass The-
orem, there exists a sequence of C2-increasing functions {rqi } that uniformly converges
to ri.33 The triangle inequality gives∫

�

∣∣hm
(i�k)(θi� r

q
i (θ−i))− h(i�k)(θi� ri(θ−i))

∣∣dμn

≤
∫
�

∣∣hm
(i�k)(θi� r

q
i (θ−i))− hm

(i�k)(θi� ri(θ−i))
∣∣dμn (29)

+
∫
�

∣∣hm
(i�k)(θi� ri(θ−i))− h(i�k)(θi� ri(θ−i))

∣∣dμn�

The next step is to demonstrate that the second integral on the right-hand side of (29)
converges to zero, as a result of the μ2-almost everywhere convergence of hm

(i�k).
34 Note

that∫
�

∣∣hm
(i�k)(θi� ri(θ−i))− h(i�k)(θi� ri(θ−i))

∣∣dμn

=
∫
�i×ri(�−i)

|hm
(i�k)(θi� t)− h(i�k)(θi� t)|dμ×μri�

(30)

32Since xi�k is increasing in θi , it is always possible to take the members of the approximating sequence
to be increasing (see Mas-Colell 1974).

33Since ri is increasing, recall that we can take the members of the approximating sequence to be in-
creasing.

34This is indeed not immediate. Suppose limm→∞ hm
(i�k)(θi� ri) = h(i�k)(θi� ri) for μ2-almost everywhere

points in R
2, except on the zero-measure set {(θi� r∗i ) :θi ∈ I}, where I is some interval. If ri(θi) = r∗i for all

θi ∈ I, then
∫
� |hm

(i�k)(θi� ri(θ−i))− h(i�k)(θi� ri(θ−i))|dμn does not converge to 0, while we had convergence

μ2-almost everywhere.
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where μri = μn−1 ◦ r−1
i . One way to proceed is to apply the Radon–Nikodym Theorem. To

this end, I show that μri is absolutely continuous with respect to μ. By way of contradic-
tion, suppose that there is set A such that μ(A) = 0 and μri(A) > 0. This means that, for
each j, there exist countable unions of intervals,

⋃
k I

k
j ⊂ R, such that ri(θ−i) ∈ A for all

θ−i ∈ ∏
j(

⋃
k I

k
j ). Since ri(·) is continuous and strictly increasing, the set ri(

∏
j(

⋃
k I

k
j ))

must contain some interval I. Since I ⊂A and μ(I) > 0, it must be that μ(A) > 0. This is
a contradiction, so μri is absolutely continuous with respect to μ. Clearly, both μri and μ

are (totally) finite on ri(�−i). By the Radon–Nikodym Theorem, there exists f on ri(�−i)

such that μri(A) = ∫
A f dμ for every measurable set A⊂ ri(�−i). From (30), it gives∫

�

∣∣hm
(i�k)(θi� ri(θ−i))− h(i�k)(θi� ri(θ−i))

∣∣dμn

=
∫
�i×ri(�−i)

|hm
(i�k)(θi� t)− h(i�k)(θi� t)|f (t)dμ2�

(31)

Since |hm
(i�k)(θi� t) − h(i�k)(θi� t)|f (t) is integrable and dominated almost everywhere by

Hf(t) for H > 0 sufficiently large, we can apply the Bounded Convergence Theorem to
show that (31) is zero as m → ∞. This result allows the construction of the following
subsequence from {hm

i (θi� r
q
i (θ−i))}.

• For each m, take α(m) such that
∫
� |hα(m)

(i�k) (θi� ri(θ−i)) − h(i�k)(θi� ri(θ−i))|dμn <

1/2m.

• Since each hα(m) is C2, we know that h
α(m)
(i�k) (θi� r

q
i (θ−i)) converges uniformly to

hα(m)
i (θi� ri(θ−i)) as q → ∞. Thus, choose β(m) such that

∫
� |hα(m)

i (θi�

r
β(m)
i (θ−i))− hi(θi� ri(θ−i))|dμn < 1/2m.

Along the subsequence {hα(m)
i (·� rβ(m)

i (·))} so constructed, the left-hand side of (29) is
less than 1/m for all m and thus it converges to hi(·� ri(·)) in L1 norm. In other words,
there is a sequence of dimensionally reducible decision rules {xmi } that converges to xi
in L1 space. Each xm is implementable, because ∂Vi(xi� θi)/∂θi is increasing in xi and
xmi (·) is increasing in θ̂i for each m. Theorem 3 completes the proof. �
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