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Revenue maximization in the dynamic knapsack problem
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We analyze maximization of revenue in the dynamic and stochastic knapsack
problem where a given capacity needs to be allocated by a given deadline to se-
quentially arriving agents. Each agent is described by a two-dimensional type that
reflects his capacity requirement and his willingness to pay per unit of capacity.
Types are private information. We first characterize implementable policies. Then
we solve the revenue maximization problem for the special case where there is
private information about per-unit values, but capacity needs are observable. Af-
ter that we derive two sets of additional conditions on the joint distribution of
values and weights under which the revenue maximizing policy for the case with
observable weights is implementable, and thus optimal also for the case with two-
dimensional private information. In particular, we investigate the role of concave
continuation revenues for implementation. We also construct a simple policy for
which per-unit prices vary with requested weight but not with time, and we prove
that it is asymptotically revenue maximizing when available capacity and time to
the deadline both go to infinity. This highlights the importance of nonlinear as
opposed to dynamic pricing.
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1. Introduction

The knapsack problem is a classic combinatorial optimization problem with numerous
practical applications: several objects with given, known capacity needs (or weights)
and given, known values must be packed into a “knapsack” of given capacity to maxi-
mize the total value of the included objects. In the dynamic and stochastic version (see
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Ross and Tsang 1989), objects sequentially arrive over time and their weight–value com-
bination is stochastic but becomes known to the designer at arrival times. Objects can-
not be recalled later, so it must be decided upon arrival whether an object is included
or not. Several applications that come to mind are logistic decisions in the freight trans-
portation industry, the allocation of fixed capacities in the travel and leisure industries
(e.g., airlines, trains, hotels, rental cars), the allocation of fixed equipment or personnel
in a given period of time (e.g., equipment and personnel for medical procedures in an
emergency), the allocation of fixed budgets to investment opportunities that appear se-
quentially, the allocation of research and development funds to emerging ideas, and the
allocation of dated advertising space on web portals.

In the present paper we add incomplete information to the dynamic and stochastic
setting. In this way, we obtain a dynamic monopolistic screening problem: there is a
finite number of periods, and at each period a request for capacity arrives from an agent
who is impatient and privately informed about both his valuation per unit of capacity
and the needed capacity.1 Each agent derives positive utility if he gets the needed ca-
pacity (or more), and zero utility otherwise. The designer accepts or rejects the requests
so as to maximize the revenue obtained from the allocation.

The dynamic and stochastic knapsack problem with complete information about
values and requests was analyzed by Papastavrou et al. (1996) and by Kleywegt and
Papastavrou (2001). These authors characterize optimal policies in terms of weight-
dependent value thresholds. Kincaid and Darling (1963) and Gallego and van Ryzin
(1994) look at a model that can be reinterpreted as having (one-dimensional) incom-
plete information about values, but in their frameworks all requests have the same
known weight.2 In particular, Gallego and van Ryzin show that optimal revenue is con-
cave in capacity in the case of equal weights. Kleywegt and Papastavrou give examples
showing that total value is not necessarily globally concave in capacity if the weight re-
quests are heterogeneous, and provide a sufficient condition for this structural prop-
erty to hold. Gallego and van Ryzin also show that the optimal policy, which exhibits
complicated time dynamics, can often be replaced by a simple time-independent policy
without much loss: the simple policy performs asymptotically optimal as the number of
periods and the units to be sold go to infinity. Finally, Gershkov and Moldovanu (2009)
generalize the Gallego–van Ryzin model to incorporate objects with the same weight but
with several qualities that are equally ranked by all agents, independently of their types
(which are also one dimensional).

The theory of multidimensional mechanism design is relatively complex: the main
problem is that incentive compatibility—which in the one-dimensional case often re-
duces to a monotonicity constraint—imposes, besides a monotonicity requirement, an
integrability constraint that is not easily included in maximization problems (see ex-
amples in Rochet 1985, Armstrong 1996, Jehiel et al. 1999, and the survey of Rochet and
Stole 2003). Our implementation problem is special though because useful deviations in

1Our results are easily extended to the setting where arrivals are stochastic and/or time is continuous.
2We refer the reader to the book by Talluri and Van Ryzin (2004) for references to the large literature on

revenue (or yield) management that adopts variations on these models.
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the weight dimension can only be one-sided (upward). This feature allows a less cum-
bersome characterization of implementable policies that can be embedded in the dy-
namic analysis under certain conditions on the joint distribution of values and weights
of the arriving agents. Other multidimensional mechanism design problems with re-
stricted deviations in one or more dimensions have been studied by Blackorby and Sza-
lay (2007), Che and Gale (2000), Iyengar and Kumar (2008), Kittsteiner and Moldovanu
(2005), and Pai and Vohra (2009).

1.1 Outline and preview of results

We first characterize implementable policies, as explained above. Then we solve the
revenue maximization problem for the case where there is private information about
per-unit values, but weights are observable. We will sometimes refer to this as the re-
laxed problem. Under a standard monotonicity assumption on virtual values, this is the
virtual value analog of the problem solved by Papastravou, Rajagopalan, and Kleywegt.
The resulting optimal policy is Markovian, is deterministic, and has a threshold property
with respect to virtual values. It is important to emphasize that this policy need not be
implementable for the case where both values and weights are unobservable, unless ad-
ditional conditions are imposed. Our main results in the first part of the paper are there-
fore concerned with the implementability of the relaxed optimal solution: we derive two
sets of additional conditions on the joint distribution of values and weights under which
the revenue maximizing policy for the case with observable weights is implementable,
and thus optimal also for the case with two-dimensional private information. The first
condition—which is satisfied in a variety of intuitive settings—is a hazard rate ordering
that expresses a form of positive correlation between weights and values. It ensures that
the incentive constraint in the capacity dimension is never binding. Related conditions
can be found in previous work on multidimensional mechanism design with restricted
deviations mentioned above, e.g., in the papers of Pai and Vohra, Iyengar and Kumar, or
Blackorby and Szalay. More interestingly, we also draw a connection between incentive
compatibility and the structural property of concavity of revenue in capacity. Concav-
ity of optimal revenue in the relaxed problem creates a tendency to set higher virtual
value thresholds for higher capacity requests. It is then less attractive for agents to over-
state their capacity needs, which facilitates the implementation of the relaxed solution
by relaxing the incentive constraints. We quantify this relation in our second set of addi-
tional conditions: concavity of revenue combined with a (substantial) weakening of the
hazard rate order imply implementability of the relaxed solution. For completeness, we
also briefly translate to our model the sufficient condition for concavity of revenue due
to Papastavrou, Rajagopalan, and Kleywegt so as to obtain a condition on the model’s
primitives.

In the second part of the paper we construct—for general distributions of weights
and values—a time-independent, nonlinear price schedule that is asymptotically rev-
enue maximizing when the available capacity and the time to the deadline both go to
infinity, and when weights are observable. This extends an asymptotic result by Gallego
and van Ryzin (for a detailed discussion, see Section 5) and suggests that complicated
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dynamic pricing may not be that important for revenue maximization if the distribution
of agents’ types is known. Our result emphasizes though that nonlinear pricing remains
asymptotically important in dynamic settings. As a nice link to the first part of the pa-
per, the constructed nonlinear price schedule turns out to be implementable for the
case with two-dimensional private information if the weakened hazard rate condition
employed in our discussion of concavity is satisfied. Since prices are time-independent,
the policy is also immune to strategic buyer arrivals (which we do not model here explic-
itly). We also point out that a policy that varies with time but not with requested weight
(whose asymptotic optimality in the complete information case was established by (Lin
et al. 2008) is usually not optimal under incomplete information.

The paper is organized as follows. In Section 2 we present the dynamic model and
the informational assumptions about values and weights. In Section 3 we character-
ize incentive compatible allocation policies. In Section 4 we focus on dynamic revenue
maximization. We first characterize the revenue maximizing policy for the case where
values are private information but weight requests are observable. We then offer two re-
sults that exhibit conditions under which the above policy is incentive compatible, and
thus optimal also for the case where both values and weights are private information.
Section 5 contains the asymptotic analysis.

2. The model

The designer has a “knapsack” of given capacity C ∈ R that he wants to allocate in a
revenue maximizing way to several agents in at most T < ∞ periods. In each period,
an impatient agent arrives with a demand for capacity characterized by a weight (or
quantity request) w and by a per-unit value v.3 While the realization of the random
vector (w�v) is private information to the arriving agent, its distribution is assumed to
be common knowledge and given by the joint cumulative distribution function F(w�v),
with continuously differentiable density f (w�v) > 0, defined on [0�∞)2. Demands are
independent across different periods.4

In each period, the designer decides on a capacity to be allocated to the arriv-
ing agent (possibly none) and on a monetary payment. Type (w�v)’s utility is given
by wv − p if at price p he is allocated a capacity w′ ≥ w and by −p if he is assigned
an insufficient capacity w′ < w. Each agent observes the remaining capacity of the
designer.5 Finally, we assume that for all w, the conditional virtual value functions
v̂(v�w) := v − (1 − F(v|w))/f (v|w) are unbounded as a function of v and strictly mono-
tone increasing in v with ∂v̂(v�w)/∂v > 0 for all (w�v).

3It is an easy extension to assume that the arrival probability per period is given by p< 1.
4As pointed out by a referee, the results of Sections 3 and 4 apply also with the obvious modifications if

types in different periods are independent, but not necessarily drawn from identical distributions.
5Alternatively, we can assume that each agent observes the entire history of the previous allocations.

These assumptions are innocuous in the following sense: when we analyze revenue maximization in Sec-
tion 4, we first solve for the optimal policy in the relaxed problem with observable weight types w. We then
provide conditions for when this relaxed solution is implementable. Since in the case of observable weight
requests, the seller cannot gain by hiding the available capacity, the seller cannot increase expected revenue
by hiding the remaining capacity in the original problem.
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3. Incentive compatible policies

To characterize the revenue maximizing scheme, we may restrict attention, without loss
of generality, to direct mechanisms where every agent, upon arrival, reports a type (w�v)

and the mechanism then specifies an allocation and a payment. In this section, we
characterize incentive compatibility for a class of allocation policies that necessarily
contains the revenue maximizing one. The schemes we develop also have an obvious
and immediate interpretation as indirect mechanisms, where the designer sets menus
of per-unit prices depending on time and on the remaining capacity.

An allocation rule is called deterministic and Markovian if, at any period t = 1� � � � �T
and for any possible type of agent arriving at t, it uses a nonrandom allocation rule that
depends only on the arrival time t, on the declared type of the arriving agent, and on
the still available capacity at period t, denoted by c. The restriction to these policies is
innocuous as shown in Section 4.

We can assume without loss of generality that a deterministic Markovian allocation
rule for time t with remaining capacity c has the form αc

t : [0�+∞)2 → {1�0}, where 1 (0)
means that the reported capacity demand w is satisfied (not satisfied). Indeed, it never
makes sense to allocate an insufficient quantity 0 <w′ <w because individually rational
agents are not willing to pay for this. Alternatively, allocating more capacity than the re-
ported demand is useless as well: Such allocations do not further increase agents’ utility
while they may decrease continuation values for the designer. Let qct : [0�+∞)2 → R be
the associated payment rule.

Proposition 1. A deterministic, Markovian allocation rule {αc
t }t�c is implementable if

and only if for every t and every c, it satisfies the following two conditions.6

(i) For all (w�v), v′ ≥ v, αc
t (w�v) = 1 ⇒ αc

t (w�v′)= 1.

(ii) The function wpc
t (w) is nondecreasing in w, where pc

t (w) = inf{v/αc
t (w�v) = 1}.7

When the above two conditions are satisfied, the allocation rule {αc
t }t�c together with

the payment rule

qct (w�v) =
{
wpc

t (w) if αc
t (w�v) = 1

0 if αc
t (w�v) = 0

constitute an incentive compatible policy.

See the Appendix for all proofs.
The threshold property embodied in condition (i) of the proposition is standard and

is a natural feature of welfare maximizing rules under complete information. When
there is incomplete information in the value dimension, this condition imposes lim-
itations on the payments that can be extracted in equilibrium. Condition (ii) is new:

6Here we use “implementable” in the standard sense from the mechanism design literature. An alloca-
tion rule is implementable if we can associate to it a payment rule such that any agent finds it optimal to
truthfully reveal her type when faced with the combined allocation–payment scheme.

7We set pc
t (w)= ∞ if the set {v/αc

t (w�v) = 1} is empty.



162 Dizdar, Gershkov, and Moldovanu Theoretical Economics 6 (2011)

it reflects the limitations imposed in our model by the incomplete information in the
weight dimension. We note that the above simple result is based on a combination of
three main factors: (1) Due to our special utility function and to the pursued goal of
revenue maximization, it is sufficient to consider only policies that allocate either the
demanded weight to the agent or nothing. (2) The monotonicity requirement behind
incentive compatibility boils down to the above simple conditions. (3) The integrability
condition is automatically satisfied by all monotone allocation rules in the considered
class. In general, one has to consider more allocation functions, more implications of
monotonicity, and possibly an integrability constraint.

4. Dynamic revenue maximization

We first demonstrate how the dynamic revenue maximization problem can be solved
if w is observable. This is, essentially, the dynamic programming problem analyzed by
Papastavrou, Rajagopalan, and Kleywegt, translated from values to virtual values. Nev-
ertheless, the logic of the derivation is somewhat involved, so we detail it below.

1. Without loss of generality, we can restrict attention to Markovian policies. The
optimality of Markovian, possibly randomized, policies is standard for all models
where, as is the case here, the per-period rewards and transition probabilities are
history-independent; see, for example, Theorem 11.1.1 in Puterman (2005) which
shows that for any history-dependent policy, there is a Markovian, possibly ran-
domized, policy with the same payoff.

2. If there is incomplete information about v, but complete information about the
weight requirement w, then Markovian, deterministic, and implementable poli-
cies are characterized for each t and c by the threshold property of condition (i) in
Proposition 1.

3. Naturally, in the given revenue maximization problem with complete informa-
tion about w, we need to restrict attention to interim individually rational policies
where no agent ever pays more than the utility obtained from her actual capacity
allocation. It is easy to see that for any Markov, deterministic, and implementable
allocation rule αc

t , the maximal, individually rational payment function that sup-
ports it is given by

qct (w�v) =
{
wpc

t (w) if αc
t (w�v) = 1

0 if αc
t (w�v) = 0,

where pc
t (w) = inf{v/αc

t (w�v) = 1} as defined in the above section. Otherwise, the
designer pays some positive subsidy to the agent, and this cannot be revenue max-
imizing.

4. At each period t and for each remaining capacity c, the designer’s problem under
complete information about w is equivalent to a simpler, one-dimensional static
problem where a known capacity needs to be allocated to the arriving agent and
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where the seller has a salvage value for each remaining capacity: the salvage val-
ues in the static problem correspond to the continuation values in the dynamic
version. Analogous to the analysis of Myerson (1981), each static revenue maxi-
mization problem has a monotone (in the sense of condition (i) in Proposition 1),
nonrandomized solution as long as for any weight w, the agent’s conditional vir-
tual valuation v − (1 − F(v|w))/f (v|w) is increasing in v.8 If per-unit prices are set
at pc

t (w) in period t ≤ T (so T + 1 − t periods, including the current one, remain
until the deadline) with remaining capacity c and if the optimal Markovian policy
is followed from time t + 1 onward, the expected revenue R(c�T + 1 − t) can be
written as

R(c�T + 1 − t)=
∫ c

0
wpc

t (w)
(
1 − F(pc

t (w)|w)
)
f̄w(w)dw

+
∫ c

0

[(
1 − F(pc

t (w)|w)
)
R∗(c −w�T − t)

+ F(pc
t (w)|w)R∗(c�T − t)

]
f̄w(w)dw�

where f̄w denotes the marginal density in w and where R∗ denotes optimal rev-
enues, with R∗(c�0) = 0 for all c. The first-order conditions for the revenue maxi-
mizing unit prices pc

t (w) are given by9

w

(
pc
t (w)− 1 − F(pc

t (w)|w)

f(pc
t (w)|w)

)
=R∗(c�T − t)−R∗(c −w�T − t)�

5. By backward induction, and by the above reasoning, the seller has a Markov, non-
randomized optimal policy in the dynamic problem with complete information
about w. Note also that, by a simple duplication argument, R∗(c�T + 1 − t) must
be monotone nondecreasing in c.

Points 1, 4, and 5 above imply that the restriction to deterministic and Markovian
allocation policies is without loss of generality. If the above solution to the relaxed
problem satisfies the incentive compatibility constraint in the weight dimension, i.e., if
wpc

t (w) happens to be monotone as required by condition (ii) of Proposition 1, then the
associated allocation where αc

t (w�v) = 1 if and only if v ≥ pc
t (w) is also implementable

in the original problem with incomplete information about both v and w. It then con-
stitutes the revenue maximizing scheme that we are after. The next example illustrates
that condition (ii) of Proposition 1 can be binding.

8Note that the optimal policy continues to be deterministic even if virtual valuations are not monotonic.
This follows by a similar argument to the one given by Riley and Zeckhauser (1983). We nevertheless keep
the monotonicity assumption for simplicity and because we need related conditions for some of the sub-
sequent results.

9By our assumption of unbounded conditional virtual values (which is a mild assumption on distribu-
tions with unbounded support), these first-order conditions always admit a solution and must, therefore,
be satisfied at the optimum.
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Example 1. Assume that T = 1. The distribution of the agents’ types is given by the
following stochastic process. First, the weight request w is realized according to an ex-
ponential distribution with parameter λ. Next, the per-unit value of the agent is sampled
from the distribution

F(v|w) =
{

1 − e−λv if w>w∗
1 − e−λv if w ≤w∗,

where λ > λ and w∗ ∈ (0� c).
In this case, for an observable weight request, the seller charges the take-it-or-leave-

it offer of 1/λ (1/λ) per unit if the weight request is smaller (larger) than or equal to w∗.
This implies that

wpc
t (w) =

⎧⎪⎨⎪⎩
w

λ
if w>w∗

w

λ
if w ≤ w∗

and, therefore, wpc
t (w) is not monotone. ♦

4.1 The hazard rate stochastic ordering

A simple sufficient condition that guarantees implementability of the relaxed solution is
a particular stochastic ordering of the conditional distributions of per-unit values: the
conditional distribution given a higher weight should be (weakly) statistically higher in
the hazard rate order than the conditional distribution given a lower weight. This is
similar to conditions found in static frameworks by Pai and Vohra, Iyengar and Kumar,
or Blackorby and Szalay.

Theorem 1. For each c, t, and w, let pc
t (w), denote the solution to the revenue maximiz-

ing problem under complete information about w, determined recursively by the Bellman
equation

w

(
pc
t (w)− 1 − F(pc

t (w)|w)

f(pc
t (w)|w)

)
=R∗(c�T − t)−R∗(c −w�T − t)� (1)

Assume that the following conditions hold.

(i) For any w, the conditional hazard rate f (v|w)/(1−F(v|w)) is nondecreasing in v.10

(iii) For any w′ ≥w, and for any v, f (v|w)/(1 − F(v|w)) ≥ f (v|w′)/(1 − F(v|w′)).

Then wpc
t (w) is nondecreasing in w and, consequently, the underlying allocation where

αc
t (w�v) = 1 if and only if v ≥ pc

t (w) is implementable. In particular, (1) characterizes
the revenue maximizing scheme under incomplete information about both values and
weights.

10Note that this condition already implies the needed monotonicity in v of the conditional virtual value
for all w.
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An important special case for which the conditions of Theorem 1 hold is where the
distribution of per-unit values is independent of the distribution of weights and has an
increasing hazard rate.

4.2 The role of concavity

A major result for the case where capacity comes in discrete units and where all weights
are equal is that optimal expected revenue is concave in capacity (see Gallego and van
Ryzin 1994 for a continuous time framework with Poisson arrivals and Bitran and Mond-
schein 1997 for a discrete time setting). This is a very intuitive property since it says that
additional capacity is more valuable to the designer when capacity itself is scarce. Due
to the more complicated combinatorial nature of the knapsack problem with heteroge-
neous weights, concavity need not generally hold (see Papastavrou et al. 1996 for exam-
ples where concavity of expected welfare in the framework with complete information
fails). When concavity does hold, the optimal per-unit virtual value thresholds for the
relaxed problem increase with weight, which facilitates implementation for the case of
two-dimensional private information.

Our main result in this subsection identifies a condition on the distribution of types
that, together with concavity of the expected revenue in the remaining capacity, ensures
that for each t and c, wpc

t (w) is increasing.

Theorem 2. Assume the following conditions.

(i) The expected revenue R∗(c�T + 1 − t) is a concave function of c for all times t.

(ii) For any w ≤ w′, v− (1 −F(v|w))/f (v|w) ≥ vw/w′ − (1 −F(vw/w′|w′))/f (vw/w′|w′).

For each c, t, and w, let pc
t (w) denote the solution to the revenue maximizing problem

under complete information about w, determined recursively by (1). Then wpc
t (w) is

nondecreasing in w, and hence the underlying allocation where αc
t (w�v) = 1 if and only

if v ≥ pc
t (w) is implementable. In particular, (1) characterizes the revenue maximizing

scheme under incomplete information about both values and weights.

Remark 1. The sufficient conditions for implementability used in Theorem 1 are, taken
together, stronger than condition (ii) in Theorem 2. To see this, assume that for any w,
the conditional hazard rate f (v|w)/(1−F(v|w)) is increasing in v, and that for any w′ ≥w

and for all v, f (v|w)/(1 − F(v|w)) ≥ f (v|w′)/(1 − F(v|w′)). This yields:

v − 1 − F(v|w)

f(v|w)
≥ vw

w′ − 1 − F
(
vw
w′ |w

)
f
(
vw
w′ |w

) ≥ vw

w′ − 1 − F
(
vw
w′ |w′)

f
(
vw
w′ |w′) �

where the first inequality follows by the monotonicity of the hazard rate, and the second
follows by the stochastic order assumption. Note also that condition (ii) of Theorem 2
can be formulated as requiring that the functions αv − (1 − F(αv|w/α))/f (αv|w/α) are
nondecreasing in α. Finally, note that this condition will play an important role for im-
plementability of the asymptotically optimal policy that we construct in Section 5 below.
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We next modify a result of Papastavrou et al. (1996) so as to identify conditions on
the joint distribution F(w�v) that imply concavity of expected revenue with respect to
c for all periods, as required by the Theorem 2.11 It is convenient to introduce the joint
distribution of weight and total valuation u = vw, which we denote by G(w�u) with den-
sity g(w�u). By means of a transformation of variables, the densities f and g are related
by wg(w�wv) = f (w�v). In particular, marginal densities in w coincide, i.e.,

f̄w(w) =
∫ ∞

0
f (w�v)dv =

∫ ∞

0
g(w�u)du = ḡw(w)�

An increasing virtual value implies that the virtual total value is increasing in u with
strictly positive derivative for any given w:

û(u�w) := u− 1 −G(u|w)

g(u|w)
=wv − 1 − F(v|w)

f(v|w)/w
=wv̂(v�w)�

We write û−1(û�w) for the inverse of û(u�w) with respect to u and define a distribution
Ĝ(û�w) by both Ĝ(û|w) := G(û−1(û�w)|w) for all w and ¯̂gw(w) := ḡw(w). On the level of

v̂, this corresponds to F̂(v̂|w)= F(v̂−1(v̂�w)|w) and ¯̂
fw(w) = f̄w(w).

Theorem 3. Assume that the conditional distribution Ĝ(w|û) is concave in w for all û,
that both ĝ(w|û) and dĝ(w|û)/dw are bounded, and that the total virtual value û has a
finite mean. Then, in the revenue maximization problem where the designer has complete
information about w, the expected revenue R∗(c�T + 1 − t) is concave as a function of c
for all times t.

Example 2. A simple setting where the conditions of Theorem 2 are satisfied while
those of Theorem 1 are violated is obtained as follows. Assume that G(w�u) is such
that u and w are independent, the hazard rate gu(u)/(1 − Gu(u)) is nondecreas-
ing, and Gw is concave.12 Then condition (i) of Theorem 2 is satisfied according
to Theorem 3 because the Ĝ(w|û) are concave. Consider then w < w′. By inde-
pendence of u and w, we have w′v̂(vw/w′�w′) = û(vw�w′) = û(vw�w) = wv̂(v�w) and
hence v̂(v�w) = (w′/w)v̂(vw/w′�w′). As w′/w > 1, this implies condition (ii) of The-
orem 2 in the relevant domain where virtual values are nonnegative. However, as
we show now, condition (ii) of Theorem 1, i.e., the hazard rate ordering, is violated.
Indeed, the equation we have just derived implies also that f (v|w)/(1 − F(v|w)) =
(w/w′)f (vw/w′|w′)/(1 − F(vw/w′|w′)). But the conditional hazard rates of F are non-
decreasing (because Gu has nondecreasing hazard rate) and w/w′ < 1, so that f (v|w)/

(1 − F(v|w)) = (w/w′)f (vw/w′|w′)/(1 − F(vw/w′|w′)) < f(v|w′)/(1 − F(v|w′)), which
contradicts the hazard rate ordering of Theorem 1. ♦

11In the Appendix we also provide an elementary proof of the result of Papastavrou et al. (1996), since
a proof is neither contained in the above-mentioned paper nor in the related one by Kleywegt and Pa-
pastavrou (2001). Moreover, we were unable to find a more general result from finite horizon stochastic
dynamic programming that ensures concavity of expected value in the state variable c, which is only a part
of the relevant state description.

12We also assume that the other mild technical conditions of Theorem 3 are satisfied.
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5. Asymptotically optimal and time-independent pricing

The optimal policy identified above requires price adjustments in every period and for
any quantity request w. These dynamics are arguably too complicated to be applied in
practice. Gallego and van Ryzin (1994) use an asymptotic argument to show that the
theoretical gain from optimal dynamic pricing compared to a suitably chosen, time-
independent policy is usually small in the setting with unit demands. Our main theorem
in this section extends their result to the dynamic knapsack problem with general dis-
tribution of types. We construct a static nonlinear price schedule that uses the existing
correlations between w and v, and show that it is asymptotically optimal if both capacity
and time horizon go to infinity.

While the basic strategy of the proof follows the suggestion made by Gallego and
van Ryzin, there are several major differences. In fact, in Section 5 of their paper these
authors also consider the case of heterogeneous capacity demands. However, they as-
sume that weights and values are independent and, most importantly, their optimality
benchmark does not even allow per-unit prices to depend on weight requests. But, as
we saw above, such weight dependency is a general property of the dynamically optimal
solution, even if w and v are independent. We therefore take our solution of the relaxed
problem as the optimality benchmark and we also consider general type distributions F .

As above, we start by focusing on the case of observable weights. We then show that
condition (ii) of Theorem 2 is a sufficient condition for implementability for the case
with two-dimensional private information.

Like Gallego and van Ryzin, we first solve a simpler, suitably chosen deterministic
maximization problem. The revenue obtained in the solution to that problem provides
an upper bound for the optimal expected revenue of the stochastic problem, and the
solution itself suggests the use of per-unit prices that depend on weight requests, but
that are constant in time. We next show that the derived policy is asymptotically optimal
also in the original stochastic problem where both capacity and time go to infinity: the
ratio of expected revenue from following the considered policy over expected revenue
from the optimal Markovian policy converges to 1. Moreover, there are various ways to
quantify this ratio for moderately large capacities and time horizons.

Let us first recall some assumptions and introduce further notation. The marginal
density f̄w(w) and the conditional densities f (v|w) pin down the distribution of (inde-
pendent) arriving types (wt� vt)

T
t=1. Given w, the demanded per-unit price p and the

probability λw of a request being accepted are related by λw(p) = 1 − F(p|w). Let pw(λ)

be the inverse of λ and note that this is well defined on (0�1]. Because of monotonicity
of conditional virtual values, the instantaneous (expected) per-unit revenue functions
rw(λ) := λpw(λ) are strictly concave and each one attains a unique interior maximum.
Indeed, pw(λ) = F(·|w)−1(1 − λ) and hence

d

dλ
rw(λ) = pw(λ)− λ

1
f (pw(λ)|w)

= pw(λ)− 1 − F(pw(λ)|w)

f(pw(λ)|w)
= v̂(pw(λ)�w)

d2

dλ2 r
w(λ) = −

(
∂

∂v
v̂

)
(pw(λ)�w)

1
f (pw(λ)|w)

< 0�
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Consequently, rw is strictly concave, strictly increasing up to the λw�∗ that satisfies
v̂(pw(λw�∗)�w) = 0, and strictly decreasing from there on.

5.1 The deterministic problem

We now formulate an auxiliary deterministic problem that closely resembles the relaxed
stochastic problem. Let Cap : (0�∞) → (0�∞), w 
→ Cap(w) be a measurable function.
Consider the problem:

max
Cap(·)

∫ ∞

0
max

(λwt )t=1�����T

(
T∑
t=1

rw(λwt )

)
wf̄w(w)dw (2)

subject to

T∑
t=1

λwt wf̄w(w) ≤ Cap(w) a.s. and
∫ ∞

0
Cap(w)dw ≤ C� (3)

In words, we analyze a problem where the following statements are true.

1. The capacity C needs to be divided into capacities Cap(w), one for each w.

2. In each w subproblem, a deterministic quantity request of wf̄w(w) arrives in each
period, and λwt determines a share (not a probability!) of this request that is ac-
cepted and sold at per-unit price pw(λwt ).

3. In each subproblem, the allocated capacity over time cannot exceed Cap(w) and
total allocated capacity in all subproblems

∫ ∞
0 Cap(w)dw cannot exceed C.

4. The designer’s goal is to maximize total revenue. We call the revenue at the solution
Rd(C�T).

As rw is strictly concave and increasing up to λw�∗, it is straightforward to verify that,
given a choice Cap(w), the solution to the w subproblem

max
(λwt )t=1�����T

(
T∑
t=1

rw(λwt )

)
wf̄w(w) such that

T∑
t=1

λwt wf̄w(w) ≤ Cap(w)

is given by

λwt ≡ λw�d :=

⎧⎪⎪⎨⎪⎪⎩
λw�∗ if λw�∗ ≤ Cap(w)

Twf̄w(w)
Cap(w)

Twf̄w(w)
else.

(4)

Accordingly, the revenue in the w subproblem is rw(λw�d)Twf̄w(w).

Proposition 2. The solution to the deterministic problem given by (2) and (3) is char-
acterized by
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(i) v̂(pw(λw�d)�w) = β(C�T) = const

(ii) λwt = λw�d = Cap(w)

Twf̄w(w)

(iii)
∫ ∞

0 Cap(w)dw = min(C�T
∫ ∞

0 λw�∗wf̄w(w)dw).

To get an intuition for the above result, observe that the marginal increase of the
optimal revenue for the w subproblem from marginally increasing Cap(w) is(

d

dλ
rw

)(
Cap(w)

Twf̄w(w)

)
= v̂(pw(λw�d)�w) if λw�∗ > Cap(w)

Twf̄w(w)

and 0 otherwise.
Proposition 2 says that, optimally, the capacity should be split in such a way that

the marginal revenue from increasing Cap(w) is the same for all w. Actually solving the
problem amounts to the simple static exercise of determining the constant β(C�T) in
accordance with the integral feasibility constraint.

The above construction is justified by the following two-step argument: on the one
hand, we show in Theorem 4 below that the optimal revenue in the deterministic prob-
lem, Rd(C�T), bounds from above the optimal revenue in the original stochastic case.
On the other hand, as we show in Section 5.2, the optimal solution of the deterministic
problem serves to define a simple time-independent policy that in the stochastic prob-
lem captures revenues RTI(C�T) such that RTI(C�T)/Rd(C�T) converges to 1 as C and
T go to infinity. Combining these two points yields the kind of asymptotic optimality
result we want to establish.

Since we assume here that weights are observable, a Markovian policy α for the orig-
inal stochastic problem is characterized by the acceptance probabilities λwt

t [ct] contin-
gent on current time t, remaining capacity ct , and weight request wt . Expected revenue
from policy α at the beginning of period t (i.e., when there are (T − t + 1) periods left)
with remaining capacity ct is given by

Rα(ct�T − t + 1) = Eα

[
T∑
s=t

wsp
ws(λws

s [cs])I{vs≥pws (λwss [cs])}

]

such that

T∑
s=t

wsI{vs≥pws (λwss [cs])} ≤ ct �

Here, the constraint must hold almost surely when following α. As before, we write
R∗(ct�T − t + 1) for the optimal revenue, i.e., the supremum of expected revenues taken
over all feasible Markovian policies α.

Theorem 4. For any capacity C and deadline T , it holds that R∗(C�T) ≤Rd(C�T).
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5.2 A simple policy for the stochastic problem

Having established the upper bound of Theorem 4, we now proceed with the second
part of our two-step argument outlined in the preceding section. We use the optimal
solution of the deterministic problem to define a w-contingent yet time-independent
policy αTI for the stochastic case as follows.

1. Given C and T , solve the deterministic problem to obtain β(C�T), λw�d , and thus
pw�d := pw(λw�d) = v̂−1(β(C�T)�w).

2. In the stochastic problem charge these weight-contingent prices pw�d for the entire
time horizon, provided that the quantity request does not exceed the remaining
capacity. Otherwise, charge a price equal to +∞ (i.e., reject the request).

Note that under condition (ii) of Theorem 2, the time-independent policy αTI is also
implementable if weights are not observable! Indeed, setting all virtual valuation thresh-
olds equal to a constant is like setting them optimally for linear and hence concave sal-
vage values.

We now determine how well the time-independent policy constructed above per-
forms compared to the optimal Markovian policy. Recall that we do this by comparing
its expected revenue, RTI(C�T), with the optimal revenue in the deterministic problem,
Rd(C�T), which, as we know by Theorem 4, provides an upper bound for the optimal
revenue in the stochastic problem, R∗(C�T).

Theorem 5. (i) For any joint distribution of values and weights,

lim
C�T→∞�C/T=const

RTI(C�T)

Rd(C�T)
= 1�

(ii) Assume that w and v are independent. Then

RTI(C�T)

Rd(C�T)
≥ 1 −

√
E[w2]/E[w]

2
√

min(C�λ∗E[w]T) �

In particular, limmin(C�T)→∞ RTI(C�T)
Rd(C�T)

= 1.

We have chosen to focus on these two general limit results, but various other quan-
titative results could be proven by similar techniques at the expense of slightly more
technical effort and possibly some further assumptions on the distribution F .13 This
should be clear from the proof in the Appendix. Note that since policy αTI is station-
ary, it does not generate incentives to postpone arrivals even in a more complex model
where buyers are patient and can choose their arrival time.

13Since Rd(C�T) ≥ R∗(C�T) ≥ RTI(C�T) (the first inequality is Theorem 4 and the second follows by
optimality), our estimate in Theorem 5(ii) immediately extends to R∗(C�T)/Rd(C�T) or to RTI(C�T)/

R∗(C�T).
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Remark 2. In a complete information knapsack model, Lin et al. (2008) study policies
that start by accepting only high value requests and then switch over to accepting also
lower values as time goes by. They establish asymptotic optimality of such policies (with
carefully chosen switchover times) as available capacity and time go to infinity. In other
words, their prices are time-dependent but do not condition on the weight request. It
is easy to show that, in our incomplete information model, such policies are, in gen-
eral, suboptimal. Consider first a one-period example where the seller has capacity 2
and where the arriving agent has either a weight request of 1 or 2 (equally likely). If the
weight request is 1 (2), the agent’s per-unit value distributes uniformly between 0 and
1 (between 1 and 2). The optimal mechanism in this case is as follows: if the buyer re-
quests one unit, the seller sells it for a price of 0.5, and if the buyer requests two units,
the seller sells each unit at a price of 1. Note that this policy is implementable since
the requested per-unit price is monotonically increasing in the weight request. The ex-
pected revenue is 9/8. If, however, the seller is forced to sell all units at the same per-unit
price without conditioning on the weight request, he will charge the price of 1 for each
unit, yielding an expected revenue of 1, and thus lose 1/8 versus the optimal policy. Now
replicate this problem so that there are T periods and capacity C = 2T . Then the ex-
pected revenue from the optimal mechanism is 9/8T , while the expected revenue from
the constrained mechanism is only T . Obviously, the constrained mechanism is not
asymptotically optimal.

Appendix

Proof of Proposition 1. ⇒. So assume that conditions (i) and (ii) are satisfied, and
define for any t, c,

qct (w�v) =
{
wpc

t (w) if αc
t (w�v) = 1

0 if αc
t (w�v) = 0.

Consider then an arrival of type (w�v) in period t with remaining capacity c. There are
two cases.

(a) αc
t (w�v) = 1. In particular, v ≥ pc

t (w). Then truth-telling yields utility w(v −
pc
t (w)) ≥ 0. Assume that the agent reports instead (ŵ� v̂). If αc

t (ŵ� v̂) = 0, then the agent’s
utility is zero and the deviation is not profitable. Assume then that αc

t (ŵ� v̂) = 1. By the
form of the utility function, a report of ŵ < w is never profitable. But for ŵ ≥ w, the
agent’s utility is wv − ŵpc

t (ŵ) ≤ w(v − pc
t (w)), where we used condition (ii). Therefore,

such a deviation is also not profitable.
(b) αc

t (w�v) = 0. In particular, v ≤ pc
t (w). Truth-telling yields here utility of zero.

Assume that the agent reports instead (ŵ� v̂). If αc
t (ŵ� v̂) = 0, then the agent’s utility re-

mains zero and the deviation is not profitable. Assume then that αc
t (ŵ� v̂) = 1. By the

form of the utility function, a report of ŵ < w is never profitable. Thus, consider the case
where ŵ ≥ w. In this case, the agent’s utility is wv − ŵpc

t (ŵ) ≤ w(v − pc
t (w)) ≤ 0, where

we used condition (ii). Therefore, such a deviation is also not profitable.
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⇐. Consider now an implementable, deterministic, and Markovian allocation
policy {αc

t }t�c . Assume first, by contradiction, that condition (i) in the statement of
the proposition is not satisfied. Then there exist (w�v) and (w�v′) such that v′ > v,
αc
t (w�v) = 1, and αc

t (w�v′) = 0. We obtain the chain of inequalities wv′ − qct (w�v) >

wv − qct (w�v) ≥ −qct (w�v′), where the second inequality follows by incentive compati-
bility for type (w�v). This shows that a deviation to a report (w�v) is profitable for type
(w�v′), a contradiction to implementability. Therefore, condition (i) must hold.

In particular, note that for any two types who have the same weight request, (w�v)

and (w�v′), if both are accepted, i.e., αc
t (w�v) = αc

t (w�v′) = 1, the payment must be the
same (otherwise the type that needs to make the higher payment would deviate and
report the other type). Denote this payment by rct (w). Note also that any two types
(w�v) and (w′� v′) such that αc

t (w�v) = αc
t (w

′� v′) = 0 must also make the same payment
(otherwise the type that needs to make the higher payment would deviate and report
the other type) and denote this payment by s.

Assume now, by contradiction, that condition (ii) does not hold. Then there exist w
and w′ such that w′ >w but w′pc

t (w
′) < wpc

t (w). In particular, w′pc
t (w

′) < ∞ and there-
fore pc

t (w
′) <∞.

Assume first that pc
t (w) < ∞. We have w′pc

t (w
′)− rct (w

′) = wpc
t (w)− rct (w) = −s be-

cause, by incentive compatibility, both types (w�pc
t (w)) and (w′�pc

t (w
′)) must be indif-

ferent between getting their request and not getting it. Since by assumption w′pc
t (w

′) <
wpc

t (w), we obtain that rct (w
′) < rct (w). Consider now a type (w�v) for which v > pc

t (w).
By reporting truthfully, this type gets utility wv − rct (w), while by deviating to (w′� v), he
gets utility wv − rct (w

′) > wv − rct (w), a contradiction to incentive compatibility.
Assume now that pc

t (w) is infinite, and therefore wpc
t (w) is infinite. Consider a type

(w′� v) where v > pc
t (w

′). The utility of this type is w′v− rct (w
′) > w′pc

t (w
′)− rct (w

′) = −s.
In particular, rct (w

′) must be finite. By reporting truthfully, a type (w�v) gets utility −s,
while by deviating to a report of (w′� v), he gets wv−rct (w

′). For v large enough, we obtain
wv − rct (w

′) > −s, a contradiction to implementability.
Thus, condition (ii) must hold and, in particular, the payment rct (w) is monotonic

in w. �

Proof of Theorem 1. Let w < w′. We need to show that wpc
t (w) − w′pc

t (w
′) ≤ 0. If

pc
t (w) ≤ pc

t (w
′), the result is clear. Assume then that pc

t (w) > pc
t (w

′). We obtain the
chain of inequalities

w

(
1 − F(pc

t (w)|w)

f(pc
t (w)|w)

)
−w′

(
1 − F(pc

t (w
′)|w′)

f (pc
t (w

′)|w′)

)
≤w′

(
1 − F(pc

t (w)|w)

f(pc
t (w)|w)

− 1 − F(pc
t (w

′)|w′)
f (pc

t (w
′)|w′)

)
≤w′

(
1 − F(pc

t (w
′)|w)

f(pc
t (w

′)|w)
− 1 − F(pc

t (w
′)|w′)

f (pc
t (w

′)|w′)

)
≤ 0�

where the second inequality follows by the monotonicity of the hazard rate and the third
follows by the hazard rate ordering condition.
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Since R∗(c −w�T − t) is monotonically decreasing in w, we obtain that

w

(
pc
t (w)− 1 − F(pc

t (w)|w)

f(pc
t (w)|w)

)
≤ w′

(
pc
t (w

′)− 1 − F(pc
t (w

′)|w′)
f (pc

t (w
′)|w′)

)
⇔

wpc
t (w)−w′pc

t (w
′) ≤ w

(
1 − F(pc

t (w)|w)

f(pc
t (w)|w)

)
−w′

(
1 − F(pc

t (w
′)|w′)

f (pc
t (w

′)|w′)

)
≤ 0�

where the last inequality follows by the derivation above. Hence wpc
t (w)−w′pc

t (w
′) ≤ 0

as desired. �

Proof of Theorem 2. For any concave function φ and for any x < y < z in its domain,
the well known “Three Chord Lemma” asserts that

φ(y)−φ(x)

y − x
≥ φ(z)−φ(x)

z − x
≥ φ(z)−φ(y)

z − y
�

Then consider w < w′ and let x = c − w′ < y = c − w < z = c. For the case of a concave
revenue, the lemma then yields

R∗(c −w�T − t)−R∗(c −w′�T − t)

w′ −w
≥ R∗(c�T − t)−R∗(c −w′�T − t)

w′

≥ R∗(c�T − t)−R∗(c −w�T − t)

w
�

We obtain, in particular,

pc
t (w

′)− 1 − F(pc
t (w

′)|w′)
f (pc

t (w
′)|w′)

= R∗(c�T − t)−R∗(c −w′�T − t)

w′

≥ R∗(c�T − t)−R∗(c −w�T − t)

w

= pc
t (w)− 1 − F(pc

t (w)|w)

f(pc
t (w)|w)

�

which yields

pc
t (w

′)− 1 − F(pc
t (w

′)|w′)
f (pc

t (w
′)|w′)

≥ pc
t (w)− 1 − F(pc

t (w)|w)

f(pc
t (w)|w)

≥ w

w′p
c
t (w)− 1 − F

(
w
w′pc

t (w)|w′)
f
(
w
w′pc

t (w)|w′) �

where the last inequality follows by the condition in the statement of the Theorem. Since
virtual values are increasing, this yields pc

t (w
′) ≥ (w/w′)pc

t (w) ⇔ w′pc
t (w

′) ≥ wpc
t (w) as

desired. �

For the proof of Theorem 3, we first need a lemma on maximization of expected
welfare under complete information. The result appears (without proof) in Papastavrou
et al. (1996).

Lemma 1. Assume that the total value u has finite mean, and that both g(w|u) and
dg(w|u)/dw are bounded and continuous. Consider the allocation policy that maximizes
expected welfare under complete information (i.e., upon arrival the agent’s type is re-
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vealed to the designer). If G(w|u) is concave in w for all u, then the optimal expected
welfare, denoted Uc

t , is twice continuously differentiable and concave in the remaining
capacity c for all periods t ≤ T .

Proof. Note that, for notational convenience throughout this proof, we index optimal
expected welfare by the current time t and not by periods remaining to deadline. By
standard arguments, the optimal policy for this unconstrained dynamic optimization
problem is deterministic and Markovian, and Uc

t is nondecreasing in remaining capac-
ity c by a simple strategy duplication argument. Moreover, the optimal policy can be
characterized by weight thresholds wc

t (u) ≤ c: If c remains at time t and a request whose
acceptance would generate value u arrives, then it is accepted if and only if w ≤ wc

t (u).
If Uc

t+1 ≥ u, then the weight threshold must satisfy the indifference condition

u =Uc
t+1 −U

c−wc
t (u)

t+1 � (5)

Otherwise, we have wc
t (u) = c.

We now prove the lemma by backward induction. At time t = T , i.e., in the deadline
period, it holds that

Uc
T =

∫ ∞

0
G(c|u)uḡu(u)du�

This is concave in c because all G(c|u) are concave by assumption, because uḡu(u) is
positive, and because the distribution of u has a finite mean. Since both g(w|u) and
dg(w|u)/dw are bounded and continuous, Uc

T is also twice continuously differentiable.
Suppose now that the lemma has been proven down to time t + 1. The optimal ex-

pected welfare at t provided that capacity c remains may be written as

Uc
t =

∫ ∞

0

[
uG(wc

t (u)|u)+
∫ wc

t (u)

0
Uc−w
t+1 g(w|u)dw + (

1 −G(wc
t (u)|u)

)
Uc
t+1

]
ḡu(u)du� (6)

We proceed to show concavity with respect to c of the term in brackets, for all u. This in
turn implies concavity of Uc

t and hence, with a short additional argument for differen-
tiability, is sufficient to conclude the induction step. We distinguish the cases u > Uc

t+1
for which the indifference condition (5) does not hold and u ≤ Uc

t+1 for which it does.
For both cases, we demonstrate that the second derivative (one-sided if necessary) of
the bracket term with respect to c is nonpositive and thus we establish global concavity.

Case 1. u > Uc
t+1. The bracket term becomes uG(c|u) + ∫ c

0 Uc−w
t+1 g(w|u)dw +

(1−G(c|u))Uc
t+1. By continuity of Uc

t+1, this representation also holds in a small interval
around c. We find

d

dc

[
uG(c|u)+

∫ c

0
Uc−w
t+1 g(w|u)dw + (1 −G(c|u))Uc

t+1

]
= ug(c|u)+

∫ c

0

d

dc
Uc−w
t+1 g(w|u)dw +U0

t+1g(c|u)

− g(c|u)Uc
t+1 + (1 −G(c|u)) d

dc
Uc
t+1
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= (u−Uc
t+1)g(c|u)+

∫ c

0

d

dc
Uc−w
t+1 g(w|u)dw + (1 −G(c|u)) d

dc
Uc
t+1

and

d2

dc2

[
uG(c|u)+

∫ c

0
Uc−w
t+1 g(w|u)dw + (1 −G(c|u))Uc

t+1

]

= (u−Uc
t+1)g

′(c|u)− g(c|u) d

dc
Uc
t+1 +

∫ c

0

d2

dc2U
c−w
t+1 g(w|u)dw (7)

+ d

dw
Uw
t+1

∣∣∣∣
w=0

g(c|u)− g(c|u) d

dc
Uc
t+1 + (1 −G(c|u)) d2

dc2U
c
t+1�

The last term is nonpositive by the concavity of Uc
t+1; the first term is nonpositive be-

cause u > Uc
t+1 and because G(c|u) has a nonincreasing density by assumption. In ad-

dition, g(c|u)(dUc
t+1/dc) is nonnegative and hence (7) is bounded from above by∫ c

0

d2

dc2U
c−w
t+1 g(w|u)dw + g(c|u)

(
d

dw
Uw
t+1

∣∣∣∣
w=0

− d

dc
Uc
t+1

)
�

But
∫ c

0 (d
2Uc−w

t+1 /dc2)g(w|u)dw may be bounded from above by g(c|u) ×∫ c
0 (d

2Uc−w
t+1 /dc2)dw because of the decreasing density and because d2Uc−w

t+1 /dc2 ≤ 0.
Thus,

d2

dc2

[
uG(c|u)+

∫ c

0
Uc−w
t+1 g(w|u)dw + (1 −G(c|u))Uc

t+1

]

≤ g(c|u)
[∫ c

0

d2

dc2U
c−w
t+1 dw + d

dw
Uw
t+1

∣∣∣∣
w=0

− d

dc
Uc
t+1

]
(8)

= g(c|u)
[∫ c

0

d2

dw2U
c−w
t+1 dw+ d

dw
Uw
t+1

∣∣∣∣
w=0

− d

dc
Uc
t+1

]
= 0�

Case 2. u ≤ Uc
t+1. Here u = Uc

t+1 − U
c−wc

t (u)
t+1 . Consequently, the bracket term in (6) be-

comes

Uc
t+1 −U

c−wc
t (u)

t+1 G(wc
t (u)|u)+

∫ wc
t (u)

0
Uc−w
t+1 g(w|u)dw� (9)

Before computing its first and second derivatives, we differentiate the identity u =
Uc
t+1 − U

c−wc
t (u)

t+1 to obtain an expression for dwc
t (u)/dc (derivative from the right if

u =Uc
t+1):

0 = d

dc
Uc
t+1 − d

dw
Uw
t+1

∣∣∣∣
w=c−wc

t (u)

(
1 − d

dc
wc
t (u)

)
�

Since indeed dUw
t+1/dw > 0 in our setup with strictly positive densities, this implies

d

dc
wc
t (u) =

d
dwU

w
t+1

∣∣
w=c−wc

t (u)
− d

dcU
c
t+1

d
dwU

w
t+1

∣∣
w=c−wc

t (u)

� (10)
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By concavity of Uc
t+1, its derivative is nonincreasing and hence the identity (10) yields,

in particular, dwc
t (u)/dc ≥ 0. We now compute the derivatives of (9):

d

dc

[
Uc
t+1 −U

c−wc
t (u)

t+1 G(wc
t (u)|u)+

∫ wc
t (u)

0
Uc−w
t+1 g(w|u)dw

]
= d

dc
Uc
t+1 − d

dw
Uw
t+1

∣∣∣∣
w=c−wc

t (u)

(
1 − d

dc
wc
t (u)

)
G(wc

t (u)|u)

−U
c−wc

t (u)
t+1 g(wc

t (u)|u)
d

dc
wc
t (u)

+U
c−wc

t (u)
t+1 g(wc

t (u)|u)
d

dc
wc
t (u)+

∫ wc
t (u)

0

d

dc
Uc−w
t+1 g(w|u)dw

(10)= d

dc
Uc
t+1 − d

dc
Uc
t+1G(wc

t (u)|u)+
∫ wc

t (u)

0

d

dc
Uc−w
t+1 g(w|u)dw

= d

dc
Uc
t+1

(
1 −G(wc

t (u)|u)
) +

∫ wc
t (u)

0

d

dc
Uc−w
t+1 g(w|u)dw�

Thus,

d2

dc2

[
Uc
t+1 −U

c−wc
t (u)

t+1 G(wc
t (u)|u)+

∫ wc
t (u)

0
Uc−w
t+1 g(w|u)dw

]
= d2

dc2U
c
t+1

(
1 −G(wc

t (u)|u)
) − d

dc
Uc
t+1g(w

c
t (u)|u)

d

dc
wc
t (u)

+ d

dw
Uw
t+1

∣∣∣∣
w=c−wc

t (u)

g(wc
t (u)|u)

d

dc
wc
t (u)+

∫ wc
t (u)

0

d2

dc2U
c−w
t+1 g(w|u)dw

≤ g(wc
t (u)|u)

d

dc
wc
t (u)

(
d

dw
Uw
t+1

∣∣∣∣
w=c−wc

t (u)

− d

dc
Uc
t+1

)

+
∫ wc

t (u)

0

d2

dw2U
c−w
t+1 g(w|u)dw�

For the final inequality we used concavity of Uc
t+1, as well as d2Uc−w

t+1 /dc2 = d2Uc−w
t+1 /dw2.

Noting that (10) implies that dwc
t (u)/dc ≤ 1 and once more using concavity of Uc

t+1, we
may bound the first term from above. Since g(w|u) is nonincreasing in w, we can also
bound the second term to obtain

d2

dc2

[
Uc
t+1 −U

c−wc
t (u)

t+1 G(wc
t (u)|u)+

∫ wc
t (u)

0
Uc−w
t+1 g(w|u)dw

]
(11)

≤ g(wc
t (u)|u)

(
d

dw
Uw
t+1

∣∣∣∣
w=c−wc

t (u)

− d

dc
Uc
t+1 +

∫ wc
t (u)

0

d2

dw2U
c−w
t+1 dw

)
= 0�

Taken together, (8) and (11) establish concavity of the integrand in (6) with respect to c.
This implies that Uc

t is concave. Having a second look at the computations just per-
formed reveals that the integrand in (6) has a kink in the second derivative at u = Uc

t+1.
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However, this event has measure zero for any given c, so that we also get that Uc
t is twice

continuously differentiable. This completes the induction step. �

Proof of Theorem 3. The main idea of the proof is to translate the problem of setting
revenue maximizing prices when w is observable into the problem of maximizing wel-
fare with respect to virtual values (rather than the values themselves), and then to use
Lemma 1.

To begin with, note that there is a dual way to describe the policy that maximizes
expected welfare under complete information. In the proof of Lemma 1, we character-
ized it by optimal weight thresholds wc

t (u). Alternatively, given any requested quantity w

(not greater than the remaining c), we may set a valuation per unit threshold vct (w). Re-
quests above this valuation are accepted; those below are not. Such optimal thresholds
are characterized by the Bellman-type condition

wvct (w) =Uc
t+1 −Uc−w

t+1 �

Thus, one way to write the optimal expected welfare under complete information is

Uc
t =

∫ c

0
w

∫ ∞

vct (w)
vf (v|w)dv f̄w(w)dw

(12)

+
∫ c

0

[(
1 − F(vct (w)|w)

)
Uc−w
t+1 + F(vct (w)|w)Uc

t+1
]
f̄w(w)dw�

In contrast, the optimal expected revenue with complete information about w but in-
complete information about v satisfies

R∗(c�T + 1 − t) =
∫ c

0
wpc

t (w)
(
1 − F(pc

t (w)|w)
)
f̄w(w)dw

+
∫ c

0

[(
1 − F(pc

t (w)|w)
)
R∗(c −w�T − t) (13)

+ F(pc
t (w)|w)R∗(c�T − t)

]
f̄w(w)dw�

where pc
t (w) are the per-unit prices from (1). We rephrase this in terms of F̂ , whose

definition requires monotonicity of virtual values. Setting v̂ct (w) := v̂(pc
t (w)�w), we have,

on the one hand,

F(pc
t (w)|w) = F̂(v̂ct (w)|w)�

On the other hand,

pc
t (w)

(
1 − F(pc

t (w)|w)
) =

∫ ∞

pc
t (w)

[
vf (v|w)− (1 − F(v|w))

]
dv

=
∫ ∞

pc
t (w)

v̂(v�w)f̂ (v̂(v�w)|w)
d

dv
v̂(v�w)dv

=
∫ ∞

v̂ct (w)
v̂f̂ (v̂|w)dv̂�
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Plugging this and the identities for the marginal densities in w into (13) we obtain

R∗(c�T + 1 − t)

=
∫ ∞

0
w

∫ ∞

v̂ct (w)
v̂f̂ (v̂|w)dv̂

¯̂
fw(w)dw

+
∫ ∞

0

[(
1 − F̂(v̂ct (w)|w)

)
R∗(c −w�T − t)+ F̂(v̂ct (w)|w)R∗(c�T − t)

] ¯̂
fw(w)dw�

Comparing this with (12), it follows that maximizing expected revenue when w is ob-
servable is equivalent to maximizing expected welfare with respect to the distribution
of weight and conditional virtual valuation (note the identical zero boundary values at
T + 1). Invoking Lemma 1 applied to Ĝ, we see that R∗(c�T + 1 − t) is concave with re-
spect to c for all t (note that the fact that the support of virtual valuations contains also
negative numbers does not matter for the argument of Lemma 1). �

Proof of Proposition 2. The proposition is an immediate consequence of the char-
acterization (4) of optimal solutions for the w subproblems given Cap(w), and of a
straightforward variational argument ensuring that marginal revenues from marginal
increase of Cap(w) must be constant almost surely in w. �

Proof of Theorem 4. We need to distinguish two cases.

Case 1. Assume that C > T
∫ ∞

0 λw�∗wf̄w(w)dw. In this case, β(C�T) = 0 and Rd(C�T) =
T

∫ ∞
0 rw(λw�∗)wf̄w(w)dw. We also know that R∗(C�T) ≤ R∗(+∞�T ), where R∗(+∞�T )

denotes the optimal expected revenue from a stochastic problem without any capacity
constraint. But for such a problem, the optimal Markovian policy maximizes at each
period the instantaneous expected revenue upon observing wt , wtr

wt (λ). That is, the
optimal policy sets λwt

t [+∞] = λw�∗. Thus,

R∗(C�T) ≤R∗(+∞�T ) = T

∫ ∞

0
wrw(λw�∗)f̄w(w)dw =Rd(C�T)�

Case 2. Assume now that C ≤ T
∫ ∞

0 λw�∗wf̄w(w)dw. For μ ≥ 0, consider the uncon-
strained maximization problem

max
Cap(·)

[∫ ∞

0
rw

(
Cap(w)

Twf̄w(w)

)
Twf̄w(w)dw +μ

(
C −

∫ ∞

0
Cap(w)dw

)]
�

The Euler–Lagrange equation is (drw/dλ)(Cap(w)/(Twf̄w(w))) = μ. Hence, if we write
Rd(C�T�μ) for the optimal value of the above problem and if we let μ = β(C�T),
where β(C�T) is the constant from Proposition 2, then the solution equals the solu-
tion of the constrained deterministic problem. In particular,

∫ ∞
0 Cap(w)dw = C and

Rd(C�T�β(C�T)) =Rd(C�T) .
Recall that for the stochastic problem and for any Markovian policy α, we have

Rα(C�T) =Eα

[
T∑
t=1

wtp
wt (λwt

t [ct])I{vt≥pwt (λ
wt
t [ct ])}

]
�
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and define

Rα(C�T�β(C�T)) = Rα(C�T)+β(C�T)

(
C −Eα

[
T∑
t=1

wtI{vt≥pwt (λ
wt
t [ct ])}

])
�

Since for any policy α that is admissible in the original problem, it holds that

T∑
t=1

wtI{vt≥pwt (λ
wt
t [ct ])} ≤ C a.s.�

we have Rα(C�T) ≤Rα(C�T�β(C�T)). We show below that, for arbitrary α (which satis-
fies the capacity constraint or not), it holds that

Rα(C�T�β(C�T)) ≤ Rd(C�T�β(C�T))� (14)

This yields, for any α that is admissible in the original problem,

Rα(C�T) ≤Rα(C�T�β(C�T)) ≤ Rd(C�T�β(C�T)) =Rd(C�T)�

Taking the supremum over α then concludes the proof for the second case.
It remains to prove (14). The argument uses the filtration {Ft}Tt=1 of σ-algebras that

contain information prior to time t (in particular the value of ct ) and, in addition, the
currently observed wt :

Rα(C�T�β(C�T)) = Eα

[
T∑
t=1

wt
(
pwt (λwt

t [ct])−β(C�T)
)
I{vt≥pwt (λ

wt
t [ct ])}

]
+β(C�T)C

= Eα

[
T∑
t=1

Eα
[
wt

(
pwt (λwt

t [ct])−β(C�T)
)
I{vt≥pwt (λ

wt
t [ct ])}|Ft

]]
+β(C�T)C

= Eα

[
T∑
t=1

wt
(
pwt (λwt

t [ct])−β(C�T)
)
Eα

[
I{vt≥pwt (λ

wt
t [ct ])}|Ft

]]
+β(C�T)C

= Eα

[
T∑
t=1

wt
(
rwt (λwt

t [ct])−β(C�T)λwt
t [ct]

)] +β(C�T)C

≤ Eα

[
T∑
t=1

wt(r
wt (λwt�d)−β(C�T)λwt�d)

]
+β(C�T)C

= E(wt)
T
t=1

[
T∑
t=1

wt(r
wt (λwt�d)−β(C�T)λwt�d)

]
+β(C�T)C

= T

∫ ∞

0
(rw(λw�d)−β(C�T)λw�d)wf̄w(w)dw +β(C�T)C

= Rd(C�T�β(C�T))�
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For the inequality, we have used that λw�d maximizes rw(λ)−β(C�T)λ. �

For the proof of Theorem 5, we first need a lemma.

Lemma 2. Let RTI(C�T) be the revenue obtained from the stationary policy αTI. Let
(w̃t� ṽt)

T
t=1 be an independent copy of the process (wt� vt)

T
t=1. Then

(i)

RTI(C�T) =E(wt)
T
t=1

[
T∑
t=1

rwt (λwt�d)wt

(
1 − P

[
t−1∑
s=1

w̃sI{̃vs≥pw̃s�d} >C −wt

])]

(ii)

RTI(C�T)

Rd(C�T)
≥ 1−

T∑
t=1

∫ ∞

0
rw(λw�d)w

(
min

(
1�

(t − 1)σ2
d

((T − t + 1)μd −w)2

)
I1 + I2

)
f̄w(w)dw

T

∫ ∞

0
rw(λw�d)wf̄w(w)dw

�

where μd := min(C�T
∫ ∞

0 λw�∗wf̄w(w)dw)/T , I1 = I{w≤(T−t+1)μd}, I2 = I{w>(T−t+1)μd},
and σ2

d := E[w2I{v≥pw�d}] −μ2
d = ∫ ∞

0 w2λw�df̄w(w)dw −μ2
d .

Proof. (i) Expected revenue RTI(C�T) may be written as

RTI(C�T) = E(wt�vt )
T
t=1

[
T∑
t=1

pwt�dwtI{vt≥pwt �d}I{∑t−1
s=1 wsI{vs≥pws�d }≤C−wt }

]

= E(wt)
T
t=1

[
T∑
t=1

rwt (λwt�d)wt

]

−E(wt�vt )
T
t=1

[
T∑
t=1

pwt�dwtI{vt≥pwt �d}I{∑t−1
s=1 wsI{vs≥pws�d }>C−wt }

]
�

To simplify the second term, we use the fact that vt and (ws� vs)
t−1
s=1 are independent con-

ditional on wt :

E(wt�vt )
T
t=1

[
T∑
t=1

pwt�dwtI{vt≥pwt �d}I{∑t−1
s=1 wsI{vs≥pws�d }>C−wt }

]

= E(wt�vt )
T
t=1

[
T∑
t=1

E
[
pwt�dwtI{vt≥pwt �d}I{∑t−1

s=1 wsI{vs≥pws�d }>C−wt }|wt
]]

= E(wt�vt )
T
t=1

[
T∑
t=1

pwt�dwtE
[
I{vt≥pwt �d}|wt

]
E

[
I{∑t−1

s=1 wsI{vs≥pws�d }>C−wt }|wt
]]

= E(wt�vt )
T
t=1

[
T∑
t=1

pwt�dwtλ
wt�dP

[
t−1∑
s=1

w̃sI{̃vs≥pw̃s�d} >C −wt

]]
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= E(wt)
T
t=1

[
T∑
t=1

rwt (λwt�d)wtP

[
t−1∑
s=1

w̃sI{̃vs≥pw̃s�d} >C −wt

]]
�

This establishes (i).
(ii) Recall that Rd(C�T) = T

∫ ∞
0 rw(λw�d)wf̄w(w)dw. Observe furthermore that

λw�d depends on C and T only through the ratio Ceff/T , where Ceff = min(C�
T

∫ ∞
0 λw�∗wf̄w(w)dw), via E[wI{v≥pw�d}] = ∫ ∞

0 wλw�df̄w(w)dw = Ceff/T = μd . Observe
first that

P

[
t−1∑
s=1

w̃sI{̃vs≥pw̃s�d} >C −wt

]
≤ P

[
t−1∑
s=1

w̃sI{̃vs≥pw̃s�d} > Tμd −wt

]

= P

[
t−1∑
s=1

w̃sI{̃vs≥pw̃s�d} − (t − 1)μd > (T − t + 1)μd −wt

]
�

We trivially bound the last expression by 1 if (T − t + 1)μd − wt ≤ 0 and otherwise use
Chebychev’s inequality to deduce

P

[
t−1∑
s=1

w̃sI{̃vs≥pw̃s�d} − (t − 1)μd > (T − t + 1)μd −wt

]

≤ P

[(
t−1∑
s=1

w̃sI{̃vs≥pw̃s�d} − (t − 1)μd

)2

> ((T − t + 1)μd −wt)
2

]

≤ E
[(∑t−1

s=1 w̃sI{̃vs≥pw̃s�d} − (t − 1)μd

)2]
((T − t + 1)μd −wt)2 = (t − 1)σ2

d

((T − t + 1)μd −wt)2 �

As we are bounding a probability, we can again replace this estimate by the trivial bound
1 whenever it is better, i.e., if wt is smaller than but close to (T − t + 1)μd . Thus,

E(wt�vt )
T
t=1

[
T∑
t=1

pwt�dwtI{vt≥pwt �d}I{∑t−1
s=1 wsI{vs≥pws�d }>C−wt }

]

≤
T∑
t=1

∫ ∞

0
rw(λw�d)w

(
min

(
1�

(t − 1)σ2
d

((T − t + 1)μd −w)2

)
I{w≤(T−t+1)μd}

+ I{w>(T−t+1)μd}
)
f̄w(w)dw�

Finally, dividing by Rd(C�T) yields the desired estimate. �

Proof of Theorem 5. (i) The starting point is the estimate from Lemma 2(ii). Note
that rw(λw�d)wf̄w(w) is an integrable upper bound for

rw(λw�d)w

(
min

(
1�

(t − 1)σ2
d

((T − t + 1)μd −w)2

)
I{w≤(T−t+1)μd} + I{w>(T−t+1)μd}

)
f̄w(w)�
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Moreover, for fixed w, for arbitrary η ∈ (0�1), and for t ≤ ηT , we have w < (1 − η)Tμd

eventually as T�C → ∞, C/T = const. Moreover,

(t − 1)σ2
d

((T − t + 1)μd −w)2 ≤ ηTσ2
d

((1 −η)Tμd −w)2 → 0 as T → ∞�

The Dominated Convergence Theorem implies then that∫ ∞

0
rw(λw�d)w

(
min

(
1�

(t − 1)σ2
d

((T − t + 1)μd −w)2

)
I{w≤(T−t+1)μd}

+ I{w>(T−t+1)μd}
)
f̄w(w)dw → 0

in the considered limit, for arbitrary η ∈ (0�1) and for t ≤ ηT . Consequently, also the
term that is subtracted in the estimate Lemma 2(ii) converges to zero.

(ii) A straightforward application of the proof by Gallego and van Ryzin is possible
for this last part. For completeness, we spell it out. If w and v are independent, all the
λw�d for different w coincide, as do the λw�∗. Call them λd and λ∗, respectively. We have
then

RTI(C�T) = p(λd)E

[
min

(
C�

T∑
t=1

wtI{vt≥p(λd)}

)]

= p(λd)E

[
T∑
t=1

wtI{vt≥p(λd)} −
(

T∑
t=1

wtI{vt≥p(λd)} −C

)+]
�

We use now the following estimate for E[(X − k)+], where X is a random variable with
mean m and variance σ2, and where k is a constant:

E[(X − k)+] ≤
√
σ2 + (k−m)2 − (k−m)

2
�

Note that by independence,

E

[
T∑
t=1

wtI{vt≥p(λd)}

]
= E[w]Tλd

Var

[
T∑
t=1

wtI{vt≥p(λd)}

]
= T

(
E

[(
wI{v≥p(λd)}

)2] −E[w]2(λd)2)
= T(E[w2]λd −E[w]2(λd)2)�

If λ∗TE[w]>C and hence if λd = C/(TE[w]), this yields

RCP(C�T) ≥Rd(C�T)−p(λd)

√
TE[w2]λd

2
=Rd(C�T)

(
1 −

√
E[w2]/E[w]

2
√
C

)
�
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If λ∗TE[w] ≤ C and hence if λd = λ∗, then C ≥ E[∑T
t=1 wtI{vt≥p(λd)}], so that

E[(∑T
t=1 wtI{vt≥p(λd)} −C)+] ≤ √

σ2/2. Thus,

RTI(C�T) ≥Rd(C�T)−p(λ∗)
√
λ∗TE(w2)

2
=Rd(C�T)

(
1 −

√
E[w2]/E[w]

2
√
λ∗E(w)T

)
�

Hence, we can conclude that

RTI(C�T)

Rd(C�T)
≥ 1 −

√
E[w2]/E[w]

2
√

min(C�Tλ∗E[w])) �

�
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