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Forward induction reasoning revisited
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Battigalli and Siniscalchi (2002) formalize the idea of forward induction reason-
ing as “rationality and common strong belief of rationality” (RCSBR). Here we
study the behavioral implications of RCSBR across all type structures. Formally,
we show that RCSBR is characterized by a solution concept we call extensive form
best response sets (EFBRS’s). It turns out that the EFBRS concept is equivalent
to a concept already proposed in the literature, namely directed rationalizability
(Battigalli and Siniscalchi 2003). We conclude by applying the EFBRS concept to
games of interest.
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1. Introduction

Forward induction is a basic concept in game theory. It reflects the idea that players
rationalize their opponents’ behavior whenever possible. In particular, players form an
assessment about the future play of the game, given the information about the past play
and the presumption that their opponents are strategic. This affects the players’ choices.

Formalizing forward induction reasoning requires an epistemic apparatus: To ex-
press the idea that players rationalize their opponents’ past behavior, we need a lan-
guage that explicitly describes what a player believes about the strategies her opponents
play and the beliefs they hold at each information set. An (extensive-form based) epis-
temic type structure gives such a language.
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Within this framework, Battigalli and Siniscalchi (2002) formalize forward induction
reasoning using the idea of “strong belief.” (See also Stalnaker 1998.) A player strongly
believes an event E if he assigns probability 1 to E, as long as E is consistent with the
information set he has reached. With this, the conditions that each player is rational,
strongly believes that “each (other) player is rational,” strongly believes “each (other)
player is rational and strongly believes others are rational,” etc. formally capture the idea
of forward induction reasoning. The collection of these assumptions is called rationality
and common strong belief of rationality (RCSBR).

Battigalli and Siniscalchi (2002) analyze the implications of RCSBR in the canoni-
cal construction of the so-called universal type structure. (This is a type structure that
induces all hierarchies of conditional beliefs.) They show that, in this case, a strategy
is consistent with RCSBR if and only if it is extensive-form rationalizable (Pearce 1984).
But, for a “smaller” type structure—one that does not induce all hierarchies of condi-
tional beliefs—the strategies consistent with RCSBR may be distinct from the extensive-
form rationalizable strategies. (See Battigalli and Siniscalchi 2002 or Example 3 below.)

Given this fact, a natural question arises. What are the implications of forward in-
duction reasoning across all epistemic type structures? The answer is a solution concept
we call extensive-form best response sets (EFBRS’s). Specifically, we show that RCSBR is
characterized by EFBRS’s: For a given game and type structure, the strategies consistent
with RCSBR form an EFBRS. Conversely, for a given EFBRS, there is a type structure so
that the strategies consistent with RCSBR are exactly the given EFBRS. (See Theorem 1.)
Of course, the extensive-form rationalizable strategy set is one EFBRS. Which EFBRS
obtains depends on the given type structure.

While the EFBRS definition is new, we note that it is equivalent to a definition already
proposed in the literature, namely, the directed rationalizability concept. This solution
concept is due to Battigalli and Siniscalchi (2003), who refer to it as �-rationalizability.
We discuss the connection in Section 9.a below. We see that, in some ways, the ques-
tions raised here can be viewed as a follow-up to the questions raised in Battigalli and
Siniscalchi (2003).

The paper proceeds as follows. The game and epistemic structure are defined in
Sections 2 and 3. Rationality and strong belief are defined in Section 4. Section 5 gives
the main theorem, a characterization of RCSBR in terms of EFBRS’s. Section 6 gives an
alternate characterization theorem, in terms of directed rationalizability. We then turn
to applications in Sections 7 and 8. Finally, in Section 9, we conclude by discussing
certain conceptual and technical aspects of the paper.

2. The game

We consider finite extensive-form games of perfect recall. We write � for such a game.
The definition we consider is similar to that in Osborne and Rubinstein (1994, Defini-
tion 200.1). In particular, it allows for simultaneous moves.1

1This definition incorporates repeated games. Our analysis does not depend on the specific definition
used.
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There are two players, namely a (Ann) and b (Bob).2 Let Ca and Cb be choice or
action sets for Ann and Bob. A history for the game consists of (possibly empty) se-
quences of simultaneous choices for Ann and Bob. More formally, a history is either
(i) the empty sequence, written φ, or (ii) a sequence of choice pairs (c1� � � � � cK), where
ck = (cka � c

k
b ) ∈ Ca × Cb. Histories have the property that if (c1� � � � � cK) is a history, then

so is (c1� � � � � cL) for each L ≤ K. Each history can be viewed as a node in the tree, and
so we interchangeably use the terms “node” and “history.”

Write x for a history of the game and let C(x) = {c ∈ Ca ×Cb : (x� c) is a history for the
game}. Write Ca(x) = projCa

C(x) and Cb(x) = projCb
C(x). By assumption, these sets

have the property that C(x) = Ca(x) × Cb(x). The interpretation is that Ca(x) is the set
of choices available to a at history x. If |Ca(x)| ≥ 2, say a moves at history x or a is active
at x. (If |Ca(x)| ≤ 1, a is inactive at history x.) Call x a terminal history of the game if
C(x) = ∅. (Terminal histories can be viewed either as terminal nodes or paths for the
game.)

Let Ha (resp. Hb) be a partition of the set of all nodes at which a (resp. b) is active
plus the initial node φ. The partition Ha (resp. Hb) has the property that if x, x′ are con-
tained in the same partition member, viz. h in Ha (resp. Hb), then Ca(x) = Ca(x

′) (resp.
Cb(x) = Cb(x

′)). The interpretation is that Ha (resp. Hb) is the family of information sets
for a (resp. b). (Notice that {φ} ∈ Ha ∩ Hb. Perfect recall imposes further requirements
on Ha and Hb. See Osborne and Rubinstein 1994, Definition 203.3.) Write H =Ha ∪Hb.

Let Z be the set of terminal histories of the game and let z be an arbitrary element
of Z. Extensive-form payoff functions are given by �a :Z → R and �b :Z → R.

We abuse notation and write Ca(h) for the set of choices available to a at informa-
tion set h ∈ Ha. With this, the set of strategies for player a is given by Sa = ∏

h∈Ha
Ca(h).

Define Sb analogously. Each pair of strategies (sa� sb) induces a path through the tree.
Let ζ :Sa × Sb → Z map each strategy profile into the induced path. Strategic-form pay-
off functions are given by πa = �a ◦ ζ and πb = �b ◦ ζ. Given a profile (sa� sb), write
π(sa� sb) = (πa(sa� sb)�πb(sa� sb)) and refer to this payoff vector as an outcome of the
game. Two strategy profiles, (sa� sb) and (ra� rb), are outcome equivalent if π(sa� sb) =
π(ra� rb). (Of course, if (sa� sb) and (ra� rb) induce the same path (i.e., if ζ(sa� sb) =
ζ(ra� rb)), they are outcome equivalent. But, they may be outcome equivalent even if
they do not.)

For each information set h ∈ H, write Sa(h) (resp. Sb(h)) for the set of strategies for a
(resp. b) that allow h. (That is, sa ∈ Sa(h) if there is some sb ∈ Sb so that the path induced
by (sa� sb) passes through h.) Let Sa (resp. Sb) be the collection of all Sa(h) (resp. Sb(h))
for h ∈ Hb (resp. h ∈ Ha). Thus, Sa represents the information structure of b about the
strategy of a. In particular, at each of b’s information sets, he has a belief about a that
assigns probability 1 to the set of a’s strategies consistent with the information set being
reached.

3. The type structure

This section defines an epistemic type structure. There are two ingredients: First, for
each player, there are type sets Ta and Tb. Informally, each player “knows” his own type,

2The analysis extends to n-player games, up to issues of correlation. See Section 9.b.
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but faces uncertainty about the strategy the other player will choose and the type of the
other player. So each type ta ∈ Ta is associated with a belief on Sb × Tb. Of course, we
want to specify a belief at each information set. Therefore, we map each type into a con-
ditional probability system (CPS) on Sb × Tb, where the conditioning events correspond
to the information sets in the game tree. That is, for each type, there is an array of proba-
bility measures on Sb ×Tb, one for each information set, and this array satisfies the rules
of conditional probability when possible.

We now give the formal definitions. These closely follow the definitions in Battigalli
and Siniscalchi (2002). Throughout, let 
 be a separable metrizable space and let B(
)

be the Borel σ-algebra on 
. We endow the product of separable metrizable spaces
with the product topology and endow a subset of a separable metrizable space with the
relative topology. Write P(
) for the set of Borel probability measures on 
 and endow
P(
) with the topology of weak convergence.

Definition 1 (Rényi 1955). Fix a separable metrizable space 
 and a nonempty collec-
tion of events E ⊆ B(
). A conditional probability system (CPS) on (
� E) is a mapping
μ(·|·) : B(
) × E → [0�1] such that, for every E ∈ B(
) and F�G ∈ E , the following state-
ments hold:

(i) μ(F |F) = 1,

(ii) μ(·|F) ∈ P(
), and

(iii) E ⊆ F ⊆G implies μ(E|G)= μ(E|F)μ(F |G).

Call E , with ∅ �= E ⊆ B(
), a collection of conditioning events for 
.

When it is clear that μ(·|·) is a CPS on (
� E), we omit reference to its arguments,
simply writing μ instead of μ(·|·).

Write C(
� E) for the set of conditional probability systems on (
� E). The set C(
� E)
can be viewed as a subset of [P(
)]E . We endow [P(
)]E with the product topology and
then endow C(
� E) with the relative topology. If E is countable, C(
� E) is separable
metrizable. When the set of conditioning events is clear from the context, we omit ref-
erence to E , simply writing C(
).

We are often interested in product sets. We adopt the convention that if 
1 ×
2 = ∅,
then both 
1 = ∅ and 
2 = ∅. Fix some E ⊆ B(
1) and write E ⊗ 
2 for the set of all
E ×
2, where E ∈ E . Of course, E ⊗
2 ⊆ B(
1 ×
2).

Consider a CPS μ(·|·) on (
1 ×
2� E ⊗
2), where E ⊆ B(
1). Define ν(·|·) : B(
1)×
E → [0�1] so that ν(E|F) = μ(E × 
2|F × 
2) for all E ∈ B(
1) and F ∈ E . Then ν is
a conditional probability system on (
1� E). When ν(·|·) is defined in this way, write
ν(·|·) = marg
1

μ(·|·). No confusion should result.

Definition 2. Fix an extensive-form game �. A �-based type structure is a collection

〈Sa�Sb; Sa� Sb;Ta�Tb;βa�βb〉�



Theoretical Economics 7 (2012) Forward induction reasoning revisited 61

Figure 1. Battle of the sexes with an outside option.

where Ta (resp. Tb) is a nonempty separable metrizable space and βa :Ta →
C(Sb ×Tb� Sb ⊗Tb) (resp. βb :Tb → C(Sa ×Ta� Sa ⊗Ta)) is a measurable belief map. Mem-
bers of Ta (resp. Tb) are called types. Members of Sa × Ta × Sb × Tb are called states.

To illustrate Definition 2, consider two examples of �-based type structures. Each is
based on the game � of the battle of the sexes (BoS) with an outside option as given in
Figure 1.

Example 1. Suppose the game of BoS with an outside option is played in a society that
has come to form a “lady’s choice convention.” Loosely, everyone in the society thinks
that if the lady gets to move in a BoS-like situation, she makes choices that can lead to
her “best payoff,” i.e., she plays Up, hoping to get a payoff of 4. Moreover, it is “transpar-
ent” that everyone thinks this.

The convention restricts the beliefs players do vs. do not consider possible.3 It can be
modelled by a type structure 〈Sa�Sb; Sa� Sb;Ta�Tb;βa�βb〉 based on the game in Figure 1.
The type structure satisfies the following conditions: Each type tb of Bob is mapped to a
CPS on Sa ×Ta that assigns probability 1 to {Up}×Ta at each information set. Moreover,
for each such CPS, there is a type of Bob, viz. tb, so that βb(tb) is exactly that CPS. Like-
wise, for each CPS on Sb × Tb, there is a type of Ann, viz. ta, so that βa(ta) is exactly that
CPS. (See Battigalli and Friedenberg 2009 on how to construct such a structure.)

Notice that at each information set, each type of Bob assigns probability 1 to the
event “Ann plays Up,” i.e., to Ann trying to achieve her best payoff. There are no restric-
tions on Ann’s beliefs about Bob’s play of the game. This follows from βa being onto—for
each belief she can have about Sb, there is a type of Ann that has that belief. But at each
information set, each type of Ann assigns probability 1 to the event “at each information
set, Bob assigns probability 1 to the event ‘Ann plays Up,’” and so on. In this sense, it is
transparent that Bob thinks that if Ann gets to move, she will play Up. ♦

Example 2. Suppose the game of BoS with an outside option is played among players
who have no reason to believe that the other players are more or less likely to choose

3There is no restriction on which strategies the players can vs. cannot play.
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a particular strategy or to have particular beliefs, etc. This idea can be modelled by a
type structure that contains all possible conditional beliefs (about types), i.e., by a type
structure 〈Sa�Sb; Sa� Sb;Ta�Tb;βa�βb〉 based on the game in Figure 1, where βa and βb

are onto.
This is known as a complete type structure. (The terminology is due to Branden-

burger 2003.) One example of a complete type structure is the canonical construction of
a type structure, as in Battigalli and Siniscalchi (1999a). That type structure induces all
hierarchies of conditional beliefs. ♦

4. Rationality and strong belief

We now turn to the main epistemic definitions, all of which have counterparts with
a and b reversed. Begin by extending πa(·� ·) to Sa × P(Sb) in the usual way, i.e.,
πa(sa��a) = ∑

sb∈Sb πa(sa� sb)�a(sb). Since the measure �a on Sb reflects a belief by

a about b, we write �a ∈ P(Sb).

Definition 3. Fix Xa ⊆ Sa and sa ∈ Xa. Say sa is optimal under �a ∈ P(Sb) given Xa if
πa(sa��a)≥ πa(ra��a) for all ra ∈Xa.

Definition 4. Say sa ∈ Sa is sequentially optimal under μa(·|·) : B(Sb) × Sb → [0�1] if,
for all h with sa ∈ Sa(h), sa is optimal under μa(·|Sb(h)) given Sa(h). Say sa ∈ Sa is se-
quentially justifiable if there exists μa(·|·) : B(Sb) × Sb → [0�1] so that sa is sequentially
optimal under μa(·|·).

Definition 5. Say (sa� ta) is rational if sa is sequentially optimal under margSb βa(ta).

Let Ra be the set of strategy-type pairs, viz. (sa� ta), at which a is rational.

Definition 6 (Battigalli and Siniscalchi 2002). Fix a CPS μ(·|·) : B(
) × E → [0�1] and
an event E ∈ B(
). Say μ strongly believes E if

(i) there exists F ∈ E so that E ∩ F �= ∅ and

(ii) for each F ∈ E , E ∩ F �= ∅ implies μ(E|F) = 1.

If a CPS μ strongly believes E and 
 ∈ E , then μ(E|
) = 1. In our application, we
have 
 ∈ E . Of course, no CPS strongly believes the empty set.

Strong belief fails a monotonicity property, i.e., μ may strongly believe an event E but
not some event F with E ⊆ F . (This can happen if there is some G ∈ E with E ∩ G = ∅

but F ∩ G �= ∅.) But there are two important properties that strong belief does satisfy.
(These properties are useful in our analysis.)

Property 1 (Conjunction). Fix a CPS on (
� E), viz. μ, and a finite or countable collec-
tion of events E1�E2� � � � . If μ strongly believes E1�E2� � � � , then μ strongly believes

⋂
mEm.
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Property 2 (Marginalization). Fix a CPS μ on (
1 × 
2� E ⊗ 
2), where E ⊆ B(
1). If
μ strongly believes E ∈ B(
1 ×
2) and proj
1

E is Borel, then marg
1
μ strongly believes

proj
1
E.

Definition 7. Say ta ∈ Ta strongly believes Eb ∈ B(Sb×Tb) if βa(ta) strongly believes Eb.

Let SBa(Eb) be the set of strategy-type pairs (sa� ta) such that ta strongly believes
event Eb. That is, SBa(Eb) is the event that “Ann strongly believes Eb.”

Now, we inductively define the set of states at which there is rationality and mth-
order strong belief of rationality. Set R1

a = Ra (resp. R1
b = Rb). The event that Ann is

rational and Ann strongly believes “Bob is rational” is then

R2
a =R1

a ∩ SBa(R
1
b)�

And the event that Ann is rational, Ann strongly believes “Bob is rational,” and strongly
believes “Bob is rational and strongly believes ‘I am rational’” is

R3
a = Ra ∩ SBa(Rb)∩ SBa(Rb ∩ SBb(Ra)) =R2

a ∩ SBa(R
2
b)�

More generally, define Rm
a (resp. Rm

b ), so that Rm+1
a = Rm

a ∩ SBa(R
m
b ) (resp. Rm+1

b = Rm
b ∩

SBb(R
m
a )).

Definition 8. Say there is rationality and common strong belief of rationality (RCSBR)
at state (sa� ta� sb� tb) if (sa� ta� sb� tb) ∈ ⋂

mR
m
a × ⋂

mR
m
b .

The prediction of play under RCSBR is the projection of
⋂

mR
m
a × ⋂

mR
m
b on Sa × Sb.

This prediction depends on both the given game and the given epistemic type structure.

Example 3. Return to Example 1, i.e., the BoS with an outside option game and the
type structure associated with the lady’s choice convention. (Recall, each βb(tb) assigns
probability 1 to {Up} × {Ta} and the belief map βa is onto.) In this example, projSa R

m
a ×

projSb R
m
b is {Up�Down} × {Out} for each m≥ 1.

m= 1: Since each type tb assigns probability 1 to {Up} × Ta, (sb� tb) is rational if and
only if sb = Out. Also, there is a CPS μa (resp. νa) on Sb × Tb so that Up (resp. Down) is
sequentially optimal under μa (resp. νa). Since βa is onto, there is a type ta (resp. ua) so
that (Up� ta) ∈R1

a (resp. (Down�ua) ∈R1
a).

m≥ 2: Assume the claim holds for m. Then Rm+1
b ⊆ Rm

b ⊆ {Out} × Tb. (The second
inclusion follows from the induction hypothesis.) Since Rm

a ∩ ({Up} × Ta) �= ∅, there is
a type tb that assigns probability 1 to Rm

a at each information set. Any such type as-
signs probability 1 to each Rn

a, for n ≤ m, at each information set. So Rm+1
b �= ∅. Thus,

projSb R
m
b = {Out}.

Next, for each n ≤ m, ∅ �= Rn
b ⊆ {Out} × Tb. So there is a CPS μa with

μa(R
m
b |Sb × Tb) = 1. Any such CPS μa strongly believes each Rn

b where n ≤ m. (Here
we use the fact that, for each n ≤ m, Rm

b ∩ ({In-Left� In-Right} × Tb) = ∅.) For any such
CPS, viz. μa, there is a type ta whose belief is μa. As such, there is a type ta so that
(Up� ta) ∈Rm+1

a (resp. (Down� ta) ∈Rm+1
a ). ♦
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Example 4. Return to Example 2, i.e., the BoS with an outside option game and a com-
plete type structure. In this case, an RCSBR analysis corresponds to the typical forward
induction analysis: The strategy In-Left is dominated and so there does not exist a type tb
with (In-Left� tb) rational. But for each sb ∈ {Out� In-Right}, there is a type tb with (sb� tb)

rational. Likewise, for each sa ∈ {Up�Down}, there is a type ta with (sa� ta) rational. It
follows that

projSa R
1
a × projSb R

1
b = {Up�Down} × {Out� In-Right}�

Now if ta strongly believes R1
b, then ta must assign probability 1 to {In-Right} × Tb, con-

ditional on BoS being reached. So projSa R
2
a ⊆ {Down}. Moreover, since βa is onto, there

is a type ta that strongly believes R1
b, so

projSa R
2
a × projSb R

2
b = {Down} × {Out� In-Right}�

With this, if tb strongly believes R2
a, then tb must assign probability 1 to In-Right, condi-

tional on In being played. So projSb R
3
b ⊆ {In-Right}. Moreover, since βb is onto, there is

a type tb that strongly believes R2
a, so

projSa R
3
a × projSb R

3
b = {Down} × {In-Right}�

A standard induction argument shows that, for each m ≥ 3, projSa R
m
a × projSb R

m
b =

{Down} × {In-Right}. This is the extensive-form rationalizable set. ♦

Comparing Examples 3 and 4 we see that there is a nonmonotonicity in behavioral
prediction of RCSBR: even if a type structure contains “more” beliefs, the RCSBR analysis
in this “larger” structure can exclude an outcome allowed by an RCSBR analysis in the
“smaller” one. To review why this can happen, observe that in the complete type struc-
ture (Example 4), there are types of Ann that assign positive probability to Bob’s playing
In-Left, conditional on Ann’s information set being reached. But unlike the case of the
lady’s choice convention (Example 3), no such type can strongly believe the event that
Bob is rational. The reason is that, unlike the case of the lady’s choice convention, here
there are types tb so that (In-Right� tb) is rational. Thus, in a sense, the nonmonotonicity
in the behavioral prediction can be seen as arising from the nonmonotonicity of strong
belief.

Example 5. For a given game and epistemic type structure, it may well be the case that⋂
mR

m
a = ∅ and

⋂
mR

m
b = ∅. For instance, consider BoS with the outside option and

a type structure where βa(ta)({In-Left} × Tb|Sb × Tb) = 1 for each ta. Each type of Ann
initially assigns positive probability to a strictly dominated strategy of Bob. So SBa(R

1
b) =

∅. Hence, R2
a = ∅. It follows that SBb(R

2
a) = ∅ and so R3

b = ∅. ♦

5. Characterization theorem: EFBRS’s

We now turn to characterizing RCSBR. For this it is useful to introduce a best reply corre-
spondence, viz. ρa : C(Sb)→ 2Sa , where ρa(μa) is the set of strategies that are sequentially
optimal under μa. We begin with extensive-form best response sets.
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Definition 9. Call Qa ×Qb ⊆ Sa × Sb an extensive-form best response set (EFBRS) if the
following hold:

a. For each sa ∈Qa, there is a CPS μa ∈ C(Sb) so that

(i) sa ∈ ρa(μa),

(ii) μa strongly believes Qb, and

(iii) ρa(μa) ⊆Qa.

b. And, likewise, for each sb ∈Qb.

Example 6. Return to BoS with the outside option as in Figure 1. There are three EFBRS:
{Up�Down} × {Out}, {Up} × {Out}, and {Down} × {In-Right}. The first of these is the set
of strategies consistent with RCSBR when we append to the game the type structure
associated with the lady’s choice convention. (See Example 3.) The latter of these is the
set of strategies consistent with RCSBR when we append to the game a complete type
structure. (See Example 4.) ♦

Why is the EFBRS definition “right” for characterizing RCSBR? Fix some (sa� ta) ∈⋂
Rm
a . We can immediately identify the first two properties of Definition 9. For the first,

recall that sa is optimal under the CPS associated with ta, namely βa(ta). It follows that sa
is optimal under the marginal of βa(ta) on Sb (a CPS on Bob’s strategies). For the second,
recall that ta strongly believes the events R1

b, R2
b, R3

b, etc. So, by the conjunction property
of strong belief, ta strongly believes the event

⋂
Rm
b . It then follows from a marginaliza-

tion property of strong belief that the marginal of βa(ta) on Sb strongly believes Qb (i.e.,
the projection of

⋂
Rm
b onto Sb). Thus, Qa ×Qb satisfies both conditions (i) and (ii) of an

EFBRS for (sa�μa), where we take μa to be the marginal of βa(ta) on Sb.
But conditions (i) and (ii) do not suffice to characterize RCSBR: We can have a set

Qa × Qb that satisfies conditions (i) and (ii) but is inconsistent with RCSBR (for every
type structure). This is illustrated by the next example.

Example 7. Consider the game in Figure 2 and the set Qa ×Qb = {Out}× {Left�Center}.
We see that the set Qa × Qb satisfies conditions (i) and (ii) of Definition 9. But for each
type structure, projSa

⋂
mR

m
a ∩ {Out} = ∅. That is, for each type structure, Out is incon-

sistent with RCSBR.
First we show that Qa ×Qb satisfies conditions (i) and (ii) of Definition 9. Begin with

Ann and consider the CPS that assigns probability 1
2 : 1

2 to Left : Center at each informa-
tion set. The strategy Out is sequentially optimal under this CPS. Of course, this CPS
strongly believes Qb. Turning to Bob, consider a CPS that assigns probability 1 to Out
at the initial node and probability 1

4 : 1
4 : 1

2 to In-Up : In-Middle : In-Down conditional on
Bob’s subgame being reached. The strategies Left and Center are sequentially optimal
under this CPS, and this CPS strongly believes Qa. So conditions (i) and (ii) are satisfied
for Qa ×Qb.

Next we show that for each type structure, projSa
⋂

mR
m
a ∩ {Out} = ∅. Suppose, con-

tra hypothesis, that there exist some type structure and some type ta so that (Out� ta) ∈⋂
mR

m
a . Certainly, (Out� ta) is rational and ta strongly believes each Rm

b . Since each
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Figure 2. The need for maximality.

pair in {Right} × Tb is irrational and ta strongly believes “Bob is rational,” the type ta
is associated with a CPS that (at each node) assigns probability 1 to {Left�Center} × Tb.
Now, since (Out� ta) is rational, the CPS associated with ta must assign probability 1

2 : 1
2

to {Left} × Tb : {Center} × Tb at each node. With this, (In-Up� ta) and (In-Middle� ta) are
also rational. Indeed, since ta strongly believes each of the Rm

b sets, both (In-Up� ta)
and (In-Middle� ta) must be contained in

⋂
mR

m
a . Now, consider some (sb� tb) ∈ ⋂

mR
m
b .

Conditional on Bob’s information set being reached, tb must assign probability 1 to
{In-Up� In-Middle}×Ta. (To see this, note that this event contains rational strategy-type
pairs, while the event {In-Down} ×Ta does not contain any rational strategy-type pairs.)
Since (sb� tb) is rational, sb = Center. Thus,

⋂
mR

m
b ⊆ {Center} × Tb. But, now notice that

the CPS associated with ta does not strongly believe the event
⋂

mR
m
b . By the conjunc-

tion property of strong belief, this implies that ta does not strongly believe some Rb
m, a

contradiction. ♦

What went wrong in this example? We began with a set Qa × Qb satisfying condi-
tions (i) and (ii). In particular, we had a strategy sa ∈ Qa for which there was a unique
CPS μa(sa), so that sa and μa(sa) satisfy conditions (i) and (ii). But there was also a strat-
egy ra ∈ Sa \ Qa that was sequentially optimal under μa(sa). (Actually, there were two
such strategies.) As a result, if (sa� ta) is consistent with RCSBR, then (ra� ta) must also
be consistent with RCSBR. Thus, there may be a strategy of Ann that is consistent with
RCSBR, but is not contained in Qa. And, if so, we may be able to find an sb and a CPS
μb(sb) (on Sa) so that sb and μb(sb) satisfy conditions (i) and (ii), despite the fact that sb
is not optimal under any CPS (on Sa ×Ta) that strongly believes the RCSBR strategy-type
pairs for Ann.

This suggests that we need to add a maximality criterion to conditions (i) and (ii) of
Definition 9. Indeed, this is what condition (iii) achieves.

Theorem 1. Fix an extensive-form game �.

(i) For any �-based type structure, projSa
⋂

mR
m
a × projSb

⋂
mR

m
b is an EFBRS.
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(ii) Fix a nonempty EFBRS Qa ×Qb. There exists a �-based type structure, so that Qa ×
Qb = projSa

⋂
mR

m
a × projSb

⋂
mR

m
b .

Proof. Begin by showing part (i) of the theorem. Fix a �-based type structure. If⋂
mR

m
a × ⋂

mR
m
b = ∅, then the result is immediate. So suppose

⋂
mR

m
a × ⋂

mR
m
b �= ∅.

Fix (sa� sb) ∈ projSa
⋂

mR
m
a × projSb

⋂
mR

m
b . Then there exists (ta� tb) such that

(sa� ta� sb� tb) ∈
⋂
m

Rm
a ×

⋂
m

Rm
b �

We show that the CPS margSb βa(ta) satisfies conditions (i)–(iii) of an EFBRS for the strat-
egy sa. A similar argument holds for sb.

Begin with the fact that

(sa� ta) ∈ ρa(margSb βa(ta))× {ta} ⊆ Ra�

Now use the fact that ta strongly believes each Rm
b to get that

ρa(margSb βa(ta))× {ta} ⊆
⋂
m

Rm
a �

So, sa ∈ ρa(margSb βa(ta)) ⊆ projSa
⋂

mR
m
a , establishing conditions (i) and (iii) of an

EFBRS. Next, use the conjunction property of strong belief (Property 1) to get that βa(ta)

strongly believes
⋂

mR
m
b . Using the marginalization property (Property 2), margSa βa(ta)

strongly believes projSb
⋂

mR
m
b . This establishes condition (ii) of an EFBRS.

Now turn to part (ii) of the theorem. Fix an EFBRS Qa × Qb �= ∅. Let Ta = Qa and
Tb = Qb. Fix a type ta ∈ Ta = Qa. There is a CPS μa(ta) ∈ C(Sb) satisfying conditions
(i)–(iii) of an EFBRS. Now construct a CPS βa(ta) ∈ C(Sb × Tb� Sb ⊗ Tb) as follows. If
Qb ∩ Sb(h) �= ∅, set βa(ta)((tb� tb)|Sb(h) × Tb) = μa(ta)(tb|Sb(h)) for each tb ∈ Qb = Tb.
Next fix some arbitrary element t∗b ∈ Tb. If Qb∩Sb(h) = ∅, set βa(ta)((sb� t

∗
b)|Sb(h)×Tb) =

μa(ta)(sb|Sb(h)) for each sb ∈ Sb. (Type t∗b is the same for each information set with
Qb ∩ Sb(h) = ∅.)

Indeed, each βa(ta) is a CPS on Sb ⊗ Tb. Conditions (i) and (ii) of a CPS are im-
mediate. For condition (iii), fix an event Eb and two information sets h� i ∈ Ha with
Eb ⊆ Sb(h)× Tb ⊆ Sb(i)× Tb. First, consider the case where Qb ∩ Sb(h) �= ∅. In this case,
Qb ∩ Sb(i) �= ∅. So

βa(ta)(Eb|Sb(i)× Tb) = μa(ta)
({tb ∈Qb : (tb� tb) ∈Eb}|Sb(i)

)
= μa(ta)

({tb ∈Qb : (tb� tb) ∈Eb}|Sb(h)
) ×μa(ta)(Sb(h)|Sb(i))

= μa(ta)
({tb ∈Qb : (tb� tb) ∈Eb}|Sb(h)

) ×μa(ta)(Qb ∩ Sb(h)|Sb(i))
= βa(ta)(Eb|Sb(h)× Tb)×βa(ta)(Sb(h)× Tb|Sb(i)× Tb)�

where the first and fourth lines follow from the construction, the second line fol-
lows from the fact that μa(ta) is a CPS, and the third line follows from the fact that
μa(ta)(Qb|Sb(h)) = 1 (since Qb ∩ Sb(h) �= ∅ and μa(ta) strongly believes Qb). This es-
tablishes condition (iii) of a CPS when Qb ∩ Sb(h) �= ∅. So suppose Qb ∩ Sb(h) = ∅
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and recall Eb ⊆ Sb(h) × Tb. If Qb ∩ Sb(i) �= ∅, then μa(ta)(projSb Eb|Sb(i)) = 0 and
μa(ta)(Sb(h)|Sb(i)) = 0. (This uses the fact that μa(ta)(Qb|Sb(i)) = 1, which follows from
strong belief.) So, here too,

βa(ta)(Eb|Sb(i)× Tb) = βa(ta)(Eb|Sb(h)× Tb)×βa(ta)(Sb(h)× Tb|Sb(i)× Tb)

= 0�

Finally, suppose Qb ∩ Sb(i) = ∅. Here

βa(ta)(Eb|Sb(i)× Tb) = μa(ta)
({sb : (sb� t∗b) ∈Eb}|Sb(i)

)
= μa(ta)

({sb : (sb� t∗b) ∈Eb}|Sb(h)
) ×μa(ta)(Sb(h)|Sb(i))

= βa(ta)(Eb|Sb(h)× Tb)×βa(ta)(Sb(h)× {t∗b}|Sb(i)× Tb)

= βa(ta)(Eb|Sb(h)× Tb)×βa(ta)(Sb(h)× Tb|Sb(i)× Tb)�

as required.
We conclude the proof by showing

Qa =
⋃
ta∈Ta

[ρa(margSb βa(ta))] (1)

Rm
a =

⋃
ta∈Ta

[
ρa(margSb βa(ta))× {ta}

]
for each m� (2)

and likewise with a and b interchanged. Taken together, they give the desired result.
Part (1): Recall that for each ta ∈ Ta = Qa, μa(ta) = margSb βa(ta). So it is immediate

from the construction that Qa ⊆ ⋃
ta∈Taρa(margSb βa(ta)). Conversely, fix any strategy sa

in
⋃

ta∈Taρa(margSb βa(ta)). Then there is a type ta ∈ Ta = Qa so that sa is sequentially
optimal under μa(ta)(·|·). It follows from part (iii) of the definition of an EFBRS that
sa ∈Qa.

Part (2): The proof is by induction on m. The equation is immediate for m= 1. As-
sume the result holds for m. To show that it holds for m + 1, it suffices to show that
each ta ∈ Ta strongly believes Rm

b . For this, fix an information set h such that Rm
b ∩

[Sb(h)× Tb] �= ∅. Observe that

[projSb R
m
b ] ∩ Sb(h) =

[ ⋃
tb∈Tb

ρb(margSa βb(tb))

]
∩ Sb(h)

= Qb ∩ Sb(h)�

(The first equality follows from the induction hypothesis for b; the second equality fol-
lows from (1).) Since Rm

b ∩ [Sb(h) × Tb] �= ∅, it follows that Qb ∩ Sb(h) �= ∅ and so
μa(ta)(Qb|Sb(h)) = 1. (Here, we use part (ii) of the definition of an EFBRS.) So, by con-
struction, βa(ta)(R

m
b |Sb(h)× Tb) = 1, as required. �

Part (i) of Theorem 1 says that the projection of the RCSBR event on Sa × Sb is an
EFBRS. But this may form an empty EFBRS. That said, there is always a nonempty
EFBRS.
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Remark 1. For any game, there exists a nonempty EFBRS—namely, the set of extensive-
form rationalizable strategy profiles.

Battigalli and Siniscalchi (1999a) show that for each �, there exists a complete �-
based type structure with compact metrizable type sets.4 Proposition 6 in Battigalli
and Siniscalchi (2002) says that for each such complete structure, the projection of the
RCSBR event onto Sa × Sb is the set of extensive-form rationalizable strategies. So using
Theorem 1(i), this set is an EFBRS. The fact that it is nonempty is shown as Corollary 1
in Battigalli (1997).

6. Alternate characterization theorem: Directed rationalizability

Return to the lady’s choice convention example, i.e., Example 1. There, each type of
Bob is associated with some CPS that assigned probability 1 to {Up} × Ta. This gives
a restriction on Bob’s first-order beliefs, i.e., his beliefs about what Ann chooses. Let
�b represent this restriction on first-order beliefs. So �b is a subset of the CPS’s on Sa
and, in our example, �b contains only the CPS that assigns probability 1 to Up at each
information set. We do not have a restriction on Ann’s first-order beliefs. So we write �a

for the set of all CPS’s on Sb.
With � = �a × �b in hand, we can take an iterative approach to analyzing the game

tree—much like a “typical rationalizability” procedure. In round one, we eliminate
In-Left and In-Right for Bob, since these strategies are not sequentially optimal un-
der the CPS in �b. We do not eliminate any of Ann’s strategies, since they are each
sequentially optimal under some CPS (in �a). So in round one, we are left with the
set {Up�Down} × {Out}. Turning to round two, Out is sequentially optimal under the
CPS in �b and that CPS strongly believes {Up�Down}. Thus, we cannot eliminate Out
in round two. Likewise, Up (resp. Down) is sequentially optimal under a CPS that as-
signs probability 1 to Out at the initial node and probability 1 to Left (resp. Right) at
Bob’s subgame. This CPS is contained in �a and strongly believes {Out}. So we also get
{Up�Down} × {Out} in round two. Indeed, a standard induction argument gives that
{Up�Down} × {Out} is the outcome of the procedure. Of course, this is the EFBRS we
identify in Section 4.

The procedure we use above is called �-rationalizability; see Battigalli and Sinis-
calchi (2003).5 More generally, let �a (resp. �b) be a nonempty subset of C(Sb) (resp.
C(Sa)), i.e., a set of first-order beliefs of Ann (resp. Bob). Call � = �a × �b a set of first-

order beliefs. Set S��0a = Sa and S
��0
b = Sb. Inductively define S

��m
a and S

��m
b as follows:

Let S��m+1
a be the set of all sa ∈ S��ma so that there is some CPS μa ∈ �a with (i) sa ∈ ρa(μa)

and (ii) μa strongly believes S��1b � � � � � S
��m
b . And likewise with a and b interchanged.6

4Battigalli and Siniscalchi (1999a) canonical construction is a type structure in the sense of Definition 2.
Specifically, in the case of a game tree, the basic conditioning events are clopen and so Battigalli and Sinis-
calchi (1999a) get Ta and Tb to be compact metrizable as an output.

5Battigalli and Siniscalchi (2003) use the concept to study a different problem from the one studied here.
In their problem, the set � is given to the analyst. In our problem, � may be unknown to the analyst and we
obtain a characterization across all �’s. See Section 9.a.

6This definition is as in Battigalli (1999). It is a stronger requirement than the definition in Battigalli and

Siniscalchi (2003). They put sa ∈ S��m+1
a if sa ∈ S��ma and there is some CPS μa ∈ �a with (i) sa ∈ ρa(μa) and
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Definition 10 (Battigalli and Siniscalchi 2003). Call S�a = ⋂
m≥0S

��m
a (resp. S�b =⋂

m≥0S
��m
b ) the �-rationalizable strategies of Ann (resp. Bob). Call S�a × S�b the �-

rationalizable strategy set.

Since the sets S��ma × S��mb form a decreasing sequence and Sa × Sb is finite, there is

some (finite) M so that S�a × S�b = S��Ma × S��Mb .
Of course, there may be many �-rationalizable sets, each of which is obtained by

beginning the procedure with a different set of first-order beliefs � = �a × �b. We use
the phrase directed rationalizability to refer to the set of all S�a × S�b . So, for a given game
�, the directed rationalizability concept gives {S�a × S�b :� = �a ×�b ⊆ C(Sb)× C(Sb)}.

Beginning from the lady’s choice example, we can use the type structure to construct
an associated set of first-order beliefs � and this set of first-order beliefs � can be used to
perform �-rationalizability. The output is the EFBRS we identified earlier. But the lady’s
choice convention has a particular feature: it is a restriction on first-order beliefs and
a requirement that the restriction be “transparent” to the players. So the only restric-
tion on second-order beliefs (i.e., beliefs about strategy the other player chooses and
the other player’s the first-order beliefs) is the requirement that at each information set,
Ann must believe that Bob believes she will play Up and so on. It is this transparency of
(only) first-order restrictions that allows us to directly compute the associated directed
rationalizability set.

More generally, when we begin from a given type structure, we impose substantive
assumptions about which beliefs players do versus do not consider possible. These as-
sumptions may correspond to restrictions (only) on players’ first-order beliefs, which are
transparent to the players. But they need not: they may involve additional restrictions
on higher-order beliefs, and if they do, the procedure we outline above fails.

To see the failure, begin with an epistemic type structure and use the structure itself
to form the set �̄ = �̄a × �̄b. Specifically, for each type ta ∈ Ta, consider the marginal of
βa(ta) on Sb. These CPS’s form the set �̄a. Construct the set �̄b analogously. Here, the
strategies that survive one round of �̄-rationalizability are exactly the strategies that are
consistent with R0SBRa × R0SBRb. But, in round two, we lose the equivalence: If βa(ta)

strongly believes the event “Bob is rational,” then the marginal of βa(ta) also strongly
believes that “Bob chooses a strategy consistent with one round of elimination of �̄-
rationalizability.” (Here, we use a marginalization property of strong belief, plus the
round-one equivalence.) But the converse need not hold. So the strategies that sur-
vive two rounds of �̄-rationalizability may strictly contain the R1SBR strategies. And on
round three, we loose the inclusion. If the CPSβa(ta) strongly believes the R1SBR event
for Bob, then the marginal of βa(ta) also strongly believes that “Bob chooses a strat-
egy consistent with R1SBR.” But recall that the strategies consistent with R1SBR may

(ii) μa strongly believes S��mb . Any set that satisfies the requirements here also satisfies the requirements in
Battigalli and Siniscalchi (2003), but the converse does not hold. (See Battigalli and Prestipino 2011 for an
example.) Thus, using Theorem 1 here, it can be shown that the definition of Battigalli and Siniscalchi (2003)
is conceptually incorrect. (Battigalli and Prestipino 2011 point out that the two definitions are equivalent
when � satisfies a “closedness under composition” condition. Since Battigalli and Siniscalchi 2003 focus on
the case where this condition is satisfied, their results hold with the definition given here.)
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be strictly contained in the strategies that survive two rounds of �̄-rationalizability. So
there may be information sets consistent with this latter event, but not the former. This
implies that even if βa(ta) strongly believes the R1SBR event for Bob, it need not strongly
believe that Ann’s behavior is consistent with two rounds of �̄-rationalizability. (This is
an instance of the fact that strong belief is not monotonic.) As such, we can lose (any)
relationship between the RCSBR strategies and the �̄-rationalizable strategy set. In fact,
Appendix B illustrates an example where the RCSBR strategy set and the �̄-rationalizable
strategy set are disjoint.

There is another route that instead uses the EFBRS properties to form a set � =
�a × �b of first-order beliefs. Fix an epistemic structure. The RCSBR strategies form
an EFBRS, viz. Qa × Qb. For each sa ∈ Qa, we have some CPS μa(sa) satisfying the con-
ditions of an EFBRS. Take �a to be the set of such CPS’s, i.e., one for each sa ∈ Qa, and
construct �b similarly. Now we do have an equivalence between the RCSBR strategies
and the �-rationalizable strategies. More precisely, for each m ≥ 1, Qa ×Qb is the set of
strategies that survives m-rounds of elimination of �-rationalizability. The case of m= 1
follows from properties (i) and (iii) of an EFBRS, the case of m = 2 uses condition (ii) of
an EFBRS, and so on, by induction.

Proposition 1. Fix an extensive-form game �.

(i) Given an EFBRS, viz. Qa×Qb, there exists a set of first-order beliefs, viz. �= �a×�b,
so that S�a × S�b =Qa ×Qb.

(ii) Given a set of first-order beliefs, viz. � = �a ×�b, S�a × S�b is an EFBRS.

Thus, in conjunction with Theorem 1, we have the following alternate characteriza-
tion theorem.

Corollary 1. Fix an extensive-form game �.

(i) For any �-based type structure, there exists a set of first-order beliefs, viz. � = �a ×
�b, so that S�a × S�b = projSa

⋂
mR

m
a × projSb

⋂
mR

m
b .

(ii) Fix a set of first-order beliefs, viz. �a × �b. Then there exists a �-based structure so
that S�a × S�b = projSa

⋂
mR

m
a × projSb

⋂
mR

m
b .

Proof of Proposition 1. Begin with part (i). Fix an EFBRS set Qa × Qb. For each
sa ∈ Qa, there exists a corresponding CPS μa(sa) ∈ C(Sb) satisfying conditions (i)–(iii) of
an EFBRS for Qa × Qb. Take �a so that, for each sa ∈ Qa, �a contains exactly one such
CPS μa(sa). There are no other CPS’s in �a. Define �b analogously. We show that for
each m≥ 1, S��ma × S��mb = Qa ×Qb. This establishes the result.

The proof is by induction. Begin with m = 1. Certainly Qa ⊆ S��1a . Fix sa ∈ S��1a . Then
there exists some μa ∈ �a so that sa is sequentially optimal under μa. This CPS μa is
associated with some ra ∈ Qa, i.e., so that ra and μa jointly satisfy conditions (i)–(iii) of
an EFBRS. Now apply condition (iii) of an EFBRS to get that sa ∈Qa.
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Now fix m ≥ 2 and assume S
��n
a × S

��n
b = Qa × Qb for all n ≤ m. We show that it also

holds for m+ 1. Fix sa ∈Qa = S��ma . Then using the construction of �a, there exists some
μa ∈ �a satisfying conditions (i) and (ii) of an EFBRS for Qa ×Qb, so that sa ∈ ρa(μa) and
μa strongly believes Qb = S

��n
b for all n ≤ m. So certainly, Qa ⊆ S

��m+1
a . Conversely, fix

some sa ∈ S��m+1
a . Then there exists a CPS μa ∈ �a so that sa ∈ ρa(μa) and μa strongly

believes S��mb . Again, since each element of �a satisfies conditions (i)–(iii) of an EFBRS
for some ra ∈Qa, it follows that ρa(μa)⊆ Qa and so sa ∈Qa.

Now turn to part (ii) of the proposition. Fix some set of first-order beliefs, viz. � =
�a × �b. There exist some M with S�a × S�b = S

��M
a × S

��M
b . Fix sa ∈ S�a . There exists

a CPS μa so that sa ∈ ρa(μa) and μa strongly believes each S��mb for m ≤ M . Thus sa
and μa satisfy conditions (i) and (ii) of an EFBRS for Qa × Qb = S�a × S�b . Moreover, if

ra ∈ ρa(μa), then ra is optimal under a CPS that strongly believes each S��mb for m ≤ M .

As such, ra ∈ S
��m
a for each m ≤ M , establishing that ra ∈ S�a . Therefore, condition (iii)

of an EFBRS is also satisfied. A similar argument applies to b. Therefore, S�a × S�b is an
EFBRS. �

The proof of Proposition 1 gives an ancillary result. Begin with some finite set of first-
order beliefs, viz. � = �a×�b. Proposition 1(ii) says that S�a ×S�b is an EFBRS. Conversely,
begin with some EFBRS. The proof of Proposition 1(i) says that we can find a finite set
of first-order beliefs, viz. �= �a ×�b, so that S�a × S�b is this EFBRS.

Remark 2. Fix a game tree �. The directed rationalizability set is

{S�a × S�b :� = �a ×�b ⊆ C(Sb)× C(Sb)} = {S�a × S�b :� = �a ×�b is finite}�

Thus, using the EFBRS properties, we can see that we need only to compute the �-
rationalizable sets for finite sets of first-order beliefs. Of course, much as is the case
with EFBRS’s, the �-rationalizable strategy set may be empty. When � = C(Sa) × C(Sb),
S�a × S�b is the extensive-form rationalizable strategy set. So in keeping with Remark 1,
there always exists a nonempty �-rationalizable strategy set.

While the EFBRS and directed rationalizability concepts are equivalent, it often is
useful to focus on the former definition. The reason is that properties (i), (ii), and (iii) of
an EFBRS give some immediate implications in terms of behavior. In Sections 7 and 8,
we discuss the consequences of context-dependent forward reasoning for some specific
games. There the EFBRS properties play an important role, much in the same way that
the properties of a self-admissible set (Brandenburger et al. 2008) play an important role
in analyzing games. Indeed, we see that these properties help to analyze games such as
centipede, the finitely repeated prisoner’s dilemma, and perfect information games.

7. Analyzing games

In this section, we analyze the predictions of RCSBR in games of interest. We do so by
making use of the properties of an EFBRS and not the (equivalent) directed rationaliz-
ability definition.
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Figure 3. Three-legged centipede.

Figure 4. Prisoner’s dilemma.

Example 8. Consider the three-legged centipede game given in Figure 3. Here, the
EFBRS’s are {Out} × {Down} and {Out} × {Down�Across}. In particular, there is no
EFBRS where Ann plays In at the first node. To see this, suppose otherwise, i.e., sup-
pose there exists an EFBRS Qa × Qb and a strategy sa ∈ Qa, where sa plays In at the first
node. By condition (i) of an EFBRS, we must have that Qa ⊆ {Out� In-Down}, so that
sa = In-Down. Now, fix sb ∈ Qb and recall that sb must be sequentially optimal under a
CPS that strongly believes Qa. Then, at Bob’s information set, this CPS must assign prob-
ability 1 to In-Down. Since sb is sequentially optimal under this CPS, sb = Down. So we
have that Qb = {Down}. But then In-Down cannot simultaneously satisfy conditions (i)
and (ii) of an EFBRS. ♦

The argument we present for the three-legged centipede is more general: Fix an
EFBRS of the n-legged centipede game. Then the first player chooses Out. This result is
a consequence of Proposition 3(i) to come.

Example 9. Figure 4 gives the prisoner’s dilemma. Consider the 3-repeated version of
the game. Let Qa ×Qb be a nonempty EFBRS. Then each (sa� sb) ∈Qa ×Qb results in the
Defect-Defect path.7

Let us give an intuition: By condition (i) of an EFBRS, each strategy sa ∈ Qa (resp.
sb ∈ Qb) is sequentially justifiable. As such, sa (resp. sb) plays Defect in the last period at
each history allowed by sa (resp. sb). Now consider a second period information set h,
where sa ∈ Sa(h) and Qb ∩ Sb(h) �= ∅. By conditions (i) and (ii) of an EFBRS, sa must be
sequentially optimal under a CPS μa(sa) with μa(sa)(Qb|Sb(h)) = 1. Then, conditional

7In the once or twice repeated prisoner’s dilemma, we have a stronger result: If (sa� sb) is contained in an
EFBRS, then each of sa and sb specify Defect at each information set.
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on h, μa(sa) assigns probability 1 to Bob defecting in the third period, irrespective of
Ann’s play. As such, sa plays D at h. And likewise with a and b reversed.

Turn to the first period and suppose, contra hypothesis, there is some sa ∈ Qa so
that sa initially chooses C. For each sa ∈ Qb, (sa� sb) results in the Defect-Defect path
in periods two and three. So Ann’s expected payoffs from sa corresponds to her first
period expected payoffs from playing sa. With this, the Defect-always strategy yields a
strictly higher expected payoff in the first period and an expected payoff of at least zero
in subsequent periods. This contradicts sa being optimal under μa(sa)(·|Sb). ♦

An analogous result holds for the N-repeated prisoner’s dilemma for N finite. The
proof is given in Appendix C.

Let us take stock of the examples above. First, in battle of the sexes with the out-
side option, we get that either (i) Bob plays Out or (ii) Bob plays In-Right and Ann plays
Down. Each of these were subgame perfect paths of play. In centipede, we get the back-
ward induction path (but not necessarily the backward induction strategies). Likewise,
in the finitely repeated prisoner’s dilemma, we get the unique Nash (and so subgame
perfect) path, where each player plays Defect in all periods.

In each of these cases, the outcomes allowed by an EFBRS coincide with the out-
comes allowed by some subgame perfect equilibrium (SPE). This raises the question,
Are the EFBRS concept and the SPE concept equivalent? If so, then we have a good idea
what the EFBRS concept delivers (in games of interest), since we have a good idea about
what SPE delivers.

The EFBRS and SPE concepts are not equivalent, but in a particular class of games,
any pure-strategy SPE corresponds to some EFBRS. Each of the examples we mentioned
is contained in this class of games.

Definition 11. Say a game � has observable actions if each information set is a
singleton.

To understand the definition, recall that in our setup, both a and b have a choice at
each history. (Of course, it may be the case that only one of the players is active.) So a
game with observable actions is a game where the players begin by making simultane-
ous choices, learn the realization of the choices, and then perhaps make simultaneous
choices, etc., until a terminal history is reached.

Given distinct terminal histories, viz. z and z′, we can write z = (x� c1� � � � � cK) and
z′ = (x�d1� � � � � dL), where x is the last common predecessor of z and z′, i.e., c1 �= d1.
(Recall, ck = (cka � c

k
b ) and dl = (dla�d

l
b).)

Definition 12. Fix a game of observable actions and two distinct terminal nodes,
viz. z = (x� c1� � � � � cK) and z′ = (x�d1� � � � � dL). Say a is decisive for (z� z′) if a moves at
x, c1

a �= d1
a, and c1

b = d1
b. And likewise with a and b interchanged.

Definition 13 (Battigalli 1997). A game of observable actions satisfies no relevant ties
(NRT) if, whenever a (resp. b) is decisive for (z� z′), then �a(z) �=�a(z

′).
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Figure 5. A modification of Figure 2.

A game with no ties satisfies NRT, but the converse does not hold. Reny’s (1993,
Figure 1) take-it-or-leave-it game is one such example.

Fix a strategy sa and write [sa] for the set of all ra that induce the same plan of action
as sa, i.e., the set of all ra so that ζ(ra� ·) = ζ(sa� ·), and likewise define [sb].

Proposition 2. Fix a game � with observable actions and a pure-strategy SPE, viz.
(sa� sb).

(i) There is an EFBRS, viz. Qa ×Qb, so that [sa] × [sb] ⊆Qa ×Qb.

(ii) If � satisfies NRT, then [sa] × [sb] is an EFBRS.

Each of the examples we have seen satisfies both observable actions and NRT. In
those examples, any pure-strategy subgame perfect equilibrium (sa� sb) belongs to an
EFBRS, where the EFBRS only allows the terminal node ζ(sa� sb). This fits with part (ii)
of the proposition. Part (i) says that even if the game fails NRT, (sa� sb) still is contained
in some EFBRS. Example 12 in Appendix C provides a game that fails NRT, so that any
EFBRS that contains a certain pure-strategy SPE also allows other paths of play.

Proposition 2 does not say that the pure-strategy SPE concept and the EFBRS con-
cept are equivalent. A game without observable actions may have a pure-strategy sub-
game perfect equilibrium whose outcome is precluded by any EFBRS. Conversely, a
given EFBRS may allow outcomes that are precluded by any (even randomized) sub-
game perfect equilibrium. (This can happen even in a game with observable actions
and NRT.) The next examples demonstrate these points.

Example 10. The game in Figure 5 satisfies NRT but fails the observable actions condi-
tion. It is obtained from the game in Figure 2 by two transformations. First, the simulta-
neous move subgame is transformed into a game where Ann moves first and then Bob
moves not knowing Ann’s choice. Second, two of Ann’s decision nodes are coalesced.

Here, (Out�Right) is a pure-strategy subgame perfect equilibrium. But applying the
argument in Section 5, Out is not contained in any EFBRS.8 ♦

8Unlike the subgame perfect concept, the EFBRS concept is invariant to coalescing decision nodes.
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Figure 6. A common interest game.

Example 11. The game in Figure 6 satisfies both NRT and the observable actions con-
dition. The unique subgame perfect equilibrium is (In-Across�Across), which results in
the (3�3) outcome. Indeed, this profile induces an EFBRS, viz. {In-Across} × {Across}.
But there are two EFBRS’s that give the (2�2) outcome, namely {Out} × {Down} and
{Out} × {Down�Across}. ♦

Taken together with the main theorem (Theorem 1), Example 11 says that a non-
backward induction outcome, namely (2�2), is consistent with RCSBR. To understand
this better, notice that Out is the unique best response for Ann under a CPS that assigns
probability 1 to the event “Bob plays Down.” So if each type of Ann assigns probability 1
to {Down} × Tb, then conditional on Bob’s node being reached, he must conclude that
Ann is irrational. In this case, Bob may very well believe that Ann is playing In-Down; if
so, Down is a unique (sequential) best response for Bob.

8. Perfect-information games

Example 10 shows that in games without observable actions, the SPE concept allows for
outcomes that are excluded by every EFBRS. Alternatively, Proposition 2 and Example 11
show that in games with observable actions, the SPE concept is a strict refinement of the
EFBRS concept. Thus, even in these games, we cannot use the SPE concept to analyze
the consequences of RCSBR.

Now we turn to a particular class of games with observable actions, namely perfect-
information games (i.e., games with observable actions and with at most one active
player at each information set). We have seen some examples of perfect-information
games, e.g., Examples 8 and 11. In the former case, each EFBRS yields the backward in-
duction path (and so the backward induction outcome). Of course, for that game, the
Nash and backward induction paths coincide. Alternatively, in Example 11, one EFBRS
corresponds to backward induction, but others do not. However, there we do get that
the EFBRS paths correspond (exactly) to the Nash paths (and so Nash outcomes) of the
game.

The examples suggest there may be a connection between EFBRS’s and Nash out-
comes, at least for perfect-information (PI) games. (Of course, for non-PI games, an
EFBRS may give non-Nash outcomes.) Indeed, there is a connection for PI games satis-
fying a “no ties” condition.
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Definition 14 (Marx and Swinkels 1997). A game satisfies transference of decision-
maker indifference (TDI) if πa(sa� sb) = πa(ra� sb) implies πb(sa� sb) = πb(ra� sb). And
likewise with a and b interchanged.

If a game satisfies NRT, it also satisfies TDI. Yet many games of interest satisfy TDI,
but fail to satisfy NRT. For example, zero sum games satisfy TDI, but may fail to satisfy
NRT.

Proposition 3. (i) Fix a PI game � that satisfies TDI. If Qa ×Qb is an EFBRS, then there
exists a pure-strategy Nash equilibrium, viz. (sa� sb), so that each profile in Qa ×Qb

is outcome equivalent to (sa� sb).

(ii) Fix a PI game � that satisfies NRT. If (sa� sb) is a pure-strategy Nash equilibrium
in sequentially justifiable strategies, then there is an EFBRS, viz. Qa × Qb, so that
(sa� sb) ∈ Qa ×Qb.

The proof can be found in Appendix D. Taken together, Theorem 1 and Proposition 3
give the following corollary.

Corollary 2. (i) Fix a PI game � that satisfies TDI and has an epistemic type structure.
If there is RCSBR at the state (sa� ta� sb� tb), then (sa� sb) is outcome equivalent to a
pure-strategy Nash equilibrium.

(ii) Fix a PI game � that satisfies NRT and has a pure-strategy Nash equilibrium,
viz. (sa� sb), in sequentially justifiable strategies. Then there exist an epistemic
structure and a state thereof, viz. (ra� ta� rb� tb), at which there is RCSBR and
(ra� rb) = (sa� sb).

Why the connection between EFBRS’s and Nash equilibria? Recall that if each player
is “rational” (i.e., maximizes subjective expected utility) and places probability 1 on the
actual strategy choices by the other player, then the strategy choices constitute a Nash
equilibrium. In a PI game that satisfies TDI, RCSBR imposes a form of correct beliefs
about the actual outcomes that obtain. Let us recast this at the level of the solution con-
cept: In a PI game that satisfies TDI, each strategy profile in a given EFBRS is outcome
equivalent. (This is Lemma 8 in Appendix D.) So along the path of play, the associated
CPS(’s) must assign probability 1 to a particular outcome—the outcome associated with
the EFBRS, i.e., the “correct” outcome. (This uses condition (ii) of an EFBRS.) With this,
we get a Nash outcome (but not necessarily the Nash strategies).9

This was the intuition for part (i) of Corollary 2. The proof closely follows the proof
of Proposition 6.1a in Brandenburger and Friedenberg (2010), although now making use
of the EFBRS properties. (The proof in Brandenburger and Friedenberg 2010 makes use
of properties of self-admissible sets.)

9Ben-Porath (1997) gives another epistemic analysis of perfect-information games. His analysis is based
on “rationality and common initial belief of rationality” plus a grain of truth assumption. It also gives Nash
outcomes.
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The converse, i.e., part (ii), is novel. (In particular, both the “no ties” condition
and the proof are quite different from the analysis in Brandenburger and Friedenberg
2010.) A Nash equilibrium in sequentially justifiable strategies, in general, satisfies con-
ditions (i) and (ii) of an EFBRS. However, it may fail the maximality criterion. Indeed,
the proof makes use of all three properties of Definition 9; see Appendix D.

There is a gap between parts (i) and (ii) of Proposition 3. In particular, part (i) says
that starting from an EFBRS, we can get a pure Nash outcome, while part (ii) says that
starting from a sequentially justifiable pure-strategy Nash equilibrium, we can get an
EFBRS.

We cannot improve part (ii) to say that starting from any pure Nash equilibrium, we
get an EFBRS. (This is because a Nash equilibrium may not be sequentially justifiable;
see Appendix D.) We do not know if we can improve part (i) to say that starting from
an EFBRS, we get a pure-strategy Nash equilibrium in sequentially justifiable strategies.
(Appendix D elaborates on this issue.) However, starting from an EFBRS, we can get a
mixed-strategy Nash equilibrium that satisfies a “sequential justifiability” condition.

Consider a pure-strategy profile (sa� sb) and a mixed-strategy profile (�a��b) ∈
P(Sa) × P(Sb). Call (sa� sb) and (�a��b) outcome equivalent if π(sa� sb) = π(�a��b).
Likewise, call Qa × Qb ⊆ Sa × Sb and (�a��b) ∈ P(Sa) × P(Sb) outcome equivalent if
each (sa� sb) ∈Qa ×Qb is outcome equivalent to (�a��b).

Proposition 4. Fix a PI game that satisfies TDI. If Qa ×Qb is an EFBRS, then there exists
a mixed-strategy Nash equilibrium, viz. (σa�σb), so that

(i) Qa ×Qb is outcome equivalent to (σa�σb) and

(ii) each sa ∈ Suppσa (resp. sb ∈ Suppσb) is sequentially justifiable.

Proposition 4 gives that if we begin with an EFBRS, we can construct an equiva-
lent mixed-strategy Nash equilibrium. The Nash equilibrium has the property that each
strategy in its support is sequentially justifiable. But it is important to note that this does
not necessarily give that the mixed-strategy itself is sequentially justifiable.10 More to
the point, given a PI game that satisfies TDI and some mixed-strategy Nash equilibrium,
viz. (σa�σb), does there exist some pure-strategy Nash equilibrium, viz. (sa� sb), so that
sa (resp. sb) is contained in the support of σa (resp. σb)? If so, using Proposition 4, we get
that starting from an EFBRS, there is a pure-strategy Nash equilibrium in sequentially
justifiable strategies. But this too is not known.

9. Discussion

In this section, we discuss some conceptual aspects of the paper as well as some
extensions.

10In non-PI games, we can construct a mixed-strategy Nash equilibrium, viz. (σa�σb), where each strat-
egy in the support of σa and σb is sequentially justifiable, but σa is itself not sequentially justifiable. The
question remains whether the same can occur in PI games.
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9.a Context-dependent forward induction

We characterize the behavioral implications of forward induction reasoning across all
type structures. Why the interest in such a result?

When we analyze a strategic situation, we specify the game (matrix or tree). But, in
practice, there is a context to the strategic situation studied—e.g., players come to the
game with social conventions, a history, etc. This context influences what beliefs players
do vs. do not consider possible. If this is the case, it may be of interest to study a given
game relative to different type structures, depending on the context within which the
game is played.

One case of particular interest is where the analyst does not know the context, i.e.,
does not know which beliefs are vs. are not “transparent” to the players. If this is the
case, the analyst will want to understand the behavioral implications of forward induc-
tion reasoning across all type structures. By Theorem 1, he should apply the EFBRS con-
cept. (Contrast this with extensive-form rationalizability: The analyst should apply the
extensive-form rationalizability concept, if he is interested in forward induction reason-
ing and understands that the players consider all possible beliefs. This is the implication
of Proposition 6 in Battigalli and Siniscalchi 2002.)

9.b Restrictions on beliefs

In Section 9.a, we implicitly equated analyzing forward induction reasoning across all
“transparent restrictions on players beliefs” with analyzing forward induction reason-
ing across all type structures. We can make this step precise. First, formalize the idea
that certain (events about) beliefs are transparent to the players. For this, begin with
Battigalli and Siniscalchi’s (1999a) canonical construction of a type structure; this type
structure contains all hierarchies of conditional beliefs (satisfying coherency and com-
mon belief of coherency). Let us look at the self-evident events within this structure.
Loosely, we look at events Sa ×Ea × Sb × Eb ∈ B(Sa × Ta × Sb × Tb) such that whenever
E = Sa ×Ea ×Sb ×Eb obtains, there is “common belief of E” in the following sense: each
player assigns probability 1 to E at each node, each player assigns probability 1 at each
node to the other player assigning probability 1 to E at each node, etc.11 These self-
evident events represent transparent restrictions on players’ beliefs. Each type struc-
ture can be mapped into the canonical construction and, in a certain sense, each type
structure forms a self-evident event in the canonical construction, i.e., under this map-
ping.12 Furthermore, each such self-evident event in the canonical type structure cor-
responds to a “smaller” type structure. Forward induction reasoning is preserved under
these mappings. (There is an equivalence between rationality in the small structure and
“rationality and the self-evident event” in the large structure, and similarly for strong
belief; see Battigalli and Friedenberg 2009 for the formal statement.)

11This is equivalent to the requirement that at each state where E = Sa×Ea×Sb×Eb obtains, each player
assigns probability 1 to E at each of his information sets.

12This statement presumes that the image of the type set (under the mapping to the canonical construc-
tion) is measurable.
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Figure 7. A modification of Figure 6.

There is a special type of transparent restriction on beliefs: those generated only by
restrictions on first-order beliefs. In this case, there are explicit restrictions on first-order
beliefs and the only restrictions on higher-order beliefs are those generated implicitly by
the restrictions on first-order beliefs. (For instance, in the lady’s choice convention, we
explicitly restrict Bob’s first-order beliefs, requiring that he assign probability 1 to Ann
playing Up. This implicitly imposes a strong restriction on Ann’s second-order beliefs,
requiring that she assign probability 1 to the event “Bob assigns probability 1 to Ann
playing Up” and so on; see Example 1.) The restrictions on first-order beliefs, viz. �,
generate a particular type of self-evident event. Analyzing RCSBR within the associ-
ated type structure leads to the �-rationalizable strategy set. Indeed, this is related to
Battigalli and Siniscalchi’s (2003) motivation in defining directed rationalizability.13

9.c Two versus three player games

Here we have focused on two-player games. The main results (Theorem 1 and Corol-
lary 1) extend to games with three or more players, up to issues of correlation. Specif-
ically, if we allow for correlated assessments in Definition 8, then we must also allow
for correlated assessments in Definition 9. A similar statement holds for the case of
independence—although, of course, care is needed in defining independence for CPS’s.
The central issue is that Charlie’s belief about Bob should not change after Charlie learns
information only about Ann. (The idea dates back to Hammond 1987 and is related to
the “do not signal what you do not know” condition of Fudenberg and Tirole 1991. See
Battigalli 1996 for a formalization of the idea and a discussion of Fudenberg and Tirole
1991.)

There is an additional issue that arises in the three-player case: Should we require
that Ann strongly believes “Bob and Charlie are rational” or should we instead require
that Ann strongly believes “Bob is rational” and strongly believes “Charlie is rational”?
Arguably, in the case of independence, we should require the latter.

How does this affect our analysis of games? Amend Figure 6, so that it is a three-
player game as in Figure 7. Consider a state at which there is RCSBR in the sense ex-
plained above (i.e., Bob has an independent assessment and strongly believes both “Ann

13The treatment here is due to Battigalli and Prestipino (2011). It is related to, but somewhat differ-
ent from, the epistemic assumptions of Battigalli and Siniscalchi (2003, 2007). It is important to note
that under either treatment, an amendment is needed to Battigalli and Siniscalchi’s (2003) definition of
�-rationalizability; see footnote 6.
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is rational” and “Charlie is rational”). Let us ask which strategies can be played. Of
course, using rationality, Charlie must play Across (at this state). Next we require that
a type of Bob strongly believes “Ann is rational” and also “Charlie is rational.” So, con-
ditional on Bob’s information set being reached, this type must maintain a hypothe-
sis Charlie is rational, and so that Charlie plays Across. In this case, Bob’s unique best
response is to play In. Turning to Ann, we see that under an RCSBR analysis, she
chooses In. So we only get the backward induction outcome. (Battigalli and Sinis-
calchi 1999b provide a “context free” epistemic analysis of this notion of independent
rationalization.)

This example also shows that in the case of independence, Proposition 3(ii) does
not hold. If we instead consider the case of correlation, then it may also be natural to
instead require that Bob strongly believes “Ann and Charlie are rational” (i.e., as opposed
to strong belief of “Ann is rational” and strong belief of “Charlie is rational”). Of course, it
may be the case that when Bob’s node is reached, he must forgo the hypothesis that “Ann
and Charlie are rational.” Thus, in this case, we do have an analogue of Proposition 3(ii).
Indeed, both parts (i) and (ii) of Proposition 3 hold for the case of correlation.

Appendix A: Proofs for Section 4

Proof of Property 1. Fix an event F ∈ E with F ∩ ⋂
mEm �= ∅. Then F ∩ Em �= ∅ for

all m. So for each m, μ(Em|F) = 1. (This is because μ strongly believes each Em.) But
then μ(

⋂
mEm|F)= 1. �

Proof of Property 2. Fix an event F ∈ E with F ∩proj
1
E �= ∅. Then (F×
2)∩E �= ∅.

Since, by assumption, proj
1
E is Borel, marg
1

μ(proj
1
E|F) is well defined. Since μ

strongly believes E, μ(E|F ×
2) = 1. Then (marg
1
μ)(proj
1

E|F)= 1, as required. �

Appendix B: Directed rationalizability

In the text, we argue that for each epistemic type structure, there is a set of first-order
beliefs � so that the projection of the RCSBR set is the �-rationalizable strategy set. The
purpose of this appendix is to illustrate that this set of first-order beliefs may not corre-
spond to the set of all first-order beliefs allowed by the epistemic type structure.

Figure 8 is a game of battle of the sexes preceded by an observed “money burning”
move by Bob. (See Ben-Porath and Dekel 1992.) Here, Ann and Bob are playing a BoS
game. However, prior to the game, Bob has the option to Burn (B) or Not Burn (NB) $2.

Suppose society has formed a modified version of the lady’s choice convention. Now,
there are no restrictions on players’ first-order beliefs. (So, in particular, there are types
of Bob who think Ann does not go for her best payoff.) But there is a restriction on Ann’s
second-order beliefs. Specifically, conditional on observing so-called normal behavior
(i.e., a decision to Not Burn), Ann thinks that Bob thinks she goes for her best payoff
and chooses Up. There is no restriction on Ann’s second-order belief conditional on
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Figure 8. Battle of the sexes with money burning.

observing “strange” behavior, i.e., on observing a decision to Burn. Likewise, there are
no restrictions on Bob’s second-order beliefs, etc.

We can model this modified version of the lady’s choice convention by a type struc-
ture 〈Sa�Sb; Sa� Sb;Ta�Tb;βa�βb〉 based on the game in Figure 8. Now, βb is onto but
βa is not. Formally, write [Up]a for the event “Ann plays Up, if Bob does Not Burn,”
i.e., [Up]a = {Up-down�Up-up} × Ta, and write [NB]b for the event “Bob does Not
Burn,” i.e., [NB]b = {NB-Left�NB-Right} × Tb. Let Ub be the set of types tb ∈ Tb with
βb(tb)([Up]a|Sa × Ta) = 1, i.e., the set of types of Bob that assign probability 1 to the
event “Ann plays Up, when Bob chooses Not Burn.” Then, for each type ta ∈ Ta,

βa(ta)(Sb ×Ub|[NB]b) = 1�

i.e., conditional on Bob choosing Not Burn, each type of Ann assigns probability 1 to the
event that “Bob believes that ‘Ann plays Up, when Bob does Not Burn.’” For any belief μa

of Ann with μa(Sb ×Ub|[NB]b)= 1, there is a type ta so that βa(ta) = μa. (See Appendix A
in Battigalli and Friedenberg 2009 on how to construct such a type structure.)

The set of first-order beliefs induced by this type structure is � = C(Sb)× C(Sa). The
�-rationalizable set is {Down-down}×{NB-Right}. (This is also the set of extensive-form
rationalizable strategies.) It is obtained as follows: In round one, the strategy B-left is
dominated by NB-Left, but all other strategies (of both players) are optimal under some
CPS. It follows that

S��1a × S��1b = Sa × {NB-Left�NB-Right�B-right}�
But now note that the choice of up by Ann cannot be optimal under any CPS that strongly
believes {NB-Left�NB-Right�B-right}. (If a CPS strongly believes {NB-Left�NB-Right�
B-right}, then conditional on Burn being played, the CPS must assign probability 1 to
right, in which case up is not a best response.) So

S��2a × S��2b = {Up-down�Down-down} × S��1b �

Turning to Bob, if a CPS strongly believes {Up-down�Down-down}, then B-right yields
an expected payoff of 2 and NB-Left yields an expected payoff of at most 1. So

S��3a × S��3b = S��2a × {NB-Right�B-right}�
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Now, if a CPS strongly believes {NB-Right�B-right}, Down-down is the only sequentially
optimal strategy, so

S��4a × S
��4
b = {Down-down} × S

��3
b �

Finally, if a CPS strongly believes {Down-down}, NB-Right is the only sequentially opti-
mal strategy, so

S��5a × S��5b = {Down-down} × {NB-Right}�
But the projection of event RCSBR onto Sa × Sb is {Up-down} × {B-right}. It is ob-

tained as follows. In round one, for each belief about the strategies of the other player,
there is a type that holds that belief. So, here too,

projSa R
1
a × projSb R

1
b = Sa × {NB-Left�NB-Right�B-right}�

Now consider a type ta that strongly believes R1
b. Recall that, conditional on Bob choos-

ing not to burn, each type of Ann assigns probability 1 to the event that “Bob believes
that ‘Ann plays Up, when Bob does not burn.’” So if ta strongly believes R1

b, it must assign
zero probability to {NB-Right} ×Tb. For such a type ta, (Down-down� ta) is irrational. So

projSa R
2
a × projSb R

2
b = {Up-down} × projSb R

1
b�

But now, if (sb� tb) is rational and tb strongly believes R2
a, then sb = B-right, and so

projSa R
3
a × projSb R

3
b = {Up-down} × {B-right}�

Why the difference between the two approaches? We began with an epistemic struc-
ture and used the structure itself to form the set of first-order beliefs � = C(Sb) × C(Sa).
(So for each μa ∈ �a = C(Sb), there is type ta ∈ Ta such that the marginal of βa(ta) on
Sb is μa, and likewise for b.) With this set of first-order beliefs, the strategies that sur-
vive one round of �-rationalizability are exactly the strategies that are consistent with
rationality. But in the next round, we lose the equivalence: If βa(ta) strongly believes
R1
b, then the marginal of βa(ta) must strongly believe S��1b = projSb R

1
b. (Here, we use the

marginalization property of strong belief.) Thus projSa R
2
a ⊆ S

��2
a . But the converse does

not hold. We have Down-down ∈ S
��2
a , but Down-down /∈ projSa R

2
a. The reason is that,

conditional on Bob choosing NB, each βa(ta) assigns probability 1 to the event “Bob as-
signs probability 1 to [Up]a.” So if Bob does not burn, Ann can only maintain a hypothe-
sis that Bob is rational if she assigns probability 1 to Bob’s playing NB-Left, in which case
the choice Down is not a best response. With this, S��2a = {Up-down, Down-down} and
projSa R

2
a = {Up-down}. As a result, S��3b = {NB-Right, B-right} and projSb R

3
b = {B-right}.

It follows that S��4a = {Down-down}, despite the fact that projSa R
4
a = {Up-down}. The

key to this last step is that Up-down is optimal under a CPS that strongly believes
projSb R

3
b � S��3b , but not optimal under a CPS that strongly believes S��3b . This can occur

because strong belief fails a monotonicity requirement.
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Appendix C: Examples and proofs for Section 7

We begin by showing that for the finitely repeated prisoner’s dilemma, any EFBRS results
in the Defect-Defect path of play. To show this, we need to make use of certain properties
of EFBRS’s. We again make use of these properties in Appendix D. We begin with the best
response property.

Definition 15. Say Qa × Qb ⊆ Sa × Sb satisfies the best response property if, for each
sa ∈ Qa, there is a CPS μa ∈ C(Sb), so that sa ∈ ρa(μa) and μa strongly believes Qb, and
similarly for b.

An EFBRS satisfies the best response property. But the converse need not hold, i.e.,
Qa × Qb may satisfy the best response property, but fail to be an EFBRS because it vio-
lates the maximality condition. (See the example in Section 5.)

Let us introduce some notation to relate the whole game to its parts. Fix a game �

and a subgame �. Write H�
a for the set of a’s information sets that are contained in �. We

abuse notation and write Sa(�) for the set of strategies of � that allow �. We also write
S�a = ∏

h∈H�
a
Ca(h) for the set of strategies of a in the subgame �. Each strategy s�a ∈ S�a

can be viewed as the projection of a strategy sa ∈ Sa(�) into S�a . Given a set Ea ⊆ Sa, write
E�
a for the set of strategies s�a ∈ S�a so that there is some sa ∈ Ea ∩ Sa(�) whose projection

into S�a is s�a . We write π�
a and π�

b for the payoff functions associated with the subtree �.

So if (sa� sb) allows �, then π�(s�a � s
�
b ) = π(sa� sb).

Lemma 1. Fix a game � and a subgame �. If Qa ×Qb satisfies the best response property
for the game �, then Q�

a ×Q�
b satisfies the best response property for the subgame �.

Proof. If Q�
a × Q�

b = ∅ (if no profile in Qa × Qb allows �), then it is immediate that

Q�
a ×Q�

b satisfies the best response property. So we suppose Q�
a ×Q�

b �= ∅.
Fix a strategy s�a ∈ Q�

a . Then there exists a strategy sa ∈ Qa ∩ Sa(�) whose projection
into

∏
h∈H�

a
Ca(h) is s�a . Since sa ∈ Qa, we can find a CPS μa ∈ C(Sb) so that sa ∈ ρa(μa)

and μa strongly believes Qb.
Let S�

b be the set of all S�b (h) for h ∈ H�
a . Given an event E�

b ⊆ S�b , write Eb ⊆ Sb

for the set of all sb ∈ Sb(�) so that the projection of sb into S�b is in E�
b . Then, de-

fine ν�a (·|·) : B(S�b ) × S�
b → [0�1] so that, for each event E�

b ⊆ S�b and each S�b (h) ∈ S�
b ,

ν�a (E
�
b |S�b (h)) = μa(Eb|Sb(h)). It is readily verified that ν�a is a CPS on (S�b � S�

b ).
Since sa allows � and sa is sequentially optimal under μa, it follows that s�a is sequen-

tially optimal under ν�a . Fix some S�b (h) ∈ S�
b . If Q�

b ∩S�b (h) �= ∅, then Qb ∩Sb(h) �= ∅. So,

in this case, ν�a (Q
�
b |S�b (h)) ≥ μa(Qb|Sb(h)) = 1. This establishes that ν�a strongly believes

Q�
b .

Interchanging a and b establishes the result. �

We use Lemma 1 to show the next lemma.
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Lemma 2. Consider the N-repeated prisoner’s dilemma as given in Figure 4. If Qa × Qb

satisfies the best response property for this game, then each strategy profile in Qa × Qb

results in the Defect-Defect path.

Proof. The proof very closely follows the proof of Example 3.2 in Brandenburger and
Friedenberg (2010). It is by induction on N . For N = 1, the result is immediate. Assume
the result holds for some N and we show it holds for N + 1.

Consider some Qa × Qb of the N + 1 repeated prisoner’s dilemma that satisfies the
best response property. Suppose there is a strategy sa ∈ Qa that plays Cooperate in the
first period. Fix a strategy sb ∈ Qb. If sb plays Cooperate (resp. Defect) in the first period,
Ann gets c (resp. e) in the first period. By Lemma 1 and the induction hypothesis, Ann
gets a payoff of zero in periods 2� � � � �N . So for each sb in Qb, πa(sa� sb) = c if sb plays
Cooperate in the first period and πa(sa� sb)= e if sb plays Defect in the first period.

Now, instead, consider the strategy ra that plays Defect in every period, irrespective
of the history. Again, fix a strategy sb ∈ Qb. If sb plays Cooperate in the first period, then
πa(ra� sb) ≥ d, and if sb ∈Qb plays Defect in the first period, then πa(ra� sb) ≥ 0.

Putting the above together gives that under any CPS that strongly believes Qb, we
must have that ra is a strictly better response than sa ∈ Qa at the first information set.
But this contradicts Qa ×Qb satisfying the best response property. �

Corollary 3. Consider the N-repeated prisoner’s dilemma as given in Figure 4. If
Qa × Qb is an EFBRS, then each strategy profile in Qa × Qb results in the Defect-Defect
path.

Now we turn to Proposition 2. We show the result for a somewhat more general set
of games, i.e., games where, in a sense, the information structure is determined by the
subgames.

Definition 16. Fix a game �. Say a subgame � is sufficient for an information set h ∈H

if h is contained in � and the set of strategy profiles that allow � is exactly Sa(h)× Sb(h).

Notice that there may be two subgames, viz. � and �̄, that are sufficient for h.14 If
so, either � is a subgame of �̄ or �̄ is a subgame of �. When there are two subgames
that are sufficient for h, we typically are interested in the last subgame � sufficient for
h, i.e., so that no proper subgame of � is sufficient for h. Also notice that there may be
no subgame that is sufficient for an information set h. Refer to the game in Figure 5.
There the only subgame is the entire game. But this subgame is not sufficient for the
information set, viz. h, at which Bob moves. To see this, notice that the strategy sa = Out
(trivially) allows the subgame, but does not allow h.

Definition 17. Say a game � is determined by its subgames if, for each information set
h ∈H, there is a subgame � that is sufficient for h.

14This may happen if there is a node x where no player is active, i.e., Ca(x) and Cb(x) are singletons.
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The game in Figure 5 is not determined by its subgame; as we have seen, there is
no subgame that is sufficient for the information set at which Bob moves. Battigalli and
Friedenberg (2009) characterize Definition 17 in terms of primitives of the game (as op-
posed to a condition about strategies).

Before stating the generalization of Proposition 2, we need to extend the definition
of NRT to cover games with imperfectly observable actions.

Definition 18. Fix two distinct terminal nodes z = (x� c1� � � � � cK) and z′ = (x�d1� � � � �

dL). Say a is decisive for (z� z′) if the following conditions hold.

(i) c1
a �= d1

a,

(ii) c1
b = d1

b, and

(iii) if (x� c1� � � � � ck) and (x�d1� � � � � dl) are in the same information set for b, then
ck+1
b = dl+1

b .

The idea is that a is decisive for (z� z′) = ((x� c1� � � � � cK)� (x�d1� � � � � dL)) if a is the
only player who determines which of the two terminal histories occurs. So a moves at
the last common predecessor of z and z′, viz. x, and makes distinct choices at this node,
i.e., c1

a �= d1
a. But b’s choice along these paths does not determine which of z vs. z′ occurs.

So b makes the same choice whenever he cannot observe a’s choice among c1
a vs. d1

a.

Remark 3. If the game has observable actions, then a is decisive for (z� z′) = ((x� c1� � � � �

cK), (x�d1� � � � � dL)) if and only if c1
a �= d1

a and c1
b = d1

b.

Definition 19 (Battigalli 1997). A game satisfies no relevant ties (NRT) if whenever a

(resp. b) is decisive for (z� z′), �a(z) �= �a(z
′).

Now, here is the generalization of Proposition 2.

Proposition 5. Fix a game � that is determined by its subgames and a pure-strategy
SPE, viz. (sa� sb).

(i) There is an EFBRS, viz. Qa ×Qb, so that [sa] × [sb] ⊆Qa ×Qb.

(ii) If � satisfies NRT, then [sa] × [sb] is an EFBRS.

Before coming to the proof, it is useful to record some facts about games determined
by their subgames. Fix a pure-strategy SPE, viz. (sa� sb), of a game � determined by its
subgames. Construct maps fa :H → Sa and fb :H → Sb that depend on this SPE. To do
so, fix some h ∈ H and let � be the last subgame sufficient for h. Write x for the root of
subgame � (which may be � itself). If � = �, set fa(h) = sa. If � is a proper subtree of �,
then we can write x = (c1� � � � � cK). In this case, let fa(h) be the strategy that (i) chooses
c1
a at {φ}, (ii) chooses cka at an information set that contains (c1� � � � � ck−1), i.e., an initial

segment of (c1� � � � � cK), and (iii) makes the same choice as sa at all other information
sets. So if sa allows h, then fa(h) = sa. Also, fa(h) is well defined and allows h precisely
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because � is determined by its subgames. (Again, refer to the game in Figure 5, and take
h to be the information set at which Bob moves. Consider the SPE (sa� sb) = (Out�Right).
Then fa(h) = Out, which precludes h.)

Write S(h) for the set of strategy profiles that allow an information set h. In games
determined by their subgames, there is a natural order on sets of the form S(h) for h ∈ H.
Specifically, for any pair of information sets h and i (in H), either S(h) ⊆ S(i), S(i) ⊆ S(h),
or S(h)∩ S(i) = ∅.15 To see this, let �h (resp. �i) be sufficient for h (resp. i). We have that
either �h is a subgame of �i, �i is a subgame of �h, or they are disjoint subgames. With
this, the order follows from the definition of sufficiency. If S(h) ⊆ S(i), say h follows i.
Say h and i are ordered if either h follows i or i follows h. Say h and i are unordered
otherwise, i.e., if S(h)∩ S(i)= ∅.

The proofs of the following results are immediate.

Lemma 3. Fix a game � that is determined by its subgames. Also fix some SPE, viz. (sa� sb).
Construct (fa� fb) as above. If fa(h) allows i, and either h and i are unordered or i fol-
lows h, then fa(i) = fa(h).

Lemma 4. Fix a game � that is determined by its subgames and some SPE (sa� sb). For
each h ∈ Ha,

πa(fa(h)� fb(h)) ≥ πa(ra� fb(h)) for all ra ∈ Sa(h)�

Lemma 5. Fix some μa ∈ C(Sb). If sa ∈ ρa(μa), then [sa] ⊆ ρa(μa).

Proof of Proposition 5. Fix a pure-strategy SPE, viz. (sa� sb). Construct maps
fa :H → Sa and fb :H → Sb as above. We use these maps to construct CPS’s μa ∈ C(Sb)
and μb ∈ C(Sa). Specifically, set μa(fb(h)|Sb(h)) = 1 for each h ∈ Ha. And likewise for a
and b interchanged.

First we show that μa is indeed a CPS. It is immediate that μa satisfies conditions (i)
and (ii) of Definition 1. For condition (iii), fix information sets h� i ∈ Ha so that Sb(i) ⊆
Sb(h). If fb(h) ∈ Sb(i), then fb(i) = fb(h) (Lemma 3). So for each event E ⊆ Sb(i),

μa(E|Sb(h)) = μa(E|Sb(i))× 1 = μa(E|Sb(i))μa(Sb(i)|Sb(h))�
If fb(h) /∈ Sb(i), then for each event E ⊆ Sb(i),

μa(E|Sb(h)) = 0 = μa(E|Sb(i))× 0 = μa(E|Sb(i))μa(Sb(h)|Sb(i))�
as required. And likewise for b.

Now let Qa = ρa(μa), i.e., the set of all strategies ra that are sequentially optimal
under μa, and likewise set Qb = ρb(μb). We show that Qa ×Qb is an EFBRS.

Fix some ra ∈ Qa. We show that ra and μa jointly satisfy conditions (i)–(iii) of an
EFBRS. In fact, it is immediate that conditions (i) and (iii) are satisfied, so we show
condition (ii), i.e., that μa strongly believes Qb.

15Note that in all perfect recall games, whenever h� i ∈ Ha, either S(h)⊆ S(i), S(i)⊆ S(h), or S(h)∩S(i)=
∅. Here we have an analogous statement, when h ∈ Ha and i ∈ Hb.
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Fix an information set h ∈ Ha with Qb ∩ Sb(h) �= ∅. We show that fb(h) ∈ Qb, so that
μa(Qb|Sb(h)) = 1. To show that fb(h) ∈ Qb, it suffices to show that for each information
set i ∈ Hb allowed by fb(h),

πb(fa(i)� fb(h)) ≥ πb(fa(i)� rb) for all rb ∈ Sb(i)� (C.1)

Note that if either i follows h or h and i are unordered, then fb(h) = fb(i). In either case,
we can apply Lemma 4 to the information set i and get the desired result. So we focus
on the case where h follows i.

Take S(h) ⊆ S(i). Since Qb ∩ Sb(h) �= ∅, there is a strategy rb ∈ Qb ∩ Sb(h). For this
strategy rb, we have that πb(fa(i)� rb) ≥ πb(fa(i)� fb(h)), because rb is sequentially opti-
mal under μb, μb(fa(i)|Sa(i)) = 1, and fb(h) ∈ Sb(h) ⊆ Sb(i). We show that πb(fa(i)� rb) =
πb(fa(i)� fb(h)), establishing (C.1).

Suppose, contra hypothesis, that πb(fa(i)� rb) > πb(fa(i)� fb(h)). Consider the infor-
mation set j, so that the last common predecessor of ζ(fa(i)� rb) and ζ(fa(i)� fb(h)) is
contained in j. Now use the fact that rb and fb(h) both allow h to get that either j follows
h or j and h are unordered. In these cases, we have that πb(fa(j)� fb(h)) ≥ πb(fa(j)� rb).
(This was established in the previous paragraph.) But now notice that, since either j

follows h or j and h are unordered, we also have that either j follows i or j and i are un-
ordered. In either case, using the fact that fa(i) allows j, we have fa(i) = fa(j) (Lemma 3).
So putting the above facts together, we get

πb(fa(i)� fb(h)) = πb(fa(j)� fb(h))

≥ πb(fa(j)� rb)

= πb(fa(i)� rb) ≥ πb(fa(i)� fb(h))�

But this contradicts the assumption that πb(fa(i)� rb) > πb(fa(i)� fb(h)).
We have established that Qa × Qb = ρa(μa) × ρb(μb) is an EFBRS. By construction,

(sa� sb) ∈ ρa(μa) × ρb(μb). So using Lemma 5, [sa] × [sb] ⊆ Qa × Qb. Now suppose the
game tree has NRT. We show that if (ra� rb) ∈ Qa ×Qb, then (ra� rb) ∈ [sa] × [sb].

Fix some strategy ra /∈ [sa]. Then there exists some rb ∈ Sb with ζ(sa� rb) �= ζ(ra� rb).
Consider the last common predecessor of ζ(sa� rb) and ζ(ra� rb), viz. x, and let h be the in-
formation set that contains this node. Then there exists (c1� � � � � cK) and (d1� � � � � dL) so
that ζ(sa� rb) = (x� c1� � � � � cK), ζ(ra� rb) = (x�d1� � � � � dL). Clearly, c1

a = sa(h) �= ra(h) = d1
a

and ckb = rb(h
′) = dlb whenever (x� c1� � � � � ck−1)� (x�d1� � � � � dL) ∈ h′ ∈Hb. So a is decisive

for (ζ(sa� rb)� ζ(ra� rb)).
Now, by the analysis above, we have that πa(sa� fb(h)) ≥ πa(ra� fb(h)). NRT says that,

in fact, πa(sa� fb(h)) > πa(ra� fb(h)). This implies that ra /∈Qa, as required. �

Lemma 6. If � has observable actions, then � is determined by its subgames.

Proof. Fix an information set h. Since � has observable actions, h = {x} for some
node/history x. Now consider a node y that follows x. Then by observable actions, y
is contained in the information set {y}. It follows that there is a subgame whose initial
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Figure 9. A PI game with relevant ties.

node is x, written �. Moreover, the set of strategies that allow � is exactly Sa(h)× Sb(h).
So � is determined by its subgames. �

The proof of Proposition 2 is immediate from Proposition 5 and Lemma 6.
Finally, we conclude by pointing out the need for NRT in Proposition 5(ii).

Example 12. Figure 9 gives a game that fails NRT. Since it is a perfect-information game,
it is determined by its subgames. Here, (In�Across) is a pure-strategy SPE, but {In} ×
{Across} is not an EFBRS.

There is an EFBRS, viz. Qa × Qb, with {In} × {Across} ⊆ Qa × Qb, e.g., {In} ×
{Across�Down}. (Of course, part (i) of Proposition 2 says there must be some such
EFBRS.) But every EFBRS, viz. Qa × Qb, must have Qb = {Across�Down}. (Here we use
condition (iii) of an EFBRS.) So {In} × {Across} is not an EFBRS. ♦

Appendix D: Examples and proofs for Section 8

In this appendix, we prove Propositions 3 and 4. We also provide examples to better
understand the results.

D.I No ties and Proposition 3

Part (i) of Proposition 3 requires TDI and part (ii) of Proposition 3 requires NRT. Exam-
ple 13 explains why part (i) requires TDI.

Example 13. Return to Example 12, which fails TDI. There we see that (In�Down)
is contained in an EFBRS. But it is not outcome equivalent to a pure-strategy Nash
equilibrium. ♦

Observe that when Bob moves, he is indifferent between In and Out. Now turn to
a type of Ann that strongly believes Bob is rational. This type has a correct belief about
what Bob’s payoff will be if she plays In. But because the game fails TDI, she may have
an incorrect belief about what her own payoff will be if she plays In. As such, a Nash
outcome need not obtain.

Example 14 explains why we cannot replace NRT with the (weaker) TDI condition in
part (ii) of Proposition 3.
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Figure 10. A game with TDI that fails NRT.

Example 14. Consider the game in Figure 10, which satisfies TDI, but violates NRT.
Here, (Out�Out) is a Nash equilibrium in sequentially justifiable strategies. But if
Qa ×Qb is a (nonempty) EFBRS, then Qa ×Qb = {In-Across}× {In-Down}. To see this, let
Qa ×Qb �= ∅ be an EFBRS. In this case, Qa ⊆ {Out� In-Across} and Qb ⊆ {Out� In-Down}.
(The strategy In-Down for Ann is dominated at her second information set, and the
strategy In-Across for Bob is dominated at his second information set.) Also, In-Across
is a weakly dominant strategy for Ann. So condition (iii) of an EFBRS implies that
In-Across ∈ Qa. It follows that if μb strongly believes Qa, then μb must assign proba-
bility 1 to In-Across conditional on the event “Ann plays In.” So In-Down is Bob’s only
strategy that is sequentially optimal given a CPS that strongly believes Qa. This implies
that Qb = {In-Down} and so Qa = {In-Across}. ♦

In the above example, {(Out�Out)} is disjoint from any EFBRS. While it satisfies
conditions (i) and (ii) of an EFBRS, it fails condition (iii): If (Out�Out) is played, Ann
gets a payoff of 2. But by going In, she can also assure herself an expected payoff of at
least 2. As such, condition (iii) requires that we include In-Across.

To better understand what is going on, let us recast this at the epistemic level: If
(Out� ta) is rational, so is (In-Across� ta). With this, if Bob strongly believes that Ann is
rational, then when his first information set is reached, he must maintain a hypothesis
that Ann is playing In-Across; that is, he must maintain a hypothesis that Ann is playing
a particular strategy that is not in Qa = {Out}. As such, Out cannot be a best response
for Bob.

The key is that the rationality of (Out� ta) has implications for Ann’s rationality at
information sets precluded by Out. Notice that this happens because Ann is indiffer-
ent between the terminal nodes reached by (Out�Out) and (In-Across�Out). (If Ann’s
payoffs from (In-Across�Out) are strictly less than 2, (Out� ta) can be rational without
(In-Across� ta) being rational. Similarly, if Ann’s payoffs from (In-Across�Out) are strictly
greater than 2, then (Out�Out) would not be a Nash equilibrium.) This is where the NRT
condition comes in—it says that if Ann is decisive between two terminal nodes (as she
is here), then she cannot be indifferent between those nodes.

D.II Proof of Proposition 3(i)

The proof follows immediately from the following lemma.
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Lemma 7. Fix a perfect-information game that satisfies TDI. If Qa × Qb satisfies the
best response property, then each (sa� sb) ∈ Qa × Qb is outcome equivalent to a Nash
equilibrium.

The proof of this lemma closely follows the proof of Proposition 6.1a in
Brandenburger and Friedenberg (2010). It is by induction on the length of the tree.
Specifically, fix a game � and a subgame �. The induction hypothesis states that if a set
satisfies the best response property on �, then it is outcome equivalent to some Nash
equilibrium. We know that if a set Qa × Qb satisfies the best response property on �,
it also satisfies the best response property on the subgame �. (This is Lemma 1.) So
if we fix a set that satisfies the best response property on the whole tree, then, by the
induction hypothesis, it is outcome equivalent to a Nash equilibrium on each reached
subgame. The proof uses this fact to construct a pure-strategy Nash equilibrium on the
whole tree that is outcome equivalent to each profile in Qa ×Qb.

Definition 20. Call Qa × Qa ⊆ Sa × Sb a constant set if, for each (sa� sb)� (ra� rb) ∈
Qa ×Qb, π(sa� sb)= π(ra� rb).

Lemma 8. Fix a perfect-information game that satisfies TDI. If Qa ×Qb satisfies the best
response property, then Qa ×Qb is a constant set.

Proof. The proof is by induction on the length of the tree. First, fix a tree of length 1
and suppose Ann moves at the initial node. Then Bob’s strategy set is a singleton. So if
Qa×Qb satisfies the best response property, then Ann is indifferent between each (sa� sb)

and (ra� sb) in Qa ×Qb. By TDI, each profile in Qa ×Qb is outcome equivalent.
Assume the result holds for any tree of length l or less. Fix a tree of length l+ 1 and a

set Qa ×Qb satisfying the best response property. Suppose Ann moves at the initial node
and can choose among nodes n1� � � � � nK . Each nk can be identified with an information
set and each is associated with a subgame �= k.

In particular, fix some subgame k with Qk
a × Qk

b �= ∅. Then Qk
a × Qk

b satisfies the
best response property for the subgame k. (This is Lemma 1.) So by the induction hy-
pothesis, πk(ska � s

k
b ) = πk(rka � r

k
b ) for (ska � s

k
b ), (rka � r

k
b ) ∈ Qk

a × Qk
b . Now note that for each

sb ∈ Qb, skb ∈ Qk
b . (Here, we use the fact that Ann moves at the initial node.) Thus, given

two strategies sa� ra ∈ Qa ∩ Sa(�) and sb� rb ∈Qb, we have that π(sa� sb) = π(ra� rb).
Now fix some (sa� sb)� (ra� rb) ∈ Qa × Qb, where sa ∈ Sa(k) and ra ∈ Sa(j). We have

already established that π(sa� sb) = π(ra� rb), for k= j. Suppose k �= j. Since sa ∈Qa, sa is
sequentially optimal under some μa(·|·) that strongly believes Qb. So, in particular, sa is
optimal under μa(·|Sb) with μa(Qb|Sb) = 1. With this,

πa(sa� sb) =
∑

qb∈Qb

πa(sa�qb)μa(qb|Sb)

≥
∑

qb∈Qb

πa(ra�qb)μa(qb|Sb)

= πa(ra� rb)�
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(The first equality follows from the fact that for each qb ∈ Qb, πa(sa� sb) = πa(sa�qb).
This is a consequence of the last line in the preceding paragraph; likewise for the last
equality.) By an analogous argument, πa(ra� rb) ≥ πa(sa� sb). So, πa(ra� rb) = πa(sa� sb).
By TDI, πb(ra� rb) = πb(sa� sb). �

Proof of Lemma 7. The proof is by induction on the length of the tree. First, fix a
tree of length 1 and suppose Ann moves at the initial node. Then Bob’s strategy set is
a singleton. The result follows from the fact that each sa ∈ Qa is sequentially optimal
under a CPS.

Now assume the result holds for any tree of length l or less. Suppose Ann moves at
the initial node, and can choose among nodes n1� � � � � nK . Each nk can be identified with
an information set and each is associated with a subgame �= k.

Fix some (sa� sb) ∈ Qa × Qb and suppose sa ∈ Sa(1). Note that Q1
a × Q1

b satisfies the
best response property (Lemma 1). So by the induction hypothesis, there is a Nash
equilibrium of subgame 1, viz. (r1

a� r
1
b), so that π(s1

a� s
1
b) = π(r1

a� r
1
b). Consider a strat-

egy ra ∈ Sa(1) so that the projection of ra onto
∏

h∈H1
a
Ca(h) is r1

a . We need to show that

we can choose r2
b� � � � � r

K
b ∈×K

k=2 S
k
b so that, for each qa ∈ Qa and associated qka ∈ Ska ,

πa(r
1
a� r

1
b) ≥ πa(q

k
a� r

k
b ). The profile (ra� (r

1
b� r

2
b� � � � � r

K
b )) is then a Nash equilibrium of the

game.
Since sa ∈Qa, there exists a CPS and an associated measure μa(·|Sb) so that

∑
sb∈Sb

[πa(sa� sb)−πa(qa� sb)]μa(sb|Sb) ≥ 0

for all qa ∈ Sa. Fix k from 2� � � � �K. Using Lemma 8,

πa(r
1
a� r

1
b) = πa(s

1
a� s

1
b) ≥

∑
skb∈Sbk

πa(q
k
a� s

k
b )(margSkb

μ(·|Sb))(skb )

for any qka ∈ Ska . Letting (qka�q
k
b) ∈ arg maxSka minSkb

πa(·� ·), we have in particular

πa(r
1
a� r

1
b)≥

∑
skb∈Sbk

πa(q
k
a� s

k
b )(margSbk

μ(·|Sb))(skb )�

But πa(q
k
a�q

k
b) ≥ πa(q

k
a�q

k
b) for any qkb ∈ Skb , by definition. So

πa(r
1
a� r

1
b) ≥

∑
skb∈Sbk

πa(q
k
a�q

k
b)(margSkb

μ(·|Sb))(skb ) = πa(q
k
a�q

k
b)�

Set (qk
a
�qk

b
) ∈ arg minSkb

maxSka πa(·� ·). By the minimax theorem for PI games (see,

e.g., Ben-Porath 1997), πa(q
k
a�q

k
b) = πa(q

k
a
�qk

b
). It follows that πa(r

1
a� r

1
b) ≥ πa(q

k
a�q

k
b) =

πa(q
k
a
�qk

b
). But πa(q

k
a
�qk

b
) ≥ πa(q

k
a�q

k
b
) for any qka ∈ Ska , by definition. So πa(r

1
a� r

1
b) ≥

πa(q
k
a�q

k
b
) for each qka ∈ Ska . Setting each rkb = qk

b
gives the desired profile. �
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D.III Proof of Proposition 3(ii)

Let us give the idea of the proof. We start with a set Qa ×Qb = {(sa� sb)}, where (sa� sb) is
a pure Nash equilibrium in sequentially justifiable strategies. This set satisfies the best
response property. (See Lemma 10 below.) In particular, the set Qa is associated with
a single CPS μa, satisfying the conditions of the best response property. We look at the
set Pa of all strategies ra that are sequentially optimal under μa. We use the fact that μa

strongly believes Qb (so assigns probability 1 to sb at the initial information set) to get
that Ann is indifferent between all outcomes associated with Pa × Qb. Indeed, by NRT,
these strategy profiles must reach the same terminal node. Likewise, we define Pb and,
using standard properties of a PI game tree, we get that all strategies in Pa ×Pb reach the
same terminal node.

So what have we done? We began with a set Qa × Qb and we expanded it to a set
Pa × Pb, with (i) Qa × Qb ⊆ Pa × Pb, (ii) all the profiles in Pa × Pb reach the same termi-
nal node, and (iii) there is a CPS μa (resp. μb) that strongly believes Qb (resp. Qa) and
such that Pa (resp. Pb) is the set of strategies that are sequentially optimal under μa(·|·)
(resp. μb(·|·)). We have successfully in constructed an EFBRS if the CPS μa (resp. μb)
strongly believes Pb (resp. Pa) instead of Qb (resp. Qa). The key is that we can similarly
expand Pa × Pb so that the new set satisfies similar properties. Since the game is finite,
eventually the expanded set must coincide with the original set; that is, condition (i)
must hold with equality. This gives the desired result.

Now we turn to the proof. First, we give a technical lemma.

Lemma 9. Fix some (
� E) where 
 is finite. Let μ(·|·) be a CPS on (
� E) and let � be a
measure on 
. Construct ν(·|·) : B(
)× E → [0�1] as follows: If F ∈ E with Supp�∩F �= ∅,
then ν(·|F) =�(·|F). Otherwise, ν(·|F) = μ(·|F). Then ν(·|·) is a CPS.

Proof. Let μ, �, and ν be as in the statement of the lemma. Conditions (i) and (ii) of
a CPS are immediate. Turn to condition (iii). For this, fix E ∈ B(
) and F�G ∈ E with
E ⊆ F ⊆G.

First suppose that Supp� ∩ F �= ∅. Then

ν(E|G) = �(E)

�(G)

= �(E)

�(F)

�(F)

�(G)
= ν(E|F)ν(F |G)�

where the first equality makes use of the fact that E ⊆ G, and the last equality makes use
of the fact that E ⊆ F and F ⊆ G. Next suppose that Supp�∩G = ∅. Then Supp�∩F =
∅, so that

ν(E|G) = μ(E|G)

= μ(E|F)μ(F |G) = ν(E|F)ν(F |G)�

as required. Finally, suppose that Supp� ∩ F = ∅ but Supp� ∩G �= ∅. Then

0 ≤ ν(E|G)≤ ν(F |G) =�(F |G) = 0�
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where the last equality follows from the fact that Supp� ∩ F = ∅. Then

ν(E|G) = 0

= μ(E|F)�(F |G) = ν(E|F)ν(F |G)�

as required. �

Lemma 10. Let (sa� sb) be a Nash equilibrium in sequentially justifiable strategies. Then
{(sa� sb)} satisfies the best response property.

Proof. Let (sa� sb) be a Nash equilibrium in sequentially justifiable strategies. Then
there exists a CPS μa(·|·) so that sa is sequentially optimal under μa(·|·). Construct a CPS
νb(·|·) so that νb(sb|Sb(h)) = 1 if sb ∈ Sb(h) and νb(·|Sb(h)) = μa(·|Sb(h)) otherwise. By
Lemma 9, νb(·|·) is a CPS. It is immediate from the construction that sa is sequentially
optimal under νb(·|·) and that νb(·|·) strongly believes {sb}, and, similarly with a and b

reversed. �

Definition 21. Fix a constant set Qa×Qa ⊆ Sa×Sb. Call Pa×Pa ⊆ Sa×Sb an expansion
of Qa ×Qb if the following hold:

a. There exists a CPS μa ∈ C(Sb) so that

(i) Qa ⊆ Pa = ρa(μa),

(ii) μa strongly believes Qb, and

(iii) if ra is optimal under μa(·|Sb) then πa(ra� sb) = πa(sa� sb) for all (sa� sb) ∈
Qa ×Qb.

b. And, likewise, there is a CPS μb ∈ C(Sa) satisfying analogous conditions.

Notice that we define only an expansion of a set Qa ×Qb if Qa ×Qb is a constant set.
Also, if Pa × Pb is an expansion of Qa × Qb, then there are CPS’s μa and μb that satisfy
conditions (i)–(iii) of Definition 21. We refer to these as the associated CPS’s.

Lemma 11. Fix a PI game satisfying NRT. Suppose Pa × Pb is an expansion of Qa × Qb,
and fix associated CPS’s μa and μb. Let Xa be the set of strategies that are optimal under
μa(·|Sb) and likewise define Xb. Then Xa ×Xb is a constant set.

Proof. Since Pa ×Pb is an expansion of Qa ×Qb, then Qa ×Qb is a constant set. (This is
by definition.) It follows from condition (iii) of Definition 21 and NRT that Xa ×Qb and
Qa×Xb are constant sets. Then using NRT, each profile in Xa×Qb reaches the same ter-
minal node. And likewise for Qa×Xb. In fact, the terminal node reached by Xa×Qb and
Qa ×Xb must be the same one, since (Xa ×Qb)∩ (Qa ×Xb) = (Qa ×Qb). Now fix a pro-
file (sa� rb) ∈ (Xa \ Qa) × (Xb \ Qb). Note that there is a profile (sa� sb) ∈ (Xa \ Qa) × Qb

and a profile (ra� rb) ∈ Qa × (Xb \Qb). These profiles reach the same terminal node and
so (sa� rb) must also reach that terminal node. This establishes that Xa×Xb is a constant
set. �



Theoretical Economics 7 (2012) Forward induction reasoning revisited 95

Corollary 4. Fix a PI game satisfying NRT. If Pa × Pb is an expansion of some Qa ×Qb,
then Pa × Pb is constant.

The next result is standard, so the proof is omitted.

Lemma 12. Fix a measure �a ∈ P(Sb) so that sa is optimal under �a given Sa. Then, for
any information set h with sa ∈ Sa(h) and �a(Sb(h)) > 0, sa is optimal under �a(·|Sb(h))
given Sa(h).

Lemma 13. Fix a PI game that satisfies NRT. If Pa × Pb is an expansion of Qa × Qb, then
there exists some Wa ×Wb that is an expansion of Pa × Pb.

Proof. Begin with the fact that Pa ×Pb is an expansion of Qa ×Qb and choose an asso-
ciated CPS μa (resp. μb) that satisfies the conditions of Definition 21. Let Xa (resp. Xb)
be the set of strategies that are optimal under μa(·|Sb) (resp. μb(·|Sa)). By Lemma 11,
Xa ×Xb is a constant set.

Construct a measure�a ∈ P(Sb) as follows: Begin with a measure �a with Supp�a =
Pb. Construct �a so that, for each rb ∈ Pb,

�a(rb) = (1 − ε)μa(rb|Sb)+ ε�a(rb)�

where ε ∈ (0�1). Note that μa strongly believes Qb ⊆ Pb so Suppμa(·|Sb) ⊆ Pb. With
this and the fact that Supp�a = Pb, we have Supp�a = Pb. Using the fact that Xa × Pb

is a constant set, then πa(sa��a) = πa(ra��a) for all sa� ra ∈ Xa. Moreover, when ε is
sufficiently small, πa(sa��a) > πa(ra��a) for all sa ∈ Xa and ra ∈ Sa \ Xa. So we can
choose �a so that sa is optimal under �a if and only if sa ∈Xa.

Now construct a CPS νa ∈ C(Sb) as follows: If Pb ∩ Sb(h) �= ∅, let νa(·|Sb(h)) =
�a(·|Sb(h)). (This is well defined since, in this case, �a(Sb(h)) > 0.) If Pb ∩Sb(h) = ∅, let
νa(·|Sb(h)) = μa(·|Sb(h)). Lemma 9 establishes that νa(·|·) is a CPS. Construct a measure
�b ∈ P(Sa) and a CPS νb ∈ C(Sa) analogously.

Take Wa = ρa(νa) and Wb = ρb(νb). We show that Wa ×Wb is an expansion of Pa ×Pb.
Begin with condition (i). By definition, Wa = ρa(νa). So, we need to show only

that Pa ⊆ Wa. Fix some sa ∈ Pa. By construction, sa is optimal under �a. Let h ∈ Ha

with sa ∈ Sa(h). If Pb ∩ Sb(h) �= ∅, then �a(·|Sb(h)) = νa(·|Sb(h)) and sa is optimal un-
der νa(·|Sb(h)) among all strategies in Sa(h). (See Lemma 12.) If Pb ∩ Sb(h) = ∅, then
νa(·|Sb(h)) = μa(·|Sb(h)). So, again, sa is optimal under νa(·|Sb(h)) given all strategies in
Sa(h). With this, sa ∈ ρa(νa(·|·)), as required.

Next, turn to condition (ii). We need to show that νa strongly believes Pb. For this,
notice that if Pb ∩ Sb(h) �= ∅, then νa(Pb|Sb(h)) = �a(Pb|Sb(h)) = 1.

Finally, we show condition (iii). Suppose ra is optimal under νa(·|Sb). We show that
πa(ra� sb) = πa(sa� sb) for all (sa� sb) ∈ Pa × Pb. To see this, recall, νa(·|Sb) = �a. So if ra is
optimal under νa(·|Sb), then ra ∈ Xa. The claim now follows from the fact that Xa × Xb

is a constant set that contains Pa × Pb.
Replacing b with a establishes that Wa ×Wb is an expansion of Pa × Pb. �
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Figure 11. A PI game with NRT.

Lemma 14. Fix a PI game that satisfies NRT. Let (sa� sb) be a Nash equilibrium in se-
quentially justifiable strategies. Then there exists an EFBRS, viz. Qa × Qb, that contains
(sa� sb).

Proof. Fix a Nash equilibrium in sequentially optimal strategies, viz. (sa� sb). Let
Q0

a × Q0
b = {sa} × {sb}. By Lemma 10, Q0

a × Q0
b satisfies the best response property. So

there is a CPS μa (resp. μb) that strongly believes {sb} (resp. {sa}) and so that sa (resp. sb)
is sequentially optimal under μa (resp. μb). Let Q1

a = ρa(μa) (resp. Q1
b = ρb(μa)). Note

that Q1
a × Q1

b is an expansion of Q0
a × Q0

b (associated with the CPS’s μa and μb). Now
repeatedly apply Lemma 13 to get sets Q0

a × Q0
b�Q

1
a × Q1

b�Q
2
a × Q2

b� � � � , where each

Qm+1
a × Qm+1

b is an expansion of Qm
a × Qm

b . Since the game is finite, there is some M

with Qm
a ×Qm

b = QM
a ×QM

b for all m≥ M . The set QM
a ×QM

b is an EFBRS. �

D.IV Closing the gap

In the text, we mentioned that there is a gap between parts (i) and (ii) of Proposition 3.
We begin by pointing out that we cannot improve part (ii) to say that, starting from

any pure Nash equilibrium, we get an EFBRS. To see this, refer to Figure 11. There
is a unique EFBRS, namely {In} × {Across}. That said, the pair (Out�Down) is a Nash
equilibrium—of course, it is not a Nash equilibrium in sequentially justifiable strategies.

We do not know if part (i) can be improved to read, If Qa × Qb satisfies the best
response property, then each (sa� sb) ∈ Qa × Qb is outcome equivalent to a sequentially
justifiable Nash equilibrium. Let us better understand the problem.

Return to Lemma 7 and the proof thereof. Suppose, we strengthened the induction
hypothesis so that we can look at a sequentially justifiable Nash equilibrium of sub-
game 1, viz. (r1

a� r
1
b). Following the proof, we use this to construct a Nash equilibrium

(ra� (r
1
b�q

2
b
� � � � � qK

b
)), where each qk

b
is the minimax strategy on subtree k. But now we

need to show that the constructed equilibrium is sequentially justifiable. Here is where
the problem arises: the strategy qk

b
(on subtree k) may not be a best response to any

strategy on that subtree. Thus, the proof breaks down. Of course, it may very well be
that there is another method of proof.

In the text, we mentioned a related result (Proposition 4), which speaks to the gap.
To show this result, it suffices to show the following lemma.

Lemma 15. Suppose Qa × Qb is a constant set that satisfies the best response property.
Then there exists a mixed-strategy Nash equilibrium, viz. (σa�σb), so that
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(i) Qa ×Qb is outcome equivalent to (σa�σb) and

(ii) each sa ∈ Suppσa (resp. sb ∈ Suppσb) is sequentially justifiable.

Proof. Pick some (ra� rb) ∈ Qa ×Qb and let μa ∈ C(Sb) be a CPS so that ra ∈ ρa(μa) and
μa strongly believes Qb. Set σb = μa(·|Sb). Construct σa analogously.

First notice that (σa�σb) is a mixed-strategy Nash equilibrium. Begin by using the
fact that μb(Qa|Sa) = 1 and μa(Qb|Sb) = 1. As such, Suppσa × Suppσb ⊆Qa ×Qb. Since
Qa × Qb is a constant set, for each (sa� sb) ∈ Suppσa × Suppσb, π(sa� sb) = π(ra� rb). So
for each sa ∈ Suppσa and each qa ∈ Sa,

πa(sa�σb) = πa(ra� rb)

= πa(ra�σb)≥ πa(qa�σb)�

where the inequality holds because ra ∈ ρa(μa) and μa(·|Sb) = σb. Applying an analo-
gous argument to b establishes that (σa�σb) is indeed a Nash equilibrium.

Next notice that Qa × Qb is outcome equivalent to (σa�σb). To see this, recall that
Suppσa × Suppσb ⊆ Qa ×Qb and Qa ×Qb is a constant set. So it is immediate that, for
each (sa� sb) ∈Qa ×Qb, π(sa� sb)= π(σa�σb).

Last, notice that each sa ∈ Suppσa is sequentially justifiable and likewise for b. To
see this, recall that Suppσa × Suppσb ⊆ Qa ×Qb. So if sa ∈ Suppσa, then sa ∈ Qa and so
sa is sequentially justifiable. �

The proof of Proposition 4 is immediate from Lemmata 8 and 15.
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