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Achievable outcomes of dynamic contribution games

Steven A. Matthews
Department of Economics, University of Pennsylvania

This paper concerns multistage games, with and without discounting, in which
each player can increase the level of an action over time so as to increase the other
players’ future payoffs. An action profile is said to be achievable if it is the limit
point of a subgame perfect equilibrium path. Necessary conditions are derived
for achievability under relatively general conditions. They imply that any effi-
cient profile that is approximately achievable must be in the core of the underlying
coalitional game. In some, but not all, games with discounting, the necessary con-
ditions for achievability are also sufficient for a profile to be the limit of achievable
profiles as the period length shrinks to zero. Consequently, in these games when
the period length is very short, (i) the set of achievable profiles does not depend
on the move structure, (ii) an efficient profile can be approximately achieved if
and only if it is in the core, and (iii) any achievable profile can be achieved almost
instantly.

Keywords. Dynamic games, monotone games, core, public goods, voluntary
contribution, gradualism.

JEL classification. C7.

1. Introduction

A dynamic contribution game is defined broadly here to be a multiperiod game in which
each player can increase the level of an action incrementally, thereby increasing the
other players’ future payoffs. Such games exhibit positive spillovers that do not dimin-
ish with time. A leading application is one in which the actions are cumulative con-
tributions of a private good to the production of a durable public good. The game is
then a model of a fund drive or sequence of fund drives, such as those held to finance
church or university building projects or public radio programs.1 Another application is
to adoption and entry: agents decide when to invest in a new technology, and the future
returns from adoption increase as the number of adopters grows.2 Another application
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is to holdup: a seller and buyer make pre-trade investments over time in an asset’s qual-
ity, and perhaps make periodic payments to each other.3 Yet another is to partnership:
partners contribute effort over time to increase a common capital stock.

Some dynamic contribution games have unique equilibria that can be characterized
by backward induction. For example, this is true in Admati and Perry (1991) and Compte
and Jehiel (2003) because of their restriction to a binary public good: backward induc-
tion starts in the period in which the threshold provision point is reached. If, instead, the
payoff functions are smooth, backward induction generally cannot be used and multiple
equilibria exist. Previous results for this case are fragmentary. Typically, for example, the
existence of an equilibrium that achieves an (approximately) efficient outcome is estab-
lished by construction, as in Marx and Matthews (2000), Lockwood and Thomas (2002),
and Pitchford and Snyder (2004), without a systematic exploration of other equilibria.

The goal of this paper is to characterize as fully as possible the set of equilibrium out-
comes of a range of dynamic contribution games. Even the size of this set of outcomes
is an issue. As in a repeated game, it might be large because current deviations may
by severely punished by triggering a decrease in the future contributions of the other
players.4 Alternatively, it might be small because the ability to punish deviations is di-
minished once sunk contributions become large. This effect of prior actions on security
payoffs is not present in a repeated game, and it can result in “strategic gradualism,” the
property that contributions must be raised slowly over time in equilibrium.5

Overview of the model and results

A player’s action/contribution in the games to be studied is a nonnegative real number
that can be raised in any period in which the player can move. The only maintained
assumption on the move structure is that each player can move in an infinite number
of periods. Payoffs are given either by a discounted sum of stage game payoffs or, in
the no-discounting case, by the lower limit of the sequence of stage game payoffs. Pay-
offs exhibit a weak positive spillovers property, and may have discontinuities due to the
presence of thresholds in the provision of discrete public goods. All past actions are
observable.

Every pure strategy subgame perfect equilibrium generates a convergent path of
contribution profiles. The profile to which the path converges is said to be achieved by
the equilibrium. The first set of results consists of necessary conditions that equilibrium
paths and achievable profiles must satisfy.

The most novel necessary condition is that any achievable profile must be in a par-
ticular set, the undercore. Its definition is similar to that of the core and does not depend
on the dynamic structure of the game. A profile x is said to be underblocked by a coali-
tion of players if there exists a smaller profile z ≤ x that prescribes zero contributions for

3Pitchford and Snyder (2004) and Che and Sákovics (2004) study dynamic holdup games.
4The folk theorem of Dutta (1995) for stochastic games does not apply to the games in this paper because

they do not satisfy its “asymptotic state independence” assumptions, (A1) and (A2). Indeed, we see that a
folk theorem does not hold for them.

5Strategic gradualism has been explored, e.g., in Marx and Matthews (2000), Lockwood and Thomas
(2002), and, most generally, Compte and Jehiel (2004).
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the noncoalition players and that each coalition member i prefers to x once she raises
zi to the level she most prefers, holding z−i fixed. A satiation profile is preferred by each
player to any other profile obtained by raising just her contribution. The undercore is
then the set of satiation profiles that are not underblocked. Theorem 1 establishes that
all achievable profiles are in the undercore.

An interpretation of Theorem 1 is that an achievable profile must satisfy a certain
fairness property: it must not require any coalition’s contribution to be too large. Propo-
sition 1 establishes that the core, as typically defined in similar settings (e.g., Foley 1970),
is precisely the set of efficient profiles in the undercore. Theorem 1 thus tells us that any
efficient profile that is not in the core is unachievable.

Theorem 2 establishes another necessary condition for achievability. In the dis-
counting case, if the stage game payoff functions are differentiable and satisfy a strict
positive spillovers property, then all achievable profiles are inefficient. In these games,
a core profile can at best be the limit of achievable profiles as the discount factor con-
verges to 1.

In some games with discounting, many undercore and core profiles are neither
achievable nor limits of achievable profiles as the discount factor converges to 1. This
is dramatically illustrated by the binary public good game of Compte and Jehiel (2003).
This game has a unique achievable profile, given a sufficiently large discount factor, even
though the undercore and core are continua of profiles. However, all undercore profiles
are achievable in the no-discounting version of the game. Thus, in some games, the set
of achievable profiles expands discontinuously at δ = 1.

Theorem 3 identifies a familiar class of games in which this discontinuity is absent.
In these games, the aggregate contribution determines a public good quantity, and each
player’s payoff is quasilinear in her own contribution and smooth and strictly concave in
the public good. Furthermore, a prisoners’ dilemma (PD) property holds: starting from
any profile, not raising her contribution further is each player’s dominant strategy in the
stage game. Last, the move structure is assumed to satisfy a weak cyclicity property that
is satisfied by all commonly assumed move structures, such as the simultaneous and
round-robin ones. Under these assumptions, Theorem 3 shows that any neighborhood
of any undercore profile contains a profile that is achievable if the discount factor is suf-
ficiently large. The undercore is thus equal to both the closure of the set of profiles that
are achievable for some δ < 1 and to the closure of the set of profiles that are achievable
for δ = 1. Since the definition of the undercore is independent of the move structure,
this result implies that in this class of games, the limiting set of achievable profiles is
independent of the move structure.

The proof of Theorem 3 shows that any neighborhood of almost any undercore pro-
file contains the limit of a sequence of profiles that is an equilibrium path for all large
discount factors. Thus, if the period length is small, it takes very little actual time for the
path of contributions to reach any neighborhood of the profile being achieved. Strategic
gradualism may be necessary in the sense that contributions cannot be raised to the ul-
timate goal in a finite number of periods, but it is not necessary in the sense that it must
take a long time to approximately reach the goal.
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The final result is Corollary 2, which derives three implications of the previous results
for equilibrium payoffs. The first one is that any equilibrium payoff is weakly Pareto
dominated by an undercore payoff. The second is that any equilibrium payoff that is
efficient must be the payoff generated by a core profile. The third implication is that
under the conditions of Theorem 3, any neighborhood of an undercore (and hence core)
payoff contains an equilibrium payoff.

Related literature

Gale (2001) studies dynamic contribution games in which the players do not discount.
These games differ from those of this paper in that the stage game payoff functions are
assumed to be continuous and the actions are assumed to be multidimensional. The
main result, Theorem 1, is that a profile is achievable if and only if it is “approachable,”
i.e., it is the limit of a feasible path of profiles and gives each player at least as large a pay-
off as she can obtain on her own starting from any point on the path. Two lemmas in the
present paper extend Gale’s result to cases with discounting and discontinuous payoffs.
Lemma 2 shows that approachability is necessary for achievability, and Lemma 5 shows
that a generalization of approachability is sufficient for achievability if the prisoners’
dilemma property holds.

Gale (2001) also has a sufficient condition for a profile to be achievable that does not
refer to a path: any “strongly minimal positive satiation point” is achievable. Proposi-
tion 4 of this paper establishes conditions under which the same is true in the discount-
ing case as the discount factor goes to 1.

Also related is Lockwood and Thomas (2002), which considers two-player games
with discounting and continuous symmetric payoff functions satisfying the prisoners’
dilemma property. When payoffs are differentiable, the profile achieved by the most
efficient symmetric equilibrium is shown to be inefficiently small. Our Theorem 2 gen-
eralizes this result to any equilibrium, multiple players, and nonsymmetric payoff func-
tions. Lockwood and Thomas (2002) also show, in the differentiable case, that the most
efficient symmetric equilibrium outcome converges to the symmetric efficient outcome
as the discount factor goes to 1, whether the players move simultaneously or alternately.
(Pitchford and Snyder 2004 obtain a similar result.) This is a small hint of Corollary 2(iii),
that under the conditions of Theorem 3, any core payoff is the limit of equilibrium pay-
offs as the discount factor goes to 1, regardless (almost) of the move structure.

Battaglini et al. (2012) is a complementary paper. It considers a dynamic game of
contribution to a durable public good. Agents are homogeneous and have smooth con-
cave quasilinear utility, the durable public good may depreciate, and contributions may
be reversible. The focus is on a class of Markov equilibria and their steady states, as op-
posed to this paper’s focus on the set of all profiles that are achieved by subgame perfect
equilibria.

Last, Bagnoli and Lipman (1989) is somewhat related. It describes a mechanism
that fully implements the core in a discrete public good setting, via a refinement of sub-
game perfect equilibrium. The mechanism is similar to the dynamic contribution games
studied here, except that each period it refunds the contributions that exceed the largest
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threshold point reached so far, and it stops the game in the first period in which the next
threshold is not reached.

Organization

The model is set out in Section 2. Examples that motivate the questions and results are
collected in Section 3. Necessary conditions for a path to be an equilibrium path and for
a profile to be achievable are derived in Section 4. The structure of the undercore and
core are delineated in Section 5. Sufficient conditions for a profile to be achievable are
derived in Section 6. Implications for equilibrium payoffs are in Section 7, and conclud-
ing comments are in Section 8. Appendices A–D contain proofs omitted from Sections
4–7, respectively.

2. Model

The set of players is N = {1� � � � � n}, with n ≥ 2. At each date t = 1�2� � � � , player i chooses
a number, xti ∈ R+. For concreteness, we refer to xti as the player’s (cumulative) contri-
bution. The contribution profile chosen in period t is denoted xt . A path, �x = {xt}∞t=0, is
a sequence starting with x0 = (0� � � � �0). Past actions are publicly observed.

The game satisfies a monotonicity property: for t ≥ 1 and any previously chosen
xt−1, the players in period t can only choose a profile xt for which xt ≥ xt−1 holds.6

The move structure is a sequence of subsets of players, �N = {Nt}∞t=1. Only players in
Nt can raise their contributions in period t. The move structure is assumed to satisfy⋃

τ≥t Nτ = N for all t ≥ 1, so that each player is able to move infinitely often. A path is

feasible if it is nondecreasing and satisfies xti = xt−1
i for all t ≥ 1 and i /∈ Nt .

The stage game payoff function is u :Rn+ → Rn. Both discounting and no-discounting
cases are considered. In the discounting case, a path �x generates a continuation payoff
in period t that is the usual weighted average of present and future stage game payoffs,

Ut(�x�δ) := (1 − δ)
∑
s≥t

δs−tu(xs)� (1)

where δ ∈ (0�1) is the common discount factor. In the no-discounting (δ = 1) case, pay-
offs are given by

Ut(�x�1) := lim inf
s→∞ u(xs)� (2)

Payoffs for the game as a whole are denoted without a superscript: U(�x�δ) := U1(�x�δ). If
the discount factor is not explicitly mentioned in a result, the result holds for all δ ∈ (0�1].

The maintained assumptions about u begin with it taking the form

u(x) = û(g(X)�x)�

where X = ∑
i∈Nxi is the aggregate contribution, û :Rn+1+ → Rn, and g :R+ → R+. An

interpretation is that g is a production function that uses the aggregate X to produce an

6Here, x≥ x′ means xi ≥ x′
i for all i; x > x′ means x 	= x′ and x ≥ x′; and x
 x′ means xi > x′

i for all i.
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amount y = g(X) of a public good that may have threshold provision points. Accord-
ingly, g is assumed to be nondecreasing and right continuous. We refer to a profile that
has an aggregate at which g is discontinuous as a threshold profile.

The function û is assumed to be continuous, with each ûi(y�xi�x−i) strictly increas-
ing in y and strictly decreasing in xi. (These assumptions, together with g nondecreas-
ing and right continuous, imply that ui is upper semicontinuous.) In general, ûi may in-
crease or decrease in x−i, representing positive or negative direct externalities. However,
the sum of the direct and indirect (via y = g(X)) effects is assumed to be nonnegative,
and hence u satisfies a weak positive spillovers property:

(PS) ui(·) is nondecreasing in xj , for all i 	= j ∈N .

A profile x ∈ Rn+ is efficient if no z ∈ Rn+ satisfying u(z) > u(x) exists. The origin,
x = 0, is assumed to be inefficient. For convenience, we make the mild assumption that
u(x) 	= u(x̂) for any two efficient profiles x and x̂.

Last, to insure that best replies exist and equilibrium paths converge, u is taken to
satisfy a mild boundedness assumption:

(BA) for any unbounded {xk}∞k=1 ⊂ Rn+, ui(x1) > lim supk→∞ ui(x
k) for some i ∈N .

The assumptions made so far are maintained throughout the paper. The resulting
extensive form game is denoted as �(δ� �N).

At times attention is restricted to payoffs that arise in a public good setting in which
direct externalities are absent, i.e., ûi(y�xi�x−i) does not actually depend on x−i. Two
such settings that are of particular interest are the following:

• Binary setting. For all i ∈ N , ui(x) = −xi if X <X∗ and ui(x) = Vi − xi if X ≥ X∗,
where X∗ is a threshold provision point. When referring to this setting, 0 < Vi <X∗
for each i and 0 <X∗ <

∑
i Vi always are assumed.

• Neoclassical setting. For all i ∈ N , ui(x) = vi(X) − xi, where the valuation func-
tion vi satisfies vi(0) = 0 and is continuously differentiable, strictly increasing, and
strictly concave. When referring to this setting,

lim
X→∞

∑
i∈N

v′
i(X) < 1 <

∑
i∈N

v′
i(0) (3)

always is assumed. Both (BA) and (PS) hold in this setting.7

A range of timing and economic scenarios give rise to games with the formal struc-
ture of �(δ� �N). The following three scenarios are illustrative.

Scenario 1 (Random terminal date). In this scenario, the game ends at a random date
T̃ , where Pr(T̃ = T) = (1 − δ)δT−1. Consumption occurs only at the terminal date. At
date t, a player’s expected continuation payoff is

∑
s≥t Pr(T̃ = s|T̃ ≥ t)u(xs), which is

7To prove that (BA) holds, note that concavity and (3) imply that for any unbounded {xk},
∑

i ui(x
k) =∑

i vi(X
k)−Xk → −∞ as k → ∞. Hence, i exists such that ui(xk) → −∞ and so ui(x

1) > lim sups→∞ ui(x
s).
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precisely as shown in (1). This scenario arises by allowing the players of the static normal
form game defined by u to raise their actions incrementally period by period, subject to
the specified random stopping rule that determines when the payoffs are realized.

Scenario 2 (Endogenous terminal date). In this scenario, the terminal date is deter-
mined by the history of play. A preeminent example is contributions to a binary public
project by impatient players, studied by, e.g., Admati and Perry (1991) and Compte and
Jehiel (2003). The project is completed once the aggregate reaches a threshold X∗, at
which date player i receives a value Vi. Players bear the cost of each incremental contri-
bution, xti −xt−1

i , when it is made in period t. A path �x that completes the project at date
T gives player i the payoff

δT−1Vi −
∞∑
s=1

δs−1(xsi − xs−1
i ) = (1 − δ)

∞∑
s=1

δs−1[vi(Xs)− xsi ]�

where vi(X) = Vi1{X≥X∗}. This yields our binary setting.8

An equivalent formulation is for the project to generate a flow of benefits, (1 − δ)Vi
per period, subsequent to completion, rather than the one-period benefit Vi upon com-
pletion. This brings us to the next scenario.

Scenario 3 (Public capital). Contributions in this scenario become the nondepreciat-
ing capital of one or more projects that produce a flow of future benefits over the infinite
future. For example, suppose contributions can be made at dates��2�� � � � , where �> 0.
At date t�, player i contributes xti −xt−1

i ≥ 0, which is instantly converted into capital on
a one-to-one basis. So xt is the vector of capital available to produce benefits in the time
interval [t�� (t + 1)�). Player i values these benefits at rate v̂i(x

t). The players discount
payoffs at rate r > 0 and their discount factor is δ = e−r�. Letting vi(x) = r−1v̂i(x), the
continuation payoff of player i at date t� is then

∑
s≥t

δs−t

[∫ �

0
v̂i(x

s)e−rτ dτ − (xsi − xs−1
i )

]
= (1 − δ)

∑
s≥t

δs−t[vi(xs)− xsi ] − xt−1
i � (4)

This payoff is as in (1), with ui(x) = vi(x
s)− xsi , less the constant (at time t) xt−1

i .
Another application within this scenario is to relational contracting in a firm.9 Sup-

pose player 1 owns a firm and players i > 1 are the workers. Each worker chooses a
noncontractible effort level each period. The quality of the firm’s productive assets in a
period increases in the cumulation of the workers’ prior efforts. The rate of flow of rev-
enue in period t to the owner is thus an increasing function of the workers’ cumulative
efforts, v̂1(x

t
−1). The owner pays the workers xt1 − xt−1

1 in period t. The owner’s contin-
uation payoff is then as shown in (4), with vi(x

s) = r−1v̂1(x
s
−1). A worker’s stage game

8In Admati and Perry (1991) the cost of contributing xsi − xs−1
i in period s is wi(x

s
i − xs−1

i ), where wi is
strictly convex. This convexity generates a nonincentive reason for contributions to be made incrementally.
Only if wi is linear is the Admati–Perry game of the form �(δ� �N).

9This is somewhat similar to the holdup model of Pitchford and Snyder (2004), although the discounting
there is the result of a random terminal date as in Scenario 1 described above.
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payoff in a period is a share αi ∈ [0�1] of the wages paid in that period, less the effort she
takes. (The shares αi sum to 1, and are determined ex ante.) A worker’s continuation
payoff is then∑

s≥t

δs−t[αi(x
s
1 − xs−1

1 )− (xsi − xs−1
i )] = (1 − δ)

∑
s≥t

δs−tui(x
s
1�x

s
i )− ui(x

t−1
1 �xt−1

i )�

where ui(x1�xi) = αix1 − xi. This payoff is as in (1), modulo the constant (at time t)
ui(x

t−1
1 �xt−1

i ).
If a scenario like this is the one of interest, it is important to interpret δ→ 1 as taking

the period length rather than the discount rate to 0, since vi = r−1v̂i. If r were taken to
0, the present value of future benefits would go to infinity and the free rider problem
would vanish.

3. Equilibrium examples

In this paper, an unmodified “equilibrium” always denotes a pure strategy subgame per-
fect equilibrium. We refer to the outcome of an equilibrium as an equilibrium path.
A profile is achievable if it is the limit of an equilibrium path. The examples in this sec-
tion are intended to motivate and illustrate upcoming results and arguments.

Example 1 (Binary threshold). Consider the binary setting with two players and V1 < V2.
The efficient individually rational profiles satisfy X =X∗ and xi ≤ Vi. Let the move struc-
ture be the alternating one in which only player 1 (2) is able to move in odd (even) num-
bered periods.

Whether there is discounting makes a radical difference in this example. In the no-
discounting case, any efficient individually rational profile is achievable. For instance,
let x be such a profile, and define a Markovian strategy profile as follows: if player i can
move in period t, she plays xti = σi(x

t−1), where

σ1(x
t−1) :=

{
x1 − xt−1

2 if Xt−1 ∈ [0�x1]
xt−1

1 if Xt−1 /∈ [0�x1]�
(5)

σ2(x
t−1) :=

{
xt−1

2 if Xt−1 /∈ [x1�X
∗]

X∗ − xt−1
1 if Xt−1 ∈ [x1�X

∗]�
These strategies are characterized by two contribution goals. Player 1 is responsible for
bringing the aggregate from 0 up to the first goal, x1, and until she does so, player 2 does
nothing. Player 2 is then responsible for bringing the aggregate up to the second and
final goal, X∗. The equilibrium path is x1 = (x1�0) and xt = x for t > 1.10

In stark contrast, the discounting game with a sufficiently large δ has a unique equi-
librium, the one just described with x = (X∗ − V2� V2). This is the result of Compte and

10Note that σ gives a payoff of 0 to player 1 if x = (V1�X
∗ − V1) and a payoff of 0 to player 2 if x =

(X∗ − V2� V2). A strategy profile that requires both players to contribute 0 and punishes any unilateral devi-
ation by the play of the appropriate one of these punishing equilibria is thus an equilibrium that achieves
x = 0.
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Figure 1(a). The closed shaded region is the set of achievable profiles if δ= 1.

Jehiel (2003).11 The set of achievable profiles in this binary setting thus expands discon-
tinuously at δ = 1. ♦

Remark 1. This discontinuity can even occur if payoffs are continuous. Suppose
ui(x) = vi(X) − xi, where vi(X) = Vi − Vi

√
1 − (X/X∗) for X ≤ X∗ and vi(X) = Vi for

X > X∗. The extreme nonconcavity at X∗ acts like a threshold. An argument like that
of Compte and Jehiel (2003) shows that the game has a unique equilibrium if δ is large
enough, V1 < V2 <X∗, and (V1)

2/X∗ + V2 >X∗.

Example 2 (Gradualism). Consider a two-player game in a neoclassical setting, with
each v′

i < 1 and the alternating move structure. Under these assumptions, in the no-
discounting case, any x satisfying individual rationality, xi ≤ vi(X), and no overproduc-
tion, v′

1(X)+ v′
2(X) ≥ 1, is achievable. This closed set of profiles is the shaded region in

Figure 1(a). (The labelings are explained later.) Any feasible individually rational payoff
is thus an equilibrium payoff of this game.

For instance, consider the efficient individually rational profile shown in Figure 1(b).
The shaded region is the set of all profiles below x that are worse for both players than x.
It contains the origin because x is individually rational. The indicated path �x converges
to x. It is constructed by first having player 1 raise her contribution enough so that the
resulting profile, x1 = (x1

1�0), gives player 2 the payoff u2(x). Then player 2 raises her
contribution enough to give player 1 the payoff u1(x), and so on. The trigger strategy
profile in which any deviation from this path triggers the play of the passive strategies,
which are those that call for each player to never raise her contribution after any history,
is an equilibrium when δ = 1. Obviously, no player can gain by deviating from the path.

11If δ < 1, the strategy σ defined by (5) for any efficient individually rational x with x2 < V2 is not subgame
perfect: in a subgame starting in an even period t and xt−1 = (x1 −ε�0), player 2 prefers to deviate by raising
Xt−1 to X∗ immediately instead of waiting two periods to do so, provided ε < (1 − δ2)(V2 − x2).
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Figure 1(b). An equilibrium path that achieves an efficient profile if δ = 1.

Off the path, the passive strategy profile is an equilibrium because neither player can
gain by unilaterally raising her contribution.12

Any equilibrium path that achieves the x of Figure 1(b) must exhibit gradualism in
the sense that it achieves x only asymptotically. Neither player can increase her contri-
bution too much in any period because doing so results in a profile that the other player
prefers to x, and thus that player profitably deviates by never raising her contribution
again. Any equilibrium path that achieves x must therefore stay in the shaded region,
ensuring gradualism. Note, however, that this gradualism has no welfare cost because
of the lack of discounting.

In contrast to the binary Example 1, discounting creates no discontinuity in this neo-
classical example. As we show later, discounting shrinks the set of achievable profiles in
a continuous way—there is no discontinuity at δ= 1. While no efficient profile is achiev-
able if δ < 1, every neighborhood of an individually rational efficient profile contains an
achievable profile if δ is sufficiently large. ♦

Example 3 (No folk theorem). The previous example suggests that under its payoff as-
sumptions, any individually rational payoff vector should be achievable if δ = 1 and be
the limit of achievable payoff vectors as δ → 1. This conjecture is false, however, if the
number of players is larger than 2.

To construct a counterexample, let n = 3 and vi(X) = 1 − (X + 1)−1. Note that the
maximizer of v1(Y)+ v2(Y)−Y is Y{1�2} := √

2 − 1. Let x be any efficient and strictly in-
dividually rational profile satisfying x3 = 0 and X >Y{1�2}.13 We claim that x is unachiev-
able. To prove this, suppose �x is an equilibrium path that achieves x. If Xt−1 <Xt = X

for some t < ∞, then a player i for whom xt−1
i < xti would gain by not raising her contri-

bution in period t or thereafter: she would then obtain a continuation payoff of at least
ui(x

t−1
i � xt−i) = ui(x

t−1
i � x−i), and this exceeds her continuation payoff of ui(x) from not

12The equilibrium path in Figure 1(b) is also generated by a Markov perfect equilibrium, a contribution
goal equilibrium defined as in (5), but with an infinite sequence of goals.

13For example, x= (0�5YN�0�5YN�0) for YN = √
3 − 1 is efficient and strictly individually rational.
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deviating because v′
i < 1. The convergence is therefore asymptotic. This implies that for

some t, Y{1�2} <Xt <X . The definition of Y{1�2} and strict concavity imply that

u1(x
t)+ u2(x

t) = v1(X
t)+ v2(X

t)−Xt

> v1(X)+ v2(X)−X = u1(x)+ u2(x)�

We conclude that ui(xt) > ui(x) for some i ∈ {1�2}. Fixing this i and letting xτ be the
largest maximizer of ui in the set {xs}, we have ui(x

τ) > ui(x
s) for all s > τ. Therefore,

the continuation payoff of player i in period τ + 1 if she deviates by never raising her
contribution again, which is at least ui(xτ), exceeds her continuation payoff from not
deviating. So �x cannot be an equilibrium path.

The reason why x cannot be achieved in this example is that it specifies an overly
large contribution from players 1 and 2. Because their joint contribution exceeds Y{1�2}
and they are the only ones contributing, they both could be made better off in an
incentive-free world by reducing their contributions. As we later see, this is the con-
dition that implies that given any feasible path converging to x, at least one of these
players can profitably deviate. Which of them it is depends on the path, so it is neces-
sary to consider the coalition {1�2} of players as the entity able to “block” x from being
achieved.

This example has features that simplify the argument but are not required. Its gen-
eralization in Theorem 1 below does not need x to be on the boundary, or any ui to be
concave or continuous. ♦

4. Necessary conditions

General necessary conditions are derived in this section for a path to be an equilibrium
path and for a profile to be achievable. Their derivations require two definitions.

First, a player’s passive strategy is the strategy specifying that she not raise her con-
tribution after any history. It is obviously a feasible strategy in any subgame, regardless
of the move structure. Because of (PS), a player imposes the most severe punishment
possible on the other players by playing her passive strategy.

Second, the security payoff function u∗ is defined as

u∗
i (x) := max

x′
i≥xi

ui(x
′
i� x−i)� (6)

(Lemma 8 in Appendix A establishes that this program has a solution.) In a subgame that
starts from a profile x, player i can obtain a continuation payoff of at least u∗

i (x) by play-
ing her myopic best reply to x and being passive thereafter. Note that u∗

i is nonincreasing
in xi and, since ui satisfies (PS), nondecreasing in x−i.

Necessary conditions for equilibrium paths

Consider an equilibrium that generates a path �x. Suppose player i deviates by playing
x̂i in period t and her passive strategy thereafter. Since the contributions of the other
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players in each period s ≥ t can be no lower than xt−i, (PS) implies that after this devia-
tion, player i’s stage game payoffs, and hence her continuation payoff, are no less than
ui(x̂i� x

t
−i). This payoff therefore must not exceed her equilibrium continuation payoff,

Ut
i (�x�δ). As this is true for any x̂i ≥ xt−1

i if the player is able to move in period t, �x must
satisfy the condition

u∗
i (x

t−1
i � xt−i) ≤Ut

i (�x�δ) for all t ≥ 1� i ∈Nt� (7)

Another useful condition is obtained by considering an immediate deviation by
player i to her passive strategy in period t. This deviation is feasible even if i /∈ Nt , and
it yields a continuation payoff no less than ui(x

t−1
i � xt−i). Thus, �x is an equilibrium path

only if

ui(x
t−1
i � xt−i) ≤Ut

i (�x�δ) for all t ≥ 1� i ∈N� (8)

The following lemma uses (8) and (BA) to show that equilibrium paths converge.
It also establishes that if an equilibrium path does not converge in a finite number of
periods, the profile it achieves is not a threshold. This is because once a path comes close
to a threshold, some player would want to deviate by raising her contribution enough to
reach the threshold.

Lemma 1. Equilibrium paths converge. An equilibrium path that converges to a thresh-
old profile does so in a finite number of periods.

We can now observe that in the no-discounting case, any continuation equilibrium
payoff is equal to the payoff generated by the profile being achieved:

Ut(�x�1) = u(x) for all t ≥ 0� (9)

By Lemma 1, x is either a profile at which u is continuous or it is achieved in a finite
number of periods. In either case, (9) follows from (2).

The path necessary conditions, (7) and (8), are used to prove the following lemma,
which establishes that conditions like (9) hold regardless of the discount factor.14

Lemma 2. If x is achieved by an equilibrium path �x, then

lim
t→∞Ut(�x�δ) = lim

t→∞u(xt) = u(x)� (10)

Furthermore, for all t > 0 and i ∈N ,

max{Ut
i (�x�δ)�ui(xt−1)�u∗

i (x
t−1
i � xt−i)} ≤ ui(x)� (11)

14Gale (2001) defines a profile x to be approachable if it is the limit of a feasible path �x such that

u∗
i (x

t−1
i � xt−i) ≤ ui(x) for every t and i ∈ N . He shows, in the no-discounting case with a continuous u,

that any achievable profile is approachable. The second statement in Lemma 2 generalizes this to the dis-
counting case and to payoffs with some discontinuities.
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The next lemma is a simple consequence of (11). Suppose x is achieved by an equi-
librium path �x. Suppose also that a profile z and a player i exist such that by some date
τ, all the other players have raised their contributions above what z specifies, but that
at date τ − 1, player i has not. Then u∗

i (z) ≤ ui(x). If the opposite were to hold, player i
would want to deviate from the path at date τ�

Lemma 3. If x is achieved by an equilibrium path �x, then there does not exist a triple
(z� i� τ) that satisfies (i) u∗

i (z) > ui(x), (ii) zi ≥ xτ−1
i , and (iii) z−i ≤ xτ−i.

Proof. Since u∗
i (x̂i� x̂−i) is nonincreasing in x̂i and nondecreasing in x̂−i, (ii) and (iii)

imply u∗
i (x

τ−1
i � xτ−i) ≥ u∗

i (z). Thus, (i) implies u∗
i (x

τ−1
i � xτ−i) > ui(x), violating the neces-

sary condition (11). �

Necessary conditions for achievable profiles

We now seek necessary conditions for achievability that do not refer to a feasible path.
Path-free conditions are useful because they require less data to check. Furthermore,
they do not depend on the nature of the game’s move structure (except for its property
that each player can move infinitely often).

Two necessary conditions are fairly obvious. Say that a profile x is a satiation profile
if u∗(x) = u(x) and that it is individually rational if u∗(0) ≤ u(x).

Lemma 4. Any achievable profile is an individually rational satiation profile.

We prove here in the text the necessity of individual rationality, as the proof is both
simple and an introduction to the more general argument used below. So suppose x is a
profile for which u∗

i (0) > ui(x) for some player i. Let τ be the first period in which player
i can move. Then, with respect to any feasible path that converges to x, the triple (0� i� τ)
satisfies (i)–(iii) of Lemma 3. This proves x is unachievable. Essentially, behind the for-
mality, player i can gain by deviating as soon as possible from any path that converges
to x, raising her contribution to whatever maximizes ui(·�xτ−i) and then never raising it
again.

We now formulate a condition more general than individual rationality that any
achievable profile must satisfy. As the condition utilizes a concept related to that of
“blocking” in cooperative game theory, it is natural to adopt a similar terminology. Refer
to a nonempty subset of players S as a coalition and let uS = (ui)i∈S . Then a profile x is
underblocked by a coalition S if z ≤ x exists such that z−S = 0 and u∗

S(z) 
 uS(x). This
definition generalizes that of individual rationality, since a profile is individually rational
if and only if it is not underblocked by a singleton coalition.15

Underblocked profiles are unachievable. The precise argument is given below in the
proof of Theorem 1, but here is the gist of it. Suppose x is underblocked, say by coalition
S using profile z. Let �x be any feasible path converging to x. Let τ be the first date at

15If u∗
i (0) > ui(x), then {i} underblocks x using z = 0. Conversely, if {i} underblocks x using z, then

z = (zi�0−i) and so u∗
i (0) ≥ u∗

i (z) > ui(x).
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which xt exceeds z. The definition of τ insures that zi ≥ xτ−1
i for some coalition member

i ∈ S. (Which coalition member this is may depend on the path, unless S is a singleton.)
This construction yields a triple, (z� i� τ), satisfying (i)–(iii) of Lemma 3. Thus, x is not
achievable.

We have now two necessary conditions for achievability: being a satiation profile
and not being underblocked. Define the undercore to be the set of satiation profiles that
are not underblocked, and denote it as D. The following theorem is our first main result.

Theorem 1. All achievable profiles are in the undercore.

Proof. Let x be achievable. Then it is a satiation profile. Assume x is underblocked.
Hence, a coalition S and profile z ≤ x exist such that z−S = 0 and u∗

S(z) 
 uS(x). For
i ∈ S, we have u∗

i (xi� z−i) ≤ u∗
i (x) = ui(x), since z−i ≤ x−i and x is a satiation profile. This

proves zi 	= xi and so zS � xS .
Let �x be an equilibrium path that achieves x. Since zS � xS , a smallest date exists at

which xtS is strictly larger than zS : there exist τ ≥ 1 and i ∈ S such that

zi ≥ xτ−1
i and zS � xτS� (12)

Observe that (z� i� τ) satisfies the conditions of Lemma 3 with respect to �x. It satisfies
u∗
i (z) > ui(x) because i ∈ S. It satisfies zi ≥ xτ−1

i by the first part of (12). It satisfies
z−i ≤ xτ−i by the second part of (12) and the fact that z−S = 0 ≤ xτ−S . Lemma 3 thus im-
plies that �x does not achieve x, a contradiction. This proves x is not underblocked and
so x ∈D. �

The consequences of Theorem 1 are explored in the next section by examining the
structure of the undercore. We end this section with a final necessary condition: in the
discounting case, every achievable profile is inefficient if the payoffs are continuously
differentiable and satisfy a strict version of (PS).16,17 Essentially, the sum of the player’s
gains from deviating are first order in the remaining amount to contribute, but the sum
of their time-averaged future benefits from not deviating is second order in this amount.

Theorem 2. Suppose δ < 1, and that u is continuously differentiable and satisfies
∂ui(x)/∂xj > 0 for all i 	= j. Then any achievable profile is inefficient.

5. The undercore

The undercore contains all achievable profiles by Theorem 1 and, as is shown in the next
section, the reverse inclusion holds in a limiting sense in some settings. Uncovering
the structure of the undercore thus is useful for understanding the nature of achievable

16Related results are obtained for special cases by Marx and Matthews (2000), Lockwood and Thomas
(2002), and Pitchford and Snyder (2004).

17Achievable profiles may be efficient if payoffs are not differentiable, even if δ < 1. This is the case in
Example 1 of Section 3, and in other examples in Marx and Matthews (2000) and Lockwood and Thomas
(2002).
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profiles. The first step is Lemma 9 in Appendix B, which shows that D is a compact set
under the maintained assumptions.

The undercore generally contains some, but not all, efficient profiles. Define the
core, C, to be the set of profiles that are not blocked, where a profile x is blocked by a
coalition S if and only if a profile z exists such that z−S = 0 and uS(z) > uS(x).18 As N

blocks inefficient profiles, core profiles are efficient. The following proposition shows
that the core consists precisely of the efficient profiles in the undercore.

Proposition 1. The core is the subset of profiles in the undercore that are efficient:

C = {x ∈D :x is efficient}�

In a binary setting, straightforward arguments show that the core is the entire set of
efficient individually rational profiles:

C = {x ∈ Rn+ :X =X∗�xi ≤ Vi for all i ∈ N}�
The undercore differs only by containing the origin: D= C∪{0}. Thus, in a binary setting
with discounting, much of the undercore may be unachievable. Recall that in Example 1,
just one profile is achievable when δ < 1, but the entire undercore is achievable when
δ= 1.

We end this section with a characterization of the core and undercore in neoclassical
settings. In these settings, the surplus function for a coalition S,

fS(X) :=
∑
i∈S

vi(X)−X�

plays a central role. Since each vi is strictly concave increasing, (3) implies that fS
has a unique maximizer, which we denote as YS . Note that for any coalitions S and
T ⊂ S, YT ≤ YS and YT < YS if YS > 0. (But for convenience, set Y∅ := ∞.) Letting
Ȳ := maxi Y{i}, the concavity of each vi implies that x is a satiation profile if and only
if X ≥ Ȳ .

The value of a coalition S is V (S) := fS(YS). For any profile x, let XS := ∑
i∈S xi. The

following familiar proposition states that a profile is in the core if and only if the sum of
payoffs it gives any coalition is no less than its value—what it could obtain “on its own.”
(Its proof may be less familiar because of the x ≥ 0 constraint.)

Proposition 2. In a neoclassical setting, the core is the set of satiation profiles satisfying,
for all coalitions S, ∑

i∈S
vi(X)−XS ≥ V (S)� (13)

Roughly speaking, a coalition S cannot underblock a satiation profile x either if it
cannot block it or if X is sufficiently small that S cannot block it using any z ≤ x. This
intuition is formalized in the first part of the following proposition.

18This is a typical definition of the core in public good settings, e.g., Foley (1970).
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Proposition 3. In a neoclassical setting, the undercore is the set of satiation profiles
satisfying, for all coalitions S,

X <YS or
∑
i∈S

vi(X)−XS ≥ V (S)� (14)

Equivalently, the undercore is the set of satiation profiles satisfying, for all coalitions S,

XS ≤ max
(
YS�

∑
i∈S

vi(X)− V (S)

)
� (15)

For a given aggregate X , the inequalities in (15) impose upper bounds on each coali-
tion’s contribution. That is, an undercore profile must not require any coalition to con-
tribute too much.

The inequalities determining the undercore are less restrictive for profiles with
smaller aggregates. For example, (14) implies that if x is a satiation profile satisfying
X <YS for every nonsingleton coalition, then x ∈ D if and only if it is individually ratio-
nal. However, if X = YN , and so X ≥ YS for all coalitions, then (14) implies that x ∈ D if
and only if it satisfies (13) for all coalitions. The core is therefore {x ∈D :X = YN }.

The following corollary implies that in a neoclassical setting, the aggregate of any
undercore profile x is no greater than the amount that maximizes the surplus of the
contributing coalition, N(x) := {i ∈ N :xi > 0}. As YN(x) ≤ YN , this implies that the core
is the northeast surface of the undercore. Part (ii) of the corollary, which is used in the
next section, establishes that the undercore contains a particular line segment of strictly
positive profiles.

Corollary 1. In a neoclassical setting,

(i) any x ∈D satisfies X ≤ YN(x)

(ii) (v′
1(YN)Y� � � � � v′

n(YN)Y) ∈D for any Y ∈ [Ȳ �YN ].

Figure 1(a) illustrates a two-person example of the core and undercore in a neoclas-
sical setting. In this example, Ȳ = 0, so that all profiles are satiation profiles. Note that
the set u(D) of undercore payoffs is the entire set of feasible individually rational payoffs.

This is not generally true. Figure 2 depicts a two-person neoclassical setting in which
Y{2} > Y{1} = 0. The undercore does not include individually rational profiles like the
indicated x because they are not satiation profiles. Such a profile cannot be achieved
for any δ ≤ 1, because once a profile sufficiently close to x is reached, player 2 wants to
deviate by raising the aggregate up to Y{2} >X . The payoff u(x) is also not generated by
any undercore profile.

In the following numerical example, the undercore payoffs are again a strict subset
of the feasible individually rational payoffs. The core payoffs are a strict subset of the
individually rational efficient payoffs. This is generally the case when there are more
than two players.
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Figure 2. Even if n= 2, the undercore may not include all individually rational allocations: pro-
file x is individually rational, but u(x) /∈ u(D).

Example 4. Let n = 3 and vi(X) = 2
√
X . The optimal coalitional contributions are then

Y{i} = 1, Y{i�j} = 4, and YN = 9. The satiation profiles are those with X ≥ 1, and the set of
individually rational profiles is R = {x ∈ R3+ :xi ≤ 2

√
X − 1}. The undercore is the union

of two sets, D= D1 ∪D2, where

D1 = {x ∈R : 1 ≤X ≤ 4}
D2 = {x ∈R : 4 <X ≤ 9�xi + xj ≤ 4

√
X − 4}�

The set of undercore payoffs is u(D) = u(D1)∪ u(D2), where

u(D1) =
{
ũ ∈ R3 : 5 ≤

∑
ũi ≤ 8�1 ≤ ũi ≤ 4

}
u(D2) =

{
ũ ∈ R3 : 8 <

∑
ũi ≤ 9�4 ≤ ũi + ũj�1 ≤ ũi

}
�

Observe that u(D) is a strict subset of the set of individually rational payoffs that arise
from satiation profiles {ũ ∈ R3 : 5 ≤ ∑

ũi ≤ 9�1 ≤ ũi}.
The core consists of the undercore profiles for which X = 9, which can be written as

C = {x ∈ R3 :X = 9�1 ≤ xi ≤ 5}. Note that the set of core payoffs,

u(C) =
{
ũ ∈ R3 :

∑
ũi = 9�1 ≤ ũi ≤ 5

}
�

is a strict subset of the individually rational efficient payoffs {ũ ∈ R3 :
∑

ũi = 9�1 ≤ ũi}. ♦

6. Sufficient conditions

The main result of this section is that under certain conditions in a neoclassical setting,
almost any undercore profile is achievable if the discount factor is close enough to 1.
Note that some restriction of the setting is required, as the result is untrue in general.
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Recall that only one profile in the continuum of undercore profiles in Example 1 is
achievable if δ < 1, but they are all achievable if δ = 1.

Sufficient conditions for equilibrium paths

The first step is to find a condition under which (7) is sufficient as well as necessary for a
path to be an equilibrium path. This is useful because it allows the analysis to focus on
paths, which are much simpler than strategies.

Recall that (7) requires, for i ∈ Nt , that the continuation payoff Ut
i (�x�δ) from not de-

viating be no less than the security payoff u∗
i (x

t−1
i � xt−i). Thus, if �x satisfies (7), player i

will not want to deviate from the path at date t if the strategies that will then be played
give her a continuation payoff no greater than u∗

i (x
t−1
i � xt−i). This is the case if deviations

trigger the passive strategies.19 The strategy profile in which �x is played and any devia-
tion triggers the passive strategies is therefore an equilibrium that generates �x, provided
that the passive strategy profile is itself an equilibrium of any subgame. This is true if
(and only if) every profile is a satiation profile. Accordingly, (7) is a sufficient condition
for �x to be an equilibrium path if the following “prisoners’ dilemma” property holds:20

(PD) u∗ = u.

Commonly assumed, (PD) implies that each player’s dominant strategy in any stage
game is to not raise her contribution. The following lemma records the result just
proved.

Lemma 5. If u satisfies (PD), then for any δ ∈ (0�1], a feasible �x is an equilibrium path of
�(δ� �N) if

ui(x
t−1
i � xt−i)≤Ut

i (�x�δ) for all t ≥ 1� i ∈Nt�

Remark 2. In the no-discounting case, (PD) in Lemma 5 can be weakened to the as-
sumption that u is continuous. This is established by Theorem 1 of Gale (2001). The
key step in proving this is to show that when δ = 1, any subgame starting from any pro-
file x has, for any player i, an equilibrium that gives player i her security payoff u∗

i (x).
These maximally punishing equilibria can then be used instead of the passive strategies
to prove the sufficiency of (7). How much (PD) can be weakened in Lemma 5 when δ < 1
is an open question.

Due to discounting, one more mild assumption is made. Discounting implies that
rewards and punishments can influence current behavior only if they are not delayed
too long. Hence, the interval between the times at which a player can move should not
grow too quickly as the game progresses. This is ensured if the move structure �N satisfies

19If player i unilaterally deviates from �x at date t to some zi ≥ xt−1
i and this triggers the passive strategy

profile, her continuation payoff will be ui(zi�x
t
−i). This payoff, by definition, is not more than u∗

i (x
t−1
i � xt−i).

20Equivalent to (PD) is the property that each ui is nonincreasing in xi . Note too that (PD) implies the
absence of thresholds, i.e., f and hence u are continuous. In a neoclassical setting, (PD) is equivalent to
v′
i(0) ≤ 1 for all i ∈ N , since each vi is concave.
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a cyclicity property:

(CY) integer m> 0 exists such that i ∈N(nk+i)m for all i ∈N and k≥ 0.

This property specifies that player 1 is able to move at date m, player 2 can move at date
2m, and so on until the pattern repeats with player 1 able to move at date (n+1)m. There
are no restrictions on who else can move at dates that are multiples of m, or on who can
move at any other date. Familiar move structures satisfy (CY). With m = 1, it is satisfied
by both the simultaneous move structure and the round-robin structure defined by

NR
t := {t modn+ 1} for all t ≥ 1�

The following lemma establishes that if �N satisfies (CY), then any equilibrium path
of the round-robin game passes through the same profiles as does an equilibrium path
of a game that has the move structure �N and a certain larger discount factor. This result
allows attention to be restricted to the round-robin structure.

Lemma 6. Suppose u satisfies (PD), �N satisfies (CY), and �x is an equilibrium path of
�(δ� �NR) for some δ ∈ (0�1]. Then �(δ1/m� �N) has an equilibrium path �z that passes
through the same profiles as does �x.

The path �z in Lemma 6 is obtained by slowing down the round-robin path �x: player 1
moves in period m instead of period 1, player 2 moves in period 2m instead of period 2,
and so on. Property (CY) insures that this new path is feasible for �N . Along this new path,
the future reward a player receives for raising her contribution in the current period is
postponed, but raising the discount factor to δ1/m increases its present value enough to
restore incentives.

Sufficient conditions for achievability

Before presenting the sufficiency result for the discounting case, it is useful to consider
the analogous result obtained by Gale (2001) for the no-discounting case. Define a pro-
file x to be strongly minimal if there does not exist a coalition S and a profile z < x such
that z−S = 0 and u∗

S(z) ≥ uS(x).21 Then let D0 be the set of satiation profiles that are
strongly minimal. Gale’s result (Lemma 5 and Theorem 1) is that if u is continuous, then
any strictly positive profile in D0 is achievable in the no-discounting case.

The set D0 of strongly minimal satiation profiles plays a role in the discounting case
as well. Observe that its definition is nearly the same as that of the undercore. Since any
underblocked satiation profile is not strongly minimal, D0 ⊆ D is always true. In most
settings of interest, D is in fact the closure of D0, so that the two sets are essentially the
same. This is true in both the binary and, as the next lemma implies, the neoclassical
settings.22

Lemma 7. In a neoclassical setting, cl{x ∈D0 :X <YN(x)} = D.

21The definition of strong minimality in Gale (2001) differs slightly by requiring z 	= 0. It is useful here
to allow the possibility that z = 0, so that any strongly minimal x > 0 is strictly individually rational:
u∗(0) � u(x).

22It is easy to show that in a binary setting, D0 = {x ∈ D :xi < Vi for all i ∈ N}, which implies clD0 = D.
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The following proposition is the central result of this section. It establishes that if
(PD) and (CY) hold in a neoclassical setting, then essentially any profile in D0 is achiev-
able for all δ < 1 sufficiently large. Furthermore, the same equilibrium path achieves the
profile for all large discount factors.

Proposition 4. For any neoclassical setting satisfying (PD) and �N satisfying (CY), sup-
pose x ∈ D0 satisfies X <YN(x). Then there exist a path �x converging to x and a discount
factor δ < 1 such that �x is an equilibrium path of �(δ� �N) for all δ ∈ [δ�1].

Before discussing the structure of the proof of this proposition, we first consider
some of its implications for the set of achievable allocations. Denote the set of achiev-
able profiles in �(δ� �N) as A(δ� �N) and let

A( �N) := cl{x ∈ Rn+ :δ < 1 exists such that x ∈A(δ� �N) for all δ ∈ (δ�1)}�

That is, A( �N) is the closure of the set of profiles that can be achieved for all large dis-
count factors less than 1. The analogous set in the no-discounting case is A1( �N) :=
clA(1� �N). Both sets are always in the undercore, by Theorem 1. The reverse inclusions
hold under the conditions of Proposition 4, as it and Lemma 7 imply. Thus, under these
conditions, the undercore is essentially the set of profiles that can be achieved both for
δ = 1 and for sufficiently large δ < 1. Theorem 3 summarizes this discussion.

Theorem 3. In a neoclassical setting in which (PD) holds, A( �N) = A1( �N) = D for all
move structures �N that satisfy (CY).

Theorem 3 and Proposition 4 have, under their assumptions, three notable eco-
nomic consequences. The first bears on the nature of the efficient profiles that can be
approximately achieved if δ = 1 or as δ → 1. Since the core is the subset of profiles in D

that are efficient, an efficient profile can be approximately achieved if and only if it is in
the core.

The second consequence bears on the issue of gradualism. Under the assumptions
of these results, almost any achievable profile is achieved by the same equilibrium path
for all large discount factors. The time it takes a fixed path to reach any given neigh-
borhood of its limiting profile becomes negligible as the period length becomes small.
Thus, essentially all achievable profiles can be achieved instantaneously in the limit as
the period length goes to 0. Even though (PD) implies that strategic gradualism is neces-
sary in the sense that no equilibrium path achieves a nonzero profile in a finite number
of periods, there is no real-time gradualism if the period length is arbitrarily short.

The third consequence bears on the relevance of the move structure. The result that
both A1( �N) and A( �N) are equal to the set D, which does not depend on �N , tells us that
the set of profiles that can be achieved for either δ = 1 or as δ → 1 is independent of the
move structure. Both the simultaneous and round-robin structures, for example, give
rise to the same set of limiting achievable profiles. Of course, for a fixed δ < 1, the set of
achievable profiles does generally depend on the move structure.



Theoretical Economics 8 (2013) Achievable outcomes of dynamic contribution games 385

We end this section with an overview of the proof of Proposition 4. In light of
Lemma 6, it only needs to be proved for the round-robin structure. Consider a nonzero
x ∈ D0 satisfying X < YN(x). The proof begins by finding two profiles, x̄ and x̂, that sat-
isfy x̄ < x̂ < x and u(x̄) � u(x̂) � u(x). The proof that these profiles exist depends on
the assumption X < YN(x). Because v is strictly concave, x̂ can be chosen so that it too
is in D0. The proof then has three steps.

Step 1 consists of the construction of a round-robin path starting at x̄ and converg-
ing to x. Each player raises her contribution the same proportional amount toward, x
when it is her turn to move. The increases are made small enough that u(x) − u(xt) is
always positive. But this difference shrinks to 0 so quickly that for all large δ, player i’s
continuation payoff is close enough to ui(x) that she is willing to raise her contribution
in the current period. This step uses X <YN(x) and the concavity of v.

Step 2 uses the fact that x̂ is strongly minimal. Adapting an argument in Gale (2001),
a finite, decreasing sequence from x̄ to the origin is constructed, along which the play-
ers’ payoffs never exceed u(x̂). The first profile of the sequence is obtained by lowering
the contribution of player 1 from x̄1 as much as possible without allowing her payoff to
exceed u1(x̂). The second profile is then obtained by lowering the contribution of player
2 in the same manner. Continuing in round-robin fashion yields a decreasing sequence
of profiles that each generate a payoff no greater than u(x̂). The sequence converges
to some z < x for which ui(z) = ui(x̂) for any i such that zi > 0. This implies, since x̂

is strongly minimal, that z = 0� The convergence occurs in a finite number of steps be-
cause once the sequence is close enough to the origin, a player’s contribution can be
lowered all the way to 0 without raising her payoff above ui(x̂).

Step 3 puts together the sequences obtained in the previous steps to yield a path �x
that converges to x and is feasible for �NR. For xt ≥ x̄, the construction of Step 1 insures
that the remainder of the path is a continuation equilibrium path if δ is large. For xt < x̄,
u(xt) is bounded strictly below u(x), so again the continuation payoffs from �x exceed
any deviation payoff if δ is large. The path �x is thus an equilibrium path for large δ.

7. Equilibrium payoffs

The results obtained so far about achievable profiles have implications for equilibrium
payoffs. The following corollary is about the limits of sequences of equilibrium payoffs
for discount factors less than 1. For a move structure �N , this set of payoffs is

P( �N) := cl{ũ ∈ Rn : ũ =U(�x�δ) for some equilibrium path �x and δ ∈ (0�1)}�
Of natural interest are the efficient payoffs in this set, those for which ũ = u(x) for some
efficient profile x.

Corollary 2. (i) Any ũ ∈ P( �N) satisfies ũ≤ u′ for some undercore payoff u′ ∈ u(D).

(ii) Any efficient ũ ∈ P( �N) is a core payoff: ũ ∈ u(C).

(iii) In a neoclassical setting satisfying (PD), P( �N) contains all undercore (and hence
core) payoffs for all �N satisfying (CY).



386 Steven A. Matthews Theoretical Economics 8 (2013)

Part (i) shows that equilibrium payoffs are bounded above by undercore payoffs.
This and the fact that the only efficient undercore profiles are core profiles implies (ii),
that any efficient payoff that approximates an equilibrium payoff is a core payoff. Part
(iii) establishes that all core payoffs are approximate equilibrium payoffs in a neoclassi-
cal setting satisfying (PD) if the move structure is cyclical.

Remark 3. Similar results hold in the no-discounting case. By Theorem 1, any equilib-
rium payoff of �(1� �N) is in u(D). Proposition 1 thus implies that any equilibrium payoff
that is efficient is a core payoff. By Theorem 3, u(D) is equal to the closure of the set of
equilibrium payoffs in a neoclassical setting given (PD) and (CY).

8. Conclusion

The goal of this paper is to describe the achievable profiles and equilibrium payoffs of
a range of dynamic contribution games. The central construct is the undercore, a set of
profiles determined by the payoff functions independently of the dynamic structure of
the game. The most general result obtained is that for any dynamic contribution game,
only profiles in this set are achievable. This theorem has welfare implications: the only
efficient payoffs that are even approximately achievable are the core payoffs. It also has
theoretical implications: there is no folk theorem for this class of games. Last, it may
have empirical implications: since the undercore is often readily characterized, whether
only undercore profiles are achieved should be testable in the field or laboratory.

In the discounting case, generally not all undercore profiles are achievable. But in
some settings they are, such as the neoclassical public good settings that satisfy the pris-
oners’ dilemma property. In these settings, if the move structure is cyclical, the entire
undercore is the limit of the set of achievable profiles as the discount factor increases
to 1. One implication is that all commonly assumed move structures yield this same set
of achievable profiles. Another implication is a lack of gradualism: almost any achiev-
able profile can be approximately reached arbitrarily quickly as the period length shrinks
to 0. One task for the future is to determine the extent to which these results hold for
other payoff functions.

Appendix A: Proofs for Section 4

Lemma 8. For each i ∈N and x−i ∈ Rn−1+ , program (6), which is

u∗
i (x) := max

x′
i≥xi

ui(x
′
i� x−i)�

has a solution. Furthermore, u∗
i (·�x−i) is right continuous.23

Proof. Since ûi is continuous and g is nondecreasing right continuous, ui is up-
per semicontinuous. Hence, for any positive integer s, ui(·�x−i) has a maximizer on

23In fact u∗
i is continuous, but we need only its right continuity in xi.
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[xi�xi + s]. Thus, assuming (6) has no solution, an unbounded sequence {xk = (xki �x−i)}
exists such that xki ≤ xk+1

i and ui(x
k) ≤ ui(x

k+1). By (PS), uj(xk) ≤ uj(x
k+1) for all j 	= i.

This contradicts (BA). Hence, (6) has a solution.
Now let {xki } be a decreasing sequence such that xki → xi. Since u∗

j (·�x−i) is nonin-

creasing, u∗
i (x

k
i �x−i)≤ u∗

i (x) for each k and so

lim supu∗
i (x

k
i �x−i)≤ u∗

i (x)�

Let bi(x) solve (6). The right continuity of g and the continuity of ûi imply that ui(·�x−i)

is right continuous. Hence, if bi(x) = xi (and so u∗
i (x) = ui(x)), we have

lim infu∗
i (x

k
i �x−i) ≥ lim infui(xki �x−i)

= limui(x
k
i �x−i)= ui(x) = u∗

i (x)�

The other case to consider is bi(x) > xi. In this case, for large k, we have zki < bi(x) and
so u∗

i (x
k
i �x−i)≥ ui(bi(x)�x−i). Thus,

lim infu∗
i (x

k
i �x−i) ≥ ui(bi(x)�x−i) = u∗

i (x)�

We conclude that in either case, lim infu∗
i (x

k
i �x−i) ≥ u∗

i (x) ≥ lim supu∗
i (x

k
i �x−i) and so

u∗
i (x

k
i �x−i)→ u∗

i (x). �

Proof of Lemma 1. Let �x be an equilibrium path and assume it does not converge.
Then, since it is nondecreasing, it is unbounded. By (BA), i exists such that ui(x

1) >

lim sups→∞ ui(x
s). Thus, ui has a positive, finite number of maximizers on the set {xs}s≥0.

Let xτ−1 be the maximizer with the largest superscript. Then for δ < 1, we have

ui(x
τ−1)−Uτ

i (�x�δ)= (1 − δ)
∑
s≥τ

δs−τ[ui(xτ−1)− ui(x
s)]> 0�

and for δ = 1, we have

ui(x
τ−1)−Uτ

i (�x�1) ≥ ui(x
t)− lim sup

s→∞
ui(x

s) > 0�

Hence, since xτ−i ≥ xτ−1
−i , in either case, (PS) implies ui(x

τ−1
i � xτ−i) ≥ ui(x

τ−1) > Uτ
i (�x�δ).

This contradicts the necessary condition (8). Therefore, �x must converge.
Now let x be a profile achieved asymptotically by an equilibrium path �x, so that

Xs <X for all s. Then g(Xs) converges to the left-hand limit g(X−) and u(xs) converges
to û(g(X−)�x). For δ ∈ (0�1], we have

lim
t→∞Ut(�x�δ) = lim

t→∞u(xt) = û(g(X−)�x)�

Fix i ∈N and let x̂ti = X −Xt
−i. If i ∈Nt , then

ûi(g(X)� x̂ti� x
t
−i) = ui(x̂

t
i� x

t
−i) ≤ u∗

i (x
t−1
i � xt−i) ≤Ut

i (�x�δ)�
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where the first inequality follows from x̂ti > xt−1
i and the second follows from (7). Since

(x̂ti� x
t
−i) → x, taking the limit along the infinite subsequence of dates t that satisfy i ∈Nt

yields ûi(g(X)�x) ≤ ûi(g(X−)�x). This implies g(X) ≤ g(X−), as ûi(·�x) is a strictly
increasing function. Hence, since g is nondecreasing, g(X−) = g(X). This proves g is
continuous at X and so x is not a threshold profile. �

Proof of Lemma 2. If �x converges to x in a finite number of periods, (10) holds triv-
ially. If �x instead converges asymptotically, then, by Lemma 1, we know that x is not a
threshold profile. Since g is thus continuous at X and û is continuous, u is continuous
at x� This and the convergence of �x to x imply (10).

Since �x converges, {xs}s≥0 ∪ {x} is compact. Because ui is upper semicontinuous, it
has a maximizer in this set. Assume x is not a maximizer. Then, since ui(x

s) → ui(x),
ui has a positive, finite number of maximizers in {xs}s≥0. This implies, by the argument
given to prove Lemma 1, that τ exists such that the necessary condition (8) is violated at
(i� τ). This contradiction proves that x is, in fact, a maximizer, i.e., ui(xt−1) ≤ ui(x) for all
t > 0. This and (1) or (2) now imply Ut(�x�δ) ≤ u(x) for all t > 0.

It remains to prove that for any t > 0, u∗
i (x

t−1
i � xt−i) ≤ ui(x). Fix i ∈ N . Let τ ≥ t be

the smallest date no less than t for which i ∈ Nτ. From (7) and Ut(�x�δ) ≤ u(x), we ob-
tain u∗

i (x
τ−1
i � xτ−i) ≤ ui(x). We have u∗

i (x
t−1
i � xt−i) ≤ u∗

i (x
τ−1
i � xτ−i) because xt−1

i = xτ−1
i ,

xt−i ≤ xτ−i, and u∗ satisfies (PS). Hence, u∗
i (x

t−1
i � xt−i) ≤ ui(x). �

Proof of Lemma 4. Suppose x is achievable. The argument in the text proves it is in-
dividually rational. To show that it is a satiation profile, let �x be an equilibrium path that
achieves x and fix i ∈ N . Let bi maximize ui(·�x−i) on [xi�∞) and choose ε > 0. Because
ui is right continuous and has at most a countable number of discontinuities, b′

i ≥ bi
exists such that ui is continuous at (b′

i� x−i) and

u∗
i (x) = ui(bi�x−i) ≤ ui(b

′
i� x−i)+ 1

2ε�

As ui is continuous at (b′
i� x−i), there exists T such that for all t ≥ T ,

ui(b
′
i� x−i)≤ ui(b

′
i� x

t
−i)+ 1

2ε�

Since b′
i ≥ bi ≥ xi ≥ xt−1

i , the definition of u∗
i implies

ui(b
′
i� x

t
−i) ≤ u∗

i (x
t−1
i � xt−i)�

Putting the displayed inequalities together yields u∗
i (x) ≤ u∗

i (x
t−1
i � xt−i) + ε for t ≥ T .

Hence, by Lemma 2, u∗
i (x) ≤ ui(x) + ε. As this is true for all ε > 0 and as u∗

i (x) ≥ ui(x),
we conclude that u∗

i (x) = ui(x). �

Proof of Theorem 2. To simplify notation, let uij(x) := ∂ui(x)/∂xj . Let x∗ be an effi-
cient profile. Then it maximizes u1(x) subject to x ∈ Rn+ and uj(x) ≥ uj(x

∗) for j > 1. By
the Fritz–John Theorem, multipliers (λ�α) ∈ R2n+ \{0} exist such that

∑
i λiuij(x

∗)+αj = 0
for all j ∈ N . If some λj = 0, then

∑
i 	=j λiuij(x

∗) + αj = 0, which implies (λ�α) = 0
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since uij > 0 for all i 	= j. This contradiction proves λ 
 0. Without loss of generality,
we can assume each λi = 1 (normalize by multiplying each ui by λi). Hence, defining
W (x) := ∑

i ui(x), we have Wj(x
∗) = −αj ≤ 0 for all j ∈ N (where Wj = ∂W /∂xj). We also

have ujj(x
∗) = −∑

i 	=j uij(x
∗)− αj < 0.

Since it is efficient, x∗ 	= 0. Assume it is achieved by an equilibrium path �x. Suppose
t > 1 exists such that xt−1 < xt = x∗. Then in period t, some player i raises her contri-
bution from xt−1

i to x∗
i > xt−1

i to obtain a continuation payoff of Ut
i (�x�δ) = ui(x

∗). But
since uii(x

∗) < 0, there exists xi ∈ (xt−1
i � x∗

i ) such that she could obtain a continuation
payoff of at least ui(xi�x∗

−i) > ui(x
∗) by raising her contribution only to xi in period t

and subsequently playing passively. This is contrary to �x being an equilibrium path. We
conclude that �x converges asymptotically to x∗.

Now, for any i ∈N and t ≥ 1, from (8) we obtain the inequality

∑
s≥t

δs−t[ui(xs)− ui(x
t−1
i � xt−i)] ≥ 0�

Thus, by the mean value theorem, for each s ≥ t, the line segment between (xt−1
i � xt−i)

and xs contains a point yis such that

∑
s≥t

δs−t

[
uii(y

is)(xsi − xt−1
i )+

∑
j 	=i

uij(y
is)(xsj − xtj)

]
≥ 0�

Sum these inequalities over i ∈ N to obtain

∑
s≥t

δs−t

[∑
i

uii(y
is)(xsi − xt−1

i )+
∑
i

∑
j 	=i

uij(y
is)(xsj − xtj)

]
≥ 0�

Add and subtract
∑

i uii(y
is)(xsi − xti) to the square-bracketed term to obtain

∑
s≥t

δs−t

[∑
i

uii(y
is)(xti − xt−1

i )+
∑
i

∑
j

uij(y
is)(xsj − xtj)

]
≥ 0�

Reverse the summation order in the double sum to obtain

∑
s≥t

δs−t

[∑
i

uii(y
is)(xti − xt−1

i )+
∑
j

{
(xsj − xtj)

∑
i

uij(y
is)

}]
≥ 0� (16)

Now, let ε > 0, and let B be an open ball centered at x∗ such that for any x ∈ B and
i� j ∈N ,

−ε > uii(x) and uij(x
∗)+ 1

n
(1 − δ)δ−1ε > uij(x)�

(Such a ball exists because each uii(x
∗) < 0 and each uij is continuous.) Since xt → x∗,

date T ≥ 1 exists such that xs ∈ B for all s ≥ T . Choose t > T such that xt−1 < xt

(which can be done because the convergence is asymptotic). Since each yis is between
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(xt−1
i � xt−i) and xs , and both these points are in B, we have yis ∈ B. Accordingly, for all

i� j ∈N and s ≥ t, we have

−ε > uii(y
is) (17)

and, since Wj(x
∗)≤ 0,

(1 − δ)δ−1ε ≥ Wj(x
∗)+ (1 − δ)δ−1ε

=
∑
i

[
uij(x

∗)+ 1
n
(1 − δ)δ−1ε

]
(18)

>
∑
i

uij(y
is)�

Now, because xti − xt−1
i ≥ 0 and xsj − xtj ≥ 0 for s ≥ t, (16)–(18) imply

∑
s≥t

δs−t

[∑
i

(−ε)(xti − xt−1
i )+

∑
j

{(xsj − xtj)(1 − δ)δ−1ε}
]

≥ 0�

Simplify this, using
∑

ix
s
i =Xs , to obtain

(1 − δ)2δ−1
∑
s≥t

δs−t (Xs −Xt) ≥Xt −Xt−1�

Use the identity (1 − δ)
∑

s≥tδ
s−t (Xs −Xt) = δ

∑
s≥tδ

s−t (Xs+1 −Xs) to obtain

(1 − δ)
∑
s≥t

δs−t (Xs+1 −Xs) ≥Xt −Xt−1�

Since the left side of this inequality is a convex combination of terms, one of them must
weakly exceed the right side. That is, t1 > t exists such that Xt1 − Xt1−1 ≥ Xt − Xt−1.
Since t1 > T , we can repeat the argument to find t2 > t1 such that Xt2 − Xt2−1 ≥
Xt1 − Xt1−1. Proceeding recursively yields a subsequence {tk} such that the differences
Xtk −Xtk−1 are positive (since Xt − Xt−1 > 0) and nondecreasing. This is impossible,
since xs → x∗. The profile x∗ is therefore not achievable. �

Appendix B: Proofs for Section 5

Lemma 9. The undercore D is closed and bounded.

Proof. Assume D contains an unbounded sequence {xk}∞k=2. Let x1 = 0. Then (BA)

implies that i ∈ N exists such that ui(0) > lim supk→∞ ui(x
k). Thus, ui(0) > ui(x

k) for
large k. This implies xk is not individually rational, i.e., it is underblocked by a singleton
coalition. This contradicts xk ∈D. Hence, D is bounded.

To show that D is closed, let {xk} be a convergent sequence in D, with limit x. We
first show that x is a satiation profile. Assume not. Then i ∈N and bi > xi exist such that
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ui(bi�x−i) > ui(x). Let X̂ = bi + X−i and bki = X̂ − Xk
−i. Then bki → bi > xi. Thus, for

large k, we have bki > xki . It follows that for large k,

u∗
i (x

k) ≥ ui(b
k
i �x

k
−i) = ûi(g(X̂)�bki �x

k
−i)�

Hence, as ûi is continuous, we have

lim supu∗
i (x

k) ≥ lim ûi(g(X̂)�bki �x
k
−i)

= ûi(g(X̂)�bi�x−i) = ui(bi�x−i)

> ui(x) ≥ lim supui(xk)�

where the last inequality holds because ui is upper semicontinuous. This implies that
u∗
i (x

k) > ui(x
k) for large k. This is impossible, since xk ∈ D implies that x is a satiation

profile. Thus, x is a satiation profile.
It remains to show that x is not underblocked, as this now implies x ∈ D. Assume

x is underblocked. Then a coalition S and a profile z ≤ x exist such that z−i = 0 and
u∗
S(z) 
 uS(x). Suppose zi = xi for some i ∈ S. Then, since z−i ≤ x−i and x is a satiation

profile,

u∗
i (z) = u∗

i (xi� z−i) ≤ u∗
i (xi�x−i) = ui(x)�

This contradiction implies zS � xS . For any i ∈ N , we have, since ui is upper
semicontinuous,

ui(x) ≥ lim sup
k→∞

ui(x
k)�

Hence, for large k, we have zS � xkS , z−S = 0, and u∗
S(z) 
 uS(x

k). This implies xk /∈ D

for large k, contrary to the assumption {xk} ⊂D. So x is not underblocked. �

Proof of Proposition 1. Let x /∈ D. Then a coalition S and profile z exist such that
u∗
S(z) > uS(x) and z−S = 0. For i ∈ S, let z̃i ≥ zi solve (6) and set z̃ = (z̃S�0−S). Then

ui(z̃) ≥ ui(z̃i� z−i) = u∗
i (z) for i ∈ S, where the inequality is implied by (PS). Hence,

uS(z̃) > uS(x). This proves x /∈ C. We conclude that C ⊂ D. Since core profiles are ef-
ficient, we have C ⊆ {x ∈D :x is efficient}.

To prove the reverse, let x ∈D be efficient, and assume x /∈ C. Then (S� z) exists such
that z−S = 0 and uS(z) > uS(x). Since x ∈D, S does not underblock x using z, and hence

T := {i ∈ S :zi > xi} 	= ∅�

Let x̂ := (zT �x−T ). By (PS), u−T (x̂) ≥ u−T (x). Hence, since x is efficient, uT (x̂) ≯ uT (x).
If uT (x̂) = uT (x), then x̂ would also be efficient and u(x̂) = u(x). This is not possible
because of the assumption that distinct efficient profiles generate distinct payoffs. We
conclude that for some j ∈ T , uj(x̂) < uj(x). Since z−T ≤ x−T , (PS) implies uj(z)≤ uj(x̂).
Thus, uj(z) < uj(x). This contradicts uS(z) > uS(x). �
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Proof of Proposition 2. If S blocks x using z, then summing ui(z) and ui(x) over
i ∈ S yields ∑

i∈S
vi(Z)−Z >

∑
i∈S

vi(X)−XS�

since Z =ZS . As the left side of this inequality is no greater than V (S), this proves that if
(13) holds for all coalitions S, then x ∈ C.

To prove the converse, suppose x ∈ C, but (13) does not hold for some coalition S.
Then

� := V (S)− [∑i∈Svi(X)−XS]
|S| > 0�

Define z ∈ Rn by z−S = 0 and let zi := xi −�− vi(X)+ vi(YS) for i ∈ S. Then summing zi
over S yields Z = YS . This implies that Ŝ := {i ∈ S :zi ≥ 0} is nonempty. Define ẑ ∈ Rn+ by
ẑi := max(0� zi). Then ẑ ∈ Rn+ and ẑ−Ŝ

= 0. Because Ẑ ≥ Z = YS and ẑi = zi for i ∈ Ŝ, we
have

vi(Ẑ)− ẑi ≥ vi(YS)− zi = vi(X)− xi +�> vi(X)− xi

for all i ∈ Ŝ. Hence, Ŝ blocks x using ẑ. This contradiction of x ∈ C shows that if x ∈ C,
then (13) holds for all coalitions S. �

Lemma 10. In a neoclassical setting, for any satiation profile x and coalition S that un-
derblocks x, a profile z < x exists such that u∗

S(z) = uS(z), and S underblocks x using z.

Proof. As S underblocks x, there exists ẑ ≤ x such that ẑ−S = 0 and u∗
S(ẑ) 
 uS(x). Let

i ∈ S be a player such that Y{i} ≥ Y{j} for all j ∈ S. We can assume Ẑ < Y{i}, as otherwise
u∗
S(ẑ) = uS(ẑ), and the result holds with z = ẑ. Define z by z−i = ẑ−i and

zi = arg max
z′
i≥ẑi

vi(z
′
i +Z−i)− z′

i = Y{i} −Z−i�

where the second equality holds because vi is strictly concave, v′
i(Y{i}) = 1, and Ẑ < Y{i}.

Hence, Z = Y{i} ≥ Y{j} for all j ∈ S. This implies u∗
S(z) = uS(z).

Now note that

u∗
i (z) = ui(zi� ẑ−i) = u∗

i (ẑ) > ui(x)

u∗
j (z) ≥ u∗

j (ẑ) > uj(x) for all j ∈ S \ {i}�

where the weak inequality holds because u∗ satisfies (PS). Hence, u∗
S(z) 
 uS(x). It fol-

lows, once we show that z < x, that S underblocks x using z. To prove z < x, observe first
that z−i = ẑ−i ≤ x−i. For i, we have ui(z) > ui(x); hence, since Z = Y{i}, we obtain

zi − xi < vi(Y{i})− vi(X) ≤ 0�

since Y{i} ≤X (as x is a satiation profile). Thus, z < x. �
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Lemma 11. In a neoclassical setting, a satiation profile x is underblocked if and only if
for some coalition S,

XS > max
(
YS�

∑
i∈S

vi(X)− V (S)

)
� (19)

Proof. Suppose x is underblocked by S. By Lemma 10, z < x exists such that z−S = 0
and uS(x) � uS(z). Summing these inequalities over S and using ZS = Z yields∑

i∈S
vi(X)−XS < fS(Z)� (20)

This and Z ≤ X imply Z < XS . As fS(Z) ≤ V (S), (20) also implies XS >
∑

i∈Svi(X) −
V (S), which is half of (19). To show the other half, XS >YS , assume the opposite. Hence,
Z <XS ≤ YS . Since fS is strictly increasing on [0�YS], this implies fS(Z) < fS(XS). But
from XS ≤X and (20), we obtain fS(XS) < fS(Z). This contradiction proves XS > YS .

To prove the converse, suppose (19) holds for coalition S. From this, we obtain
vS(X) ≥ vS(XS) 
 vS(YS) and

� := V (S)− [∑i∈Svi(X)−XS]
|S| > 0�

Define z ∈ Rn by z−S = 0 and let zi := xi−�−vi(X)+vi(YS) for i ∈ S. Then zS � xS . Sum-
ming zi over S yields Z = YS . As YS ≥ 0, this implies that Ŝ := {i ∈ S :zi ≥ 0} is nonempty.
Define ẑ ∈ Rn+ by ẑi := max(0� zi). Then ẑ ∈ Rn+, ẑ−Ŝ

= 0 and ẑ < x. For i ∈ Ŝ, we have

vi(Ẑ)− ẑi ≥ vi(YS)− zi = vi(X)− xi +�> vi(X)− xi�

where the first inequality follows from Ẑ ≥Z = YS and ẑi = zi. This proves that Ŝ under-
blocks x using ẑ. �

Proof of Proposition 3. If x ∈ D, then x is a satiation profile. As x is not under-
blocked, Lemma 11 implies that (19) is not satisfied for any S, i.e., (15) is satisfied for
every S. Conversely, if x is a satiation profile that satisfies (15) for all S, then (19) is not
satisfied for any S. Hence, Lemma 11 implies x is not underblocked and so x ∈D.

If (x�S) satisfies (14), it obviously satisfies (15), since XS ≤ X . Suppose then that
(x�S) satisfies (15). If YS >

∑
i∈Svi(X) − V (S), then

∑
i∈Svi(YS) >

∑
i∈Svi(X), which

implies YS > X and so (14). If, instead, YS ≤ ∑
i∈Svi(X) − V (S), then (15) implies

XS ≤ ∑
i∈Svi(X)− V (S) and so (14). This proves that (14) and (15) are equivalent. �

Proof of Corollary 1. (i) Let x ∈ D. The convention Y∅ = ∞ implies the result triv-
ially if x= 0. So suppose x 	= 0 and let S =N(x). Since x ∈D, (14) holds for (x�S). Hence,
since X = XS , then

X <YS or
∑
i∈S

vi(X)−X ≥ V (S)�

This implies, if X > YS , that fS(X) ≥ V (S) = fS(YS), contrary to YS being the unique
maximizer of fS . We thus have X ≤ YS .
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(ii) Let x = (v′
1(YN)Y� � � � � v′

n(YN)Y) for some Y ∈ [Ȳ �YN ]. Since
∑

i∈N v′
i(YN) = 1,

we have X = Y . Since Y ≥ Ȳ , x is a satiation profile. To show that x ∈ D, we let S be a
coalition and verify that (15) holds. To do this, we can assume XS > YS and show from
this that XS ≤ ∑

i∈Svi(X)− V (S). As each vi is concave, we have∑
i∈S

[vi(X)− vi(YS)] ≥ (X −YS)
∑
i∈S

v′
i(X)�

Since each vi is concave and YS <X ≤ YN , we have

(X −YS)
∑
i∈S

v′
i(X) ≥ (X −YS)

∑
i∈S

v′
i(YN)�

From XS = X
∑

i∈Sv′
i(YN) and

∑
i∈Sv′

i(YN)≤ 1, we obtain

(X −YS)
∑
i∈S

v′
i(YN) ≥XS −YS�

These three displayed inequalities together yield∑
i∈S

[vi(X)− vi(YS)] ≥ XS −YS�

which rearranges to the desired XS ≤ ∑
i∈Svi(X)− V (S). �

Appendix C: Proofs for Section 6

Proof of Lemma 6. Define �z by letting the players move as in �x, but only at dates that
are multiples of m. That is, let zt = 0 for t = 0� � � � �m − 1 and for t ≥ m, let zt = xnk+i,
where k and i are the unique integers satisfying k≥ 0, i ∈N , and

(nk+ i)m≤ t < (nk+ i+ 1)m�

In �z, player i moves only at dates (nk + i)m, since in �x, she moves only at dates nk + i.
The path �z is feasible for �N by (CY), since i ∈ N(nk+i)m. Since �x is an equilibrium path of
�(δ� �NR), it achieves some profile x by Lemma 1. Thus, �z also converges to x. We use
Lemma 5 to prove that �z is an equilibrium path of �(δ1/m� �N).

Consider first the case δ = 1. Fix i ∈ N and t ≥ 1. Since �x is an equilibrium path
of �(1� �NR), from (9) we have Ut

i (�x�1) = ui(x). The derivation of �z therefore implies
Ut
i (�z�1) = ui(x). The construction of �z implies that τ exists such that (zt−1

i � zt−i) = xτ

or (zt−1
i � zt−i) = (xτ−1

i � xτ−i). Since �x is an equilibrium path, Lemma 2 implies that

ui(x
τ) ≤ ui(x) and ui(x

τ−1
i � xτ−i) ≤ ui(x). We thus have ui(z

t−1
i � zt−i) ≤ ui(x) = Ut

i (�z�1).

Now Lemma 5 implies that �z is an equilibrium path of �(1� �N).
We now turn to the case δ < 1 and let δ̂ = δ1/m. Fix t ≥ 1 and i ∈ Nt . By Lemma 5, �z is

an equilibrium path of �(δ̂� �N) if

ui(z
t−1
i � zt−i) ≤ (1 − δ̂)

∑
s≥t

δ̂s−tui(z
s)� (21)
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which we now show. If zsi = zt−1
i for all s ≥ t, then (PS) implies (21). So suppose a date

τ ≥ t exists such that zt−1
i = zτ−1

i < zτi . This date is a multiple of m, say τ = pm. Further-

more, zτ = xp and zτ−1 = zt−1 = xp−1. Observe that

(1 − δ̂)
∑
s≥t

δ̂s−tui(z
s) = (1 − δ̂)

τ−1∑
s=t

δ̂s−tui(z
t−1
i � zs−i)+ δ̂τ−t (1 − δ̂)

∑
s≥τ

δ̂s−τui(z
s)

≥ (1 − δ̂τ−t )ui(z
t−1
i � zt−i)+ δ̂τ−t (1 − δ̂)

∑
s≥τ

δ̂s−τui(z
s)�

since ui(z
t−1
i � zs−i)≥ ui(z

t−1
i � zt−i) for each s ≥ t by (PS). Hence, (21) holds if

(1 − δ̂)
∑
s≥τ

δ̂s−τui(z
s)≥ ui(z

t−1
i � zt−i)� (22)

which we now show. The definitions of �z and δ̂ imply

(1 − δ̂)
∑
s≥τ

δ̂s−τui(z
s) = (1 − δ̂)

∞∑
k=0

τ+(k+1)m−1∑
s=τ+km

δ̂s−τui(z
s)

= (1 − δ̂)

∞∑
k=0

δ̂kmui(x
p+k)

τ+(k+1)m−1∑
s=τ+km

δ̂s−τ−km

= (1 − δ̂m)

∞∑
k=0

δ̂kmui(x
p+k)

= (1 − δ)

∞∑
k=0

δkui(x
p+k)�

Because (�x�δ) satisfies (8) at date p, we have

(1 − δ)

∞∑
k=0

δkui(x
p+k) = (1 − δ)

∑
s≥p

δs−pui(x
s)

≥ ui(x
p−1
i � x

p
−i)

= ui(z
t−1
i � zτ−i)�

Putting the two previous displays together yields

(1 − δ̂)
∑
s≥τ

δ̂s−τui(z
s)≥ ui(z

t−1
i � zτ−i)≥ ui(z

t−1
i � zt−i)�

where the second inequality follows from (PS) and zτ−i ≥ zt−i. This proves (22). �

Proof of Lemma 7. Let x∗ ∈D. Then X∗ ∈ [Ȳ �YN ] by Corollary 1(i) and the fact that x∗
is a satiation profile. Our definition of a neoclassical setting implies Ȳ < YN . Choose a
number X̂ as follows:
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(a) If X∗ = YN , choose X̂ ∈ (Ȳ �YN) so that for all coalitions S 	=N , X̂ > YS .

(b) If X∗ < YN , choose X̂ ∈ (X∗�YN) so that for all coalitions S, if X̂ > YS , then
X∗ ≥ YS .

Define x̂ by x̂i := v′
i(YN)X̂ . (Since

∑
vi(YN) = 1, the aggregate of x̂ is indeed X̂ .) Because

X̂ ∈ (Ȳ �YN), Corollary 1(ii) implies x̂ ∈ D. Let λ ∈ (0�1) and x = λx∗ + (1 − λ)x̂. Then
X = λX∗ + (1 − λ)X̂ ∈ (Ȳ �YN). Thus, x is a satiation profile and its aggregate satisfies
X̂ < YN = YN(x). We now show that x is strongly minimal. Since x → x∗ as λ → 1, this
proves x∗ ∈ cl{x ∈D0 :X <YN(x)}.

Assume x is not strongly minimal. Then a coalition S and profile z < x exist such
that z−S = 0 and uS(x) ≤ u∗

S(z). Since x is a satiation profile, the argument used to prove
Lemma 10 shows that we can find such a z such that u∗

S(z) = uS(z). Using this z, we have
uS(x) ≤ uS(z). Summing these inequalities over S yields

∑
i∈S

vi(X)−XS ≤ fS(Z)� (23)

and this implies ∑
i∈S

vi(X)−XS ≤ V (S)� (24)

Because XS ≤ X , (23) also implies fS(X) ≤ fS(Z). Since Z <X and fS is strictly increas-
ing on [0�YS], this implies

X >YS� (25)

This proves S 	=N , since X <YN . The remainder of the proof depends on the case.

Case (a). In this case, X∗ = YN > YS . Furthermore, since S 	= N , the way X̂ is chosen
implies X̂ > YS . Hence, because x∗ ∈D and x̂ ∈D, the first part of Proposition 3 implies

∑
i∈S

vi(X
∗)−X∗

S ≥ V (S) and
∑
i∈S

vi(X̂)− X̂S ≥ V (S)� (26)

Now, since each vi is strictly concave, λ ∈ (0�1), and X̂ 	=X∗, we have

∑
i∈S

vi(X)−XS =
∑
i∈S

vi[(1 − λ)X̂ + λX∗] − [(1 − λ)X̂S + λX∗
S ]

> (1 − λ)

[∑
i∈S

vi(X̂)− X̂S

]
+ λ

[∑
i∈S

vi(X
∗)−X∗

S

]
�

This and (26) imply
∑

i∈Svi(X)−XS > V (S), contrary to (24). So x is strongly minimal.

Case (b). In this case, X̂ > X , and so (25) implies X̂ > YS . This and the way X̂ is chosen
imply X∗ ≥ YS . The fact that X̂ > YS and x̂ ∈D again imply the second inequality in (26).
The first inequality in (26) also holds for the same reason if X∗ > YS ; if X∗ = YS , then it
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holds because ∑
i∈S

vi(X
∗)−X∗

S =
∑
i∈S

vi(YS)−YS +X∗ −X∗
S

= V (S)+X∗ −X∗
S ≥ V (S)�

So (26) again holds, and the remaining proof is the same as in case (a). �

The following lemma is used to prove Proposition 4.

Lemma 12. In a neoclassical setting that satisfies (PD), for any x ∈D0, a neighborhood of
x exists such that every x̂ in it that satisfies x̂ < x is also in D0.

Proof. Assume the lemma is false. Then an infinite sequence {xk} exists such that
xk → x, xk < x, and xk /∈ D0. Since (PD) implies each xk is a satiation profile, each xk

must not be strongly minimal. Thus, for each k, a coalition Sk and a profile zk < xk

exist such that zk−Sk
= 0 and u∗

Sk
(zk) ≥ uS(x

k). By taking a subsequence, we may as-

sume N(xk) = N(x) and Sk = S for all k, and that {zk} converges to a profile z (as
each zk is in the compact set [0�x]n). Taking k → ∞ in the inequalities zk < x and
u∗
S(z

k) ≥ uS(x
k) yields z ≤ x and u∗

S(z) ≥ uS(x). Since zk−S = 0 for all k, z−S = 0. There-
fore, since x is strongly minimal, it must not be true that z < x. Hence, z = x. This im-
plies N(x) ⊆ S. Since N(xk) = N(x), we have Xk

S = Xk. Because u∗
Sk
(zk) ≥ uS(x

k), (PD)

implies uS(z
k) ≥ uS(x

k). Summing these inequalities over S yields fS(Z
k) ≥ fS(X

k).
Thus, since fS is strictly increasing on [0�YS] and Xk < X ≤ YN(x) ≤ YS , we conclude
that Zk ≥Xk. This contradicts zk < xk. �

Proof of Proposition 4. Observe first that once we find δ ∈ (0�1) and an equilibrium
path of �(δ� �N) that converges to x, then �x is also an equilibrium path of �(1� �N), be-
cause, by Lemma 2, the pair (�x�δ) must satisfy (11). Hence, using (PD) and (9), we see
that for all t ≥ 1 and i ∈N ,

ui(x
t−1
i � xt−i)= u∗

i (x
t−1
i � xt−i) ≤ ui(x) = Ut(�x�1)�

Thus, �x is an equilibrium path of �(1� �N) by Lemma 5.
Accordingly, we need only to find a path �x that converges to x and a number δ < 1

such that �x is an equilibrium path of �(δ� �N) for all δ ∈ [δ�1). By Lemma 6, it suffices to
prove this for �N = �NR. If x = 0, we are done, since (PD) implies that the passive strategy
profile is an equilibrium that achieves the origin. So we can assume x > 0. Define d ∈ Rn+
by di := 0 if i /∈N(x) and

di := v′
i(X)∑

j∈N(x) v
′
j(X)

for i ∈N(x)�

Since X <YN(x), we have
∑

j∈N(x)v
′
j(X) > 1. Hence, 0 < di < v′

i(X) for i ∈ N(x). Choose

θ̄ > 0 small enough that x̄ := x− θ̄d ≥ 0. Since x is strongly minimal, Lemma 12 implies
the existence of θ̂ ∈ (0� θ̄) such that x̂ := x − θ̂d is strongly minimal. We have 0 ≤ x̄ <

x̂ < x. We also have u(x̄) � u(x̂) � u(x), since the concavity of each vi implies that for
any θ ≥ 0, ∂ui(x− θd)/∂θ = di − v′

i(X − θ)≤ di − v′
i(X) < 0.
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Define {xt}∞k=0 to be a round-robin sequence if for each t > 0 and i = t(modn),

xt−i = xt−1
−i . The rest of the proof consists of three steps.

Step 1. A discount factor δ′ < 1 and a nondecreasing round-robin sequence {xt}∞t=0 exist
such that x0 = x̄, xt → x, and

ui(x
t−1
i � xt−i) ≤ (1 − δ)

∑
s≥t

δs−tui(x
s) (27)

for all δ ∈ (δ′�1), t > 0, and i = t(modn).

Proof. Since di < v′
i(X) for all i ∈ N(x) and di = 0 for i /∈ N(x), we can find positive

numbers a and εsuch that

(1 + ε)di
v′
i(X)

< a < 1 (28)

for all i ∈N . Define {xt}∞t=0 by x0 := x̄ and, for t > 0,

xti :=
{
axt−1

i + (1 − a)xi if i = t(modn)

xt−1
i otherwise�

This {xt}∞t=0 is a round-robin sequence that starts at x̄ and converges to x. Fix t > 0 and
let i = t(modn). Let q ≥ 0 be the integer for which t = i + qn. At the end of period t − 1,
players j = 1� � � � � i− 1 have raised their actions q+ 1 times, and players j = i� � � � � n have
raised theirs just q times. Hence, since x− x̄ = θ̄d,

xt−1
j =

{
xj − θ̄aq+1dj for 1 ≤ j < i

xj − θ̄aqdj for i ≤ j ≤ n�
(29)

This implies

Xt−1 =X − θ̄aq

[
a

i−1∑
j=1

dj +
n∑
j=i

dj

]
� (30)

Similarly, for any k≥ 1,

x
t+(k−1)n
j =

{
xj − θ̄aq+kdj for 1 ≤ j ≤ i

xj − θ̄aq+k−1dj for i < j ≤ n
(31)

and

Xt+(k−1)n = X − θ̄aq+k−1

[
a

i∑
j=1

dj +
n∑

j=i+1

dj

]
� (32)

Turning to the desired inequality (27), note that it is equivalent to

A :=
∑
s≥t

δs−t[ui(xs)− ui(x
t−1
i � xt−i)] ≥ 0�
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Observe that A= ∑∞
k=1 δ

(k−1)nAk, where

Ak :=
t+kn−1∑

s=t+(k−1)n

δs−t−(k−1)n[ui(xs)− ui(x
t−1
i � xt−i)]�

Each Ak is a sum over n consecutive dates, and player i moves only at the first one,

t + (k− 1)n. Hence, for each of these dates s, xsi = x
t+(k−1)n
i . This implies that

Ak =
t+kn−1∑

s=t+(k−1)n

δs−t−(k−1)n[vi(Xs)− vi(X
t−1)− (x

t+(k−1)n
i − xt−1

i )]

≥
t+kn−1∑

s=t+(k−1)n

δs−t−(k−1)n[vi(Xt+(k−1)n)− vi(X
t−1)− (xt+(k−1)n

i − xt−1
i )]

=
(

1 − δn

1 − δ

)
[vi(Xt+(k−1)n)− vi(X

t−1)− (x
t+(k−1)n
i − xt−1

i )]�

where the inequality follows from Xs ≥ Xt+(k−1)n for s ≥ t + (k − 1)n. Using now the
concavity of vi and Xt−1 ≤Xt+(k−1)n ≤X , we obtain

Ak ≥
(

1 − δn

1 − δ

)
[v′

i(X)(Xt+(k−1)n −Xt−1)− (x
t+(k−1)n
i − xt−1

i )]�

This expression can be bounded from below. From (30) and (32) we have

Xt+(k−1)n −Xt−1 = θ̄aq

[
a

i−1∑
j=1

dj +
n∑
j=i

dj

]
− θ̄aq+k−1

[
a

i∑
j=1

dj +
n∑

j=i+1

dj

]

= θ̄aq

[
a(1 − ak−1)

i−1∑
j=1

dj + (1 − ak)di + (1 − ak−1)

n∑
j=i+1

dj

]
�

From this, 1 − ak > a(1 − ak−1), and 1 − ak−1 > a(1 − ak−1), we obtain

Xt+(k−1)n −Xt−1 ≥ θ̄aq

[
a(1 − ak−1)

i−1∑
j=1

dj + a(1 − ak−1)di + a(1 − ak−1)

n∑
j=i+1

dj

]

= θ̄aq+1(1 − ak−1)

n∑
j=1

dj

= θ̄aq+1(1 − ak−1)�

From (29) and (31), xt+(k−1)n
i − xt−1

i = θ̄aq(1 − ak)di. Consequently,

Ak ≥ θ̄aq
(

1 − δn

1 − δ

)
[v′

i(X)a(1 − ak−1)− (1 − ak)di]�
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This and (28) imply

Ak ≥ θ̄aqdi

(
1 − δn

1 − δ

)
[ε− ak−1(1 + ε− a)]�

Therefore,

A ≥ θ̄aqdi

(
1 − δn

1 − δ

) ∞∑
k=1

δ(k−1)n[ε− ak−1(1 + ε− a)]

= θ̄aqdi

(
1 − δn

1 − δ

){
ε

∞∑
k=1

(δn)k−1 − (1 + ε− a)

∞∑
k=1

(aδn)k−1

}

=
(
θ̄aqdi
1 − δ

){
ε−

(
1 − δn

1 − aδn

)
(1 + ε− a)

}
�

Thus, A≥ 0 for δ≥ δ′ := (1 + ε)−1/n. As δ′ does not depend on t, Step 1 is proved. �

Step 2. A finite, nonincreasing round-robin sequence {xk}Kk=0 exists such that x0 = x̄,
xK = 0, and u(xk) ≤ u(x̂) for each k = 0� � � � �K.

Proof. Let x0 := x̄. To define x1, let x1
−1 = x0

−1. Let x1
1 = 0 if u1(0�x0

−1) ≤ u1(x̂). Oth-

erwise, let x1
1 be the x̃1 for which u1(x̃1�x

0
−1) = u1(x̂); this equation has a unique solu-

tion, and it is in the interval (0�x0
1), since u1(·�x0

−1) is monotonic and u1(x
0) < u1(x̂) <

u1(0�x0
−1). Note that 0 ≤ x1 ≤ x0, u1(x

1)≤ u1(x̂), and uj(x
1) < uj(x̂) for j 	= 1.

Now suppose that for some k ≥ 1, profiles x0� � � � � xk have been defined, and they
satisfy 0 ≤ xk ≤ xk−1 and u(xk) ≤ u(x̂). Let i = k + 1(modn). Define xk+1

−i := xk−i. Let

xk+1
i = 0 if ui(0�xk−1) ≤ ui(x̂). Otherwise, let xk+1

i be the unique x̃i ∈ (0�xki ] for which

ui(x̃i� x
k
−i) = ui(x̂). We now have u(xk+1) ≤ u(x̂).

This defines a nonincreasing and bounded round-robin sequence {xk}∞k=0. Let z be
its limit. We have z ≤ xk for all k > 0 and u(z) ≤ u(x̂).

Assume z > 0. In addition, assume ui(z) < ui(x̂) for some i ∈ N(z). By continuity,
x̃i ∈ (0� zi) exists such that ui(x̃i� z−i) < ui(x̂). Since xk → z, there exists k′ such that
ui(x̃i� x

k
−i) < ui(x̂) for all k > k′. But then the construction of the sequence implies that

for any k > k′ such that i = k + 1(modn), xk+1
i < x̃i < zi. This contradicts zi ≤ xk+1

i .
Thus, ui(z)= ui(x̂) for all i ∈N(z). Since z < x̂ and (PD) holds, we conclude that x̂ is not
strongly minimal. This contradiction proves that, in fact, z = 0.

If ui(0) ≥ ui(x̂), then x̂ is not strongly minimal (let S = {i} and z = 0 in the definition).
Hence, u(0) � u(x̂). Since xk → 0, this implies that K′ exists such that ui(0�xk−i) < u(x̂)

for all k ≥ K′ and i ∈ N . The construction of the sequence thus implies the existence of
K ≤K′ + n such that xK = 0. �

Step 3. A discount factor δ < 1 and a path �x→ x exist such that �x is an equilibrium path
of �(δ� �NR) for δ ∈ [δ�1).
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Proof. Reverse the round-robin sequence obtained in Step 2, and add enough copies
of 0 to its beginning and x̄ to its end to obtain a finite, nondecreasing round-robin path.
This yields a path, {zt}Tt=0, from z0 = 0 to zT = x̄ that has player 1 moving first and player

n moving last (zT−1−n = x̄−n). To the end of this path add the round-robin sequence ob-
tained in Step 1: zT+s = xs for all integers s ≥ 0. This yields a path �z = {zt}∞t=0 that is
feasible for �NR and converges to x. To be notationally consistent, relabel it as �x := �z.

Let t ≥ 1 and i ∈NR
t , so that i = t(modn). If t > T and δ > δ′, Step 1 implies

ui(x
t−1
i � xt−i) ≤Ut

i (�x�δ)� (33)

If t ≤ T , then since xt−i = xt−1
−i , Step 2 implies

ui(x
t−1
i � xt−i) = ui(x

t−1) ≤ ui(x̂) < ui(x)�

Therefore, since Ut
i (�x�δ) → ui(x) as δ → 1, δt < 1 exists such that (33) holds for

δ > δt . We conclude that (33) holds for all t ≥ 1, i ∈ NR
t , and δ > δ := max(δ′� δ1� � � � � δT ).

Lemma 5 now implies that �x is an equilibrium path of �(δ� �NR) for all δ ∈ (δ�1). �

Appendix D: Proof for Section 7

Proof of Corollary 2. (i) Let ũ ∈ P( �N). Then sequences {�xk} and {δk} ⊂ (0�1) exist
such that �xk is an equilibrium path of �(δk� �N) and U(�xk�δk) → ũ. For each k, let xk be
the profile achieved by path �xk. Fix i ∈ N . By Lemma 2, Ui(�xk�δk) ≤ ui(x

k). By Theo-
rem 1, xk ∈D. By Lemma 9, D is compact. Hence, taking a subsequence if necessary, we
can assume {xk} converges to some x ∈D. We now have

ũ= lim
k→∞

Ui(�xk�δk) ≤ lim sup
k→∞

ui(x
k) ≤ ui(x)�

where the last inequality holds because ui is upper semicontinuous at x. Thus, letting
u′ = u(x), we have ũ ≤ u′ ∈ u(D).

(ii) Suppose ũ ∈ P( �N) is efficient. Then an efficient x̃ exists such that ũ = u(x̃). By (i),
x ∈ D exists such that u(x̃) ≤ u(x). Now the efficiency of x̃ implies x is also efficient and
so ũ = u(x̃) = u(x). As x ∈D, Proposition 1 implies x ∈ C. This proves that ũ ∈ u(C).

(iii) Let x ∈D0. By Proposition 4, δ < 1 and �x exist such that �x is an equilibrium path
converging to x for all δ > δ. Hence, U(�x�δ) ∈ P( �N) for all δ > δ. This implies, since
P( �N) is a closed set and limδ→1 U(�x�δ) = u(x), that u(x) ∈ P( �N). Thus,

u(D0) ⊆ P( �N)� (34)

Since u is continuous in a neoclassical setting, D0 is dense in D (Lemma 7), and D

is compact (Lemma 9), we have clu(D0) = u(clD0) = u(D). Taking closures of both
sides of (34) now yields u(D) ⊆ P( �N), since P( �N) is closed. This and C ⊂ D imply
u(C) ⊆ P( �N). �
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