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A partial folk theorem for games with private learning

Thomas Wiseman
Department of Economics, University of Texas at Austin

The payoff matrix of a finite stage game is realized randomly and then the stage
game is repeated infinitely. The distribution over states of the world (a state cor-
responds to a payoff matrix) is commonly known, but players do not observe na-
ture’s choice. Over time, they can learn the state in two ways. After each round,
each player observes his own realized payoff (which may be stochastic, condi-
tional on the state) and he observes a noisy public signal of the state (whose infor-
mativeness may vary with the actions chosen). Actions are perfectly observable.
The result is that for any function that maps each state to a payoff vector that is
feasible and individually rational in that state, there is a sequential equilibrium in
which patient players learn the realized state with arbitrary precision and achieve
a payoff close to the one specified for that state. That result extends to the case
where there is no public signal, but instead players receive very closely correlated
private signals of the vector of realized payoffs.
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1. Introduction

Consider a repeated stage game in which the sets of players and actions are known, but
the distribution of payoffs conditional on action profiles is chosen randomly once and
for all at the start of play, and the players do not observe nature’s choice. The players
have a common prior over the finite set of possible states of the world and they have
two ways to learn (directly) the state over time. First, each player observes the profile
of actions and his own realized payoff in each period: that payoff is a random variable
whose distribution depends on the state. Second, every period there is a noisy public
signal of the state. The public signal varies in informativeness across action profiles and
stochastically incorporates the information in the privately observed payoffs. A player
may also learn about the state indirectly, if the actions of other players reveal their his-
tory of private payoffs. This paper, extending the result of Wiseman (2005), establishes
for such games a partial folk theorem of the following sort: for any function mapping
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each state of the world to a payoff vector that is feasible and individually rational in that
state, there exists a sequential equilibrium in which patient players achieve the payoff
specified for whatever state is realized. (That folk theorem is “partial” because there may
be equilibria without learning that yield ex ante—that is, unconditional on the state—
expected payoffs outside the set derived here.) That result also holds in the case where
there is no public signal, but players receive very closely correlated private signals of the
vector of realized payoffs in each period (if there are at least three players and cheap talk
is allowed).

One example of such a game is the situation of oligopolists introducing a product
into a new market with uncertain demand. Every month, each seller sets a publicly ob-
served price, and sees her own sales and a noisy public indicator of total sales in the
market.1 Another situation that fits the model is co-authors presenting a joint research
paper. Each author sees which seminars and conferences the other is invited to, but
does not observe the reaction of the audience. Opposing sides of a war-of-attrition-type
strike, with asymmetric information about the costs of holding out, may read newspaper
accounts of how their opponents are faring. The model also applies to wars between na-
tions or to partners in a joint investment project who observe their own returns precisely
and each others’ returns only approximately.

These repeated games with unknown payoff distributions and private learning are in
some ways analogous to repeated games with imperfect public monitoring. In the latter
class of games, focusing on perfect public equilibria (PPE), in which players’ strategies
depend only on public information, is a fruitful approach to obtain folk theorems (as in
Fudenberg et al. 1994). The key insight in establishing the existence of a PPE in their set-
ting is that the set of best responses to a public strategy profile always includes a public
strategy: when the other players’ future actions depend only on public information, a
player loses nothing by ignoring his private information. In the current context, how-
ever, a perfect public equilibrium may fail to exist; there may be no public strategy best
response to a public strategy profile, for two reasons. First, a player’s private information
influences his expectation of future public signals and thus his expectations of the future
play of his opponents. Second, the public history may call for him to play a sequence of
actions that he knows from his private signals yields a payoff below his minmax payoff.
For both reasons, it may be costly for a player to ignore his private information, and so
any best response must be a private strategy.

More generally, the potential for private and public beliefs to diverge creates a diffi-
culty in deriving a folk theorem of the type desired when players learn privately. (Such a
divergence of beliefs is, almost by definition, unlikely, but depending on the signal struc-
ture, it may occur with positive probability in equilibrium.) For example, suppose that
the public signals that the players use to determine their actions in equilibrium suggest
very strongly that nature has chosen state A, but player 1’s private payoffs indicate state
B even more strongly, so that his private belief assigns probability close to 1 to state B. In
that situation, player 1 believes that eventually the public belief will converge to state B

1Related work on that topic includes Vives (1989, 2002), Kihlstrom and Vives (1992), Mirman et al. (1994),
Kuhn and Vives (1995), Bergemann and Välimäki (2000).
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if players continue to experiment, but (i) in the future, equilibrium may specify only ac-
tions that yield the same payoffs in all states, so that no further learning occurs, or (ii)
the current public belief may put so little weight on state B that the expected time before
convergence is very long, even if the equilibrium calls for continued experimentation.
Further, in state B the equilibrium actions specified for state A may yield a lower pay-
off to player 1 than the actions designed to punish player 1 for a deviation in state A
yield, and so player 1 deviates. In response, however, the other players may conclude
that player 1 must believe in state B, and so the public belief may adjust very far toward
state B. But then such a deviation may be profitable for player 1 even when his private
information is consistent with state A, if the punishment profile specified for him in
state B gives him a higher payoff when the actual state is A than does the on-path profile
specified in state A.

In this paper, the way around such complications is to construct equilibrium block
strategies, in which actions depend only on recent public signals. For example, if the
blocks are 100 periods long, then the actions in period 199 are determined by the public
signals from periods 101 through 198 only. In effect, the players coordinate their actions
using a public “dummy belief” over states, which is reset to the prior at the beginning of
each block. This approach bounds the possible divergence between the private beliefs
and the dummy belief. In particular, a patient player prefers not to deviate even if the
dummy belief, after a sequence of misleading public signals, calls for an action profile
that he believes gives him a very low payoff for the duration of the current block: at the
start of the next block, the dummy belief reverts to the prior, and with high likelihood,
experimentation in the next block (and all future blocks) reveals the true state and en-
ables the other players either to give him his equilibrium payoff or to effectively punish
his deviation. The strategies constructed are public on the equilibrium path, but after
deviating, a player uses a private strategy temporarily, as is described in detail later. For
that reason, the strategies are neither a “belief-free” equilibrium, as in Hörner and Lovo
(2009) and Hörner et al. (2011a), for example, nor a “perfect public ex post” equilibrium,
as in Fudenberg and Yamamoto (2010).

An additional difficulty in that construction is that a player being minmaxed may be
able to unilaterally block learning: a player may have an action such that regardless of
the actions chosen by the other players, the resulting payoff is uninformative about the
state. (For example, the payoff to an investment project that requires the participation
of all players cannot be learned if one player chooses not to contribute.) If other players
need to tailor their punishment actions to the state, such a failure of learning clearly cre-
ates a problem for constructing credible threats. The solution, briefly, is to demonstrate
that there is a strategy available to the punishing players such that if the player being
punished can block learning, he can do so only at the cost of low payoffs in the stage
game.

It is straightforward to extend the folk theorem to the case where players have private
information about the state of the world before the beginning of the game or where they
receive private signals beyond their realized payoffs during the game. The folk theorem
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also extends to the case that there are no public signals, but instead players’ private sig-
nals are very closely correlated (conditional on the state and the action profile). The con-
struction, which requires the additional assumptions that there are at least three play-
ers and that cheap-talk communication is possible after each period, uses players’ an-
nouncements of their private signals in place of public signals. A player who announces
a different signal from the others is punished as though he had deviated, and thus he
prefers to report truthfully.

Cripps et al. (2008) (henceforth CEMS) consider a problem related to the issue in
this paper. In their setting, too, nature selects a state once and for all according to a
known prior. At least some of a finite set of players are initially uninformed about na-
ture’s choice. In each period, players receive noisy private signals of the state. There
is no game, however; the players do not interact with each other. Instead, CEMS study
conditions under which the information in these private signals eventually generates
“common learnings,” that is, the realized state ω becomes common 1-belief (each player
believes with probability 1 that each player believes with probability 1 . . . that the state is
ω) in the limit. One goal of that research is to establish conditions for a folk theorem. The
relationship between their work and this paper is discussed briefly in the conclusion.

The literature on repeated games with incomplete information is extensive; see
Aumann and Hart (1992) and Aumann et al. (1995). Kalai and Lehrer (1993, 1995) ex-
amine the case where players are uncertain both about payoffs and about the strategies
of other players. Nearer to this paper, Gossner and Vieille (2003) and Wiseman (2005)
establish folk theorems (without discounting and with discounting, respectively) for re-
peated games with symmetric learning. The most closely related papers are Fudenberg
and Yamamoto (2010) and Yamamoto (2010), who study repeated games with imper-
fect monitoring in which players are initially uncertain both about payoffs and about
the monitoring structure; players’ private information about their own actions gener-
ates asymmetric learning about the state of nature. (Monitoring is public in Fudenberg
and Yamamoto 2010, and private in Yamamoto 2010.) They derive conditions on the
monitoring structure under which a folk theorem holds.2 Those conditions rule out the
possibility that any player can unilaterally block learning; the statewise full-rank con-
dition requires that for any two states, there is an action profile with the property that
the resulting public signal distinguishes between the states, even if a single player devi-
ates. As described above, that assumption removes a significant potential difficulty in
generating a folk theorem. The key assumption in this paper (Assumption 1) is that an
action profile must generate different public signals in different states only if the result-
ing payoffs are different, that is, if any player can distinguish between states by observ-
ing his payoffs, then the public signals also distinguish between them. An example that
satisfies Assumption 1 but not the statewise full-rank condition is the joint investment
project mentioned above: each period, the project succeeds if and only if both players
exert effort. If they do, then the expected return depends on the state of the world. If any
player fails to exert effort, then the return is zero in any state.

2Fudenberg and Yamamoto (2011b) show that those conditions can be weakened if players have initial
private information about the state.
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On the other hand, the models in Fudenberg and Yamamoto (2010) and Yamamoto
(2010) allow not only imperfect monitoring, but uncertainty about the monitoring struc-
ture itself, which are substantial extensions relative to the perfect monitoring of actions
assumed in this paper. Another difference is that the proof here is constructive, while
Fudenberg and Yamamoto (2010) and Yamamoto (2010) use an extension of the linear
programming techniques of Fudenberg and Levine (1994).

Another strand of related literature is on reputation games with two patient play-
ers; the difference in those models is that the uninformed player gets no signals of the
informed player’s type except through the actions of the informed player. Mailath and
Samuelson (2006) provide an extensive summary of research in that area; more recent
work includes Peski (2008) and Atakan and Ekmekci (2009, 2011, forthcoming). Sim-
ilarly, Hörner and Lovo (2009) and Hörner et al. (2011a) study repeated games where
each player has private information about the state at the beginning of the game, but
does not receive any further signals (except for the actions of other players).

The structure of the rest of the paper is as follows. Section 2 presents the model,
Section 3 contains the folk theorem and its proof, Section 4 extends the result to the
case of private, almost-public signals, and Section 5 concludes.

2. Model

There is a set � of K possible states of the world and N > 1 expected-utility maximizing
players repeating a stage game infinitely. The players have a common discount factor δ.
Before the start of play, the state of the world ω is chosen once and for all according to
the commonly known distribution �, which assigns strictly positive probability to each
of the K possible states. In each different state ω, the stage game G(ω) has different
payoffs but the same set of action profiles A = A1 × A2 × · · · × AN , where Ai is the set
of actions for player i; let L denote the number of action profiles. A mixed action profile
is denoted by α and (mixed) actions are publicly observed.3 In each period, payoffs are
determined as follows: action profile a is played, and then player i’s random payoff Ui,
which is observed by player i only, is drawn from a distribution Fi(a�ω) that depends on
the action profile a and the state ω. At the same time, a random public signal Z, whose
distribution Fz(a�ω) also varies with a and ω, is realized. Each time action profile a is
played, independent draws from Fz(a�ω) and Fi(a�ω) are made. The expected payoff
from mixed action profile α in state ω, is given by

EUi(α�ω)=
∑
a∈A

α(a)EFi(a�ω)[Ui]�

where α(a) is the probability of pure action profile a under mixed profile α. A public
randomization device is available to the players.

The private payoffs Ui jointly identify the state probabilistically: for any two states
ω and ω′, there is some player i and some action profile a ∈ A such that Fi(a�ω) and

3The implications of relaxing the assumption that mixed strategies rather than just the actions actually
played are observable are discussed in Section 5.
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Fi(a�ω
′) differ on a set of positive measure. (That assumption is without loss of gener-

ality; two states that yield the same payoff distributions can be treated as a single state.)
The key assumption is that the public signals Z contain (probabilistically) at least the
information in the private payoffs.

Assumption 1. For any action profile a ∈ A and pair of states ω�ω′ ∈ � such that
Fi(a�ω) and Fi(a�ω

′) differ for some player i, the distributions Fz(a�ω) and Fz(a�ω
′)

also differ.

Thus, the public signals also identify the state. The importance of Assumption 1 is
that it ensures that any player i can be (approximately) minmaxed, even when the state
is unknown, as is described in detail in the proof of Proposition 1. The idea, roughly,
is that the punishing players start by playing a tentative punishment profile. If player i
responds with an action that gives him a high payoff, then the other players (i) observe
(probabilistically) the high payoff, (ii) conclude that the state is such that their tenta-
tive profile is not effective, and (iii) switch to a new punishment profile. That process
continues until an effective punishment profile is found.

No assumptions are made about (i) the informativeness about the state ω of private
payoff Ui, conditional on action profile a and public signal Z, (ii) the informativeness
about the state ω of public signal Z, conditional on action profile a and the vector of
private payoffs U , (iii) the correlation between any two players’ payoffs Ui and Uj , con-
ditional on action profile a, public signal Z, and state ω, (iv) the dependence of private
payoff Ui on public signal Z, conditional on action profile a and state ω, (v) the rela-
tionship between Fz(a�ω) and Fz(a

′�ω) or between Fi(a�ω) and Fi(a
′�ω) across states

of the world ω (that is, about whether learning the payoff from action profile a is infor-
mative about the payoff from action profile a′), or (vi) whether learning the payoff from
action profile a to player i is informative about the payoff from a to any other player j.
The model allows for arbitrary correlation of payoffs in each stage across players in any
given state of the world, so player i’s beliefs about player j’s private payoffs and other
higher order beliefs are unrestricted. The supports of the distributions Fi and Fz are not
required to be the same in each state of the world, so there may be public or private re-
alizations that perfectly reveal the state. In fact, the distributions may be degenerate, so
that payoffs or signals are nonstochastic (conditional on the state). Alternatively, if two
states do have the same support, players may never be able to learn the state for certain.

Examples of information structures allowed by the model include the following.

Example 1 (Purely public learning). Suppose that each player i’s private payoff Ui is
independent of the state ω, conditional on action profile a and public signal Z. In that
case, private payoffs are uninformative about the state of the world and all learning is
public. This situation corresponds to the model in Wiseman (2005). ♦

Example 2 (Noisy public signal of payoffs). Suppose that the public signal Z is an N-
dimensional vector and that conditional on the vector of realized payoffs U , Z is inde-
pendent of the state ω. In particular, the ith component of public signal Zi is the sum
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of each player i’s private payoff Ui and a mean-zero noise term εi that is independent
of ω. Then all available information about the state is contained in the private payoffs:
conditional on the vector U , there is no information in the public signal Z (although Z

may be informative to an individual player, who observes only his own payoff Ui). ♦

Example 3 (Known own payoffs). Suppose that each private payoff identifies player i’s
payoff function for each i. That is, whenever the supports of the distributions Fi(a�ω)

and Fi(a�ω
′) have a nonempty intersection, then Fi(a

′�ω) = Fi(a
′�ω′) for all a′ ∈ A. In

this case, players completely learn their own payoffs after a single period, although they
may still be uncertain about the payoffs of other players. This setting fits (after the first
period) models with single- or multisided reputations (and gradual public learning of
players’ types). ♦

A public history Ht contains the action profiles chosen and public signals realized in
periods 1 through t − 1; H1 is the null set. A private history for player i, ht

i , includes the
information in the public history plus player i’s realized payoffs; h1

i is again the null set.
Let bti(h

t
i) ∈ 	K denote player i’s private belief about the state of the world at the start of

period t. Bayesian updating of the prior � using the information in the private history
(including any information about other players’ payoffs revealed by their action choices)
yields the private belief. In contrast, the public dummy belief Bt(Ht) ∈ 	K is obtained by
updating using the information in the public history except information about private
payoffs implicit in actions. Thus, the dummy belief can be calculated without reference
to equilibrium strategies. Similarly, for s ≤ t, obtain the period-s-truncated dummy be-
lief Bt\s(Ht\s) ∈ 	K by updating the prior using the period-s-truncated public history
Ht\s from periods s through t − 1 (again ignoring information about private payoffs);
Bt\t(Ht\t) equals the prior �. Let EU(α�b) ≡ ∑K

k=1 bkEU(α�ωk) be the expected payoff
vector from action α given beliefs b.

Define u as the highest absolute value of expected stage-game payoffs across all play-
ers, all action profiles, and all states of the world, so that

u = max
a∈A�ω∈��i∈N

|EUi(a�ω)|


Define U > u as
√
Nu; no vector of expected payoffs can have a length greater than U .

For each player i and state ω, let mi(ω) ∈ 	A−i be the action profile that minmaxes
player i in state ω and let ei(ω) denote the corresponding minmax payoff; that is,

ei(ω)≡ min
α−i∈×j �=i	Aj

max
ai∈Ai

EUi((ai�α−i)�ω)


Let V (ω), defined as the convex hull of the set {EU(a�ω) ∈ RN : a ∈A}, be the set of fea-
sible payoffs in state ω. Then V ∗(ω) ≡ {u ∈ V (ω) : ui > ei(ω) for all i ∈ N} is the set of
strictly individually rational feasible payoffs. Extending the standard full-dimensionality
condition for folk theorems to the case of multiple states, I assume that V ∗(ω) has di-
mension N for all ω ∈�.
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3. Results

The main result is that for any function that maps each state of the world to a payoff
vector that is feasible and strictly individually rational in that state, there exists a se-
quential equilibrium in which (with very high probability) players achieve (very close
to) the payoff specified for the realized state, as long as players are patient enough.

Proposition 1. Let ε > 0 and payoffs v∗(ω1) ∈ int(V ∗(ω1))� 
 
 
 � v
∗(ωK) ∈ int(V ∗(ωK))

be given, and let � be a prior belief that assigns strictly positive probability to each state.
If Assumption 1 holds, then there exists δ < 1 such that for all δ > δ, there is a sequential
equilibrium that with probability at least 1 − ε, conditional on any state ω being real-
ized, yields a payoff vector within ε of v∗(ω). In equilibrium, each player i’s private belief
converges to the truth: limt→∞ bti(h

t
i)[ω] = 1 with probability 1.

The proof is constructive, using elements of Fudenberg and Maskin’s (1986) and
Gossner and Vieille’s (2003) folk theorems and Hörner and Olszewski’s (2006) block
strategies. The equilibrium uses play “blocks” of M + T periods each. (The values M
and T are described below.) A block has a “target payoff” v(ω) for each state ω. Within
each block, players follow strategies that rely only on the history of public signals since
the start of the block and, in particular, on the dummy belief truncated at the beginning
of the block. The first M periods are used in experimentation to learn the state of the
world (since all previous information about the state is ignored). The most likely state ω̂

is identified and then in the remaining T �M periods, players choose the action profile
that yields the target payoff v(ω̂) in state ω̂. If (i) M is large enough to identify the true
state with high probability, (ii) T/(M + T) is close to 1, so that nearly all of the periods
within the block are spent playing the target action profile, and (iii) players are very pa-
tient, then the expected payoff from the block when the realized state is ω is very close
to the target payoff v(ω).

There are 2N + 1 types of blocks: an on-equilibrium block, a minmax block for each
player, and a postdeviation block for each player. The initial block is on-equilibrium, as
are all subsequent blocks until the first deviation. If player i deviates during a block, then
a minmax-i block begins in the next period and all subsequent blocks (until another
player deviates) are postdeviation-i blocks. The target payoffs in the on-equilibrium
block correspond to the desired equilibrium payoffs v∗(ω). The target payoff for player i
in his minmax block is roughly ei(ω). (Play in the minmax blocks is somewhat different
from play in the other blocks, as described in the proof.) Target payoffs in the postde-

viation blocks are chosen so that vdev-i
i (ω) < v∗

i (ω) and vdev-i
i (ω) < v

dev-j
i (ω) for each

state ω. That is, the payoff to a deviator is lower than he would get in equilibrium or
when punishing another player, regardless of the state. A patient player, then, does not
deviate, on or off the equilibrium path, regardless of his private beliefs. Simultaneous
deviations are ignored.

In a minmax block, the challenge is that the punished player i may be able to block
experimentation, making it impossible for the other players to identify the state and
play the appropriate minmax profile. For example, player i may have an action ai such
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that any profile that includes ai yields a payoff that is independent of the state. The re-
sulting lack of learning is a problem, since a profile that minmaxes player i in one state
may give him a high payoff in another. It turns out, though, that there is a strategy for
the other players that prevents player i from simultaneously getting a high payoff and
blocking learning. Suppose that the other players play mi(ω), the profile that minmaxes
player i in state ω. If player i’s response yields him a payoff above (in expectation) his
state-ω minmax ei(ω), then necessarily his payoff reveals that the state is not ω. The
public signal, by Assumption 1, reveals that information as well, and so the other play-
ers learn. The other players, then, can start a minmax-i block by playing the minmax
profile mi(ω′) corresponding to the state ω′ in which the minmax payoff ei(ω′) is lowest,
continue playing that profile unless they learn that the state is not ω′, then switch to the
minmax profile for the state with the second-lowest minmax payoff, and so on. If they
follow such a strategy, then, conditional on any state ω being realized, the number of
periods in the block in which player i can attain a payoff above his minmax payoff for
that state ei(ω) is bounded (probabilistically). Thus, if the number of periods in the min-
max block is high enough, then player i’s average payoff in the block cannot be (much)
greater than ei(ω).

During a minmax-i block, deviations by player i are ignored. Therefore, the optimal
strategy for player i is to play a best response to the equilibrium actions of the other
players for the remaining periods of the minmax-i block. Note that as a consequence,
the equilibrium strategies are not public strategies. The actions chosen by a player who
has not deviated depend only on the public history, but the actions of a player who has
deviated in general depend (during the subsequent minmax block) on his private beliefs.

Proof of Proposition 1. For each state ω ∈ � and each player i, choose a payoff vec-

tor vdev-i(ω) ∈ int(V ∗(ω)) such that vdev-i
i (ω) < v∗

i (ω) and vdev-i
i (ω) < v

dev-j
i (ω) for each

j �= i; these feasible, strictly individually rational payoffs are the long-run (that is, af-
ter the minmax block) payoffs after a deviation by player i. Without loss of generality,
assume that

ε < min{1� v∗
i (ω)− vdev-i

i (ω)� v
dev-j
i (ω)− vdev-i

i (ω)� vdev-i
i (ω)− ei(ω)}

for all players and states.
Choose a positive integer M to satisfy the following three conditions.

Condition 1. The integer M is divisible by L (the number of pure action profiles) and
by K (the number of states).

Condition 2. Conditional on any state ω, updating the prior � with the M public sig-
nals that result from playing each action profile a ∈AM/L times yields a posterior prob-
ability that puts weight greater than 1/2 on ω with probability at least 1 − ε/(8U).

Condition 3. Take any two states ω �= ω′, any player i, and any history of actions in
which (i) players other than i always play mi(ω) and (ii) in at least M/K periods, player i
plays an action ai ∈ Ai such that EUi((ai�m

i(ω))�ω′) > ei(ω). (It need not be the same
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such action in each of the M/K periods.) Then conditional on state ω′, updating the
prior � with the resulting public signals yields a posterior probability that puts weight
less than ε/2 on ω with probability at least (1 − ε/(8U))1/K .

The second condition requires that M periods of experimentation, split equally
among all action profiles, are with high probability sufficient to learn the state with great
precision, starting from the prior. The third condition says that if the other players play
the state-ω minmax profile for player i when the actual state is ω′, and player i’s re-
sponse yields an expected (in state ω′) payoff above his state-ω minmax, then within
M/K periods the players very likely learn very precisely that the state is not ω.

Condition 4. Given M , choose a positive integer T greater than (4M/ε)U −M , so that

U −
[

M

M + T
(−U)+ T

M + T
U

]
<

ε

4



Thus, if action profile a is played for M periods and action profile a′ is played for T

periods in state ω, then the average payoff (without discounting) in those M +T periods
will be close to U(a′�ω), regardless of how far apart U(a′�ω) and U(a�ω) are.

Condition 5. Given M and T , choose a positive integer T ′ ≥ T such that[
M + T

M + T ′ + 1
(−U)+ T ′ − T + 1

M + T ′ + 1
vdev-i
i (ω)

]
−

[
M + 1

M + T ′ + 1
U + T ′

M + T ′ + 1
ei(ω)

]
> ε

for every player i in every state ω�

so that the average (undiscounted) payoff to player i from T ′ periods of being minmaxed
and M + 1 periods of any other action profile is lower than his long-run payoff after
deviating, even if the payoff from the current postdeviation block happens to be low.
(The minmax blocks are constructed below to last for M + T ′ periods.)

Finally, the value of the discount factor δ is described later.
The equilibrium strategies are based on 2N + 1 types of blocks, as described above.

There are an on-equilibrium block, a postdeviation block for each player, and a minmax
block for each player.

Within-block strategies. The on-equilibrium block has length M + T periods. Order
the action profiles A arbitrarily as A = {a1� 
 
 
 � aL}. The players play profile a1 for the
first M/L periods of the block, a2 for the next M/L periods, and so on for the rest of the
first M periods. In a block that begins in period s, that experimentation yields the trun-
cated dummy belief Bs+M\s(Hs+M\s). Let ω̂(Hs+M\s) denote the state given the highest
probability under Bs+M\s(Hs+M\s). (Ties can be broken arbitrarily.) For the remain-
ing T periods of the block, players play the profile that results in payoff v∗(ω̂(Hs+M\s))
in state ω̂(Hs+M\s). Within the block, simultaneous deviations are ignored. If player i

deviates unilaterally, then the on-equilibrium block ends immediately and a minmax-i
block begins in the next period (as described below).
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Play in a postdeviation-i block is similar. The only difference is that in the last T pe-
riods, the profile yielding payoff vdev-i(ω̂(Hs+M\s)) in state ω̂(Hs+M\s) is played, rather
than the profile yielding v∗(ω̂(Hs+M\s)). The construction of the block is the same; only
the target payoffs differ.

The construction of a minmax-i block, which has lengthM+T ′ periods, is somewhat
different. For convenience, suppose that the K states of the world are indexed such that
ei(ω1) ≤ ei(ω2) ≤ · · · ≤ ei(ωK). That is, player i’s minmax payoff is lowest in state ω1
and increases up through state ωK . In each period of a minmax-i block that begins
in period s, players other than i play the minmax profile mi(ωk) corresponding to the
lowest-indexed state ωk that has probability at least ε/2 under the period-s-truncated
dummy belief Bt\s(Ht\s). (For example, they start the block by playing mi(ω1) if state ω1
has probability ε/2 or higher under the prior �.) When there are R periods remaining in
the block, player i plays the R-period best response, given his private belief, to the pub-
lic strategies used by the other players in the rest of the block. (That is, he constructs
a best response by backward induction, as though the last period of the minmax block
were the end of the game.) If he has multiple best responses, his equilibrium-specified
choice among them is common knowledge. Since deviations by player i (who is using
a private strategy) may not be detectable, none of his actions is considered a deviation:
a simultaneous deviation by players i and j is treated as a unilateral deviation by player j.
(That is, the other players do not interpret any action by player i as a deviation.) Among
the other players, simultaneous deviations are ignored. If any player j �= i deviates uni-
laterally, then the minmax-i block ends immediately and a minmax-j block begins in
the next period (as described below).

Transitions between blocks. Play begins with an on-equilibrium block. An on-
equilibrium block in which there are no unilateral deviations is followed by another on-
equilibrium block, and a postdeviation-i block with no unilateral deviations is followed
by another postdeviation-i block. A minmax-i block with no unilateral deviations (by a
player other than player i) is followed by a postdeviation-i block.

During an equilibrium block or postdeviation-i block, if player j (possibly j = i) de-
viates unilaterally, then a transition to a minmax-j block occurs in the next period. Fi-
nally, in the case of a deviation during a minmax-i block by a player j other than player i,
a transition to a minmax-j block occurs in the next period.

Beliefs. On the equilibrium path, each player’s private belief bti(h
t
i) is derived by

Bayesian updating of the prior � using the information in his private history ht
i . Actions,

because they depend only on the public signals, reveal nothing about players’ private
payoffs. Off equilibrium, a player’s decision to deviate is also treated as uninformative.
After player i deviates, his actions in the subsequent minmax-i block may depend on his
history of private payoffs, and so the other players’ private beliefs incorporate that infor-
mation. (Note that during that time, player i has no incentive to deviate from a short-run
best response so as to influence others’ beliefs, since their actions depend only on the
public history. On the other hand, his choice of a short-run best response reflects any
expected benefit from influencing the flow of public signals.)

Payoffs. Condition 2 implies that with probability at least 1 − ε/(8U), the M periods
of experimentation at the beginning of an on-equilibrium block identify the true state ω
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as the most likely. In that event, the expected (undiscounted) average payoff of the block
is within ε/4 of its target payoff v∗(ω), by Condition 4. If the wrong state is identified, the
expected payoff cannot differ from v∗(ω) by more than twice U (the greatest possible
magnitude of any payoff vector). Conditional on state ω, therefore, the expected undis-
counted average payoff of an on-equilibrium block (in which there are no deviations) is
within (

1 − ε

8U

)
ε

4
+ ε

8U
2U <

ε

2

of v∗(ω). Similarly, the expected undiscounted average payoff of a postdeviation-i block,
conditional on state ω, is strictly within ε/2 of the target vdev-i.

Now consider the payoff to player i from a minmax-i block in state ω. With prob-
ability 1 − ε/(8U) or higher, the number of periods in which player i’s expected payoff
is above his minmax ei(ω) is no greater than M : Condition 3 ensures that the only way
player i can prevent the other players from learning the state (and punishing him ac-
cordingly) is by playing actions that yield him payoffs no better than ei(ω). (For exam-
ple, if ei(ω) is the third-lowest minmax payoff for player i across all states, then players
following the strategies for a minmax-i block most likely take no more than 2M/K peri-
ods of high payoffs for player i to rule out the two states with lower minmaxes.) By an
argument similar to the one in the last paragraph, then, Condition 4 (plus the fact that
T ′ ≥ T ) ensures that the expected payoff to player i from a minmax-i block in state ω is
strictly within ε/2 of ei(ω). The expected payoff to any other player must be at least −U .

Since the expected (conditional on state ω) undiscounted average payoff of an on-
equilibrium block is strictly within ε/2 of its target payoff v∗(ω), for high enough values
of the discount factor δ, the expected discounted average payoff is also within ε/2 of
v∗(ω). Similarly, the expected discounted average payoffs of a postdeviation-i block and
a minmax-i block are within ε/2 of their target payoffs vdev-i(ω) and ei(ω), respectively,
when δ is high. Formally, let κ < ε/2 be the maximum (across states ω and players i)
difference between the expected undiscounted average payoff and the target payoff of
any of the three types of blocks. Then a sufficient condition on the value of δ < 1 is the
following condition.

Condition 6. For any S ≤ M + T ′ and any sequence of payoff vectors {xs}Ss=1, where
each xs ∈ [−U�U]N , ∥∥∥∥∥ 1 − δ

1 − δS

S∑
s=1

δs−1xs − 1
S

S∑
s=1

xs

∥∥∥∥∥ <
ε

2
− κ


.

Best-response conditions. The value of the discount factor δ can be chosen so that no
player has an incentive to deviate, on or off the equilibrium path, whatever his private
belief about the state or his higher order beliefs (about others’ beliefs), and whatever the
truncated dummy belief. In a minmax-i block, player i has no incentive to deviate: he
is playing a short-run best response within the block, and his actions do not affect play
after the block. On the equilibrium path, there is no profitable deviation if Condition 6
and the following condition hold.
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Condition 7. For every player i in every state ω,

U +
M+T ′+1∑

t=2

δt−1
[
ei(ω)+ ε

2

]
+

∞∑
t=M+T ′+2

δt−1
[
vdev-i
i (ω)+ ε

2

]

<

M+T∑
t=1

δt−1[−U]+
∞∑

t=M+T+1

δt−1
[
v∗
i (ω)− ε

2

]



After a deviation in state ω, player i’s long-run payoff is vdev-i
i (ω): play switches to a

postdeviation-i block after a minmax-i block. Even if (i) by deviating, player i can get the
highest possible immediate payoff, (ii) player i expects to get the lowest possible payoff
for the rest of the current block (for example, because of a divergence between his pri-
vate belief and the truncated dummy belief), and (iii) the number of periods remaining
in the current block is as high as possible (M +T ), a patient player prefers not to deviate.
Because v∗

i (ω)− vdev-i
i (ω) > ε, Condition 7 is satisfied for high enough values of δ.

Similarly, because v
dev-j
i (ω)− vdev-i

i (ω) > ε, if δ is high enough, then no player j �= i

has a profitable deviation during a postdeviation-i block or a minmax-i block, even if
minmaxing player i gives player j the lowest possible payoff. All that remains is to show
that player i cannot gain from deviating during a postdeviation-i block. In that case, a
deviation does not affect player i’s long-run payoff (which is still vdev-i

i (ω)), but in the
short run, the deviation triggers a minmax-i block and lowers his payoff. In particular,
the following condition (together with Condition 6) implies that no such deviation is
profitable.

Condition 8. For every player i in every state ω,

U+
M+T ′+1∑

t=2

δt−1
[
ei(ω)+ ε

2

]
<

M+T∑
t=1

δt−1[−U]+
M+T ′+1∑
t=M+T+1

δt−1
[
vdev-i
i (ω)− ε

2

]



That is, even if deviating results in the highest possible immediate payoff and not
deviating results in the lowest possible immediate payoff for the rest of the block, the
overall payoff from deviating is lower, no matter how many periods of the block remain.
Condition 5 guarantees that Condition 8 is satisfied for high δ.

Finally, note that since for high δ, the expected payoff from an on-equilibrium block,
conditional on any state ω being realized, is within ε/2 of v∗(ω), so is the expected equi-
librium payoff of the repeated game. Since both payoff realizations and public signals
are independent and identically distributed across periods (conditional on the state and
actions), a central limit theorem implies that the undiscounted average of the first S dis-
counted block payoffs vS , (that is,

vS = 1
S

S∑
s=1

(
1 − δ

1 − δM+T

M+T∑
t=1

δt−1U(s−1)(M+T)+t

)
�

where Ut is the vector of realized payoffs in period t), converges over time to a normally
distributed random vector with a mean that is also within ε/2 of v∗(ω); the variance
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shrinks to zero. Thus, we can choose S∗ such that with probability at least 1 − ε, vS(ω)

is within 3ε/4 of v∗(ω) for all S ≥ S∗. Therefore, if δ is high enough, then the limiting
discounted average of the block payoffs (which is the realized payoff of the repeated
game) is with probability at least 1 − ε within ε of v∗(ω). A sufficient condition on the
value of δ < 1 is the following condition.

Condition 9. For any sequence of payoff vectors {xs}S∗
s=1, where each xs ∈ [−U�U]N ,

∥∥∥∥∥ 1 − δM+T

1 − (δM+T )S
∗

S∗∑
s=1

(δM+T )s−1xs − 1
S∗

S∗∑
s=1

xs

∥∥∥∥∥<
ε

4



If the discount factor δ is high enough to satisfy Conditions 6–9, then the strategies
and beliefs constructed constitute a sequential equilibrium in which, with high prob-
ability, the players achieve payoffs close to those specified for the realized state. Since
players experiment at the beginning of each on-equilibrium block, their private beliefs
converge to the truth with probability 1. �

In the model of Section 2, players get (direct) information about the state of the
world only from the public signals and from their own realized payoffs. In many set-
tings, though, players might learn about the state in other ways during the game or be-
fore play starts; some of the examples discussed in the Introduction fit that assumption.
In such an environment, the strategies constructed in the proof of Proposition 1 are still
an equilibrium; the key is that each player, no matter what is the gap between his pri-
vate belief and the public signals in the current block, expects that the public signals
from experimentation in future blocks will identify the true state with high probability.
Proposition 2 states that result formally.

Proposition 2. Suppose that in any realized state ω, each player i in each period t ∈
{0�1� 
 
 
} observes a private signal drawn from a distribution Fit(ω). Let ε > 0 and payoffs
v∗(ω1) ∈ int(V ∗(ω1))� 
 
 
 � v

∗(ωK) ∈ int(V ∗(ωK)) be given, and let � be a prior belief that
assigns strictly positive probability to each state. If Assumption 1 holds, then there exists
δ < 1 such that for all δ > δ, there is a sequential equilibrium that with probability at least
1−ε, conditional on state ω, yields a payoff vector within ε of v∗(ω). In equilibrium, each
player i’s private belief converges to the truth: limt→∞bti(h

t
i)[ω] = 1 with probability 1.

4. Private, almost-public signals

In this section, Proposition 1 is extended to the case where there may be no public signal
z, but, instead, in each period players receive private signals of the vector of realized
payoffs, and those signals are very closely correlated.4 Formally, the model is modified
in two ways.

4Mailath and Morris (2002) show that any strict perfect public equilibrium with bounded recall of a game
with public monitoring remains an equilibrium under private, almost-public monitoring. The strategies
constructed in the proof of Proposition 1 do not have bounded recall, though: the short-run best response
of a deviator depends on his private beliefs, and thus on his entire private history.
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First, at the end of each period, each player i observes his own realized payoff Ui,
as well as a private signal Yi that reflects the payoffs of all players (including player i).
The distribution of Yi, Fyi(a�ω), depends on the action profile a and the state ω. Every
time action profile a is played, an independent draw from Fyi(a�ω) is made. For each
player i, the private signal Yi contains (probabilistically) at least the information in the
private payoff: for any action profile a ∈A and pair of states ω�ω′ ∈ � such that Fi(a�ω)

and Fi(a�ω
′) differ, the distributions Fyi(a�ω) and Fyi(a�ω

′) also differ. (A motivating
special case is that Yi = (Y 1

i � 
 
 
 �Y
N
i ), where Yi

i ≡ Ui, is a vector of observations of each
player’s payoff. A player observes his own payoff exactly, and those of other players with
noise.) A player’s private signal may or may not be independent (conditional on a and
ω) of his realized payoff or of other players’ payoffs.

Second, after observing his signal and before the start of the next period, each
player i can send a costless, public signal from the support of Fyi . These signals are
cheap talk: they are used to communicate private signals, but players are free to an-
nounce any signal that they wish. (These cheap-talk signals also are used to let a player
specify the action profile that he wants to be played during his “reward period,” as de-
scribed in the proof of Proposition 3.) Player i’s private history ht

i contains the action
profiles chosen and public announcements made in periods 1 through t − 1, as well as
player i’s realized payoffs and private signals. Recall that a public randomization device
is available.

Following Mailath and Samuelson (2006), say that players’ private signals are al-
most public when each player, after receiving any private signal, no matter how unlikely,
assigns high probability to the other players’ having seen the same signal. Note that
almost-public signals identify the state, since Fyi(a�ω) �= Fyi(a�ω

′) whenever Fi(a�ω) �=
Fi(a�ω

′), and Fyi and Fyj are arbitrarily close.

Definition. For η ∈ [0�1], signals are η-public if for any player i, any action profile a,
any state ω, any realized payoff ui, and any private signal yi, the probability, conditional
on the event Ui = ui and Yi = yi, that Yj = yi for all j ∈ {1� 
 
 
 �N} is at least 1 −η.

(Note that in the special case described above, η-public signals must also be η-
perfect: player i observes his own payoff Ui, so player j’s signal of Ui can match player
i’s only if it is exactly correct.)

Proposition 1 extends to this environment when the private signals are almost pub-
lic. Proposition 3 gives the formal statement:

Proposition 3. Suppose that N ≥ 3. Let ε > 0 and payoffs v∗(ω1) ∈ int(V ∗(ω1))� 
 
 
 �

v∗(ωK) ∈ int(V ∗(ωK)) be given, and let � be a prior belief that assigns strictly positive
probability to each state. If Assumption 1 holds, then there exists δ < 1 and η > 0 such
that if δ > δ and signals are η-public, there is a sequential equilibrium that with prob-
ability at least 1 − ε, conditional on any state ω being realized, yields a payoff vector
within ε of v∗(ω). In equilibrium, each player i’s private belief converges to the truth:
limt→∞ bti(h

t
i)[ω] = 1 with probability 1.
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The strategies used to prove Proposition 3 are very similar to those in the proof of
Proposition 1, with public, cheap-talk announcements of private signals taking the place
of public signals as a coordinating device. The additional difficulty is to provide incen-
tives for honest reporting. The solution to that difficulty is to punish when players’ re-
ports do not agree. Thus, a player wants to announce whatever he believes that other
players are going to announce, and when signals are almost public, he believes that
other players see (and announce) the same signals that he observes. The close corre-
lation of players’ signals is important in this argument. Without it, a player who assigns
high probability to state 1 but sees a signal that is very unlikely in that state may believe
that other players probably did not see the same signal. As long as there are at least
three players reporting their signals, it is possible to identify (and punish) any single
player who makes an announcement that differs from all the others.5

Proof of Proposition 3. Choose the vectors of punishment payoffs vdev-i, the inte-
gers M (satisfying Conditions 1–3), T (satisfying Condition 4), and T ′ (satisfying Condi-
tion 5), and the value of δ (satisfying Conditions 6–8) just as in the proof of Proposition 1.
Also as before, there are 2N+1 types of blocks: an on-equilibrium block, a postdeviation
block for each player, and a minmax block for each player.

Within-block strategies. Just as before, the on-equilibrium block and the postdevia-
tion-i blocks have length M+T periods, and the minmax-i blocks last for M+T ′ periods
(except as described below). At the end of each period (with one exception, also de-
scribed below), players announce their private signals truthfully. If at least N − 1 players
announce the same signal y in period t, then the dummy public signal for period t, ẑt ,
is equal to y; otherwise, a multilateral misreport occurs. (In that case, no dummy pub-
lic signal is generated, as described below.) A period-s-truncated dummy public history
Ĥt\s contains the action profiles chosen and dummy public signals reported in periods
s+1 through t−1. A player unilaterally misreports if he reports a signal y ′ while the other
players unanimously announce a different signal y. Note that either type of misreport
may occur in equilibrium. As usual, a player deviates if he chooses an action in the stage
game other than what is prescribed by the equilibrium strategies. A player who deviates
or misreports is said to have committed a violation. Violations are punished in the same
way that unilateral deviations are in the public-history case. (For that reason, blocks
other than on-equilibrium blocks may occur in equilibrium, so it is misleading to label
only the one type of block as “on equilibrium.” Nevertheless, for the sake of consistency,
that nomenclature is maintained.)

Consider first an on-equilibrium block that starts in period s. As long as no multi-
lateral misreports occur, play is just as in the public-history case, treating the dummy
public signals as the public signals and treating both types of violations as unilateral
deviations. Specifically, the players play profile a1 for the first M/L periods of the
block, play a2 for the next M/L periods, and so on for the first M periods. That ex-

perimentation yields a truncated dummy public history Ĥ
s+M\s

. For the remaining

5This approach is similar to the construction introduced in Renault (2001) and generalized in Renault
and Tomala (2004).
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T periods of the block, players play the profile that results in payoff v∗(ω̂(Ĥs+M\s))
in state ω̂(Ĥs+M\s), where ω̂(Ĥs+M\s) is the state given the highest probability under
Bs+M\s(Ĥs+M\s). If there is a misreport (unilateral or multilateral) or a unilateral devia-
tion in an on-equilibrium block, then the block ends and the next block starts immedi-
ately. (The type of the next block is determined according to the transition rules below.)
Multilateral deviations are ignored.

Play in a postdeviation-i block is the same as in an on-equilibrium block, except that
in the last T periods (barring misreports or unilateral deviations), the profile that yields
payoff vdev-i(ω̂(Ĥs+M\s)) in state ω̂(Ĥs+M\s) is played, rather than the profile that yields
v∗(ω̂(Ĥs+M\s)).

For a minmax-i block starting in period s, play is again just as in the public-signal
case, using the dummy public signals in the place of actual public signals and treating
misreports as deviations. As in the public-signal case, suppose that the K states of the
world are indexed such that ei(ω1) ≤ ei(ω2) ≤ · · · ≤ ei(ωK). As long as no player other
than i has committed a violation, then in each period those players play the minmax
profile mi(ωk) that corresponds to the lowest-indexed state ωk that has probability at
least ε/2 under Bt\s(Ĥt\s). When there are R periods remaining in the block, player i

plays the (or a specified) R-period best response, given his private belief, to the public
strategies used by the other players in the rest of the block. Deviations by player i are
ignored, as are simultaneous deviations by two or more of the other players. If a single
player j �= i commits a unilateral violation, then the minmax-i block ends immediately
and a minmax-j block begins in the next period (as described below). If a multilateral
misreport occurs, then the block ends and the next block (a postdeviation-i block, as
described below) starts immediately. To give player i the incentive to announce his pri-
vate signals truthfully, there is potentially a single “reward period” added to the end of
the block. In each period of the block that all players announce the same signal, the
probability that such a reward period is played increases (from an initial value of zero)
by 	 = 1/(M + T ′). (The total probability is bounded above by 1, since M + T ′ is the
length of the block.) At the end of the block, public randomization determines whether
the reward period is played, and player i announces the action profile αR to be played
in the reward period; αR is the profile that maximizes player i’s expected payoff in the
stage game, given his private belief. If the reward period is to occur, then αR is played.
Players do not make an announcement at the end of a reward period.

Transitions between blocks. Transitions are just as in the public-signal case, with
two differences: unilateral misreports are treated like deviations and, after a multilat-
eral misreport, the next block starts immediately. Play begins with an on-equilibrium
block. An on-equilibrium block in which there are no unilateral violations is followed
by another on-equilibrium block, and a postdeviation-i block with no unilateral viola-
tions is followed by another postdeviation-i block. A minmax-i block with no unilat-
eral deviations or unilateral misreports (by a player other than player i) is followed by a
postdeviation-i block. Those transitions occur immediately if a multilateral misreport
occurs; otherwise, they occur after the end of the current block.
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During an equilibrium block or postdeviation-i block, if player j (possibly j = i) com-
mits a unilateral violation, then a transition to a minmax-j block occurs in the next pe-
riod.6 Finally, in the case of a unilateral violation during a minmax-i block by a player j
other than player i, a transition to a minmax-j block occurs in the next period.

Beliefs. On the equilibrium path, each player’s private belief bti(h
t
i) is derived by

Bayesian updating of the prior � using the information in his private history ht
i , in-

cluding the private signals of the other players, which are believed to be truthfully an-
nounced. Because they depend only on the public signals, actions reveal nothing about
players’ private information. Off equilibrium, any player i’s decision to deviate is also
treated as uninformative, as is an announcement of a signal outside the support of Fyi .
After player i commits a unilateral deviation or misreport, his actions during the subse-
quent minmax-i block may depend on his private information, and so the other players’
private beliefs incorporate that information.

Payoffs and best-response conditions. If the probability that players receive differ-
ent private signals is zero (η = 0), then the arguments of the public-signal case ensure
that the actions specified above are best responses, that with high probability the play-
ers achieve payoffs close to those specified for the realized state, and that private be-
liefs converge to the truth with probability 1. For small enough values of η, the ex-
pected (conditional on state ω) discounted average payoff of an on-equilibrium block,
a postdeviation-i block, and a minmax-i block are still within ε/2 of v∗(ω), vdev-i(ω),
and ei(ω), respectively, when δ is high, so the same arguments apply. (The behavior of
a player i during a minmax-i block may change when η is slightly positive rather than
0, because he may have been playing only a weak best response, but in all other cases,
the best-response conditions were satisfied with strict inequalities.) All that remains is
to show that truthfully reporting private signals is a best response.

During an on-equilibrium block, for example, a player’s announcement can influ-
ence future play in three ways. First, it affects whether a transition to the next block
occurs immediately (as it does after a misreport). Second, it affects the type of future
blocks by influencing whether a misreport occurs and which kind. Third, if another
player unilaterally commits a violation in the future, then afterward his play in the short
run depends on his private beliefs and thus on past announcements. With regard to
the first effect, the greatest possible (undiscounted, expected) gain from a false report
is the maximum difference between two payoffs in the stage game times the number
of periods in the block, 2U(M + T). The cost from the second effect is that unless one
of the other players receives a signal different from his own (an event that occurs with
probability no greater than η), player i’s false report results in a unilateral misreport and
the resulting punishment: a lower continuation payoff. The third effect has a negligi-
ble effect on expected payoffs for small values of η, because misreports become very
rare and unilateral deviations are off-path (for any η) starting from any history. Thus,
when η is low enough, Conditions 6 and 7, which ensure that player i has no incentive
to deviate from his prescribed action during an on-equilibrium block, also guarantee

6The condition that N ≥ 3 is used here. Note that if N = 2, then whenever the two players report different
signals, both have misreported unilaterally.
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that truthfully reporting private signals is optimal. Similarly, Conditions 6 and 7 also de-
ter false reporting by player i during postdeviation-j blocks and minmax-j blocks, and
Conditions 6 and 8 suffice during postdeviation-i blocks.

During a minmax-i block, unilateral misreports by player i do not affect the type of
future blocks, so future punishment cannot deter false reporting by player i. Instead, the
reward period gives player i the incentive to report truthfully. The continuation payoff
from future blocks when η is small is close to vdev-i(ω), conditional on state ω. Thus,
player i’s expected payoff from αR (the profile, to be played in the reward period, that
maximizes his expected payoff in the stage game) strictly exceeds his expected contin-
uation payoff when the next block starts, whatever his private beliefs are. Let d denote
the difference. Player i gains in expectation 	d at the end of the current block whenever
his report matches the reports of the other players (and there are no misreports later in
the block), so truthful reporting yields an expected gain of at least δM+T ′

(1 −η)M+T ′
	d.

Alternatively, player i can gain from a false report only if at least one other player j re-
ceives a signal different from player i’s: in that case, a false report can generate either a
unilateral misreport by player j (so that future punishment is transferred to player j) or
a multilateral misreport that ends the current block early. However, the event that some
other player receives a different signal occurs with probability no greater than η. Thus,
for δ and small enough η, truthful reporting is optimal.

Thus, when N ≥ 3 and signals are η-public for low enough η, then the strategies and
beliefs constructed constitute a sequential equilibrium in which with high probability
the players achieve payoffs close to those specified for the realized state, and private
beliefs converge to the truth with probability 1. �

As was the case with public signals, the strategies constructed above still constitute
an equilibrium if players receive additional private signals about the state of the world
before or during play.

Proposition 4. Suppose that N ≥ 3 and suppose that in any realized state ω, each
player i in each period t ∈ {0�1� 
 
 
} observes a private signal drawn from a distribution
Fit(ω). Let ε > 0 and payoffs v∗(ω1) ∈ int(V ∗(ω1))� 
 
 
 � v

∗(ωK) ∈ int(V ∗(ωK)) be given,
and let � be a prior belief that assigns strictly positive probability to each state. If Assump-
tion 1 holds, then there exists δ < 1 and η> 0 such that if δ > δ and signals are η-public,
there is a sequential equilibrium that with probability at least 1 − ε, conditional on state
ω, yields a payoff vector within ε of v∗(ω). In equilibrium, each player i’s private belief
converges to the truth: limt→∞bti(h

t
i)[ω] = 1 with probability 1.

5. Summary and discussion

This paper presents a form of folk theorem for repeated games with unknown payoffs
when players receive both private and public signals. The environment is a generaliza-
tion of the one in Wiseman (2005), and Proposition 1 is a stronger result than Theorem 1
in Wiseman (2005). (The result in the earlier paper establishes only that expected equi-
librium payoffs are close to the targets, while Proposition 1 ensures that with high prob-
ability the realized payoffs are close.) Thus, this paper provides an alternative proof of
Theorem 1 in Wiseman (2005).
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The strategies described in Sections 2 and 3 rely on the assumption that the mixed
actions used by players are observable only in the construction of the minmax blocks.
If, instead, only the actions played are observed, then the folk theorems continue to
hold for payoffs above the pure-strategy minmax payoffs, rather than the mixed-strategy
minmax payoffs ei(ω). Alternatively, it seems feasible to restore the result for the mixed-
strategy minmax case using the arguments of Fudenberg and Maskin (1986, Section 6)
and Gossner (1995), although the extension is not immediate.

As mentioned in the Introduction, CEMS study common learning. To focus on that
topic, they strip away from their environment strategic considerations, as well as the
ability for a player to learn other players’ private signals through their actions and the
ability of a player to try to manipulate that learning. Those complications do arise
in this paper. The endogeneity of the private signals (they depend on actions) is an-
other challenge. The availability of repeated-game punishments and incentives, how-
ever, greatly simplifies the task of identifying sufficient conditions for a folk theorem,
relative to CEMS’s environment. On the other hand, Proposition 1 says nothing about
whether common learning occurs in the equilibrium construction or, more generally,
about whether common learning is a necessary or sufficient condition for this kind of
folk theorem.

It seems likely that the folk theorem in this paper (or some version of it) can be ex-
tended to settings where the state of the world changes over time or where the public
signals are less revealing.

A dynamic state might evolve according to a Markov process, with players possibly
unable to observe when a transition takes place. More generally, the transition and its
observability might depend on the players’ actions. Given the “repeated sampling” fea-
ture of the equilibrium constructed in this paper, it should be straightforward to modify
that equilibrium to apply to the case of dynamic states. One complication is the relation-
ship between the frequency at which the state changes to the speed at which players can
learn the state through public signals: if the former is too high relative to the latter, then
the folk theorem may fail. (Dutta 1995, Fudenberg and Yamamoto 2011a, Hörner et al.
2011b, and Peski and Wiseman 2012 derive folk theorems for classes of such stochastic
games for the case where state transitions are publicly observed.)

Finally, it would be interesting to weaken the assumption that the public signal con-
tains at least as much information (statistically) as all of the private payoffs taken collec-
tively. It may be the case, then, that there are two distinct states of the world in which
the distribution of the public signal is the same for a given action profile, even though
one or more players get different payoffs from that profile in the different states. With-
out the assumption, however, the construction of the minmax blocks fails. Player i may
get a high payoff in response to the state-ω1 minmax profile without the other players
ever realizing it. Roughly, it may be that player i learns the state, but the other players
do not—an outcome that clearly limits the scope of punishment (and thus of the pay-
offs achievable in equilibrium). To take advantage of that asymmetry in information,
however, player i must not reveal the state through his actions. His best response to
the other players’ punishment strategy, though, may vary with the state; there is thus a
tension between the desire to use his private information and the desire to conceal it.
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Figure 1. Player 1’s payoffs in the two states.

Consider the following two-state, two-player example, in which player 1 can distinguish
between states and player 2 cannot. Figure 1 shows the payoffs of player 1 in each state.
In state 1, player 2 minmaxes player 1 with action L, resulting in a minmax payoff of 1.
In state 2, R is the minmax profile and 2 is the minmax payoff. If player 2 is uncertain
about the state and tries to punish player 1 using the strategy from the minmax block
constructed in the previous section, then he begins by playing L, the minmax profile in
state 1 (the state with the lower minmax payoff). Player 1’s best response to L is T in
both states, however, so her action does not reveal the state. Thus, in state 2, this strat-
egy give player 1 a payoff of 3, which is not an effective punishment. Suppose, however,
that instead player 2 punishes by beginning with action R. Player 1’s best response de-
pends on the state: it is T in state 1 and B in state 2. If he responds by playing T in both
states, then in state 2, he gets 0, which is below his minmax. If he responds with B in both
states, then in state 1, he gets 0, which is below his minmax. To best respond, then, he
must condition his action on the state, thus revealing the state to player 2 and enabling
her to punish effectively.

Similar situations arise in the study of repeated two-player zero-sum games with in-
complete information on one side. The analysis of, for example, Aumann et al. (1995)
(in particular, the notion of Blackwell 1956 approachability) can be applied to help de-
termine the lower bound of feasible punishments for each player in each state.7 (Hart
1985 is also relevant.)

Both extensions are subjects for future research.
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