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On the number of critical equilibria separating two equilibria

Yves Balasko
Department of Economics, University of York

It is shown that two arbitrary equilibria in the general equilibrium model with-
out sign restrictions on endowments can be joined by a continuous equilibrium
path that contains at most two critical equilibria. This property is strengthened
by showing that regular equilibria having an index equal to 1, a necessary condi-
tion for stability, can be joined by a path containing no critical equilibrium. These
properties follow from the real-algebraic nature of the set of critical equilibria in
any fiber of the equilibrium manifold.

Keywords. Equilibrium prices, equilibrium manifold, equilibrium path, critical
equilibrium, catastrophe.
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1. Introduction

An equilibrium is by definition regular if the sufficient condition stated by the implicit
function theorem for equilibrium prices to be locally a smooth function of the funda-
mentals defining the economy is satisfied Debreu (1970, 1976). A contrario, a critical
equilibrium is an equilibrium that is not regular. At a critical equilibrium, the equilib-
rium price selection function may even fail to depend continuously on the fundamen-
tals. A singular economy is an economy that possesses at least one critical equilibrium.
A regular economy is an economy that is not singular. In other words, a regular econ-
omy has no critical equilibria. Debreu proved that the set of singular economies is closed
with measure zero in the space of economies, which is equivalent to the set of regular
economies being open with full measure. An economy picked up at random is there-
fore singular with probability 0, in which case one does not have to worry about singular
economies. The situation is different when economies evolve by following continuous
paths instead of remaining stuck in one point. The set of regular economies is path-
connected if and only if all economies have a unique equilibrium, a property that is not
generic on preferences (Ghiglino and Tvede 1997). Therefore, for an open and dense set
of preferences, the set of regular economies has several path-connected components.
It then suffices to pick up two regular economies in two different path-connected com-
ponents to see that all the continuous paths linking these two economies intersect the
set of singular economies. The price selection mechanism is generally discontinuous
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when the economy crosses the set of singular economies along these paths (Thom 1975,
Arnol’d 1992).

The path-connectedness of the equilibrium manifold implies, however, that there
always exist continuous paths linking two arbitrary equilibria, making it possible for the
fundamentals and their associated equilibrium prices to move continuously between
two different sets of values (Balasko 1975a, 1975b). But how do we implement such equi-
librium paths? There is a real problem only at critical equilibria because of the failure
of the implicit function theorem at these equilibria. As with singular economies, the
set of critical equilibria is a closed subset of measure zero of the equilibrium manifold
(Balasko 1992). But here also, this is not sufficient to prevent continuous paths from in-
tersecting the set of critical equilibria. In the absence of any other criterion, equilibrium
paths should therefore be selected so that they contain the smallest number of critical
equilibria. In a recent paper, Loi and Matta (2008) show that in the exchange model, two
regular equilibria can always be joined by a continuous path that contains only a finite
number of critical equilibria. This interesting result, however, falls short of giving us an
idea on the number of these critical equilibria.

The minimal number of critical equilibria over all the equilibrium paths linking two
equilibria defines a “distance” or, better, a pseudodistance on the equilibrium manifold.
(It is not a distance because two different regular equilibria that belong to the same path-
connected component (of the set of regular equilibria) can be joined by a path with no
critical equilibrium, which makes their pseudodistance equal to zero.) The main goal
of this paper is therefore to give an upper bound on this pseudodistance. The model
used for this purpose is the pure exchange general equilibrium model with constant
total resources and no sign restrictions on endowments, a model that is standard in this
kind of questions. The fact that total resources are fixed is justified by the lack of control
for this parameter. The possibility of negative coordinates for individual endowments is
a way to accommodate in this relatively frugal model some aspects of financial markets,
even if the latter are generally handled with the help of far more complex models.

The pseudodistance is first shown to be finite-valued on the full equilibrium man-
ifold (i.e., not only on the subset of regular equilibria). This extends to arbitrary equi-
libria the property proved for regular equilibria by Loi and Matta (2008). This finiteness
property is then improved by showing that the pseudodistance is in fact less than or
equal to 2. Another result deals with regular equilibria that have an index equal to 1,
a necessary condition for (tatonnement) stability. It is shown that the pseudodistance
of two equilibria with index equal to 1 is equal to 0. The paper ends by extending the
definition of the pseudodistance to equilibria restricted to have only strictly positive en-
dowments. There is still a finite upper bound on that pseudodistance, but the question
remains open as to whether two equilibria with index equal to 1 have a pseudodistance
equal to 0. All these results are derived from the real-algebraic nature of the set of critical
equilibria in every fiber of the equilibrium manifold.

The paper is organized as follows. Section 2 contains the main definitions and sets
the notation. Section 3 is devoted to defining the pseudodistance of two equilibria and
to showing that this pseudodistance is not only finite but bounded from above. Section 4
shows that the pseudodistance of two equilibria is less than or equal to 2. Section 5
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proves that the pseudodistance of two regular equilibria with index 1 is equal to 0, i.e.,
the two equilibria belong to the same path-connected component of the set of regular
equilibria. Section 6 deals with the extension of the pseudodistance to the case where
endowments are restricted to be strictly positive. Section 7 is devoted to concluding
comments, while Appendixes end this paper. The technical aspects of the proofs of the
main results of this paper are placed in Appendix A. Properties of regular, critical, and
no-trade equilibria are recalled in Appendix B.

The mathematical prerequisites for reading this paper are basic knowledge of lin-
ear algebra, the fundamental theorem of algebra, i.e., the property that a real polyno-
mial of degree n has at most n real roots (see, for example, Courant and Robbins 1996)
and the partition of the set GL(n�R) of invertible real matrices of order n into two path-
connected components consisting of matrices with positive (resp. negative) determi-
nant (see Chevalley 1946). All the properties of the equilibrium manifold and of regular
and critical equilibria used in this paper are recalled in Appendix B. No knowledge of dif-
ferential topology is necessary, because all smooth manifolds considered in the current
paper are diffeomorphic to Euclidean spaces.

2. Exchange economies: Definitions and a few properties

2.1 Goods and prices

Let � denote the number of goods. All goods are divisible. The price vector p =
(p1� � � � �p�) is normalized by the numeraire convention p� = 1. The set of numeraire
normalized price vectors is denoted by S = {p ∈ R

�++ | p1 > 0� � � � �p�−1 > 0� and p� = 1}.

2.2 Consumption sets and preferences

Consumer i’s consumption set is the strictly positive orthant X = R
�++. Consumer i’s

preferences are defined by a smooth utility function ui :X → R that satisfies the follow-
ing assumptions that are standard in the literature on smooth economies. 1. Smooth
monotonicity: Dui(xi) ∈ X . 2. Smooth strict quasi-concavity: the restriction of the
quadratic form Z ∈ R

� → ZTD2ui(xi)Z to the hyperplane ZTDui(xi) = 0 of R
� is neg-

ative definite. 3. The indifference surface {yi ∈ X | ui(yi) = ui(xi)} is closed in R
� for any

xi ∈X .

2.3 Demand functions

Maximization of utility ui(xi) subject to the budget constraint p · xi ≤ wi for wi > 0 has
a unique solution denoted by fi(p�wi). The demand function fi :S × R++ → X is then
a smooth map that satisfies Walras’ law p · fi(p�wi) = wi. For properties of demand
functions used in the current paper, see Appendix B.

2.4 The exchange model

The exchange model is defined by m consumers characterized by their preferences and
endowments. Preferences and total resources are fixed. An exchange economy is identi-
fied by its endowment vector ω = (ω1� � � � �ωm) ∈ (R�)m, where the total resource vector
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r = ∑
i ωi is fixed. Let F = {ω ∈ (R�)m | ∑

i ωi = r} denote the set of these endowments
compatible with the total resource vector r ∈ R

�++. The endowment vector ω is assumed
to vary in some subset of F that is known as the endowment set. This endowment set is
denoted by � and is defined shortly.

2.4.1 Equilibrium The pair (p�ω) ∈ S × F is an equilibrium if the consumer’s wealth
wi = p ·ωi is strictly positive for i = 1� � � � �m and the equilibrium equation

∑
i

fi(p�p ·ωi)=
∑
i

ωi = r

is satisfied.
Note that consumers can be endowed with negative quantities of some goods. These

negative quantities can be interpreted as debts contracted toward the market. These
negative endowments contribute negatively to consumers’ wealth. The endowment vec-
tor ω and the price vector p ∈ S are nevertheless such that each consumer has a strictly
positive net wealth at equilibrium and the vector of total resources

∑
i ωi = r is strictly

positive.

2.4.2 Equilibrium manifold E The equilibrium manifold E is the subset of S × F con-
sisting of all equilibria. Recall that the equilibrium manifold E is defined for the fixed
vector of total resources r ∈ R

�++.

2.4.3 Endowment set � By definition, the endowment set � is the image of the equilib-
rium manifold E by the projection map π :E → F , i.e., � = π(E) ⊂ F . The endowment
set � therefore coincides with the set of endowment vectors (with possibly negative co-
ordinates) for which there exists at least one equilibrium. Note that the projection map
π :E → F is not a surjection, since no equilibrium exists for negative individual endow-
ment vectors (the consumer’s wealth then cannot be strictly positive). The equivalent of
an existence theorem when working with the endowment set � (where equilibrium ex-
ists by definition) becomes the search for characterizations of that set or, in the absence
of complete characterizations, the identification of sufficient conditions for the endow-
ment vector ω to belong to the endowment set �. Global topological properties can
shed some light on this characterization question. In that regard, path-connectedness
is passed on from the equilibrium manifold E to the endowment set �, the natural pro-
jection π :E → F being a continuous map.

2.4.4 The set of strictly positive endowments �++ The set of strictly positive endow-
ments �++ is the subset of F consisting of individual endowments ωi ∈ R

�++ that are
strictly positive for all consumers and that sum up to the vector of total resources
r ∈ R

�++.
The inclusion �++ ⊂ � follows from the existence of equilibrium for exchange

economies with strictly positive individual endowment vectors.

2.4.5 An illustration: The (��m) = (2�2) case The (��m) = (2�2) case with fixed total
resources lends itself to a nice geometrical representation thanks to the Edgeworth box.
The contract curve represents the set of Pareto optima and is the projection of the set
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Figure 1. The endowment set � and the Edgeworth box.

of no-trade equilibria T . (See Section 3.1.1 for their definition.) With every Pareto opti-
mum M is associated the tangent line D(M) at the point M to the two agents’ indiffer-
ence curves. The collection of these lines D(M) generates the endowment set � when
the point M is varied in the contract curve P = π(T). The set � is represented by the
area in grey in Figure 1. These lines D(M) are also the collection of tangent lines to the
set of singular values of the natural projection π :E → F , a set that is denoted by S . The
set S is therefore the envelope of the budget lines D(M). On the figure, the contact point
of D(M) with S is denoted by N . The lighter grey area represents the set of endowments
with a unique equilibrium and the darker grey areas represent those with multiple equi-
libria. The figure illustrates a case where the set of endowments with multiple equilibria
is not path-connected.

The set �++ is just the interior of the rectangle known as the Edgeworth box.

3. Pseudodistance on the equilibrium manifold

3.1 Definitions

Let x and x′ be two equilibria. Let γxx′ be a continuous path in the equilibrium man-
ifold E linking these two points. Let N(γxx′) denote the number of critical equilibria
along the path γxx′ .

Definition 1. Let d(x�x′) = infN(γxx′) be the minimal number of critical equilibria
over all continuous paths γxx′ linking x and x′ in the equilibrium manifold E.

Our goal in this section is to show that d(x�x′) defines a pseudodistance on the equi-
librium manifold E. The proof of this property is based on the (b�Y) coordinate system
for the equilibrium manifold E. Before defining this coordinate system, we briefly re-
call the definitions of a no-trade equilibrium and of the linear fiber of the equilibrium
manifold through a given no-trade equilibrium.
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3.1.1 No-trade equilibrium A no-trade equilibrium (p�ω) is such that ωi = fi(p�p ·ωi)

for i = 1� � � � �m. Let wi = p ·ωi with i = 1� � � � �m and b = (p�w1� � � � �wm) ∈ B = S × R
m++.

We then have
∑

i fi(p�wi) = ∑
i ωi = r. The subset of B consisting of the price–income

vectors b = (p�w1� � � � �wm) such that
∑

i fi(p�wi)= r is denoted by B(r).
Let f (b) = (p� f1(p�w1)� � � � � fm(p�wm)) denote the no-trade equilibrium associated

with the price–income vector b ∈ B(r). Let T = {f (b) ∈ E | b ∈ B(r)} denote the set of
no-trade equilibria compatible with the total resources r ∈ R

�++. The map b → f (b)

is a diffeomorphism between B(r) and the set of no-trade equilibria T , and both sets
are diffeomorphic to R

m−1, hence are path-connected (Balasko 2009, Proposition A.6.2
combined with Proposition 3.3.1).

3.1.2 The fibers of the equilibrium manifold Let b= (p�w1� � � � �wm) ∈ B be some price–
income vector. The fiber V (b) is the set of pairs (p�ω) ∈ S × (R�)m such that

V (b)=
{
(p�ω) ∈ S × R

�m
∣∣∣ p ·ωi =wi� i = 1� � � � �m;

∑
i

ωi =
∑
i

fi(p�wi)

}
�

Obviously, the elements of the fiber V (b) are all equilibria. The fiber V (b) is an affine
subspace of S × (R�)m of dimension (� − 1)(m − 1). The fiber V (b) is a subset of
the equilibrium manifold E associated with the total resources r ∈ R

�++ if and only if
b ∈ B(r).

3.1.3 The (b�Y) coordinate system for the equilibrium manifold Coordinates for the
points of the fiber V (b) are provided by the coefficients of the (m − 1) × (� − 1) (real)
matrix Y , where

y
j
i =ω

j
i − f

j
i (p�wi)

for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ � − 1. Every equilibrium x = (p�ω) ∈ E can then be rep-
resented by its coordinates (b�Y), which we write as x = (p�ω) = (b�Y) (Balasko 2009,
Section 4.4.4).

The unique no-trade equilibrium of the fiber V (b) is the equilibrium f (b) =
(p� f1(p�w1)� � � � � fm(p�wm)) represented by its coordinates (b�0) in the (b�Y) coor-
dinate system. The (b�Y) coordinate system reflects the structure of the equilibrium
manifold consisting of linear fibers parameterized by the no-trade equilibria.

3.2 Finiteness of d(x�x′)

Lemma 1. The inequality d(x�x′)≤ 2 × inf(��m)− 2 is satisfied for any (x�x′) ∈ E2.

Proof. Let x = (p�ω) = (b�Y) and x′ = (p′�ω′) = (b′�Y ′) be two equilibria. Let V (b)

(resp. V (b′)) be the fiber associated with the price–income vector b (resp. b′) in B(r). Let
f (b) (resp. f (b′)) denote the unique no-trade equilibrium of the fiber V (b) (resp. V (b′)).
The line segment [(b�Y)� (b�0)] (resp. [(b′�Y ′)� (b′�0)]) contains at most inf(��m) − 1
critical equilibria by Corollary 1 in Appendix A. The set of no-trade equilibria T = f (B(r))

being path-connected (Section 3.1.1 above), the two no-trade equilibria f (b) and f (b′)
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can be joined by a continuous path γf(b)f (b′) ⊂ T . That path contains no critical equi-
librium since all no-trade equilibria are regular (Appendix B.6). The continuous path
defined by first following the line segment [(b�Y)� (b�0)], continuing with the path
γf(b)f (b′), and ending with the line segment [(b′�0)� (b′�Y ′)] links x to x′ and con-
tains at most 2 × inf(��m) − 2 critical equilibria. This implies the inequality d(x�x′) ≤
2 inf(��m)− 2. �

Proposition 1. The function (x�x′) → d(x�x′) is a finite-valued pseudodistance on the
equilibrium manifold E.

Proof. That d(x�x′) is finite-valued is an obvious consequence of Lemma 1. The prop-
erties satisfied by a pseudodistance are d(x�x′) ≥ 0, d(x�x′) = d(x′�x), and d(x�x′) +
d(x′�x′′) ≤ d(x�x′′) (triangle inequality). At variance with a distance, d(x�x′) = 0 does
not necessarily imply the equality x = x′.

Only the triangle inequality requires a proof; the other two properties are obvious.
Let x, x′, and x′′ be three equilibria. Then d(x�x′) and d(x′�x′′) are the numbers of crit-
ical equilibria on some equilibrium paths γxx′ and γx′x′′ . The path obtained by combin-
ing the paths γxx′ and γx′x′′ joins x to x′′ and contains at most d(x�x′)+ d(x′�x′′) critical
equilibria (some critical equilibria may be common to the two paths), from which fol-
lows the inequality d(x�x′′) ≤ d(x�x′)+ d(x′�x′′). �

4. Upper bound on the pseudodistance d(x�x′)

It follows from Lemma 1 that 2 × inf(��m)− 2 is an upper bound for the pseudodistance
d(x�x′) on the equilibrium manifold E. By introducing the ranks κ(x) and κ(x′) of the
equilibria x and x′ (see Lemma 12 in Appendix B), it is possible to improve on Lemma 1
with the following statement.

Lemma 2. The inequality d(x�x′) ≤ κ(x)+ κ(x′)− 2 is satisfied for any (x�x′) ∈E2

Proof. It suffices to observe that, in the proof of Lemma 1, the line segment [(b�Y)�

(b�0)] (resp. [(b′�0)� (b′�Y ′)]) contains at most κ(x) = κ(b�Y) (resp. κ(x′) = κ(b′�Y ′))
critical equilibria by Lemma 13 in Appendix B. �

This lower upper bound is significantly improved in the following proposition.

Proposition 2. The inequality d(x�x′) ≤ 2 is satisfied for all (x�x′) ∈E2.

Proof. It follows from Lemmas 8 and 9 in Appendix A that there exists a continuous
path linking x = (b�Y) to the no-trade equilibrium f (b) = (b�0) by a continuous path
γ(b�Y)�(b�0) that contains no more than one critical equilibrium.

Similarly, there exists a continuous path γ(b′�Y ′)�(b′�0) in the fiber V (b′) linking x′ =
(p′�ω′) = (b′�Y ′) to f (b′) = (b′�0) and containing no more than one critical equilibrium.

The path obtained by combining the continuous path γ(b�Y)�(b�0), the path γ(b�0)(b′�0)
in the set of no-trade equilibria T used in the proof of Proposition 1, and the reversed
path to the path γ(b′�Y ′)�(b′�0) then links the two equilibria x = (b�Y) and x′ = (b′�Y ′),
and contains no more than two critical equilibria. �
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Figure 2. The path-connected components of the set of regular equilibria.

Proposition 3. The inequality d(x�x′) ≤ 2 cannot be improved for arbitrary x and x′

in E.

Proof. The proof proceeds by way of an example set for (��m) = (2�2) and constant
total resources r ∈ R

2++, the setup of the standard Edgeworth box. The set of regular
equilibria R is partitioned into several path-connected components. See Figure 2. The
equilibria with index equal to +1 make up one of the path-connected components of
the set R as follows from the forthcoming Proposition 4.

The example is designed in such a way that the set made of the regular equilibria
x ∈ R with index ι(x) = −1 is not path-connected. For details, see Appendix A.6, in
particular, Lemmas 10 and 11.

Pick two equilibria x and x′ belonging to two different path-connected components
of R having index ι(x) = ι(x′)= −1. Then any path linking these two equilibria must go
through the path-connected component of R made of the equilibria with index 1. Such
a path must then intersect the set of critical equilibria S in at least two points. �

5. Path-connectedness of the set of regular equilibria with index 1

Proposition 4. The pseudodistance of two regular equilibria x and x′ with index
ι(x) = ι(x′)= 1 is equal to 0: d(x�x′) = 0.

Proof. The proposition is equivalent to the path-connectedness of the set of regular
equilibria R with index ι(x) = 1. It follows from Lemma 7 that the intersection of that set
with the fiber V (b) is path-connected for every b ∈ B(r). Therefore, the regular equilib-
rium x (with index ι(x) = 1) can be linked by a continuous path to the no-trade equilib-
rium f (b) of the fiber V (b) containing x. A similar construction is made with the regular
equilibrium x′ that is linked to the no-trade equilibrium f (b′). It then suffices to link
the two no-trade equilibria f (b) and f (b′) by a continuous path in the set of no-trade
equilibria T as in the proof of Lemma 1. �
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6. The case of strictly positive endowments

In this section, all the coordinates of the endowment vector ω= (ω1� � � � �ωm) are strictly
positive, i.e., ω ∈ �++. Let E++ = E ∩ (S × �++) denote the equilibrium manifold with
strictly positive endowments and let V++(b)= V (b)∩ (S ×�++) denote the fiber of E++
associated with b ∈ B(r).

Let x = (p�ω) and x′ = (p′�ω′) be two equilibria in E++. The pseudodistance
d++(x�x′) is defined as the minimal number of critical equilibria over all continu-
ous paths γxx′ linking x and x′ in E++ (cf. Definition 1). Note the obvious inequality
d(x�x′) ≤ d++(x�x′).

The analog of Proposition 1 is true for d++(x�x′), since the main argument in its
proof consists of counting the number of critical equilibria along the segments [x� f (b)]
and [x′� f (b′)], where f (b) and f (b′) are the no-trade equilibria contained in the fibers
through the equilibria x and x′, respectively. For x and x′ in E++, it follows from the
convexity of �++ that these segments are contained in E++.

At variance with the case of endowments with no sign constraints, the integer 2 is not
necessarily an upper bound on the pseudodistance d++(x�x′). Note that 2× inf(��m)−2
is still an upper bound in that case. It is possible to improve on that bound by using the
rank κ(x) of the equilibrium x = (p�ω) = (b�Y) defined in Appendix B.10. The best
bound available at the moment is given by the following proposition.

Proposition 5. The inequality d++(x�x′) ≤ κ(x) + κ(x′) − 2 is satisfied for any
(x�x′) ∈ E2++.

To prove the proposition, it suffices to observe that the proof of Lemma 2 works for
the pseudodistance d++(x�x).

It would be interesting to get a better bound on the distance d++(x�x′). The problem
is that little is known about the number of path-connected components of the set of reg-
ular equilibria in a given fiber when endowments are constrained to be strictly positive.
It is also an open problem whether the analog of Proposition 4 holds true with strictly
positive endowments.

7. Conclusion

The impact of criticality is negligible for equilibria picked up randomly because the set
of critical equilibria is a closed subset with measure 0 of the equilibrium manifold. When
moving from one equilibrium to another along some continuous equilibrium path, the
impact of criticality can be measured by the number of critical equilibria along the path.
This paper shows that this impact can be limited by the appropriate choice of the con-
tinuous path between the two equilibria. For two regular equilibria, there are paths with
at most two critical equilibria if there are no sign restrictions on endowments. If the two
equilibria have index +1—a necessary condition for tatonnement stability—there is a
path that avoids all critical equilibria. In other words, the set of regular equilibria with
index +1 is path-connected. If the two regular equilibria have opposite indices (i.e., one
with index +1 and the other −1), the two equilibria can be linked by a continuous path
that contains only one critical equilibrium.
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Appendixes

Appendix A deals with specific properties of the sets of regular and critical equilibria
that belong to a given fiber of the equilibrium manifold, properties that are crucial to
the proofs of the main results of this paper. Appendix B is devoted to recalling a few
general definitions and properties of regular and critical equilibria, and, more generally,
of the equilibrium manifold.

Appendix A: Some useful lemmas

A.1 Number of critical equilibria along a segment with endpoint the corresponding
no-trade equilibrium

Let b = (p�w1� � � � �wm) ∈ B = S × R
m++ be an arbitrary price–income vector. The associ-

ated fiber V (b) contains the no-trade equilibrium f (b) = (b�0). Let x = (p�ω) = (b�Y)

be an arbitrary equilibrium in the fiber V (b). Let κ(b) = κ(b�Y) denote the rank of the
equilibrium (b�Y) defined in Lemma 2.

Lemma 3. The number of critical equilibria in the line segment [x� f (b)] = [(b�Y)� (b�0)],
where x= (b�Y) ∈ V (b), is less than or equal to κ(b), the rank of the equilibrium (b�Y).

Proof. The critical equilibria (b� tY) of the line segment [(b�Y)� (b�0)] correspond to
the roots t ∈ [0�1] of the polynomial function v(t) = (−1)�−1 detJ��(b� tY). This polyno-
mial function is not identically zero and its degree is less than or equal to the rank κ(b)

by Lemma 13. Therefore, the number of zeros or roots of the function v(t) is less than or
equal to κ(b). �

Corollary 1. The number of critical equilibria in the line segment [x� f (b)] =
[(b�Y)� (b�0)], where x= (b�Y) ∈ V (b), is less than or equal to inf(��m)− 1.

The proof follows from the inequality κ(b)≤ inf(��m)− 1.

A.2 Alternative expression for detJ��(b�Y) for b ∈ B fixed

The function Y → detJ��(b�Y) for b ∈ B fixed is now expressed in a form that makes it
more suitable for the study of the path-connected components of the regular equilibria
in the fiber V (b).

Lemma 4. There is a (� − 1) × (� − 1) invertible matrix U(b) such that U(b)J��(b�Y) is
a (� − 1) × (� − 1) matrix M whose last � − κ(b) − 1 rows define a submatrix M0 that is
independent of Y . Conversely, given any matrix M whose submatrix, consisting of the
last � − κ(b) − 1 rows, is equal to M0, there exists a (m − 1) × (� − 1) matrix Y such that
J��(b�Y) =U(b)−1M .

Proof. In the expression J��(b�Y) = J��(b�0)+ F(b)Y ((1) in Appendix B.9), there is no
loss in generality in assuming that the first k = κ(b) column vectors of matrix F(b) are
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linearly independent. These vectors are denoted by f1� � � � � fk and are completed in a
base fk+1� fk+2� � � � � f�−1 of R

�−1. Let U−1(b) be the matrix whose column vectors in the
canonical base of R

�−1 are the coordinates of those �− 1 vectors 	f1�	f2� � � � �	f�−1. Then the
matrix product U(b)F(b) takes the block form

U(b)F(b) =
[
Ik A

0 B

]
�

where Ik is the k×k identity matrix and 0 is the (�−k−1)×k matrix with all coefficients
equal to zero. The rank of F(b) is equal to k and also to the rank of U(b)F(b). Therefore,
the column vectors of the submatrix

[A
B

]
have to be linear combinations of the k linearly

independent column vectors of the (� − 1) × k matrix
[ Ik

0

]
. This implies B = 0, from

which follows the equality

U(b)F(b) =
[
Ik A

0 0

]
�

Then

U(b)J��(b�Y) =U(b)J��(b�0)+U(b)F(b)Y�

This implies that the �−k− 1 last rows of U(b)J��(b�Y) do not depend on matrix Y that
represents the equilibrium (b�Y) of the fiber V (b).

Conversely, let the matrix be [
N

M0

]
�

where M0 is the submatrix of U(b)J��(b�0) consisting of those fixed last � − k − 1 rows.
The issue is to find a (m− 1)× (�− 1) matrix Y such that

[
N

M0

]
= U(b)J��(b�0)+

[
Ik A

0 0

]
Y�

It then suffices to take Y = [Y0
0

]
with

Y0 =N −N0�

where N0 is the k× k principal submatrix of U(b)J��(b�0). �

Remark 1. Lemma 4 tells us that after left multiplication by a fixed invertible matrix, the
set of matrices J��(b�Y) for b ∈ B fixed can be identified with the set of (�− 1)× (�− 1)
matrices that have �−1−κ(b) fixed rows or—and this is the same thing—only κ(b) rows
that can vary. Taking the transpose of a matrix defines a homeomorphism between this
set and the set of matrices with �− 1 −κ(b) fixed columns. It is under this form that this
set is studied in this appendix.

Remark 2. Note that it also follows from (1) in Appendix B.9 that the set of matrices Y

that give the same matrix J = J��(b�Y) is an affine space.
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A.3 Set of matrices with a fixed number of columns

Let n be some integer and let M be some n × n matrix. For 0 ≤ k ≤ n − 1, let N1 be the
n × (n − k) matrix made of the last n − k columns of M . Let M(N1) denote the set of
n× n matrices M = [N N1], where the block matrix N1 is fixed.

For k = 0, the set M(N1) consists of just one element: the matrix N1. For k = n, the
set M(0) is the set of all square n× n matrices.

Lemma 5. The set GL(n�R) of invertible real matrices of order n consists of two path-
connected components, GL+ = {M ∈ GL(n�R) | detM > 0} and GL− = {M ∈ GL(n�R) |
detM < 0}.

For a proof, see, for example, Chevalley (1946).

Lemma 6. Let 1 ≤ k≤ n and let the n× (n−k) matrix N1 with rank(N1)= n−k be given.
The intersection GL(n�R) ∩ M(N1) consists of two path-connected components, namely
GL+ ∩M(N1) and GL− ∩M(N1), the sets consisting of matrices with strictly positive and
negative determinants, respectively.

Proof. For k = n, the set GL(n�R) ∩ M(N1) coincides with the linear group GL(n�R)

and we can apply Lemma 5.
Let us now assume 1 ≤ k ≤ n − 1: the last n − k columns of the matrices in

Gl(n�R) ∩ M(N1) are fixed and equal to N1. Let e1� � � � � ek� ek+1� � � � � en be an arbi-
trary base of R

n. Let f be the linear map from R
n into itself defined by some matrix

M ∈ GL(n�R) ∩ M(N1). The linear map g = f−1 ◦ f = idRn is the identity map of R
n and

its matrix is the n× n identity matrix In. Let now M ′ ∈ GL(n�R)∩ M(N1). It is the matrix
of some linear map f ′ from R

n into itself.
The matrix of the map g′ = f−1 ◦ f ′ takes the form

Z′ =
[

Z′
k 0

Z′
n−k In−k

]
�

where In−k is the (n − k) × (n − k) identity matrix and 0 is the k × (n − k) matrix with
coefficients all equal to zero. Conversely, for any linear map g′ from R

n into itself de-
fined by a matrix Z′ of the above form, the map f ′ = f ◦ g′ is represented in the base
e1� � � � � ek� � � � � en by a matrix with its last n − k columns fixed and defining the block
matrix N1.

Assume now detM−1 detM ′ > 0. We want to build a continuous path from the iden-
tity matrix In associated with the map g to the matrix Z′ of g′ that belongs to the set of
matrices whose last n− k columns make up the block matrix [ 0

In−k
].

From detZ′
k = detZ′ = detg′ > 0, Lemma 5 implies the existence of a continuous

path t ∈ [0�1] → Zk(t) with Zk(0) = Ik, the k × k identity matrix, and Zk(1) = Z′
k. Let

g(t) be the linear map defined by the matrix

Z(t) =
[
Zk(t) 0
tZ′

n−k In−k

]
�
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The matrix M(t) of the map f ◦ g(t) has its last n− k columns defining the block matrix
N1 that is fixed for t ∈ [0�1]. In addition, the sign of detM(t) is constant and M(0) = M

and M(1)= M ′. �

A.4 Path-connected components in the fiber V (b) of the set of regular equilibria

Lemma 7. For b ∈ B such that κ(b) ≥ 1, the set of regular equilibria R ∩ V (b) is made of
two path-connected components, one component consisting of the equilibria of index +1
and the other consisting of equilibria with index −1. For b ∈ B such that κ(b) = 0, all the
equilibria in the fiber V (b) are regular and of index +1.

Proof. If κ(b) = 0, then the Jacobian matrix J��(b�Y) does not depend on Y and all the
equilibria (b�Y) of the fiber V (b) are regular and of index +1.

For κ(b) ≥ 1, it follows from Lemma 4 that the set of matrices J��(b�Y) becomes the
set of matrices with fixed last � − 1 − κ(b) columns after suitable matrix multiplication
followed by transposition. In addition, given that the matrix J��(b�0) is invertible (see
Appendix B.6), it then suffices to apply Lemma 6. �

A.5 Application to paths with endpoints the no-trade equilibrium f (b) of the fiber V (b)

Lemma 8. Let x = (p�ω) = (b�Y) be a regular equilibrium with index −1. There exists
a continuous path in the fiber V (b) linking x and the no-trade equilibrium f (b) = (b�0)
with the property that the path intersects the set of critical equilibria S ∩ V (b) in just one
point.

Proof. The polynomial function t → v(t) = (−1)�−1 detJ��(b� tY) is not identically
equal to zero because v(0) > 0 and v(1) < 0. This polynomial function has a finite
number of roots t1� � � � � th, with 1 ≤ h ≤ κ(b), where κ(b) is the rank of the fiber V (b).
Therefore, there exists at least one root tj such that the function v(t) changes sign at
that root. By this, it is meant that for ε > 0 small enough, v(t ′) and v(t ′′) have opposite
signs for tj − ε < t ′ < tj and tj < t ′′ < tj + ε. See Figure 3. This implies that the seg-
ment [(b� t ′Y)� (b� t ′′Y)] intersects the set S at only one point, the equilibrium (b� tjY),
and that its extremities are in the two different path-connected components of the set
R ∩ V (b). Assuming, for example, that the index ι(b� t ′Y) is equal to +1 and the index
ι(b� t ′′Y) is equal to −1, there exist continuous paths linking x = (b�Y) to (b� t ′′Y) and
f (b) = (b�0) to (b� t ′Y). The combination of these three paths gives us the required path.
In case the indices of (b� t ′Y) and (b� t ′′Y) are −1 and +1, respectively, it then suffices to
link x= (b�Y) to (b� t ′′Y) and f (b) = (b�0) to (b� t ′Y). �

The previous result can be extended to the case where the equilibrium x = (p�ω) =
(b�Y) is critical equilibrium as follows:

Lemma 9. Let x = (b�Y) be a critical equilibrium. There exists a continuous path in the
fiber V (b) linking x = (b�Y) to the no-trade equilibrium f (b) = (b�0) of the fiber with the
property that all its points except x= (b�Y) are regular and have index +1.



176 Yves Balasko Theoretical Economics 7 (2012)

Figure 3. The path-connected components of V (b)∩ R.

Proof. It suffices to find a line through x = (b�Y) in the fiber such that detJ��(b�Y ′)
changes sign at Y ′ = Y when matrix Y ′ is varied along this line.

Since the equilibrium x = (b�Y) is critical, this means that the rank κ(b) of the
fiber V (b) is different from zero; otherwise, detJ��(b�Y) would be constant and dif-
ferent from zero. The set of matrices J��(b�Y

′) is isomorphic by Lemma 4 to the set
of matrices having at least one variable column with the determinant being a non-
constant function of these variable columns. This implies that the determinant is not
constant with respect to at least one coefficient a(Y) of the matrix Y . Let us fix all the
other coefficients of Y . Then detJ��(b�Y ′) = A + Ba(Y ′), where B �= 0. It follows from
A+Ba(Y) = detJ��(b�Y) = 0 that detJ��(b�Y) changes sign at (b�Y). �

A.6 Example of a non-path-connected set of regular equilibria with index −1

We assume (��m) = (2�2) and fixed total resources r ∈ R
2++. Let p = (p1�1) denote the

numeraire normalized price vector. The price–income vector (p�w1�w2) is compati-
ble with the total resources r if f1(p�w1) + f2(p�w2) = r. The set B(r) of price–income
vectors compatible with r is diffeomorphic to the open interval (0�1) and can be or-
dered by the (indirect) utility u1(f1(p�w1)) of the price–income vector b = (p�w1�w2).
The set B(r) is also diffeomorphic to the set of no-trade equilibria T for the fixed total
resources r.

We denote by b(t) = (p1(t)�w1(t)�w2(t)) the price–income vector associated with
t ∈ (0�1) and denote by f (b(t)) the corresponding no-trade equilibrium.

The fiber V (b(t)) is diffeomorphic to the set of real numbers R. The equilibrium
manifold E is therefore diffeomorphic to the Cartesian product (0�1) × R. The coordi-
nate system (b�Y) of the equilibrium manifold can then be identified to the coordinates
(t� y) ∈ (0�1)× R.

For t ∈ (0�1) given, the fiber V (b(t)) contains at most one critical equilibrium. This
critical equilibrium is defined by the coordinate y1

1(t) = ω1
1 − f 1

1 (p(t)�w1(t)) satisfying
the equation

K(b(t))+ F(b(t))
(
ω1

1 − f 1
1 (p(t)�w1(t))

) = 0�
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where K(b(t)) < 0 for t ∈ (0�1) and

F(b(t)) = ∂f 1
1 (p(t)�w1(t))

∂w1
− ∂f 1

2 (p(t)�w2(t))

∂w2
�

This formula defines a function that associates with t ∈ (0�1) the coordinate y1
1(t) (pos-

sibly equal to ∞) of the critical equilibrium of the fiber V (b(t)).
The sign of the Jacobian determinant v(t� y) = −detJ��(b(t)�Y) is positive if the

point (t� y) is above the graph of the function t → y1
1(t) and F(b(t)) is negative. This

sign is negative if F(b(t)) is positive.
To get an example of a disconnected set of regular equilibria with index −1, it then

suffices to have a function y1
1(t) with a graph such that the set {(t� y) | v(t� y) < 0} is dis-

connected.
The idea is to have a graph with at least one vertical asymptote and with points above

the t axis left of the vertical asymptote and below the t axis right of the vertical asymptote
or, vice versa, points below the t axis left of the vertical asymptote and above the t axis
and right of the vertical asymptote. The existence of such a function y1

1(t) results from
the following lemma.

Lemma 10. There exist preferences represented by utility functions u1 and u2 and three
price–income vector b(t0), b(t1), and b(t2) compatible with the total resources r such that

u1
(
f1(p(t0)�w1(t0))

)
< u1

(
f1(p(t1)�w1(t1))

)
< u1

(
f1(p(t2)�w1(t2))

)

and

F(b(t0)) = −F(b(t2)) and F(b(t1)) = 0�

Proof. A simple example does the trick. Let u1 = u2. Then f1(p�w) = f2(p�w). Pick for
p(t1), the price vector supporting the allocation r/2 and let w1(t1) = w2(t1) = p(t1) · r/2.

Then
∂f 1

1
∂w1

(p(t1)�w1(t1)) = ∂f 1
2

∂w2
(p(t1)�w2(t1)), which implies F(b(t1)) = 0.

Now pick for b(t0) = (p(t0)�w1(t0)�w2(t0)) any price–income equilibrium compat-
ible with r and such that u1(f1(p(t0)�w1(t0))) < u1(f1(p(t1)�w1(t1))). Then let b(t2) =
(p(t2)�w1(t2)�w2(t2)), where p(t2)= p(t0), w1(t2) =w2(t0), and w2(t2) =w1(t0). Then

f1(p(t2)�w1(t2))+ f2(p(t2)�w2(t2)) = f1(p(t0)�w2(t0))+ f2(p(t0)�w1(t0))

= f2(p(t0)�w2(t0))+ f1(p(t0)�w1(t0)) = r�

which proves that b(t2) is indeed compatible with r. In addition, F(b(t2)) is equal to
−F(b(t0)). �

Lemma 11. The set of regular equilibria with index −1 of an exchange economy satisfying
the conditions of Lemma 10 is disconnected.

To prove the lemma, draw the graph of the function t → y1
1(t). The conclusion is

then obvious on Figure 4.
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Figure 4. Graph of the function t → y1
1(t).

Appendix B: Regular and critical equilibria

B.1 Slutsky matrix of individual demand

Let f̄i(p�wi) ∈ R
�−1 denote the vector defined by the first � − 1 coordinates of fi(p�wi).

The (� − 1) × (� − 1) Slutsky matrix S��fi(p�wi) associated with the numeraire normal-
ized price vector p ∈ S is the Jacobian matrix of the map p ∈ S → f̄i(p�p · ωi), where
ωi = fi(p�wi). (Recall that we then have wi = p · ωi by Walras’s law.) It is a standard
property of consumer theory that this matrix is negative definite. (See, e.g., Balasko 1988,
Theorem 2.5.9.)

B.2 The Jacobian matrix of aggregate excess demand

We denote by z̄(p�ω) ∈ R
�−1 the aggregate excess demand

∑
i f̄i(p�p ·ωi)−∑

i ω̄i in the
first �− 1 goods.

Let (p�ω) = (b�Y) ∈ E be an equilibrium. The map p′ → z̄(p′�ω) is obviously de-
fined in a neighborhood of the price vector p ∈ S. The Jacobian matrix of this map at
p′ = p is denoted by J��(p�ω) = J��(b�Y).

B.3 Regular equilibria

By definition, the equilibrium x = (p�ω) = (b�Y) ∈ E is regular if detJ��(b�Y) is differ-
ent from zero. The implicit function theorem can then be applied to the equilibrium
equation z̄(p′�ω) = 0. This implies that the equilibrium price vector p ∈ S is a smooth
function of the fundamentals represented by the endowment vector.

The set of regular equilibria R is an open subset with full measure of the equilibrium
manifold E. (See Balasko 2009, Proposition 4.7.1.)

It follows from the negative definiteness of the individual Slutsky matrices that
the Jacobian matrix of aggregate excess demand J��(b�0) at the no-trade equilibrium
f (b) = (b�0), is negative definite. This implies that every no-trade equilibrium is regu-
lar. (Under the assumptions of this paper that preferences are defined by smooth utility
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functions, the individual Slutsky matrices are also symmetric, which implies the sym-
metry of the matrix J��(b�0). Note, however, that the results of this paper do not need
that property.)

B.4 Index of a regular equilibrium

By definition, the index ι(x) = ι(b�Y) of the regular equilibrium x = (b�Y) ∈ E takes
the value +1 or −1, the sign being determined by the condition that the product
(−1)�−1ι(b�Y)detJ��(b�Y) is strictly positive. For properties of this index number, see
Dierker (1972) or Balasko (2009, Corollary 2.5.8). Only the definition of the index is used
in this paper.

B.5 Index of a stable equilibrium

Let (b�Y) be a tatonnement stable regular equilibrium. (See, for example, Balasko 2009,
Chapter 7.) The Jacobian determinant detJ��(b�Y) is the product of its � − 1 eigenval-
ues. The eigenvalues either are strictly negative when real or are complex conjugate with
nonpositive real parts. The product of the complex conjugate eigenvalues is strictly pos-
itive. The product of all � − 1 eigenvalues has therefore the same sign as (−1)�−1. The
index ι(b�Y) of the stable equilibrium (b�Y) is therefore equal to +1.

B.6 Regularity of every no-trade equilibrium

The matrix J��(b�0) being negative definite (see Appendix B.9), the inequality (−1)�−1 ×
detJ��(b�0) > 0 is satisfied at every no-trade equilibrium (b�0) = f (b) ∈ T , from which
follows that every no-trade equilibrium is regular with an index equal to +1. (Recall
that every no-trade equilibrium is tatonnement stable; see, for example, Balasko (2009,
Chapter 7.)

B.7 Critical equilibrium

The equilibrium (p�ω) = (b�Y) is critical if detJ��(p�ω) = detJ��(b�Y) = 0� An equilib-
rium is critical if it is not regular and conversely. The set of critical equilibria is denoted
by S. It is the complement of the set of regular equilibria: S =E \ R.

B.8 Sets of regular and critical equilibria

The set S of critical equilibria is a closed subset of measure zero of the equilibrium man-
ifold E (Balasko 1992 or 2009, Proposition 4.7.1). Note that the set of critical equilibria
S ∩ V (b) within the fiber V (b) is actually defined by a polynomial equation in the coor-
dinates Y and, as such, is an algebraic set, a crucial property in the proof that S is closed
with measure zero in the equilibrium manifold.
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B.9 Expression of the Jacobian matrix of aggregate excess demand in
the (b�Y) coordinate system

Many issues about regular equilibria deal with properties of the Jacobian matrix of ag-
gregate excess demand. For a definition, see Appendix B.2. Here, we recall the remark-
able expression of this matrix in the (b�Y) coordinate system,

J��(b�Y) = J��(b�0)+ F(b)Y� (1)

where J��(b�0) is the sum of the individual Slutsky matrices,

J��(b�0) =
∑
i

S��fi(p�wi)�

and the (�− 1)× (m− 1) matrix F(b) is equal to

F(b) =
[
∂f̄1

∂w1
(p�w1)− ∂f̄m

∂wm
(p�wm)� � � � �

∂f̄m−1

∂wm−1
(p�wm−1)− ∂f̄m

∂wm
(p�wm)

]
�

with f̄i(p�wi) representing consumer i’s demand of the first � − 1 goods. (See, Balasko
2009, Proposition 4.5.6.)

An immediate application of the above expression is the following.

Lemma 12. The function Y → detJ��(b�Y) is polynomial in the coefficients of Y .

The proof is obvious.

B.10 Rank of an equilibrium

Definition 2. The rank of the fiber V (b) associated with the price–income vector
b = (p�w1� � � � �wm) ∈ B is the rank of matrix F(b). By extension, this number is also the
rank of any equilibrium x= (b�Y) in the fiber V (b) and is denoted by κ(x) = κ(b�Y).

This definition of the rank of the equilibrium x ∈ E is new. This rank κ(x) is always
less than or equal to inf(��m)− 1.

Lemma 13. The function t ∈ [0�1] → v(t) = detJ��(b� tY) is polynomial and not identi-
cally equal to zero. Its degree is less than or equal to κ(b�Y)= rankF(b).

Proof. That the function is polynomial and its degree is less than or equal to κ(b�Y)

are obvious. That this polynomial is not identically equal to zero follows from v(0) =
detJ��(b�0) �= 0. �
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