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Global games with endogenous information often exhibit multiple equilibria. In
this paper, we show how one can nevertheless identify useful predictions that
are robust across all equilibria and that cannot be delivered in the common-
knowledge counterparts of these games. Our analysis is conducted within a flexi-
ble family of games of regime change, which have been used to model, inter alia,
speculative currency attacks, debt crises, and political change. The endogeneity
of information originates in the signaling role of policy choices. A novel procedure
of iterated elimination of nonequilibrium strategies is used to deliver probabilis-
tic predictions that an outside observer—an econometrician—can form under ar-
bitrary equilibrium selections. The sharpness of these predictions improves as
the noise gets smaller, but disappears in the complete-information version of the
model.
Keywords. Global games, multiple equilibria, endogenous information, robust
predictions.
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1. Introduction

In the last 15 years, the global-games methodology has been used to study a variety of
socio-economic phenomena, including currency attacks, bank runs, debt crises, polit-
ical change, and party leadership.1 Most of the appeal of this methodology for applied
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work comes from the fact that it provides a toolkit to arrive at unique-equilibrium se-
lection in settings with coordination problems and self-fulfilling beliefs. This selection
facilitates positive and normative predictions that are impossible to make as long as
these settings are ridden with multiple equilibria.

More recent work, however, questions the applicability of such unique-equilibrium
selection by showing that multiple equilibria may naturally reemerge once one recog-
nizes the endogeneity of the information structure. Such endogeneity can result from
economic mechanisms that are often central to the applications under consideration.
Examples include the signaling role of policy interventions (e.g., Angeletos et al. 2006),
the aggregation of information through prices (Angeletos and Werning 2006, Hellwig
et al. 2006, Ozdenoren and Yuan 2008), the manipulation of information through propa-
ganda (Edmond forthcoming), and learning in dynamic settings (Angeletos et al. 2007,
Chassang 2010).

In the present paper, we show how global-games techniques may continue to de-
liver tight and useful predictions even when the endogeneity of information precludes
equilibrium uniqueness. We illustrate this possibility within a flexible family of games
of regime change in which the endogeneity of the information originates from the sig-
naling role of the actions of a policy maker. Applications may include a central bank
trying to defend a currency peg against a speculative attack, a government facing a self-
fulfilling debt crisis, a party leader trying to preempt a defection by party members and
donors, or a dictator seeking to prevent a revolution.

The backbone of our framework is, therefore, similar to that in Angeletos et al. (2006),
combining a global coordination game with a signaling game.2 The contribution, how-
ever, is distinct. That earlier work guesses and verifies the existence of a particular set of
equilibria, which sufficed for establishing equilibrium multiplicity, but did not identify
any predictions that hold true across the entire equilibrium set. By contrast, the present
paper develops a novel procedure of iterated elimination of nonequilibrium strategies,
which need not help establish the existence of any particular equilibria, but nevertheless
identifies a set of predictions that must hold true in any candidate equilibrium.

This explains why not only the spirit of the contribution, but also the theoretical ar-
guments in the present paper are closer to standard global games than to our earlier
work. In particular, the procedure we develop in this paper shares two important simi-
larities with the iterated deletion of dominated strategies in standard global games (e.g.,
Carlsson and van Damme 1993, Morris and Shin 2003). First, contagion effects emerge
across different states of nature because, and only because, of the incompleteness of in-
formation. Second, these contagion effects permit one to iteratively rule out more and
more strategy profiles by showing that they are inconsistent with equilibrium reasoning.

Goldstein and Pauzner (2005) for bank runs, Corsetti et al. (2006) and Zwart (2007) for debt crises, Chamley
(1999) and Dasgupta (2007) for investment dynamics, Edmond (forthcoming) for political change, and
Dewan and Myatt (2007) for party leadership.

2To be precise, our framework is more general in that it allows for a more flexible payoff structure. This
generalization permits us to nest novel applications and to illustrate the broader applicability of our ap-
proach. The key contribution of the present paper, however, is not in this generalization per se, but rather
in the nature of the results, as explained in the main text.
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At the same time, there is an important difference. In standard global games, the
players’ information about the state of nature—and the associated belief hierarchies—
are exogenous. By contrast, beliefs are endogenous in our setting, because of the sig-
naling role of policy. As a result, our procedure puts iteratively tighter bounds on not
only the strategies that can be played in the coordination game among the agents (the
receivers), but also on the strategies that can be played by the policy maker (the sender)
and thereby on the endogenous belief hierarchies that obtain in the coordination game.
This explains the complexity and the novelty of the procedure.

Once the strategy profiles that survive this procedure have been identified, the next
step is to translate the results into probabilistic statements that can guide empirical
work. To this goal, we introduce an arbitrary sunspot (correlation device) whose re-
alization determines the equilibrium being played. We then ask what restrictions the
theory imposes on the joint distribution of fundamentals (which are henceforth identi-
fied with the type of the policy maker), policy choices, and regime outcomes from the
perspective of an outside observer—say, an econometrician—who is uncertain about
which equilibrium is played (that is, who does not know the realization of the sunspot
variable).

We are thus able to reach the following testable predictions that hold irrespective of
equilibrium selection (i.e., irrespective of the sunspot distribution).

(i) The probability of regime change is monotone in the fundamentals: weaker pol-
icy types face a higher probability of regime change.

(ii) The probability of policy interventions is nonmonotone in the fundamentals: the
policy maker intervenes when his type is neither too strong nor too weak.

(iii) The “need” for policy intervention vanishes as agents become better informed
about the type of the policy maker: for all positive-measure sets of types, the
probability of policy intervention vanishes as the precision of the agents’ infor-
mation grows.

(iv) The possibility of multiple equilibria hinges on the possibility of policy interven-
tion: if the policy maker could commit to a particular policy before observing his
type, then he could also guarantee a unique equilibrium. Nonetheless, the policy
maker can prefer such commitment over discretion only insofar as he expects his
type to be strong: weak types are always better off with the option to intervene,
despite the fact that this option introduces multiple equilibria.

A number of remarks are worth making regarding the predictions documented
above and the overall contribution of the paper.

Although the aforementioned predictions seem quite intuitive, none of them can be
made on the basis of the complete-information variant of the model: that variant is rid-
den with so many equilibria that “almost anything goes.” What is more, even though the
equilibrium set in our framework is not a singleton, it features a sharp discontinuity that
is reminiscent of that in standard global games: in the limit as the noise vanishes, the
set of equilibrium outcomes of our framework is a measure-zero subset of its complete-
information counterpart. These points underscore how global-games techniques retain
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a strong and useful selection bite in our framework despite the endogeneity of informa-
tion and the ensuing equilibrium multiplicity.

The predictions documented above are, of course, also satisfied in Angeletos et al.
(2006), which is a special case of the framework considered here. This, however, does
not mean that one could reach these predictions from that earlier work. The guess-
and-verify arguments used in that earlier work are sufficient to establish the existence
of particular equilibria, but are inadequate to identify the set of necessary conditions
that must be satisfied by any candidate equilibrium. This explains why the theoretical
arguments contained in the present paper are different from those in that earlier work
and are, instead, closer to the type of iterative elimination arguments used in standard
global games.

Identifying necessary conditions that hold for all equilibria does not directly trans-
late to useful testable predictions. One must first study how these necessary conditions
map into restrictions on fictitious data generated by the model. The second step we
take in this paper is, therefore, an integral part of our contribution, even though it is not
specific to global games.

The above point also explains why the predictions we deliver are only probabilistic:
as players can randomize across multiple equilibria, the predicted relations between ex-
ogenous fundamentals and endogenous equilibrium outcomes is stochastic. This prop-
erty, in turn, offers an interesting contrast to unique-equilibrium models. In such mod-
els, the theory typically delivers a deterministic relation between exogenous fundamen-
tals and endogenous outcomes. Before taking the theory to the data, the econometrician
must, therefore, add some randomness in the form of a residual.3 This residual is most
often justified either as measurement error or as explanatory variables that were left
outside the theory. By contrast, our approach permits one to accommodate this resid-
ual as an integral part of the theory, as the empirical counterpart of random equilibrium
selection.4

Equilibrium poses restrictions, not only on the relation between fundamentals, pol-
icy choices, and regime outcomes, but also on the relation of these objects to the agents’
hierarchy of beliefs. Predictions that have to do with the structure of beliefs may be of
special interest to the theorist. Nonetheless, such predictions seem to be of limited value
for applied purposes, since beliefs—and especially higher-order beliefs—are unlikely to
be contained in the data that are typically available in applied work. Similarly, predic-
tions that tie the effectiveness of policy interventions to, say, 12th order beliefs are also
of little value to real-world policy makers. This explains why our analysis concentrates
on predictions about the joint distribution of a limited set of variables—fundamentals,
policy choices, and regime outcomes—that seem to be of interest for practical purposes.

3For example, think of the theory delivering the prediction Y = βX and the econometrician then testing
the relation Y = βX + ε, where Y are the endogenous variables,X are the exogenous fundamentals, and ε
is the residual.

4The spirit of this point is similar to that in Chari and Kehoe (2003). That paper considers a setting with
a unique equilibrium and herding dynamics. In that setting, the econometrician could face significant un-
certainty about the relevant economic outcomes (the occurrence of a crisis) conditional on the observable
fundamentals (the strength of the regime), not because of equilibrium multiplicity, but because he could
not observe the precise signals observed by the agents and the precise sequence in which agents move.
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This last point also provides a possible reinterpretation of our results. In games with
exogenous information, Weinstein and Yildiz (2007) and Penta (2012) show that equilib-
rium multiplicity is degenerate as long as one considers a sufficiently rich topology over
belief hierarchies. It is unclear whether a variant of that result applies to the type of en-
vironments with endogenous information that we are interested in. But even if it does,
the ultimate question of interest here is not per se the determinacy of the equilibrium,
but rather the sharpness of the predictions an outside observer can make on the basis of
limited data about the belief hierarchy.

In particular, we suspect that one may be able to induce unique-equilibrium se-
lection in our setting by considering sufficiently rich perturbations of the information
structure, including perturbations of the signaling technology. Nonetheless, to the ex-
tent that different equilibria are selected by different perturbations, as is indeed the case
in Weinstein and Yildiz (2007), then the essence of our results survives: one only has to
reinterpret the uncertainty the econometrician faces about equilibrium selection in our
setting with the uncertainty he may face about the relevant perturbation.

Layout

The rest of the paper is organized as follows. Section 2 sets up our framework. Section 3
constructs the aforementioned procedure of iterated deletion of nonequilibrium strate-
gies and shows how this procedure identifies a set of tight necessary conditions for the
entire equilibrium set. Section 4 translates these conditions into probabilistic predic-
tions about the relation between fundamentals, policy choices, and regime outcomes.
Section 5 studies the equilibrium value of the option to intervene. Section 6 contrasts the
incomplete-information game to its common-knowledge counterpart. Section 7 con-
cludes. All proofs are given in the Appendix.

2. Model

The economy is populated by a big player, who seeks to influence the fate of a regime,
and a continuum of small atomistic players, who must choose whether to attack the
regime (i.e., to take actions that favor the status quo or that favor regime change). To fix
ideas, we think of the big player as a “policy maker” and refer to the small players as the
“agents.” We index the latter by i, assume that they are distributed uniformly over [0�1],
and denote by A ∈ [0�1] the measure of the agents attacking the regime (the aggregate
size of the “attack”).

Depending on the application of interest, the policy maker could be a central bank
trying to avoid the devaluation of a currency (Obstfeld 1996, Morris and Shin 1998), a
debtor trying to convince creditors to roll over their loans (Calvo 1988, Corsetti et al.
2006, Zwart 2007), a dictator trying to prevent political unrest (Edmond forthcoming),
or a party leader trying to keep the party united (Dewan and Myatt 2007). As we ex-
plain below, the payoff structure we assume is sufficiently flexible to permit any of these
possible interpretations of our framework.5

5Our framework is flexible, but, of course, too abstract to accommodate the institutional details of any
particular application. Adding such details may complicate the analysis. However, it may also tighten the
predictions, for specific applications can justify tighter assumptions on the payoff structure.
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Fundamentals, policy actions, and regime outcome

The payoff structure is parameterized by an exogenous random variable θ ∈ R. This
variable may affect the strength of the status quo, the policy maker’s preferences, or the
agents’ costs and benefits from regime change. The realization of this variable is known
to the policy maker, but is only imperfectly observed by the agents. As in the related
literature, hereafter we refer to θ interchangeably as the underlying “fundamentals” and
the policy maker’s “type.”

Before agents move, the policy maker can take a costly action in an attempt to influ-
ence the agents’ behavior and the fate of the regime. In the context of speculative cur-
rency attacks, think of capital controls and monetary interventions that raise domestic
interest rates. In the context of debt crises, think of fiscal austerity measures and struc-
tural reforms. In the context of a dictatorial regime, think of measures that strengthen
the militia, increase the stakes for the supporters of the regime, suppress dissent, or ap-
pease the general public with pro-democratic reforms. Finally, in the context of party
leadership, think of various concessions and promises made by a party leader to dis-
courage his fellow party members (or donors) from defecting.

We capture the action of the policy maker by a variable r ∈ [r�+∞), which is under
the direct control of the policy maker. The regime outcome need not be under his di-
rect control, but can be influenced by his policy choice. We assume that regime change
occurs if R(θ� r�A) ≤ 0 and does not occur if R(θ� r�A) > 0, where R is a continuous
function, strictly increasing in θ, strictly decreasing inA, and nondecreasing in r. These
monotonicities—which mean that the chances the status quo survives increase with the
fundamentals, decrease with the size of the attack, and (weakly) increases with the pol-
icy maker’s action—are quite natural given the class of applications we have in mind.
For example, in the context of currency crises, the above assumptions capture the idea
that devaluation is more likely when the size of the speculative attack is larger and less
likely when the policy maker succeeds in securing a larger amount of reserves. In the
context of political unrest, they capture the idea that the regime’s probability of sur-
vival decreases with the size of the insurgent group and increases with the amount of
resources the regime spends on strengthening its police and militias.6

Policy maker’s payoff

The policy maker’s payoff is given by the function

U(θ� r�A)=
{
W (θ� r�A) if R(θ� r�A) > 0
L(θ� r) if R(θ� r�A)≤ 0�

We assume that the functions W and L are continuously differentiable and satisfy the
following conditions.7

6Note that the regime outcome is a deterministic function of (θ� r�A), implying that in equilibrium, the
policy maker faces no uncertainty about regime outcomes. However, we expect our results to extend to a
setting where, with a small probability, the regime collapses for exogenous reasons; e.g., think of devalua-
tion occurring as a result of a large attack by noise traders.

7Throughout, for any function f : Rn → R, we let fx denote its partial derivative with respect to
argument x.
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1. For any (θ� r�A),Wr(θ� r�A) < 0 and Lr(θ� r) < 0.

2. For any (θ� r�A),WA(θ� r�A)≤ 0.

3. There exists a threshold θ, defined below, such that W (θ� r�0) − L(r�θ) is strictly
increasing in θ for all θ≥ θ and all r > r.

4. For any (θ� r�A),W (θ� r�A)−L(θ� r) > 0 if R(θ� r�A) > 0.

The first assumption simply means that policy interventions are costly, both in case
the status quo survives and in case of regime change. Depending on the application of
interest, this assumption may reflect the distortionary effects of higher domestic inter-
est rates (in the context of currency crises) or the economic and political costs of fiscal
austerity (in the context of sovereign debt crises).

The second assumption means that, conditional on the regime surviving, the policy
maker (weakly) prefers a smaller attack. The case where W is independent of A corre-
sponds to a situation where the policy maker cares about the size of the attack A only
insofar as the latter affects the fate of the regime, as in the case of a political candidate
whose payoff is determined only by whether he wins an election or, more generally, by
whether he retains power.

The third assumption is an increasing-difference condition akin to the role played
by familiar single-crossing conditions in signaling games: if setting the minimal-cost
policy r leads to regime change while raising the policy to some level r > r spares the
status quo from an attack and results in the status quo being preserved, higher types
have a stronger incentive to raise the policy than do lower types.

The fourth assumption means that the policy maker would not prefer to see the
regime collapse when it survives. This assumption is trivially satisfied when the fate
of the regime is directly controlled by the policy maker, as typically assumed in models
of currency attacks.8 To capture a richer set of applications, such as political change,
we allow the regime outcome to be beyond the direct control of the policy maker; to get
sharper predictions, we rule out the possibility that the policy maker’s preferences for
the fate of the regime are negatively correlated with the regime’s strength.

Finally, note that L is not allowed to depend on A: conditional on regime change,
the policy maker’s payoff is assumed to be independent of the size of the attack. This as-
sumption is more restrictive than the preceding ones, but need not be unnatural. In the
context of political change, for example, once a dictator is thrown out of power, he might
not care anymore about the exact size of the revolt that overthrew him; in fact, he might
actually be dead! In the context of currency crises, alternatively, this assumption may
be motivated by the idea that the costs of defending the peg against a speculative attack
are largely waived if the central bank decides not to defend. Putting aside these possible
justifications, the reason we impose this assumption is that it facilitates an important
step in our characterization procedure: it guarantees that, along any equilibrium, policy

8To capture the possibility that the fate of the regime is directly controlled by the policy maker, we can
add a final stage during which the policy maker decides whether to abandon the status quo after observing
the size of attack A. The policy maker then decides to abandon the status quo if and only if it is in his
interest to do so; that is, R(θ� r�A) > 0 if and only ifW (θ� r�A) > L(θ� r).
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interventions signal the policy maker’s confidence that regime change will not occur in
equilibrium.9

The agents’ payoff

As is standard in coordination games, what matters for the agents is the payoff differen-
tial between attacking and not attacking. Consequently, we normalize the payoff from
not attacking to zero and let the payoff that each agent obtains in case he attacks be
given by

u(θ� r�A)=
{

−Q(r) if R(θ� r�A) > 0
Z(θ� r)−Q(r) if R(θ� r�A)≤ 0�

The termQ(r) > 0 captures the various costs of attacking in case the attack fails and the
regime is maintained, while the term Z(θ� r) > 0 captures the gross benefit of attacking
when the attack is successful.10 The functions Z and Q are bounded, are continuously
differentiable, and satisfy Zθ�Zr ≤ 0 ≤Qr , for all (θ� r). In the context of a currency at-
tack, for example, Q(r) represents the transaction and other costs that a speculator has
to bear so as to attack, while Z(θ� r) represents the devaluation premium; the depen-
dence of Q on r then captures the ability of the government to manipulate these costs,
while the dependence of Z on θ and r captures the possibility that the shadow value of
the peg increases with either the quality of the fundamentals or the various fiscal reforms
that can be undertaken by the government.

Timing and information

The game evolves through two phases. In the first phase, the policy maker sets the policy
r after learning θ. In the second phase, agents decide simultaneously whether to attack,
after observing the policy r and after receiving private signals xi = θ+ σξi about θ; the
scalar σ ∈ (0�∞) parameterizes the quality of the agents’ information, while ξi is noise,
independent and identically distributed (i.i.d.) across agents and independent of θ, with
a continuous probability density function ψ strictly positive and differentiable over the
entire real line, with corresponding cumulative distribution function 
. The common
prior about θ is uniform over the entire real line.11

Dominance regions

As in all global games, the selection power of incomplete information hinges on the in-
troduction of dominance regions. The regions we assume here are based on two intu-
itive properties. When the fundamentals are sufficiently weak (low θ), regime change is

9This assumption can thus readily be replaced with the weaker assumption that, conditional on regime
change, the policy maker’s optimal choice is r = r.

10Our results extend to the case where Z also depends on the size of the attack,A, to the extent that this
dependence preserves strategic complementarity in the agents’ actions. However, because the exposition
is heavier in that case, we restrict attention here to the case where Z depends only on (θ� r).

11As in the rest of the literature, this improper prior is used only for convenience; the results generalize
to any bounded smooth prior as long as σ , the noise in the agents’ private signals, is small enough.
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inevitable, irrespective of the size of the attack and of the level of policy intervention.
Likewise, when the fundamentals are sufficiently strong (high θ), the status quo sur-
vives, irrespective of the size of the attack and of policy interventions. In either case, the
policy maker refrains from intervening. These properties are embedded in our model as
follows.

First, we assume that there exist finite thresholds θ and θ, with θ < θ, such that
R(θ� r�0) = 0 = R(θ� r�1) for any r. This assumption identifies the interval (θ�θ] with
the “critical region” of fundamentals over which the regime outcome hinges on the size
of the attack,12 and guarantees that it is dominant for the policy maker to set r = r

whenever θ ≤ θ (in which case regime change is inevitable). Next, we assume that
limθ→+∞ ρ(θ) = r, where ρ(θ) is defined as the maximal level of r that is not strictly
dominated by r for a policy maker of type θ.13 This assumption guarantees that any
policy action r > r is dominated by inaction (r = r) for sufficiently high fundamentals.14

Finally, we assume that Z(θ� r) > Q(θ� r) for all (θ� r) such that θ ≤ θ and r ≤ ρ(θ). This
assumption simply means that an agent who expects regime change finds it optimal to
attack at least insofar as the policy maker does not play a dominated action.

3. Equilibrium

Our equilibrium concept is perfect Bayesian equilibrium. Let r(θ) denote the policy cho-
sen by type θ, let μ(θ|x� r) denote the cumulative distribution function of the posterior
belief of an agent who receives a signal x and observes a policy r, let a(x� r) denote the
action of that agent, let A(θ� r) denote the corresponding aggregate size of attack, and
let D(θ� r) denote the resulting regime outcome, with D(θ� r) = 0 if R(θ� r�A(θ� r)) > 0,
that is, if the status quo is maintained, and D(θ� r) = 1 if R(θ� r�A(θ� r)) ≤ 0, that is, if
regime change occurs.15 The equilibrium definition can then be stated as follows.

Definition. An equilibrium consists of a strategy for the policy maker, r :R → [r�+∞),
a posterior belief for the agents, μ :R2 ×[r�+∞)→ [0�1], a strategy for the agents, a :R×

12The assumption that this region is invariant to r is only for expositional simplicity.
13To understand whether raising the policy to some level r > r is strictly dominated by leaving the

policy at r, recall that W (θ� r�A) is nonincreasing in A and that L(θ� r) is independent of A. It follows
that the best-case scenario following the former choice is that no agent attacks (A = 0), while the worst-
case scenario following the latter choice is that all agents attack (A = 1). Furthermore, because regime
change is inevitable for θ ≤ θ, and because the payoff L(θ� r) in case of regime change is independent of
A and decreasing in r, it follows that ρ(θ) = r for all θ ≤ θ. In contrast, for any θ ∈ (θ�θ], any r, regime
change occurs if all agents attack and does not occur if all agents refrain from attacking, implying that
ρ(θ) = sup{r ≥ r :W (θ� r�0) ≥ L(θ� r)}. Last, for any θ > θ, regime change never occurs, irrespective of the
size of the attack, which means that ρ(θ)= sup{r ≥ r :W (θ� r�0)≥W (θ� r�1)}.

14The role of this condition is to rule out equilibria where interventions occur also for arbitrarily high
types. These equilibria seem unrealistic and are not robust, for example, to the possibility that the noise
in the agents’ signals has bounded support. Instead of invoking the assumption of bounded noise, in the
sequel, we assume directly that policy intervention is dominated for sufficiently high types.

15All equilibrium objects depend on σ , the level of noise, but this dependence is left as implicit unless
otherwise stated.
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[r�+∞)→ {0�1}, and an aggregate attack function,A :R × [r�+∞)→ [0�1], such that

r(θ) ∈ arg max
r

U(θ� r�A(θ� r)) ∀θ (1)

μ(θ|x� r) is obtained from Bayes’ rule using r(·) for any x ∈ R and any r ∈ r(R)16 (2)

a(x� r) ∈ arg max
a∈{0�1}

a

[∫ +∞

−∞
Z(θ� r)D(θ� r)dμ(θ|x� r)−Q(r)

]
∀(x� r) (3)

A(θ� r)=
∫ +∞

−∞
a(x� r)

1
σ
ψ

(
x− θ
σ

)
dx ∀(θ� r)� (4)

where r(R)≡ {r : r = r(θ)�θ ∈ R} is the set of policy interventions that are played in equi-
librium. The equilibrium regime outcome is given by

D(θ)≡D(θ� r(θ))=
{

0 if R(θ� r(θ)�A(θ� r(θ))) > 0
1 otherwise�

Conditions (1) and (3) require that the policy maker’s and the agents’ actions be se-
quentially rational. Condition (4) requires that the aggregate size of attack is the one that
obtains by aggregating the strategy of the agents. Finally, condition (2) requires that, on
the equilibrium path, the agents’ beliefs be pinned down by Bayes’ rule.17

Before proceeding to the characterization of the equilibrium set, we introduce some
additional notation. Let E(σ) denote the set of all possible equilibria in the game with
quality of information σ . Next, for any s ≥ r, let E(s;σ) denote the set of equilibria in
which r(θ) ∈ {r� s} for all θ, meaning that the policy takes either the cost-minimizing
value r or the value s. For any (θ1� θ2)with θ2 ≥ θ1, letX(θ1� θ2;σ) be the unique solution
to18

∫ θ1

−∞
Z(θ̃� r)

1
σ
ψ

(
x− θ̃
σ

)
dθ̃

/(
1 −


(
x− θ1

σ

)
+


(
x− θ2

σ

))
=Q(r)� (5)

This threshold identifies the unique signal x at which an agent who believes that θ /∈
[θ1� θ2] and that regime change occurs if and only if θ≤ θ1 is indifferent between attack-
ing and not attacking when observing r = r. Finally, let

B(θ1� θ2;σ)≡

(
X(θ1� θ2;σ)− θ2

σ

)

denote the aggregate size of attack that obtains when the policy maker’s type is θ2 and
agents attack if and only if x <X(θ1� θ2;σ).

16When we say “property Z(x� y) holds for (any) x ∈X and (any) y ∈ Y ,” we mean that property Z(x� y)
holds if both x ∈X and y ∈ Y .

17Note that the equilibrium definition restricts attention to symmetric pure-strategy profiles; as dis-
cussed at the end of this section, this is without loss of generality.

18The fact that (5) admits a unique solution is established in Appendix B; see the proof of Property 5
inside the proof of Proposition 9.
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3.1 Characterization

We now proceed to state our two key characterization results. The first one uses a novel
procedure of iterated deletion of strategy profiles that cannot be part of an equilibrium
so as to obtain tighter and tighter bounds on the equilibrium set. These bounds, which
are presented in Proposition 1 and formally derived in Section 3.2 below, play a central
role in our analysis: they contain the equilibrium set; they rule out a large set of strat-
egy profiles, including many of those that could have been equilibrium profiles under
complete information; and they drive the core predictions we present in Section 4. Yet,
these bounds need not always be the sharpest: in general, we cannot rule out the possi-
bility that the equilibrium set is strictly smaller than the set identified by these bounds.
We eliminate this ambiguity in Proposition 2 for the case that the policy maker’s payoff
satisfies a natural single-crossing property.

Proposition 1 (Necessary conditions). The following properties are true for any σ > 0.

(i) The equilibrium set is given by E(σ)= ⋃
s≥r E(s;σ).

(ii) If E(r;σ) 	= ∅, then any equilibrium in E(r;σ) is such that

D(θ)= 1 if and only if θ≤ θ#�

where θ# = θ#(σ) is the unique solution to

R(θ#� r�B(θ#� θ#;σ))= 0� (6)

(iii) For any s > r, if E(s;σ) 	= ∅, then there exists a pair of thresholds (θ∗
s � θ

′′
s ) with

θ′′
s ≥ θ∗

s such that19

θ∗
s = inf{θ≥ θ :W (θ� s�0)≥L(θ� r)} (7)

and either

W (θ′′
s � s�0)=W (θ′′

s � r�B(θ
∗
s � θ

′′
s ;σ)) and R(θ′′

s � r�B(θ
∗
s � θ

′′
s ;σ)) > 0 (8)

or

R(θ′′
s � r�B(θ

∗
s � θ

′′
s ;σ))= 0� (9)

(iv) For any s > r, if E(s;σ) 	= ∅, then any equilibrium in E(s;σ) is such that

r(θ)= s only if θ ∈ [θ∗
s � θ

∗∗
s ] and D(θ)=

{
1 for θ <min{θ∗

s � θ
#}

0 for θ > θ∗
s �

where

θ∗∗
s = θ∗∗

s (σ)≡ sup{θ′′
s ≥ θ∗

s :θ′′
s satisfies condition (8) or (9)}�

19When we say that there exists a threshold θ∗
s that satisfies (7), we mean that the set {θ≥ θ :W (θ� s�0)≥

L(θ� r)} is nonempty.
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Furthermore, θ∗
s < θ

#(σ) if and only if s < r#, where r# = r#(σ) is the unique solution
to

W (θ#(σ)� r#�0)=L(θ#� r)�

Part (i) establishes that, in any equilibrium, either the policy is left at r by all θ or
it is raised to the same level s > r by all types who raise the policy above r. Part (ii)
characterizes the subset of equilibria in which all types pool on r = r. It identifies a
unique threshold θ# such that, in any such equilibrium, regime change occurs if and
only if θ≤ θ#.20 As implied by condition (6), this threshold is the lowest threshold θ′ for
which the regime survives when each agent expects no type of the policy maker to raise
the policy above r and regime change to occur if and only if θ < θ′, in which case each
agent attacks if and only if he receives a signal x < X(θ′� θ′;σ), which implies that the
size of the attack at θ′ is given by B(θ′� θ′;σ).21

Next, consider the subset of equilibria in which some type raises the policy to s for
some s > r. Part (iii) identifies necessary conditions for such an equilibrium to exist. Part
(iv) in turn establishes that, in any such equilibrium, there exists a pair of thresholds θ∗

s

and θ∗∗
s such that (a) the policy is raised to s only if θ ∈ [θ∗

s � θ
∗∗
s ], (b) regime change never

occurs for θ > θ∗
s , and (c) regime change always occurs for θ <min{θ∗

s � θ
#}.22 The thresh-

old θ∗
s identifies the lowest type of the policy maker who prefers raising the policy to s

to leaving the policy at r, when the former choice discourages each agent from attack-
ing and spares the policy maker from regime change, whereas the latter choice leads to
regime change. As evident from conditions (8) and (9), θ∗∗

s in turn identifies the highest
type θ′′

s ≥ θ∗
s who finds it optimal to raise the policy to swhen leaving the policy at r leads

to an attack of size A= B(θ∗
s � θ

′′
s ;σ). Recall that B(θ∗

s � θ
′′
s ;σ) is the size of the attack that

obtains at θ = θ′′
s when, after observing r, each agent attacks if and only if he receives

a signal x ≤X(θ∗
s � θ

′′
s ;σ). In the proof below, we show that when θ′′

s is the highest type
to raise the policy to s, then it is iteratively dominated for each agent to attack for any
x > X(θ∗

s � θ
′′
s ;σ), which implies that B(θ∗

s � θ
′′
s ;σ) is the largest attack that type θ′′

s can
expect to face in case he decides to leave the policy at r. It follows that for type θ′′

s to
prefer raising the policy to s than leaving the policy at r, it must be that that the largest
attack B(θ∗

s � θ
′′
s ;σ) that type θ′′

s can possibly expect in case he leaves the policy at r leads
either to regime change or to a payoffW (θ′′

s � r�B(θ
∗
s � θ

′′
s ;σ)) that is lower than the payoff

W (θ′′
s � s�0) that type θ′′

s could obtain by raising the policy to s and guaranteeing that no
agent attacks.

20Our discussion in the main text suppresses the dependence of θ#, r#, and θ∗∗ on σ to simplify the
exposition, although this dependence remains explicit in the statement of the formal results.

21Not surprisingly, this threshold coincides with the one that obtains in a variant of our game that re-
stricts the policy to r ∈ {r} for all θ, which is the case typically studied in global games with exogenous
information; see, e.g., Morris and Shin (1998) for an application to currency crises.

22When θ∗
s > θ

#, our procedure of iterated deletion of nonequilibrium strategies does not permit us
to pin down the equilibrium regime outcome for θ ∈ [θ#� θ∗

s ]. What we know is that, if equilibria exist
where θ∗

s > θ
#, then no type θ ∈ [θ#� θ∗

s ] would raise the policy to s. As explained below, this indeterminacy
vanishes if one assumes that the policy maker’s payoff satisfies the single-crossing condition (SCC) (see
Proposition 2 below) or if one assumes that σ is small (see Proposition 9 in Appendix A).
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Note that while Proposition 1 identifies properties that any equilibrium must satisfy,
it does not guarantee the existence of equilibria that satisfy such properties. This incom-
pleteness, however, disappears once we impose the following single-crossing restriction
on the policy maker’s payoff. Let �W (θ; r�A) ≡W (θ� r�0)−W (θ� r�A) denote the pay-
off differential between raising the policy to r > r and facing no attack, and leaving the
policy at r and suffering an attack of size A, when the policy maker’s type is θ and both
choices lead to no regime change.

Single-Crossing Condition (SCC). The differential �W (θ; r�A) changes sign at
most once as θ increases from θ to +∞: for any A> 0 and r > r, either �W (θ; r�A) < 0
for all θ≥ θ or there exists a θ+(r�A) > θ such that �W (θ; r�A) > 0 for θ < θ+(A� r) and
�W (θ; r�A) < 0 for θ > θ+(A� r).

The SCC thus requires that in the absence of regime change, the net benefit of re-
ducing the size of the attack from A to zero by raising the policy from r to r changes
sign only once. Obviously, this condition is trivially satisfied when the policy maker
cares about the size of the attack only insofar as it affects the regime outcome (i.e., when
WA(θ� r�A) = 0 for all (θ� r�A), in which case �W (θ; r�A) < 0 for all θ), an assumption
that is often made in games of political change that are modeled as a “winner-takes-all
election.”

Proposition 2 (Complete characterization). Suppose SCC holds. Then the following
properties are true for any σ > 0.

(i) The set E(s;σ) 	= ∅ if and only if s ≤ r#(σ), where r#(σ) is the threshold defined in
Proposition 1.

(ii) For any s ∈ (r� r#(σ)], there exists an equilibrium in E(s;σ) in which r(θ) = s for
all θ ∈ (θ∗

s � θ
∗∗
s (σ)] (for all θ ∈ [θ∗

s � θ
∗∗
s (σ)] if θ∗

s > θ).

These results complement Proposition 1 in three ways. First, they rule out the pos-
sibility of equilibria in which the policy is raised to s > r#. Second, for any s ≤ r#, they
guarantee the existence of equilibria in which some type of the policy maker raises the
policy to s. Finally, they establish that the thresholds θ∗

s and θ∗∗
s are the sharpest bounds

for the set of types who possibly raise the policy to s, in the sense that there always exists
an equilibrium in which the policy is raised to s for the entire interval (θ∗

s � θ
∗∗
s ].23

As the name indicates, the role played by SCC in these results is to guarantee that
the policy maker’s preferences (and hence his incentives) satisfy a natural ordering con-
dition; when leaving the policy at r leads to an attack that is nonincreasing in θ, then
if type θ∗∗

s prefers raising the policy to s than leaving the policy at r, so does any type
θ ∈ (θ∗

s � θ
∗∗
s ].

23The result in Proposition 2 leaves open the possibility that there also exist equilibria in which the policy
is raised only for a strict subset of (θ∗

s � θ
∗∗
s ]. These equilibria are sustained by the agents following a strategy,

after observing the policy maker’s choice of not intervening, that is nonmonotone in their signals. Although
this possibility does not interfere with the predictions we deliver in the sequel, it can be ruled out if one
assumes that the noise distribution is log-concave, an assumption that is often made in applications; see
Proposition 10 in Appendix A.
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Remark 1. Proposition 2 can be viewed as a generalization of the results in Propositions
1, 2, and 5 of Angeletos et al. (2006): that paper considers a more restrictive payoff spec-
ification, which happens to satisfy SCC, and establishes the existence of a particular set
of equilibria in which the policy maker intervenes for intermediate types. None of the
results in that paper, however, permits one to identify properties that hold true across
all equilibria. Apart from the more flexible payoff specification, the key contribution
here is thus not Proposition 2 but Proposition 1. It is this novel result, and only this one,
that permits one to identify predictions that are robust across the entire equilibrium set,
whatever that might be.

Remark 2. In Section 4 below, we show how the properties identified above can be
translated into stochastic predictions about policy interventions and regime outcomes
as well as into predictions for how the bounds on these variables change with the fun-
damentals and with the quality of the agents’ information. These results hinge on parts
(iii) and (iv) of Proposition 1, but depend on Proposition 2 only insofar as the results
in Proposition 2 rule out the possibility of equilibria in which s > r#. This possibility
is problematic for our purposes, because Proposition 1 guarantees monotonicity of the
regime outcome for s ≤ r# but not for s > r#. The role of SCC is precisely to rule out this
possibility for any σ > 0. When SCC fails to hold, it is unclear whether equilibria with
s > r# exist. Even if such equilibria exist, they would not interfere with our predictions
as long as they maintain monotonicity of regime outcomes. Furthermore, one can show
that, irrespective of whether SCC holds, equilibria with s > r# cannot exist in the limit as
σ → 0 (see Proposition 9 in Appendix A). We conclude that the predictions we deliver in
the sequel are unlikely to hinge on SCC.

3.2 Characterization procedure

We now expand on the series of arguments that lead to Proposition 1. As anticipated,
this series of arguments deals with the interaction of two kinds of forces. On the one
hand, the incompleteness of information, coupled with the existence of dominance re-
gions, induces a series of contagion effects across different types of the policy maker, as
well as across different signals for the agents. On the other hand, the signaling role of
policy implies that the information, and the belief hierarchy, in the continuation game
that follows any particular policy choice is endogenous to equilibrium play. The con-
tagion effects are reminiscent of those in standard global games, but the endogeneity
of information invalidates standard global-games arguments. The interaction of these
two forces therefore explains the novelty and complexity of some of the arguments that
follow.

We start by considering the subset of equilibria in which all types pool on r. When
this is the case, the observation of r conveys no information and the coordination game
that follows this observation is essentially a standard global game. The next lemma then
follows from the same kind of arguments as in Morris and Shin (1998, 2003), adapted
to the more general environment considered here. (Note: In all lemmas that follow, the
variables θ#, r#, θ∗

s , and θ∗∗
s are those defined in Proposition 1.)
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Lemma 1. In any equilibrium in which no type intervenes,D(θ)= 1 if and only if θ≤ θ#.

The above lemma establishes part (ii) of Proposition 1. The next two lemmas shift
attention to equilibria in which some types raise the policy above r and help establish
part (i) of the proposition.

Lemma 2. In any equilibrium in which some type intervenes, there exists a single s > r
such that r(θ)= s whenever r(θ) 	= r. Furthermore, for that s,A(θ� s)= 0 for all θ.

Lemma 3. For any s > r, if E(s;σ) 	= ∅, then there exists a θ ≥ θ such that W (θ� s�0) ≥
L(θ� r). Furthermore, any equilibrium in E(s;σ) is such thatD(θ)= 0 for all θ > θ∗

s .

The key insights behind these two lemmas are simple. First, a type finds it optimal
to intervene only if he expects that by doing so, he will reduce the size of the attack
and/or reduce the chances of regime change by strengthening the status quo. Second,
if a certain type avoids regime change by raising the policy to r, then any higher type
must also be avoiding regime change in equilibrium—for any higher type can always
“imitate” any lower type and do at least as well.

These properties are intuitive. Clearly, there must be some benefit, in the form of a
reduction in the size of the attack and/or a reduction in the probability of regime change,
to justify the cost of intervention. Our model captures this benefit in a stark way by
guaranteeing that no attack takes place with probability 1 following any (equilibrium)
intervention. This is because the model rules out any source of aggregate uncertainty in
the size of the attack and in the regime outcome beyond the one introduced by the ran-
dom type of the policy maker. In the absence of such aggregate uncertainty, equilibrium
policy interventions necessarily signal that regime change will not occur (for, otherwise,
the policy maker would be better off by not intervening). This in turn implies that, in
equilibrium, any type who intervenes does so by selecting the least costly policy among
those that are conducive to no regime change, as stated in Lemma 2.

One should not, however, misinterpret Lemma 2 as saying that a single level of policy
intervention is consistent with equilibrium behavior. Rather, as established in Proposi-
tion 2, there is a continuum of policy levels s > r that can be played in some equilibrium.
Furthermore, the same type θ may be playing different r in different equilibria, just as
the same r may be played by different θ. This point underscores that Lemma 2 has very
little positive content in its own right, and anticipates the necessity of the additional
arguments we make in Section 4.

Lemma 2 nevertheless helps us index the equilibrium set in a convenient way: any
equilibrium that does not belong to E(r;σ) necessarily belongs to E(s;σ) for some s > r.
Together with Lemma 1, this lemma therefore establishes part (i) of Proposition 1.

Finally, Lemma 3 guarantees that the threshold θ∗
s is an upper bound for the set of

types for whom regime change occurs, across all equilibria in E(s;σ). This is because
any type above this threshold can always save the regime (and then obtain a payoff
higher than in the case of regime change) by raising the policy to s and then face no
attack. Any type θ > θ∗

s who, in equilibrium, leaves the policy at r must thus necessar-
ily expect a small attack that does not trigger regime change. Clearly, θ∗

s is also a lower
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bound on the set of types who possibly raise the policy to s: For any type below this
threshold, raising the policy to r = s is dominated by leaving the policy at r.

Moving on, the next lemma uses a contagion argument to establish that the thresh-
old θ∗∗

s defined in Proposition 1 is an upper bound on the set of types who potentially
raise the policy to r = s.

Lemma 4. For any s > r, if E(s;σ) 	= ∅, then there exists a θ′′
s ≥ θ∗

s that satisfies either
condition (8) or condition (9) in Proposition 1. Furthermore, any equilibrium in E(s;σ)
is such that r(θ)= s only if θ ∈ [θ∗

s � θ
∗∗
s ].

The proof of Lemma 4 encapsulates contagion effects from very high types, for
whom raising the policy is dominated, to lower types, who are spared from the need
to raise the policy thanks, and only thanks, to the incompleteness and dispersion of
information among the agents. In particular, the fact that raising the policy is dom-
inated for sufficiently high types implies that agents, on their part, find it iteratively
dominant to not attack for sufficiently high signals, conditional on observing no pol-
icy intervention.24 The dispersion of information then initiates a contagion effect that
triggers agents not to attack for lower and lower signals, and hence spares the policy
maker from the need to raise the policy for lower and lower θ. In the limit, this con-
tagion converges to θ∗∗

s , guaranteeing that all types above this threshold (i) are able to
avoid regime change without intervening, and (ii) obtain a higher payoff by leaving the
policy at r and facing a small attack than by raising the policy to s and face no attack.

Underscoring the power of this contagion effect, the limit threshold θ∗∗
s is arbitrarily

close to θ∗
s when σ is small enough (see Proposition 9 in Appendix A), meaning that

almost all types for whom policy intervention is not dominated succeed in avoiding
regime change without the need for costly policy interventions. This is despite the fact
that the aforementioned contagion effect is initiated with types that can be arbitrarily
high.

Lemma 4 uses a contagion argument “from above” to identify a necessary condition
for the existence of equilibria in which the policy is raised to r = s > r by some type and
identifies an upper bound θ∗∗

s for the set of types who possibly raise the policy to r = s.
The next lemma uses an alternative contagion argument “from below” to establish that
regime change necessarily occurs for any θ <min{θ∗

s � θ
#}.

Lemma 5. Take any s > r and suppose that E(s;σ) 	= ∅. Then any equilibrium in E(s;σ)
is such thatD(θ)= 1 for any θ <min{θ∗

s � θ
#}. Furthermore, θ∗

s > θ
# if and only if s > r#.

24That raising the policy to r = s is dominated for arbitrarily high types follows from the assumption
that limθ→+∞[W (θ� s�0)−W (θ� r�1)]< 0. Without an assumption of this sort, there may exist equilibria in
which the policy maker intervenes even for arbitrarily high types. These equilibria are sustained either by
the assumption that the cost of intervention vanishes for sufficiently high types or by the agents threatening
to attack no matter how favorable their signal is when the policy maker fails to intervene. We find either
property implausible. Also note that equilibria in which the agents attack, no matter what their signal,
when r = r are not robust to the following perturbation. Pick any K > θ and any δ > 0, suppose that with
probability δ, types θ >K are forced to set r, and assume that this event is not observed by the agents. The
aforementioned equilibria are not robust to this perturbation, no matter how unlikely this event is (i.e., no
matter what δ is) and no matter how large K is.
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As explained in the Appendix, the contagion effect behind the above result is also
present because, and only because, of the dispersion of information. In particular, the
fact that for sufficiently low types, raising the policy is dominated, along with the fact
that for these types, regime change is inevitable, implies that agents find it iteratively
dominant to attack for sufficiently low signals as long as they do not observe policy in-
tervention. The dispersion of information then initiates a contagion effect such that,
conditional on seeing no intervention, agents find it iteratively dominant to attack for
higher and higher signals, in which case regime change occurs for higher and higher θ.
In the limit, this contagion effect guarantees that regime change occurs for all types be-
low min{θ∗

s � θ
#} in any equilibrium in which the policy is raised to s. This last result is

obtained by comparing the agents’ incentives to attack after observing r with the cor-
responding incentives when they expect r(θ)= r for all θ. Because the observation of r
is most informative of regime change when all types who experience regime change set
r = r, while some of the types who are spared from regime change raise the policy above
r, the size of attack when setting r = r is necessarily larger in any of the equilibria in
which some types are expected to raise the policy to r = s than in the pooling equilibria
where all types are expected to set r = r. Hence any type θ < θ# who does not raise the
policy to r = s necessarily experiences regime change in equilibrium. Because raising
the policy to r = s is dominated for all θ < θ∗

s , this implies that regime change occurs for
any θ <min{θ∗

s � θ
#} in any equilibrium in which the range of the policy is {r� s}.25

The combination of Lemmas 1–5 establishes the results in Proposition 1.

Remark 3. As noted before, Lemma 2, which guarantees that no agent attacks follow-
ing the observation of an equilibrium policy intervention, hinges on the absence of
exogenous aggregate uncertainty. Exogenous aggregate uncertainty could originate in
shocks to fundamentals and/or unpredictable shifts in the “sentiment” of some irra-
tional agents that occur after the policy maker has set the policy. While the introduction
of such additional uncertainty may deliver a smoother relationship between the proba-
bility of regime change and the level of policy intervention, we do not expect our results
to be unduly sensitive to our choice of abstracting from such additional uncertainty. For
example, it is easy to show that all our results are robust to the introduction of an ex-
ogenous random event that triggers regime change independently of r, which one could
then interpret either as the result of unfavorable changes in the fundamentals or as the
impact of a severe attack by “irrational agents.” Clearly, the same remains true if the
probability of this “exogenous” event is decreasing in θ.26 While it could be worthwhile
to extend the analysis to more general, and more realistic, sources of aggregate uncer-
tainty, this is beyond the scope of the present paper.

25That θ∗
s < θ

# if and only if s < r# follows from the monotonicity of W (θ� s�0)−L(θ� r) in θ along with
Wr < 0.

26Obviously, all relevant thresholds must be adjusted to accommodate the probability of this exogenous
event. It is also immediate to see that the probability of such an event must not be too high, for otherwise
each agent may find it optimal to attack, irrespective of his beliefs about the policy maker’s strategy and the
behavior of the other agents.
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Remark 4. The equilibrium definition we use rules out mixed strategies for either the
policy maker or the agents; it also imposes symmetry on the agents’ strategies. How-
ever, from the arguments in the proofs of Lemmas 1–5, it should be clear that none of
the conditions identified in these lemmas depends on these restrictions. Indeed, the
policy maker can find it optimal to randomize over r only for a zero-measure subset
of θ; because this does not have any effect on the agents’ posterior beliefs about pol-
icy and regime outcomes, it cannot affect their best responses. Similarly, for any r, the
agents can find it optimal to randomize over their decision to attack or to play asym-
metrically only for a zero-measure subset of their signal space; because this does not
have any effect on the aggregate size of attack, it does not impact the policy maker’s
incentives. Propositions 1 and 2 thus identify properties of all equilibrium outcomes,
including those sustained by mixed-strategy or asymmetric-strategy profiles.

4. Predictions about policy and regime outcomes

We now show how the equilibrium properties identified in the previous section can be
translated to meaningful predictions that an outside observer, say an econometrician,
can make without knowing which particular equilibrium is played. To this goal, we con-
sider two complementary approaches. The first approach formalizes the econometri-
cian’s uncertainty about the equilibrium being played by means of a generic distribution
over the set of all possible equilibria and then proceeds to study the implied distribution
of equilibrium outcomes. The second approach studies the extrema of all such possible
distributions.

4.1 Probabilistic predictions for arbitrary equilibrium selections

Notwithstanding our earlier remark that SCC might not be strictly needed, we hence-
forth impose SCC. We then have that, for any σ > 0, the equilibrium set is given by

E(σ)= ⋃
s∈[r�r#(σ)] E(s;σ), where E(s;σ) denotes the set of equilibria in which the range

of the policy is {r� s}. Different equilibria within the set E(s;σ) are associated with differ-
ent out-of-equilibrium strategies by the agents. They may also differ in the shape of the
policy within the interval [θ∗

s � θ
∗∗
s ], but only if the distribution of the noise in the agents’

information is not log-concave (see the result in Proposition 10 in Appendix A). Nev-
ertheless, all equilibria within the set E(s;σ) are characterized by the same bounds θ∗

s

and θ∗∗
s on the set of types who possibly raise the policy, as well as by the same regime

outcomes.27 Given the type of predictions we are interested in, from the econometri-
cian’s viewpoint, any distribution over outcomes generated by a random selection over

27To be precise, the last statement is true only up to a zero-measure set of types: if the type is exactly
equal to the threshold θ∗

s , there is both an equilibrium in E(s;σ) for which the status quo survives and an
equilibrium for which regime change occurs. However, this kind of indeterminacy is irrelevant as long as
one forms probabilistic statements over positive-measure sets of fundamentals. To simplify the exposition,
in the sequel we impose that the status quo survives when θ= θ∗

s . Relaxing this assumption does not affect
the essence of any of the results; it only complicates the exposition by requiring that Propositions 3 and 5
be restated in terms of probabilistic statements conditional on θ belonging to positive-measure sets rather
than conditional on θ taking a specific value. Propositions 4 and 6 are not affected at all.
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the equilibrium set E(σ) can then be replicated by a random variable s̃ with cumulative
distribution function F and support Supp[F] ⊆ [r� r#] such that one of the pooling equi-
libria is played when s = r, while one of the semiseparating equilibria with range {r� s}
is played when s ∈ (r� r#]. For any σ , we then denote by F(σ) the set of cumulative dis-
tribution functions (c.d.f.’s) with support Supp[F] ⊆ [r� r#(σ)] that describe the possible
beliefs that the external observer may have about the equilibrium being played.28 (Note
that the reason why this set depends on the quality σ of the agents’ information is that
the upper bound r#(σ) for the set of possible equilibrium policy interventions depends
on σ .)

Importantly, note that because θ is the policy maker’s private information, the equi-
librium being played cannot be a function of θ. This also means that the external ob-
server cannot expect the realization of the random variable s̃ with distribution F to de-
pend on θ. However, the external observer may be able to observe the policy maker’s
type θ at the time she performs her investigations (for example, the underlying eco-
nomic fundamentals that parameterize the policy maker’s type may become observable
ex post).

Now, for any σ > 0 and any s ∈ [r� r#], let Ds(θ;σ) denote the regime outcome in
any of the equilibria in E(s;σ), while, for any s ∈ (r� r#], let �s ≡ θ∗∗

s − θ∗
s denote the

(Lebesgue) measure of the set of types who potentially raise the policy to r = s in any of
the equilibria in E(s;σ).29 Recall that there is no equilibrium in which some type outside
the interval [θ∗

s � θ
∗∗
s ] raises the policy to s, while there is an equilibrium in which all types

in [θ∗
s � θ

∗∗
s ] raise the policy to r = s. Given the uniform prior, �s can thus also be read as

a (rescaling of a sharp) bound on the probability that the policy is raised to r = s across
all equilibria in E(s;σ).

Next, let Ipremise denote the indicator function that assumes value 1 if the premise is
true and value 0 otherwise. For any σ , any selection F ∈ F(σ), any θ, and any r > r, let

D(θ;F�σ)≡
∫
Ds(θ;σ)dF(s) and P(r�θ;F�σ)≡

∫
s≥r
I{θ∈[θ∗

s �θ
∗∗
s (σ)]} dF(s)

denote, respectively, the probability that regime change occurs for type θ and the (max-
imal) probability that type θ raises the policy to or above r when the selection is F .30

For any r > r and any F ∈ F(σ), let �(r;F�σ) denote the expected Lebesgue measure of
the set of types who possibly raise the policy to or above r. Once again, �(r;F�σ) can
be read as (a rescaling of) the maximal probability that the policy is raised to or above
r when the selection is F . Given two selections F�F ′ ∈ F(σ), let F ′ 
 F if and only if
F ′(s)≤ F(s) for all s, with strict inequality for s ∈ (r� r#) and equality for s ∈ {r� r#}.

28As a technical restriction, we assume that F(σ) is compact with respect to the metric d(·) defined, for
any pair F1�F2 ∈ F , by d(F1�F2)≡ sup{|F1(A)− F2(A)| :A ∈ �}, where � is the Borel sigma algebra associ-
ated with the interval [r�ρ(θ)].

29Recall that θ∗
s is independent of σ .

30Recall that any equilibrium in E(s;σ) is such that r(θ)= s only if θ ∈ [θ∗
s � θ

∗∗
s (σ)] so that P(r�θ;F�σ) is

an upper bound on the probability that type θ raises the policy to or above r.
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The key predictions about the probability of regime change and of policy interven-
tions that the theory delivers to an external observer who is (potentially) uncertain about
which equilibrium is played are summarized in the following proposition.31

Proposition 3 (Stochastic predictions). Equilibrium policies and regime outcomes sat-
isfy the following properties.

(i) Nonmonotonic policy. For any σ > 0, any r > r, and any F ∈ F(σ), there ex-
ist thresholds θ◦ = θ◦(r;F�σ) and θ◦◦ = θ◦◦(r;F�σ), with θ < θ◦ ≤ θ◦◦, such that
P(r�θ;F�σ) > 0 only if r ≤ r#(σ) and θ ∈ [θ◦� θ◦◦].

(ii) Monotonic regime outcome. For any σ > 0 and any F ∈ F(σ), D(θ;F�σ) is non-
increasing in θ, withD(θ;F�σ)= 1 for θ≤ θ andD(θ;F�σ)= 0 for θ > θ#(σ).

(iii) Impact of “aggressiveness.” For any σ > 0 and any F�F ′ ∈ F(σ), F ′ 
 F implies
D(θ;F ′�σ) >D(θ;F�σ) for any θ ∈ (θ�θ#(σ)) such thatD(θ;F�σ) < 1. Moreover,
if F�F ′ ∈ F(σ) are such that F ′(r) = F(r) and F ′(s) < F(s) for all s ∈ (r� r#(σ)),
then �(r;F ′�σ)≤ �(r;F�σ).

(iv) Impact of noise. Take any F such that Supp[F] ⊂ (r� limσ→0+ r#(σ)). For any
r > r, limσ→0+ �(r;F�σ) = 0, whereas for any θ and any σ�σ ′ > 0 such that
F ∈ F(σ) ∩ F(σ ′), then D(θ;F�σ) = D(θ;F�σ ′). Finally, for any σ�σ ′ > 0 such
that F ∈ F(σ) ∩ F(σ ′), σ ′ > σ > 0 implies �(r;F�σ ′) ≥ �(r;F�σ) for all r ∈
(r�min{r#(σ)� r#(σ ′)}).

Parts (i) and (ii) say that for any given quality of information σ > 0 and any selection
F ∈ F(σ), the probability of observing the policy maker raising the policy above r is pos-
itive only if r ≤ r#(σ) and θ is intermediate, whereas the probability of regime change is
nonincreasing in θ and equal to zero for all θ > θ#(σ). These results follow directly from
the fact that these properties hold in any of the equilibria of the game (as established in
Proposition 1) and hence are preserved in expectation.

Property (iii) can be interpreted as the impact of the “aggressiveness of market ex-
pectations”: the higher is the level of policy intervention s at which the agents switch to
lenient behavior (i.e., refrain from attacking), the higher is the cost of policy interven-
tion necessary to prevent an attack and the smaller is the set of types who find it optimal
to intervene in equilibrium. Of course, since the level of aggressiveness (equivalently,
the distribution F) is not necessarily observed by the econometrician, this prediction is
hard to test. Yet it could help the econometrician identify, or estimate, the underlying
equilibrium selection, F , from observed data.

Part (iv) says that holding constant the econometrician’s beliefs F about which equi-
librium is played, an increase in the quality of the agents’ information need not have any
effect on the probability of regime change, whereas it reduces the probability of observ-
ing a policy above r, for any r > r, with such a probability vanishing in the limit, when

31The predictions that the theory delivers to an observer who knows which equilibrium is played can
be read by looking at the special case where the distribution F has a measure-1 mass point at a particular
s ∈ [r� r#(σ)].
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information becomes infinitely precise. This result follows from the fact that, for any
s > r, the threshold θ∗

s below which regime change occurs and above which it does not
occur is independent of the quality of the agents’ information (recall that this threshold
is determined by the comparison between the policy maker’s payoff when, by raising the
policy to s, he saves the regime by inducing no agent to attack, and his payoff when, by
leaving the policy at r = r, he induces regime change). In contrast, the threshold θ∗∗

s (σ)

above which no type raises the policy to s in any of the equilibria where the range of the
policy is {r� s} is nondecreasing in σ and converges to θ∗

s as σ → 0. The reason is that
as the agents’ information becomes more precise, the size of the attack that the policy
maker expects by leaving the policy at r converges to zero for all θ > θ∗

s (reflecting the
fact that all agents correctly realize that regime change will not occur). As a result, in
the limit as σ → 0, no type above θ∗

s finds it optimal to raise the policy to s. Along with
the fact that there is no equilibrium where some type below θ∗

s raises the policy to s,
independently of the quality of information (recall that raising the policy to s is strictly
dominated by leaving the policy to r for any θ < θ∗

s ), this means that the measure of types
who raise the policy to s vanishes as the quality of the agents’ information grows large
enough. By implication, a similar result obtains when the econometrician integrates
across different equilibria using the selection F .

This last result is interesting because it suggests that the precision of the agents’ in-
formation need not be important for whether regime change occurs in equilibrium,32

but it may be crucial for whether the status quo is maintained with or without policy
intervention. Note, however, that this result presumes that the econometrician’s beliefs
F do not vary with σ . Because the model imposes no relation between F and σ , this is
possible, although not necessary.

Remark 5. The result in part (ii) of Proposition 3 delivers a monotonic relation between
fundamentals (the policy maker’s type) and the regime outcome, while at the same time
allowing for some “randomness” in this relation that corresponds to the econometri-
cian’s uncertainty about the equilibrium being played. This is akin to the predictions
one often gets from unique-equilibrium models, except for the following feature. In
unique-equilibrium models, the theory typically restricts the residual in the relation be-
tween the dependent and the independent variables to be zero; the randomness is then
superimposed by the econometrician on the basis of the presumption that there are
measurement errors or omitted variables that nonetheless do not bias the results. Here,
instead, the theory itself allows for a random residual: the residual simply captures the
econometrician’s uncertainty over the equilibrium being played.33

32It may be important only for types θ ∈ (θ#(σ)�θ#(σ ′)) in case one of the pooling equilibria is played, a
possibility that is ruled out in the proposition by the assumption that Supp[F] ⊂ (r� limσ→0+ r#(σ)).

33Of course, additional randomness can also be superimposed in our model. As anticipated above, all
the results in Proposition 3 extend to the case where the regime outcome is affected by random shocks that
are exogenous to the interaction between the policy maker and the agents, and whose probability is non-
increasing in the quality of the fundamentals. The introduction of such shocks makes the relation between
the fundamentals and the probability of regime change possibly smoother, without, however, affecting the
qualitative nature of the conclusions.
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4.2 Bounds across all selections

As anticipated above, the theory also delivers useful predictions to an econometrician
interested in testing, or estimating, the model, but who is not willing to assume (or let
the data identify) a particular distribution over the equilibrium being played. This can
be done by considering bounds on the probability of regime change and on the prob-
ability of intervention across all possible equilibria, and then investigating how these
bounds change with the fundamentals θ (which may be observable ex post) and/or with
the quality of the agents’ information σ .

To illustrate, let D(θ1� θ2;F�σ) ≡ (1/(θ2 − θ1))
∫ θ2
θ1
D(θ;F�σ)dθ denote the prob-

ability of regime change conditional on the event that θ ∈ [θ1� θ2] for given selec-
tion F ∈ F(σ), and let D(θ1� θ2;σ) ≡ supF∈F(σ) D(θ1� θ2;F�σ) and D(θ1� θ2;σ) ≡
infF∈F(σ) D(θ1� θ2;F�σ) be the corresponding bounds across all selections. Similarly, let
P(r�θ1� θ2;F�σ) ≡ (1/(θ2 − θ1))

∫ θ2
θ1
P(r�θ;F�σ)dθ denote the probability that the pol-

icy is raised to or above r, conditional on the event that θ ∈ [θ1� θ2], for given selec-
tion F ∈ F(σ), and let P(r�θ1� θ2;σ) ≡ supF∈F(σ) P(r�θ1� θ2;F�σ) and P(r�θ1� θ2;σ) ≡
infF∈F(σ) P(r�θ1� θ2;F�σ) = 0 be the corresponding bounds. Clearly, D(θ1� θ2;σ) ≥
D(θ1� θ2;σ) and P(r�θ1� θ2;σ) ≥ P(r�θ1� θ2;σ), with strict inequalities when θ ≤ θ1 <

θ2 ≤ θ# and r < r < r#. That these bounds do not coincide over a subset of the criti-
cal region reflects the equilibrium indeterminacy. The next proposition examines how
these bounds depend on the fundamentals θ and the quality of information σ .

Proposition 4 (Bounds). (i) Fix σ > 0 and r ∈ (r� r#(σ)). The bounds D(θ1� θ2;σ)
and D(θ1� θ2;σ) are nonincreasing in the interval (θ1� θ2), while the bounds
P(r�θ1� θ2;σ) and P(r�θ1� θ2;σ) are nonmonotone in the interval (θ1� θ2), in the
product-order sense.

(ii) Fix any (θ1� θ2) with θ1 < θ2. The bounds D(θ1� θ2;σ) and P(r�θ1� θ2;σ) are
independent of σ . Furthermore, for any σ�σ ′ > 0, θ2 < min{θ#(σ ′)�θ#(σ)}
or θ1 > max{θ#(σ ′)�θ#(σ)} implies D(θ1� θ2;σ) = D(θ1� θ2;σ ′). In contrast,
limσ→0+ P(r�θ1� θ2;σ) = 0 for any r > r. Finally, in the special case where the
agents’ gross payoff in case of regime change is fixed (i.e., Z(θ� r) = z > r for all
θ), the boundD(θ1� θ2;σ) is independent of σ , whereas the bound P(r�θ1� θ2;σ) is
a nondecreasing function of σ .

The results for how the bounds are affected by the fundamentals follow from Propo-
sition 1. Thus consider the effect of information on the bounds. While more precise in-
formation need not affect the bounds on the probability of regime change, it affects the
bounds on the probability of intervention. In particular, in the limit as σ → 0, the proba-
bility of observing policy interventions above r, for any r > r, vanishes for all measurable
sets of θ, whereas the probability of regime change can take any value for any subset of
(θ�θ#(0+)), where θ#(0+)≡ limσ→0+ θ#(σ). The intuition for these results parallels that
for the results in part (iv) of Proposition 3. The key difficulty in establishing these results
comes from the need to establish that the equilibrium set converges to its limit version
uniformly across types and selections, as we show in the Appendix.
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These properties are particularly sharp when the payoff the agents obtain in case of
regime change is independent θ. In this case, both the lower and and the upper bound
on the probability of regime change are independent of σ ,34 whereas the upper bound
on the probability of policy interventions is decreasing in the quality of information σ−1

and vanishes in the limit as σ → 0+. More generally, what the theory predicts is that
policy choices are essentially uniquely determined in the limit, whereas the regime out-
comes remain largely indeterminate. We return to these predictions and contrast them
to their counterparts under common knowledge in Section 6.

5. Predictions about payoffs

We now turn to the predictions that the theory delivers for the payoff of the policy maker.
In contrast to predictions about policy choices and regime outcomes, predictions about
payoffs need not be directly testable (the econometrician may not be able to directly
observe the policy maker’s payoff). Nevertheless, these predictions are important for
their policy implications. For example, they permit one to study the ex ante value that
the policy maker may attach to the option to intervene once θ is realized.

For any s ∈ [r� r#], let Us(θ;σ) denote the lowest payoff that type θ obtains across
all the equilibria in E(s;σ). Next, consider the variant of our model in which r is exoge-
nously fixed at r for all θ, interpret this as the game in which the option to intervene
is absent, and let Uo(θ;σ) denote the payoff that type θ obtains in the unique equilib-
rium of this game. Clearly, when s ∈ {r� r#(σ)}, any equilibrium in E(s;σ) is such that
Us(θ;σ)=Uo(θ;σ) for all θ.35 Thus consider equilibria in which s ∈ (r� r#).

Proposition 5 (Payoffs). For any s ∈ (r� r#(σ)), eitherUs(θ;σ)≥Uo(θ;σ) for all θ, with
strict inequality for some θ, or there exists a threshold θ†

s (σ)≥ θ#(σ) such thatUs(θ;σ) <
Uo(θ;σ) only if θ > θ†

s (σ), in which case, necessarily,Us(θ;σ)≥Uo(θ;σ) for all θ≤ θ†
s (σ)

(with strict inequality if θ ∈ (θ∗
s � θ

†
s (σ)]). Moreover, σ small enough ensures that the first

case holds.

To understand this result, note first that types below θ# cannot be worse off with
the option to intervene: without this option, they would necessarily experience regime
change, whereas with this option they can avoid regime change in some equilibria. Next
consider types above θ#. These types can be worse off with the option to intervene only
if the size of the attack that they face when they opt for not raising the policy exceeds

34This follows from the fact that, in this case, the threshold θ# below which regime change occurs and
above which it does not occur in any of the pooling equilibria is independent of σ . It follows that for any
θ ∈ (θ�θ#] and any σ > 0, there exist equilibria in which regime change occurs (these are the equilibria
that select θ∗

s > θ) as well as equilibria in which regime change does not occur (these are the equilibria that
select θ∗

s < θ). Hence, the regime outcome remains indeterminate for all θ ∈ (θ�θ#]. In contrast, as shown
in Proposition 3, the probability that the policy is raised to or above any r > r vanishes for all positive-
measure set of types, a property that is then inherited by the supremum across all selections, using the
uniform convergence result mentioned in the main text.

35The result is immediate when s = r. For s = r#(σ), the result follows from the fact that θ∗
s = θ∗∗

s (σ) =
θ#(σ) andXs(θ∗

s � θ
∗∗
s (σ);σ)= x#(σ).
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the one they would have faced absent the option to intervene. In general, this may be
possible for some equilibria. However, this possibility vanishes as the precision of infor-
mation increases. This is because the regime threshold θ∗

s in any of the equilibria with
intervention is necessarily lower than θ#, the regime threshold in any of the pooling
equilibria. This, together with the fact that θ∗∗

s → θ∗
s as σ → 0, guarantees that the size

of the attack is also lower as long as σ is small enough.
The results in Proposition 5 extend to random equilibrium selections. Indeed, fix an

arbitrary set of types [θ1� θ2] ⊂ R and an arbitrary selection F ∈ F(σ), and consider the
implied probability that, conditional on θ ∈ [θ1� θ2], the policy maker is strictly worse off
with the option to intervene. This probability is zero either for all σ or at least for σ small
enough. Notwithstanding the fact that, in general, the selection F may also depend on
σ , this property suggests that the risk of being worse off with the option to intervene
vanishes as the agents’ information becomes highly precise.

We can also accommodate the case that the selection F changes with σ by con-
sidering bounds on equilibrium payoffs across all possible equilibria. Let U(θ;σ) and
U(θ;σ) denote, respectively, the supremum and infimum of the set of equilibrium pay-
offs that type θ can obtain in the game with the option to intervene, when the qual-
ity of information is σ . The following proposition characterizes the relation between
these bounds and the payoff obtained in the game in which the option to intervene is
absent.

Proposition 6 (Payoff bounds). For any σ > 0, U(θ;σ) ≥ Uo(θ;σ) for all θ > θ, with
strict inequality for θ ∈ (θ�θ#(σ)] and with limθ→+∞ |U(θ;σ) − Uo(θ;σ)| = 0. Fur-
thermore, there exists a threshold θ†(σ) ≥ θ#(σ) such that U(θ;σ) < Uo(θ;σ) only if
θ > θ†(σ). Finally, limσ→0+ U(θ;σ)= limσ→0+ Uo(θ;σ) for all θ.

The result that U(θ;σ) ≥ Uo(θ;σ) follows from the fact that in the game with the
option to intervene, there always exist equilibria where each type above θ > θ can in-
duce all agents to not attack by raising the policy infinitesimally above r, thus obtaining
a payoff arbitrarily close to the highest feasible payoffW (θ� r�0). In contrast, in the game
without the option to intervene, the highest feasible payoffW (θ� r�0)may be attainable
only by sufficiently high types (for whom A(θ� r) becomes arbitrarily small). These ob-
servations explain the results in the proposition that pertain to the upper bound on the
equilibrium payoff. The results for the lower bounds follow from essentially the same
arguments discussed above in relation to Proposition 5: very high types can be worse off
with the option to intervene only if there exist equilibria in which the size of the attack
that each type faces when he does not raise the policy above r is larger than in the game
without the option to intervene. However, even if such equilibria exist, low types con-
tinue to be (weakly) better off with the option to intervene, no matter what equilibrium
is being played, for these types would have experienced regime change without the op-
tion to intervene. Finally, the result that as σ → 0, U(θ;σ) converges to Uo(θ;σ) for all
θ follows from the fact that as σ → 0, the lower bound on the equilibrium payoffs in the
game with the option to intervene is attained under any of the pooling equilibria, which
is clearly the same payoff as in the game in which the option to intervene is absent.
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Now imagine that before knowing his type, the policy maker decides whether to
maintain or to give up the option to intervene after learning θ. The aforementioned
results suggest that, in general, the policy maker need not be able to ensure that he will
be better off with the option to intervene no matter what the realized θ is: he may get
“trapped” in an equilibrium in which he is worse off when θ turns out to be sufficiently
high. Even then, however, the policy maker is better off for low θ. Therefore, the option
to intervene either is beneficial for all θ or it implements a form of ex ante insurance
across types.

6. Contrast to common knowledge

We now contrast the predictions that the theory delivers for the incomplete-information
game with those for its common-knowledge counterpart. We further show that while
multiplicity obtains in our model for any level of noise, the set of equilibrium outcomes
becomes smaller and smaller (in an appropriate sense) as the quality of information
improves—but it explodes when the noise is zero. The purpose of these exercises is
twofold: (i) to highlight that the selection power of global games retains significant bite
in games like ours where the endogeneity of information leads to multiple equilibria and
(ii) to establish that the predictions that we have identified would not have been possible
with complete information.

Recalling that ρ(θ) denotes the maximal level of r that is not strictly dominated by r
for a policy maker of type θ, we have the following result.

Proposition 7 (Common knowledge). Consider the game with σ = 0.

(i) A policy r(·) can be part of a subgame-perfect equilibrium if and only if r(θ)≤ ρ(θ)
for θ ∈ (θ�θ] and r(θ)= r for θ /∈ (θ�θ].

(ii) A regime outcome D(·) can be part of a subgame-perfect equilibrium if and only if
D(θ)= 1 for θ≤ θ,D(θ) ∈ {0�1} for θ ∈ (θ�θ], andD(θ)= 0 for θ > θ.

This result contrasts sharply with the results in Propositions 1–4. None of the pre-
dictions in the game with incomplete information is valid in the game with common
knowledge. In particular, the policy can now take any shape in the critical region (θ�θ].
Similarly, the probability of regime change can take any value within the critical region
and need not be monotone in θ. In essence, “almost anything goes” within the critical
region under complete information. In particular, the only policy choices and regime
outcomes that are ruled out by equilibrium reasoning under complete information are
those that are ruled out by strict dominance. A similar anything-goes result holds if one
looks at the policy maker’s payoff.

The contrast between the complete- and incomplete-information versions of our
model is most evident in the limit as σ → 0+. Let G(σ) denote the set of pairs (θ� r) such
that in the game with noise σ ≥ 0, there is an equilibrium in which type θ sets the policy
at r. Next, let ρ+ ≡ limθ→θ+ ρ(θ).36 We then have the following result.

36Note that, in general, ρ+ can be strictly higher than ρ(θ)= r.
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Figure 1. Pairs (θ� r) that can be observed as equilibrium outcomes.

Proposition 8 (Limit outcomes). Under complete information,

G(0)= {(θ� r) : either θ ∈ (θ�θ] and r ≤ r ≤ ρ(θ) or θ /∈ (θ�θ] and r = r}�

In contrast, under incomplete information,

lim
σ→0+ G(σ)= {

(θ� r) : either r = r and θ ∈ R�or r ∈ (ρ+� r#(0+)] and θ= ρ−1(θ)
}
�

which is a zero-measure subset of G(0).

This result, which follows from the fact that as σ → 0+, θ∗∗
s → θ∗

s for all s > r, is
illustrated in Figure 1 for an example in which Z(θ� r) = z, W (θ� r�A) = V (θ�A) − r,
L(θ� r) = −r, and R(θ� r�A) = V (θ�A). The common-knowledge set, G(0), is given by
the large triangular area. The incomplete-information set, G(σ), for σ > 0 is given by
the dashed area. In this case, as long as σ > 0, the lower is σ , the smaller is the set of
policies that can be played by any given θ and, hence, the smaller is the dashed area
in Figure 1 (i.e., σ ′ > σ > 0 implies G(σ ′) ⊃ G(σ)). The monotonicity of G(σ) in σ does
not necessarily hold in the case where the agents’ payoff in case of regime change de-
pends θ. However, as the proposition makes clear, what is true more generally is that, in
the limit, as the noise in information vanishes, the set of policies that can be sustained
in equilibrium for almost any given θ is a zero-measure subset of the set of policies that
can be sustained under common knowledge. More precisely, the set G(σ) converges
to the boundary points of the set of policies that would have been possible under com-
plete information for almost any θ≤ θ#(0+)≡ limσ→0+ θ#(σ) and converges to the cost-
minimizing policy r for θ > θ#(0+).

7. Concluding remarks

The approach followed in most applications of global games is to use incomplete infor-
mation as a tool to select a unique equilibrium in coordination settings that admit mul-
tiple equilibria under common knowledge—to assume certain exogenous information
structures that ensure uniqueness, without investigating what determines information
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in the first place. For certain questions, however, the endogeneity of information is cen-
tral to the phenomenon under examination and often brings back multiple equilibria.
The broader methodological contribution of this paper is to illustrate that this multi-
plicity may be very different from the one that obtains under common knowledge and,
more importantly, that it need not preclude concrete, intuitive, and testable predictions.

These predictions typically take the form of stochastic nonlinear relations between
the endogenous variables of interest (e.g., the probability of regime change and of pol-
icy interventions) and the primitives of the model (e.g., the underlying fundamentals),
with the randomness originating in the econometrician’s uncertainty over the equilib-
rium being played as opposed to measurement error (as in unique-equilibrium models).
Clearly, confronting these predictions with the data remains more challenging than in
unique-equilibrium models. Yet, recent advances in structural estimation of multiple-
equilibria models (e.g., Tamer 2003, Ciliberto and Tamer 2009, Grieco 2010) may help in
this direction.

The procedure of iterated deletion of nonequilibrium strategies we use in the present
paper to identify sharp predictions rests, of course, on the specific channel of informa-
tion endogeneity we considered (signaling). In future work, it would be interesting to
investigate how analogous procedures can be used to deliver tight predictions in games
where the endogeneity of information comes from alternative channels, such as the ag-
gregation of information through prices or social learning in dynamic settings.37

Appendix A: Additional results

Proposition 1 in the main text leaves open the possibility of equilibria in which the policy
is raised to some s > r#. This possibility is ruled out in Proposition 2 by imposing SCC.
Part (i) in Proposition 9 shows that this possibility vanishes in the limit as σ → 0, even
when SCC does not hold, while parts (ii) and (iii) study the limit behavior of the range of
policy intervention.

Proposition 9 (Necessary conditions for small σ). For any ε > 0, there exists σ > 0 such
that the following results hold for any σ < σ .

(i) The set E(s;σ) 	= ∅ only if s ≤ r#(σ)+ ε.

(ii) Whenever E(s;σ) 	= ∅, then θ∗
s ≤ θ#(σ)+ ε.

(iii) Whenever E(s;σ) 	= ∅ and s ≥ r + ε, then θ∗∗
s (σ)≤ θ∗

s + ε.

Proposition 2 also left open the possibility of equilibria with s > r in which the policy
is raised for only a strict subset of the interval (θ∗

s � θ
∗∗
s ). With SCC, this possibility rests

37Complementary in this respect is the recent paper by Chassang (2010). That paper applies global-
games techniques in a dynamic exit game in which repeated play sustains multiple equilibria despite the
incompleteness of information. The origin of multiplicity in that paper is, therefore, very different from
the one that is the focus of our paper. The two papers are nevertheless complementary in the sense that
they both show how global-games techniques can retain significant selection power even when they fail to
deliver a unique equilibrium.
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on the agents following a nonmonotone strategy. This possibility can be ruled out by
letting the distribution of the noise be log-concave—a restriction that helps guarantee
that, along any equilibrium, the agents’ posteriors about θ, and hence their strategies,
are monotone in their signals.

Proposition 10 (Monotonicity of speculators’ behavior). (i) Suppose the noise distri-
bution ψ is log-concave. Then, for any σ > 0 and any s ∈ (r� r#(σ)], E(s;σ) 	= ∅.

(ii) Suppose SCC holds andψ is log-concave. Then for any σ > 0 and any s ∈ (r� r#(σ)],
every equilibrium in E(s;σ) is such that r(θ)= s for all θ ∈ (θ∗

s � θ
∗∗
s ).

Part (i) in Proposition 10 establishes that log-concavity of ψ is, by itself, another suf-
ficient condition for the existence of equilibria in which the policy maker raises the pol-
icy to s for any s ∈ (r� r#(σ)].38 Part (ii) then establishes that the combination of the
log-concavity of ψ with SSC suffices to rule out equilibria in which the policy is raised
for only a subset of the interval (θ∗

s � θ
∗∗
s ), which further sharpens the interpretation of

(θ∗
s � θ

∗∗
s ).

Appendix B: Omitted proofs

Proof of Lemma 1. Considers the continuation game that follows the observation of r.
Because the observation of r conveys no information, this game is essentially a stan-
dard global game (e.g., Morris and Shin 1998, 2003). The remainder of this proof below
shows that this game admits a unique continuation equilibrium in monotone strategies.
Standard results from global games (based on iterated deletion of strictly dominated
strategies) then imply that this equilibrium is the unique equilibrium of the continua-
tion game.

Clearly, any monotone continuation equilibrium must be characterized by thresh-
olds x#(σ) and θ#(σ) such that all agents attack if x < x#(σ) and do not attack if
x > x#(σ), in which case regime change occurs if θ ≤ θ#(σ) and does not occur if
θ > θ#(σ). Hereafter, we show that such a continuation equilibrium exists and is unique.
To simplify the notation, we momentarily drop the dependence of the thresholds x#(σ)

and θ#(σ) on σ .
First note that an agent with signal xwho expects regime change to occur if and only

if θ≤ θ# finds it optimal to attack if and only if

∫ θ#

−∞
Z(θ̃� r)

1
σ
ψ

(
x− θ̃
σ

)
dθ̃−Q(r)≥ 0� (10)

38The role of log-concavity is to guarantee that, irrespective of the shape of the policy r in the region
[θ∗
s � θ

∗∗
s ], the probability that each agent assigns to regime change when observing no intervention is nec-

essarily decreasing in the signal x. This in turn implies that the size of the attack A(θ� r) that the policy
maker expects when he does not intervene is necessarily decreasing in θ. As we show in the proof of Propo-
sition 10 in Appendix B, under such monotonicities, one can construct equilibria in which intervention
occurs for a (possibly nonconnected) subset of [θ∗

s � θ
∗∗
s ].
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Because Z(·� r) is nonincreasing, the left-hand side of (10) is continuously strictly de-
creasing in x.39 Furthermore, it is strictly positive for x small enough and is strictly neg-
ative for x large enough. It follows that the inequality in (10) holds if and only if x≤ x#,
where x# is the unique solution to

∫ θ#

−∞
Z(θ̃� r)

1
σ
ψ

(
x# − θ̃
σ

)
dθ̃=Q(r)� (11)

Next consider the fate of the regime. Because A(θ� r)=
((x# − θ)/σ) is decreasing
in θ, regime change occurs if and only if θ ≤ θ#, where the threshold θ# is the unique
solution to

R

(
θ#� r�


(
x# − θ#

σ

))
= 0� (12)

Thus any monotone equilibrium is identified by a solution (x#� θ#) to conditions
(11) and (12). Below, we show that a solution to these conditions exists and is
unique.

To this aim, let θ#(x#) be the implicit function defined by (12). By the implicit func-
tion theorem,

dθ#(x#)

dx# = −RA(θ#� r�
((x# − θ#)/σ))ψ((x# − θ#)/σ)

−RA(θ#� r�
((x# − θ#)/σ))ψ((x# − θ#)/σ)+ σRθ(θ#� r�
((x# − θ#)/σ))

∈ (0�1)�

Next, let LHS(x#) denote the function of x# that is defined by the left-hand side of (11)
once we replace θ# with θ#(x#). Differentiating with respect to x# gives the expres-
sion

∂LHS(x#)

∂x# = dθ#(x#)

dx# Z(θ#(x#)� r)
1
σ
ψ

(
x# − θ#(x#)

σ

)
(13)

+
∫ θ#(x#)

−∞
Z(θ̃� r)

1
σ2ψ

′
(
x# − θ̃
σ

)
dθ̃�

Integrating by parts, the last term in (13) can be rewritten as

−Z(θ#(x#)� r)
1
σ
ψ

(
x# − θ#(x#)

σ

)
+ lim
θ̃→−∞

Z(θ̃� r)
1
σ
ψ

(
x# − θ̃
σ

)

+
∫ θ#(x#)

−∞
Zθ(θ̃� r)

1
σ
ψ

(
x# − θ̃
σ

)
dθ̃�

39Note that in any pooling equilibrium, after observing r = r, the agents’ posterior beliefs that θ̃ < θ
are given by 1 −
((x− θ)/σ). These beliefs can be ranked according to first-order stochastic dominance
(FOSD), implying that given any nonincreasing function f (θ), the expected value of f given x is decreasing
in x.
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It follows that (13) reduces to

∂LHS(x#)

∂x# =
(
dθ#(x#)

dx# − 1
)
Z(θ#(x#)� r)

1
σ
ψ

(
x# − θ#(x#)

σ

)

+
∫ θ#(x#)

−∞
Zθ(θ̃� r)

1
σ
ψ

(
x# − θ̃
σ

)
dθ̃�

which is clearly negative. Last, note that

lim
x#→−∞

LHS(x#) >Q(r) > 0 = lim
x#→+∞

LHS(x#)�

By the intermediate value theorem, it then follows that there exists a unique x# such that
LHS(x#)=Q(r). Given the uniqueness of x#, the uniqueness of θ# follows immediately
from (12). This establishes the existence and uniqueness of a monotone continuation
equilibrium. �

Proof of Lemma 2. Because the policy maker faces no uncertainty about the size of
the attack, he can predict the fate of the regime with certainty. The assumption that
the payoff L in case of regime change is independent of A then implies that raising the
policy above r and experiencing regime change yields a lower payoff than leaving the
policy at r.40 It follows that any type who in equilibrium raises the policy above r must
be spared from regime change, for otherwise he would be strictly better off by setting
r = r. By implication, the observation of any equilibrium policy r > r necessarily signals
to the agents that the status quo will be maintained and thus induces each agent to not
attack no matter what his signal x is. But then any type of the policy maker can always
save on the cost of intervention by setting the lowest r > r among those that are played
in equilibrium. Hence in any equilibrium in which some type intervenes, there exists
a single s > r such that r(θ) = s whenever r(θ) 	= r. Furthermore, no speculator attacks
following the observation of r = s, which means thatA(θ� s)= 0 for all θ. �

Proof of Lemma 3. That E(s;σ)= ∅ for any s > r for whichW (θ� s�0) < L(θ� r) for all θ
follows directly from the fact that, in this case, the net payoff that each type θ obtains by
raising the policy to s is strictly less than the payoff that the same type obtains by leaving
the policy at r (this is true irrespective of the agents’ behavior and of whether leaving the
policy at r leads to regime change). Thus consider s for which there exists a θ ≥ θ such
that

W (θ� s�0)≥L(θ� r)�
The assumption that W (θ� s�0)−L(θ� r) is strictly increasing in θ then implies that any
type θ > θ∗

s , by setting r = s, can guarantee himself a payoff strictly higher than the pay-
off that the same type obtains by setting r = r and experiencing regime change (recall

40When leaving the policy at r leads to regime change, it follows from the assumption that L(θ� r) is
strictly decreasing in r; when, instead, it leads to no regime change, it follows from the assumption that
W (θ� r�A) > L(θ� r) when R(θ� r�A) > 0.
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that, from Lemma 2, A(θ� s) = 0 for any θ). But then, in equilibrium, no type above θ∗
s

experiences regime change. �

Proof of Lemma 4. Consider the sequence {θn}∞n=0 constructed as follows. First, let

θ0 ≡ inf{θ≥ θ∗
s :W (θ� s�0) <W (θ� r�1) and R(θ� r�1) > 0}�

That θ0 < +∞ follows from the assumption that limθ→+∞{W (θ� s�0) − W (θ� r�1)} < 0,
which simply imposes that raising the policy is dominated for sufficiently high types.
Next, for any n≥ 1, let

θn ≡ inf{θ≥ θ∗
s :g(θ;θ∗

s � θ
n−1�σ) < 0}�

where, for any θ≥ θ, any (θ∗
s � θ

′)with θ′ ≥ θ∗
s , and any σ > 0, the function g is defined by

g(θ;θ∗
s � θ

′�σ)≡U(θ� s�0)−U(θ� r�A(θ;θ∗
s � θ

′))�

where A(θ;θ∗
s � θ

′)≡
((X(θ∗
s � θ

′;σ)− θ)/σ) and where X(θ∗
s � θ

′;σ) is the unique solu-
tion to (5). The function g(θ;θ∗� θ′�σ) thus identifies the differential between the payoff
that type θ obtains by raising the policy to r = s, facing no attack, and avoiding regime
change, and the payoff that the same type obtains by leaving the policy at r = r, facing an
attack of sizeA(θ;θ∗

s � θ
′)—that is, the attack implied by the agents play according to the

threshold strategy with cutoffX(θ∗
s � θ

′;σ)—and then facing regime change if and only if
R(θ� r�
((X(θ∗

s � θ
′;σ)− θ)/σ))≤ 0. Note that because θ∗

s ≥ θ, U(θ� s�0)=W (θ� s�0) for
all θ > θ∗

s . Furthermore, becauseW (θ� s�0) > L(θ� r) for all θ > θ∗
s , then g(θ;θ∗

s � θ
′�σ) < 0

only if R(θ� r�A(θ;θ∗
s � θ

′)) > 0; that is, for any type above θ∗
s to be better off by leaving

the policy at r = r, it must be that the size of the attack A(θ;θ∗
s � θ

′) triggered by leaving
the policy at r does not lead to regime change.

This sequence has a simple interpretation. In any equilibrium in which the range
of the policy is r(R)= {r� s}, no type θ /∈ [θ∗

s � θ
0] raises the policy to r = s. Given this, an

agent who expects regime change to occur if and only if θ < θ∗
s and r(θ)= r if and only if

θ /∈ [θ∗
s � θ

0] finds it optimal to attack, when observing r, if and only if he receives a signal
x≤X(θ∗

s � θ
0;σ). To see this, recall thatX(θ∗

s � θ
0;σ) is the unique solution to

∫ θ∗
s

−∞
Z(θ̃� r)

1
σ
ψ

(
x− θ̃
σ

)
dθ̃

/(
1 −


(
x− θ∗

s

σ

)
+


(
x− θ0

σ

))
−Q(r)= 0� (14)

Along with the fact that the expected payoff from attacking (the left-hand side of (14)) is
positive for sufficiently low x and negative for sufficiently high x, this gives the result.

But then, by implication, an agent who expects the status quo to be maintained for
all θ≥ θ∗

s (but possibly also for some θ < θ∗
s ) and r(θ)= r for all θ /∈ [θ∗

s � θ
0] (but possibly

also for some θ ∈ [θ∗
s � θ

0]) never finds it optimal to attack for x >X(θ∗
s � θ

0;σ). To see this,
note that when the status quo is maintained also for some θ < θ∗

s , the payoff that the
agent expects from attacking when he observes r is smaller than when regime change
occurs for all θ < θ∗

s . Similarly, when the policy maker leaves the policy at r also for some
θ ∈ [θ∗

s � θ
0], the observation r = r maps to a lower posterior probability of regime change
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than when r = s for all θ ∈ [θ∗
s � θ

0]. Hence, the incentives to attack after observing r are
maximal when regime change occurs for all θ < θ∗

s and r(θ)= s for all θ ∈ [θ∗
s � θ

0], which
explains why no agent ever finds it optimal to attack for x >X(θ∗

s � θ
0;σ). Knowing this,

a policy maker who expects no agent to attack for x >X(θ∗
s � θ

0;σ) never finds it optimal
to raise the policy to r = s for any θ > θ1. Knowing this, no agent finds it optimal to attack
for any x >X(θ∗

s � θ
1;σ) when observing r, and so on.

Below, we conclude the proof by establishing that the sequence {θn}∞n=0 is nonin-
creasing. Because it is also bounded from below by θ∗

s , it has to converge. Now the limit
is θ∗∗

s = max{θ̂s� θ̇s}, where

θ̇s = sup
{
θ≥ θ∗

s :W (θ� s�0)=W (θ� r�B(θ∗
s � θ;σ)) and R(θ� r�B(θ∗

s � θ;σ)) > 0
}

θ̂s ≡ sup
{
θ≥ θ∗

s :R(θ� r�B(θ∗
s � θ;σ))= 0

}
if at least one of the above two sets is nonempty; else, the limit is θ∗

s . In the latter case,
by the definition of the sequence {θn}∞n=0, no type above θ∗

s is willing to raise the policy
to r = s. Together with the fact that W (θ� s�0) < L(θ� r) for any θ < θ∗

s , meaning that no
type below θ∗

s is also willing to raise the policy, then this means that E(s;σ) = ∅. We
conclude that if E(s;σ) 	= ∅, there must exist a θ′′

s ≥ θ∗
s such that (i) either W (θ′′

s � s�0)=
W (θ′′

s � r�B(θ
∗
s � θ

′′
s ;σ)) and R(θ′′

s � r�B(θ
∗
s � θ

′′
s ;σ)) > 0 or (ii) R(θ′′

s � r�B(θ
∗
s � θ

′′
s ;σ))= 0.

We conclude the proof by showing that the sequence {θn}∞n=0 defined above is in-
deed nonincreasing. To see this, fix any s > r for which there exists a θ ≥ θ such that
W (θ� s�0)≥ L(θ� r) and let θ∗

s = inf{θ≥ θ :W (θ� s�0)≥ L(θ� r)}. Towards a contradiction,
suppose that there exists an n≥ 1 such that θn > θn−1. Without loss of generality, then let
n≥ 1 be the first step in the sequence for which θn > θn−1 (i.e., θj ≤ θj−1 for all j ≤ n− 1).
By the definition of θn−1, then for any θ > θn−1,

g(θ;θ∗
s � θ

n−2�σ) < 0�

Because W (θ� s�0) > L(θ� r) for any θ > θ∗
s , this means that for any θ > θn−1, necessarily

R(θ� r�
((X(θ∗
s � θ

n−2)− θ)/σ)) > 0, meaning that the policy maker can avoid regime
change by leaving the policy at r. This in turn implies that for any θ > θn−1, the payoff
by not raising the policy is

W

(
θ� r�


(
X(θ∗

s � θ
n−2)− θ
σ

))
�

Because θn−1 ≤ θn−2 and because X(θ∗
s � ·;σ) is increasing, this in turn implies that for

any θ > θn−1,

g(θ;θ∗
s � θ

n−1�σ) < 0�

By the definition of θn, this means that θn ≤ θn−1, which proves that the sequence {θn}∞n=0
is nonincreasing. �

Proof of Lemma 5. That D(θ) = 1 for any θ < θ∗
s is trivial when θ∗

s = θ. Thus assume
θ∗
s > θ. The result that D(θ) = 1 for any θ <min{θ∗

s � θ
#(σ)} is then established by com-

paring the agents’ incentives to attack after observing r with the corresponding incen-
tives when they expect r(θ)= r for all θ.
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Let {θn�xn}∞n=0 be the following sequence. First, let θ0 ≡ θ and let x0 be implicitly
defined by

∫ θ

−∞
Z(θ̃� r)

1
σ
ψ

(
x0 − θ̃
σ

)
dθ̃=Q(r)�

Next, for any n ≥ 1, let θn ≡ min{θ∗
s � θ

′
n}, where θ′

n solves R(θ′
n� r�
((xn−1 − θ′

n)/σ))= 0,
and let xn be implicitly defined by

∫ θ′
n

−∞
Z(θ̃� r)

1
σ
ψ

(
xn − θ̃
σ

)
dθ̃=Q(r)�

This sequence also has a simple interpretation. An agent who observes r = r, and be-
lieves that r(θ)= r for all θ and that no other agent attacks (in which case regime change
occurs if and only if θ≤ θ) finds it optimal to attack if and only if x≤ x0. By implication,
an agent who expects no other agent to attack and r(θ) = r for all θ < θ∗

s (but possibly
r(θ) > r for some θ > θ∗

s ) necessarily finds it optimal to attack for any x < x0. This sim-
ply follows from the fact that the observation of r is most informative of regime change
when all types for whom regime change occurs set r = r, while some of the types who
save the regime raise the policy above r. However, if all agents attack whenever x < x0,
regime change occurs for all θ < θ1. This in turn implies that there exists an x1 > x0 such
that an agent who expects all other agents to attack if x < x0 (and hence regime change
to occur for all θ≤ θ1) and who believes that r(θ)= r for all θ necessarily finds it optimal
to attack for all x < x1. By implication, an agent who expects r(θ)= r for all θ < θ∗

s , but
possibly r(θ) > r for some θ > θ∗

s , necessarily finds it optimal to attack for any x < x1 and
so on.

Because {θn}∞n=0 is increasing and bounded from above, it necessarily converges.
Note that R and 
 are continuous, and that the unique solution (x�θ′) to
R(θ′� r�
((x− θ′)/σ))= 0 and

∫ θ′

−∞
Z(θ̃� r)

1
σ
ψ

(
x− θ̃
σ

)
dθ̃=Q(r)

is attained at θ′ = θ#(σ) and x = x#(σ) (by uniqueness of the monotone equilibrium
established in Lemma 1). It follows that limn→+∞ θn = θ∗

s if θ∗
s ≤ θ#(σ) and limn→+∞ θn =

θ#(σ) otherwise. By implication, D(θ) = 1 for all θ < min{θ∗
s � θ

#(σ)}. This establishes
the first part of the lemma.

That θ∗
s > θ#(σ) if and only if s > r#(σ) follows from the fact that for any θ,

W (θ� ·�0) − L(θ� r) is continuous and strictly decreasing in s, while for any s > r,
W (·� s�0)−L(·� r) is continuous and strictly increasing in θ. This establishes the second
part of the lemma. �

Proof of Proposition 2. We start by establishing the existence of pooling equilibria.

Lemma A0. For any σ > 0, E(r;σ) 	= ∅.
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Proof. Fix σ > 0. We establish the result by proving the existence of a strategy pro-
file for the agents, along with a system of supporting beliefs, such that, given this pro-
file, no type of the policy maker finds it optimal to raise the policy above r. Con-
sider the following strategy profile for the agents: (i) for r = r, a(x� r) = 1 if and only if
x < x#(σ), where x#(σ) is the unique threshold defined in the proof of Lemma 1; for
any r ∈ (r�ρ(θ)], a(x� r) = 1 irrespective of x; for any r > ρ(θ), a(x� r) = 0 irrespective
of x.

Given this profile, no type of the policy maker finds it optimal to raise the policy.
This is immediate for any θ ≤ θ: for these types, raising the policy to r ∈ (r�ρ(θ)] leads
to regime change (with payoff L(θ� r) < L(θ� r)), whereas raising the policy above ρ(θ)
is strictly dominated by leaving the policy to r. Thus consider a type θ > θ. Clearly,
raising the policy to r ∈ (r�ρ(θ)] yields a lower payoff than leaving the policy at r, for
it is costly and it increases the measure of agents attacking. That raising the policy
to r > ρ(θ) also yields a lower payoff than leaving the policy at r follows from the fact
that

W (θ� r�0) <W (θ�ρ(θ)�0) <W
(
θ� r�


(
x#(σ)− θ

σ

))
≤W

(
θ� r�


(
x#(σ)− θ

σ

))
�

where the first inequality follows from Wr < 0, the second inequality follows from SCC
along with the fact that

W (θ�ρ(θ)�0)=L(θ� r)≤W
(
θ� r�


(
x#(σ)− θ

σ

))
�

and the last inequality follows from the monotonicity of the size of attack

((x#(σ) − θ)/σ) in θ along with the fact that WA ≤ 0. We thus conclude that, given
the agents’ strategy, no type of the policy maker has an incentive to raise the policy
above r.

To complete the proof, it then suffices to show that the above strategy profile for
the agents can be supported by an appropriate system of beliefs. When r = r, Bayes’
rule imposes that, for any θ, μ(θ|x� r) = 1 − 
((x− θ)/σ). From the construction in
the proof of Lemma 1, it is then immediate to see that, given these beliefs, attacking if
and only if x < x#(σ) is sequentially optimal for the agents. Next, consider r ∈ (r�ρ(θ)].
Then let θ∗

r = inf{θ≥ θ :W (θ� r�0)≥ L(θ� r)}. Because for any θ ∈ [θ∗
r � θ], r ≤ ρ(θ), it then

follows that for any θ ∈ [θ∗
r � θ],Z(θ� r)≥Q(r). Then let μ(·|x� r) be any beliefs that assign

probability 1 to the event that θ ∈ [θ∗
r � θ], irrespective of x. Because for any θ ∈ [θ∗

r � θ],
D(θ� r)= 1, it then follows that these beliefs satisfy

∫ θ

θ∗
r

Z(θ̃� r)dμ(θ̃|x� r)≥Q(r) for all x�

which guarantees that any agent who expects all other agents to attack finds it optimal
to do the same, irrespective of his signal. Finally, for any r > ρ(θ), let μ(·|x� r) be any
beliefs that assign probability 1 to θ > θ, irrespective of x. Under such beliefs, any agent
who expects no other agent to attack finds it optimal to refrain from attacking. �
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Next, consider s > r. We start by establishing the following preliminary result.

Lemma A1. For any (σ� s) such that σ > 0 and s belongs to (r� r#(σ)], there exists at least
one pair (θ∗

s � θ
′′
s ), with θ′′

s ≥ θ∗
s such that θ∗

s satisfies condition (7) and θ′′
s satisfies condition

(9). Furthermore, θ′′
s > θ

∗
s if s < r#(σ).

Proof. Fix σ > 0. By definition, r#(σ) solves W (θ#(σ)� r#(σ)�0)= L(θ#(σ)� r), where
θ#(σ) ∈ (θ�θ) is the unique threshold that corresponds to the pooling equilibria of part
(ii) in Proposition 1. Because, for any θ, W (θ� s�0) is continuous and strictly decreasing
in s and because, for any s,W (θ� s�0)−L(s� r) is continuous and strictly increasing in θ,
we have that, for any s ∈ (r� r#(σ)], {θ ≥ θ :W (θ� s�0) ≥ L(θ� r)} 	= ∅. Furthermore, θ∗

s ≤
θ#(σ) with strict inequality if and only if s < r#(σ). Next note that X(θ�θ;σ) coincides
with the unique solution to

∫ θ

−∞
Z(θ̃� r)

1
σ
ψ

(
x− θ̃
σ

)
dθ̃=Q(r)�

From the results established in the proof of Lemma 1, one can then verify that
R(θ� r�B(θ�θ;σ)) ≤ 0 for all θ ≤ θ#(σ) with strict inequality for θ < θ#(σ) and
R(θ� r�B(θ�θ;σ)) > 0 for all θ > θ#(σ).

Because R(·� r�B(θ∗
s � ·;σ)) is continuous in θ and R(θ� r�B(θ∗

s � θ;σ)) > 0, this means
that there always exists a θ′′

s ≥ θ∗
s (with strict inequality if θ∗

s < θ
#(σ), that is, if s < r#(σ))

that satisfies condition (9). �

Next, we show that when SCC holds, then for any σ > 0 and any s > r#(σ), E(s;σ)=
∅. To see this, note that when s > r#(σ), then either {θ ≥ θ :W (θ� s�0) ≥ L(θ� r)} = ∅

or, if the set is not empty, in which case its greatest lower bound is θ∗
s > θ

#(σ), then
R(θ∗

s � r�B(θ
∗
s � θ

∗
s ;σ)) > 0. Next observe that because the function

B(θ∗
s � θ;σ)≡


(
X(θ∗

s � θ;σ)− θ
σ

)

is decreasing in θ over [θ∗
s �+∞) (to see this, use the representation given in (23) in the

proof of Proposition 9 below), then R(θ� r�B(θ∗
s � θ;σ)) > 0 for all θ ≥ θ∗

s . This means
that there is no θ′′

s ≥ θ∗
s that satisfies condition (9). To conclude that E(s;σ)= ∅, it then

suffices to show that there is also no type θ′′
s ≥ θ∗

s that satisfies condition (8). To see this,
note that, for any θ≥ θ∗

s ,

G(θ;θ∗
s �σ) ≡W (θ� s�0)−W (θ� r�B(θ∗

s � θ;σ))
≤ W (θ� s�0)−W (θ� r�B(θ∗

s � θ
∗
s ;σ))

< 0�

where the first inequality follows again from the fact that B(θ∗
s � θ;σ) is decreasing in θ,

while the second inequality follows from SCC. We conclude that condition (8) admits no
solution for s > r#(σ). From Proposition 1, this means that E(s;σ)= ∅.
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Thus consider s ∈ (r� r#(σ)]. That, for any s ∈ (r� r#(σ)], E(s;σ) 	= ∅, as well as the
existence of equilibria satisfying the properties of part (ii) of Proposition 2 follows from
Lemma A2 below.

Lemma A2. Assume SCC holds. For any σ > 0 and any s ∈ (r� r#(σ)], there exists an equi-
librium in which r(θ) = s if θ ∈ (θ∗

s � θ
∗∗
s (σ)] and r(θ) = r otherwise. The equilibrium is

sustained by the following strategy for the agents: (i) for r = r, a(x� r) = 1 if and only if
x < x∗

s = X(θ∗
s � θ

∗∗
s (σ);σ); for any r ∈ (r� s), a(x� r) = 1, irrespective of x; for any r ≥ s,

a(x� r)= 0, irrespective of x.

Proof. From Lemma A1, for any σ > 0 and any s ∈ (r� r#(σ)], there always exists a pair
(θ∗
s � θ

′′
s ) such that θ∗

s satisfies condition (7) and θ′′
s ≥ θ∗

s satisfies condition (9). Thus let
θ∗∗
s (σ)= sup{θ′′

s ≥ θ∗
s :θ′′

s satisfies condition (8) or condition (9)}. We then have that, for
any θ ∈ (θ∗

s � θ
∗∗
s (σ)],

U(θ� s�0)−U
(
θ� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ
σ

))

=W (θ� s�0)−U
(
θ� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ
σ

))
≥ 0�

To see this, note that the inequality trivially holds if R(θ� r�
((X(θ∗
s � θ

∗∗
s (σ);σ) − θ)/

σ)) ≤ 0, that is, if by not raising the policy, type θ experiences regime change, in
which case U(θ� r�
((X(θ∗

s � θ
∗∗
s (σ);σ)− θ)/σ)) = L(θ� r) < W (θ� s�0). Thus suppose

that R(θ� r�
((X(θ∗
s � θ

∗∗
s (σ);σ)− θ)/σ)) > 0, which means that θ∗∗

s (σ) satisfies condi-
tion (8). In this case,

U(θ� s�0)−U
(
θ� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ
σ

))

=W (θ� s�0)−W
(
θ� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ
σ

))

≥W (θ� s�0)−W
(
θ� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ∗∗

s (σ)

σ

))

≥W (θ∗∗
s (σ)� s�0)−W

(
θ∗∗
s (σ)� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ∗∗

s (σ)

σ

))

= 0�

where the first inequality follows from the fact that W is nonincreasing in A, the sec-
ond inequality follows from SCC, and the last equality follows from the fact that θ∗∗

s (σ)

satisfies condition (8). Similar arguments imply that for any θ > θ∗∗
s (σ),

U(θ� s�0)−U
(
θ� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ
σ

))

=W (θ� s�0)−W
(
θ� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ
σ

))
≤ 0�
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To see this, note that if θ∗∗
s (σ) satisfies condition (8), then the result follows from

SCC along with the monotonicity of W (θ� r�A) in A and the strict monotonicity of

((X(θ∗

s � θ
∗∗
s (σ);σ)− θ)/σ) in θ. If, instead,

θ∗∗
s (σ)= sup

{
θ≥ θ∗

s :R
(
θ� r�


(
X(θ∗

s � θ;σ)− θ
σ

))
= 0

}
�

then necessarily

W (θ∗∗
s (σ)� s�0)−W

(
θ∗∗
s (σ)� r�


(
X(θ∗

s � θ
∗∗
s (σ);σ)− θ∗∗

s (σ)

σ

))
≤ 0�

But then, by the same arguments as above, for any θ > θ∗∗
s (σ), U(θ� s�0) −

U(θ� r�
((X(θ∗
s � θ

∗∗
s (σ);σ)− θ)/σ))≤ 0.

We are now ready to establish the result in the lemma. Because A(θ� r) = 1 >
A(θ� r) = 
((x∗

s − θ)/σ) for any r ∈ (r� s) and A(θ� r) = A(θ� s) = 0 for any r ≥ s, the
policy maker strictly prefers r to any r ∈ (r� s) and prefers s to any r > s. Indeed,
for any type θ ≤ θ, raising the policy to r ∈ (r� s) leads to regime change (with payoff
L(θ� r) < L(θ� r)), whereas, for any type θ > θ, raising the policy to r ∈ (r� s) yields a pay-
offW (θ� r�1) <W (1� r�A(θ� r)). Likewise, raising the policy to r > s leads to a lower pay-
off than raising the policy to s for any θ. Furthermore, r is dominant for any θ ≤ θ. For
θ > θ, instead, the payoff from raising the policy to r = s is W (θ� s�0), while the payoff
from leaving the policy at r = r is U(θ� r�A(θ� r)). From the definition of the thresholds
θ∗
s and θ∗∗

s (σ) and the properties established above, we then have that raising the policy
to r = s is optimal if and only if θ ∈ [θ∗

s � θ
∗∗
s (σ)], which establishes the optimality of the

policy maker’s strategy.
Next, consider the agents. When r = r, D(θ� r)= 1 occurs if and only if θ≤ θ̂s, where

θ̂s is the unique solution to

R(θ̂s� r�A(θ̂s� r))= 0�

When, instead, r ∈ (r� s), then D(θ� r) = 1 if and only if θ ≤ θ. Finally, for any r ≥ s,
D(θ� r)= 1 if and only if θ ≤ θ. An agent thus finds it optimal to follow the equilibrium
strategy if and only if his beliefs satisfy the following conditions

when r = r�

∫ θ̂s

−∞
Z(θ̃� r)dμ(θ̃|x� r)≥Q(r) if x < x∗

s and

(15)∫ θ̂s

−∞
Z(θ̃� r)dμ(θ̃|x� r)≤Q(r) if x≥ x∗

s

when r ∈ (r� s)�
∫ θ

−∞
Z(θ̃� r)dμ(θ̃|x� r)≥Q(r) for all x (16)

when r ≥ s�

∫ θ

−∞
Z(θ̃� r)dμ(θ̃|x� r)≤Q(r) for all x� (17)
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Beliefs are pinned down by Bayes’ rule when either r = r or r = s. In the first case (r = r),
for any θ≤ θ∗

s ,

μ(θ|x� r)=
(

1 −

(
x− θ
σ

))/(
1 −


(
x− θ∗

s

σ

)
+


(
x− θ∗∗

s (σ)

σ

))
�

while for any θ ∈ (θ∗
s � θ̂s),

μ(θ|x� r)=
(

1 −

(
x− θ∗

s

σ

))/(
1 −


(
x− θ∗

s

σ

)
+


(
x− θ∗∗

s (σ)

σ

))
�

That these beliefs satisfy condition (15) follows from the uniqueness of the threshold
X(θ∗

s � θ
∗∗
s (σ);σ), which implies that the expected payoff from attacking changes sign

only once at x= x∗
s =X(θ∗

s � θ
∗∗
s (σ);σ). In the second case (r = s), μ(θ|x� s)= 0, in which

case condition (17) is clearly satisfied. Finally, whenever r /∈ {r� s}, there exists an arbi-
trarily large set of out-of-equilibrium beliefs that satisfy (16) and (17)—see the construc-
tion in the proof of Lemma A0 for an example.

Combining the optimality of the agents’ strategies with the optimality of the policy
maker’s strategy gives the result. �

Proof of Proposition 3. Most of the results in Proposition 3 follow from Proposi-
tions 1 and 2 along with Properties 1 and 2 below. To save on notation, hereafter we
let θ∗

r (σ)≡ θ∗∗
r (σ)≡ θ#(σ) denote the unique thresholds that correspond to any of the

pooling equilibria of E(r;σ).

Property 1. For any σ > 0 and any s′� s′′ ∈ (r� r#(σ)], s′′ > s′ implies that �s′′(σ) ≤
�s′(σ).

To see this, note that, for any s ∈ (r� r#(σ)],

�s(σ)≡ θ∗∗
s (σ)− θ∗

s =
{
�̂s(σ) if Ĝ(�; s�σ) < 0 all �≥ �̂s(σ)
sup{�≥ �̂s(σ) : Ĝ(�; s�σ)= 0} otherwise�

where �̂s(σ) is the unique41 � ≥ 0 that solves R(θ∗
s + �� r�
((X(θ∗

s � θ
∗
s + �;σ) −

(θ∗
s +�))/σ))= 0 and where

Ĝ(�; s�σ) ≡G(θ∗
s +�;θ∗

s �σ)

≡W (θ∗
s +�� s�0)−W

(
θ∗
s +�� r�


(
X(θ∗

s � θ
∗
s +�;σ)− (θ∗

s +�)
σ

))
�

41That such a solution exists follows from the fact that s ≤ r#(σ) along with the fact that
R(θ� r�
((X(θ∗

s � θ;σ)− θ)/σ)) is strictly increasing in θ, with limθ→θ∗
s
R(θ� r�
((X(θ∗

s � θ;σ)− θ)/σ)) < 0<
limθ→θ R(θ� r�
((X(θ

∗
s � θ;σ)− θ)/σ)).
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Now, for any s ∈ (r� r#(σ)], � ≥ 0, and σ > 0, let B̂(�; s�σ) ≡ 
((X(θ∗
s � θ

∗
s + �;σ) −

(θ∗
s +�))/σ) and note that B̂(�; s�σ) is implicitly defined by

∫ θ∗
s

−∞
Z(θ̃� r)

1
σ
ψ

(
X(θ∗

s � θ
∗
s +�;σ)− θ̃
σ

)
dθ̃

−Q(r)
[

1 −

(
X(θ∗

s � θ
∗
s +�;σ)− θ∗

s

σ

)
+ B̂(�; s�σ)

]
= 0�

Integrating by parts and using the definition of B̂(�; s�σ), we then have that B̂(�; s�σ) is
implicitly defined by

(Z(θ∗
s � r)−Q(r))

(
1 −


(

−1(B̂)+ �

σ

))

−
∫ θ∗

s

−∞
∂Z(θ̃� r)

∂θ̃

(
1 −


(

−1(B̂)+ θ∗

s +�− θ̃
σ

))
dθ̃=Q(r)B̂�

from which we obtain that, for any s ∈ (r� r#(σ)), �≥ 0, and σ > 0,

∂B̂(�; s�σ)
∂s

= −
∫ θ∗

s

−∞
∂Z(θ̃� r)

∂θ̃

1
σ
ψ

(

−1(B̂)+ θ∗

s +�− θ̃
σ

)
dθ∗

s

ds
dθ̃

/[
−(Z(θ∗

s � r)−Q(r))ψ
(

−1(B̂)+ �

σ

)
d
−1(B̂)

dx

+
∫ θ∗

s

−∞
∂Z(θ̃� r)

∂θ̃
ψ

(

−1(B̂)+ θ∗

s +�− θ̃
σ

)
d
−1(B̂)

dx
dθ̃−Q(r)

]

≤ 0�

The result that B̂(�; ·�σ) ≡ 
((X(θ∗
s � θ

∗
s +�;σ)− (θ∗

s +�))/σ) is nonincreasing in s

along with the fact that R(θ� r�A) is increasing in θ and decreasing in A, in turn, imply
that �̂s(σ) is nonincreasing in s over (r� r#(σ)].

Next, consider the function Ĝ(�; s�σ) and observe that, for any σ > 0, Ĝ(·; ·�σ) is
continuous in (s��). Now fix s ∈ (r� r#(σ)) and σ > 0, and suppose that Ĝ(�; s�σ) <
0 for all � ≥ �̂s(σ), in which case �s(σ) = �̂s(σ). Because Ĝ(�; s�σ) is continuous in
(s��), there exists a δ > 0 such that, for any ŝ ∈ (s − δ� s + δ) and any � ≥ �̂s(σ) − δ,
Ĝ(�; ŝ� σ) < 0. Together with the monotonicity of �̂s(σ) in s, this means that ∂�s(σ)/
∂s ≤ 0.

Finally, consider the case where, given s ∈ (r� r#(σ)) and σ > 0, {� ≥ �̂s(σ) :
Ĝ(�; s�σ)= 0} 	= ∅, in which case �s(σ)= sup{� ≥ �̂s(σ) : Ĝ(�; s�σ)= 0}. The property
that lim�→+∞ Ĝ(�; s�σ) < 0 implies that Ĝ(·; s�σ) must be locally strictly decreasing in
� at �= �s(σ); that is,

∂Ĝ(�s(σ); s�σ)
∂�

< 0� (18)
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Furthermore,

∂Ĝ(�s(σ); s�σ)
∂s

= [
Wθ(θ

∗
s +�s(σ)� s�0)−Wθ

(
θ∗
s +�s(σ)� r� B̂(�s(σ);θ∗

s �σ)
)] × dθ∗

s

ds
(19)

+Wr(θ∗
s +�s(σ)� s�0)−WA

(
θ∗
s +�s(σ)� r� B̂(�s(σ); s�σ)

)∂B̂(�s(σ); s�σ)
∂s

≤ 0�

That the second and third terms of (19) are nonpositive follows from the fact that
W is decreasing in r and in A along with the fact that ∂B̂(�s(σ); s�σ)/∂s ≤ 0 as
shown above. That the first term of (19) is also nonpositive follows from the fact that
W (θ∗

s +�s(σ)� s�0)−W (θ∗
s +�s(σ)� r� B̂(�s(σ);θ∗

s �σ))= 0. The SCC along with the fact
that θ∗

s is locally nondecreasing then imply that the first term of (19) is nonpositive.
From the implicit function theorem, we then have that (18) together with (19) imply that
∂�s(σ)/∂s ≤ 0.

Combining the results above then implies that, for any σ > 0 and any s′� s′′ ∈
(r� r#(σ)], s′′ > s′ implies that �s′′(σ)≤ �s′(σ).

Property 2. For any σ�σ ′ > 0 and any s ∈ (r�min{r#(σ)� r#(σ ′)}), σ ′ > σ implies
�s(σ

′)≥ �s(σ).

This follows from the proof of part (iii) of Proposition 9 below, where it is shown that
�s(σ) is increasing in σ .

Given the aforementioned properties, the results in Proposition 3 can be established
as follows. First, note that, for any σ > 0, any F ∈ F(σ), any θ, and any r > r, we have

P(r�θ;F�σ)=
{∫

s∈[r�r#(σ)] I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF(s) if r ∈ (r� r#(σ)]

0 if r > r#(σ)

and

�(r;F�σ)=
{∫

s∈[r�r#(σ)]�s(σ)dF(s) if r ∈ (r� r#(σ)]
0 if r > r#(σ)�

Part (i). Fix σ > 0 and F ∈ F(σ), take any r ∈ (r� r#(σ)], and let θ◦(r;F�σ) = θ∗
r

and θ◦◦(r;F�σ) = sup{θ∗∗
s (σ) : s ∈ [r� r#(σ)]}. From Proposition 1, we then have that

P(r�θ;F�σ) > 0 only if θ ∈ [θ◦(r;F�σ)�θ◦◦(r;F�σ)].
Part (ii). Again fix σ > 0 and take any F ∈ F(σ). That D(θ;F�σ) is nonincreasing in

θ, with D(θ;F�σ) = 1 for θ < θ and D(θ;F�σ) = 0 for θ > θ#(σ), follows directly from
Proposition 1.

Part (iii). Fix σ > 0 and take any pair F�F ′ ∈ F(σ). For any θ ∈ (θ�θ#(σ)),

D(θ;F�σ) = F(r)+ 1 − F(ρ(θ))
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and similarly for F ′. Because F ′(s) = F(s) for s ∈ {r� r#(σ)} and F ′(s) < F(s) for all s ∈
(r� r#), thenD(θ;F ′�σ) >D(θ;F�σ), unlessD(θ;F�σ)= 1.

Next, consider the probability of intervention. From Property 1 above, �s(σ) is a
positive, (weakly) decreasing, and differentiable function of s for any s ∈ (r� r#(σ)). Now
fix r ∈ (r� r#(σ)). That F(r) = F ′(r) along with F ′(s) < F(s) for all s ∈ (r� r#(σ)) then
imply that

�(r;F�σ)−�(r�F ′�σ) =
∫
s∈[r�r#(σ)]

�s(σ)dF(s)−
∫
s∈[r�r#(σ)]

�s(σ)dF
′(s)

= −�r(σ)[F(r)− F ′(r)] −
∫
s∈[r�r#(σ)]

d�s(σ)

ds
[F(s)− F ′(s)]ds

≥ 0�

Part (iv). Take any c.d.f. F with support Supp[F] such that F(s) = 0 for all s ≤ r1
and F(s)= 1 for all s ≥ r2 for some r1� r2 ∈ R with r < r1 < r2 < limσ→0+ r#(σ). Note that
this implies that there exists σ > 0, such that, for any σ < σ , Supp[F] ⊂ [r� r#(σ)]. That,
for any r > r, limσ→0+ �(r�F�σ) = 0 follows from the dominated convergence theorem.
To see this, let H :R → R be the function whose domain is Supp[F] and that is given
by

H(s)= sup{θ :U(θ� s�0)−U(θ� r�1)≥ 0} − θ∗
s

for all s ∈ Supp[F]. It is immediate that H(s) ≥ 0, that H(·) is decreasing, and that∫
H(s)dF(s) < ∞. Furthermore, for any σ < σ and any s ∈ Supp[F], �s(σ) ≤ H(s).

These properties, together with the result in Proposition 9 in Appendix A, then imply
that

lim
σ→0+�(r�F�σ)= lim

σ→0+

∫
s≥r
�s(σ)dF(s)=

∫
s≥r

lim
σ→0+�s(σ)dF(s)= 0�

That, for any θ, any σ�σ ′ > 0, and any F ∈ F(σ) ∩ F(σ ′), D(θ;F�σ) = D(θ;F�σ ′)
follows from Proposition 1.

Last, that σ ′ > σ > 0 implies �(r�F�σ ′) ≥ �(r�F�σ) for all r ∈ (r�min{r#(σ)� r#(σ ′)})
and all F ∈ F(σ)∩ F(σ ′) follows from Property 2 above. �

Proof of Proposition 4. Part (i). To see that D(θ1� θ2;σ) and D(θ1� θ2;σ) are non-
increasing in the interval (θ1� θ2), in the product-order sense, consider any pair (θ1� θ2),
(θ′

1� θ
′
2) such that θ1 ≤ θ′

1 and θ2 ≤ θ′
2. Clearly, the distribution of θ̃ conditional on the

event that θ ∈ (θ′
1� θ

′
2) first-order-stochastically dominates the distribution of θ̃ con-

ditional on the event that θ ∈ (θ1� θ2). Along with the fact that, for any F ∈ F(σ),
D(·;F�σ) is nonincreasing in θ, this means that, for any F ∈ F(σ), D(θ1� θ2;F�σ) ≥
D(θ′

1� θ
′
2;F�σ). Standard envelope arguments, then imply that the same monotonici-

ties apply toD(θ1� θ2;σ) andD(θ1� θ2;σ). The result for P(r�θ1� θ2;σ) and P(r�θ1� θ2;σ)
follows directly from Proposition 3.

Part (ii). That P(r�θ1� θ2;σ) is independent of σ is immediate. That alsoD(θ1� θ2;σ)
is independent of σ follows from the fact that, for any σ > 0, lims→r+ θ

∗
s = θ along
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with the fact that Ds(θ;σ) = 0 for any θ > θ∗
s in any equilibrium in E(s;σ). That, for

any (θ1� θ2) and any σ�σ ′ > 0, θ2 < min{θ#(σ ′)�θ#(σ)} or θ1 > max{θ#(σ ′)�θ#(σ)} im-
ply D(θ1� θ2;σ) = D(θ1� θ2;σ ′) follows from the fact that, for any σ > 0 and any θ,
Ds(θ;σ) ≤ Dr(θ;σ) together with the fact that Dr(θ;σ) = 1 for all θ ≤ θ#(σ), while
Dr(θ;σ)= 0 for all θ > θ#(σ).

Next consider the claim that limσ→0+ P(r�θ1� θ2;σ) = 0 for any r > r and any
θ1� θ2 ∈ R. Clearly, the result is true if r > r#(0+) ≡ limσ→0+ r#(σ). Thus take r ∈
(r� r#(0+)]. Let F denote an arbitrary set of c.d.f.’s F with support Supp[F] ⊂ [r�ρ(θ)]
with the following properties: (i) F(σ) ⊂ F for any σ > 0; (ii) F is compact
with respect to the metric d(·) defined, for any pair F1�F2 ∈ F , by d(F1�F2) ≡
sup{|F1(A) − F2(A)| :A ∈ �}, where � is the Borel sigma algebra associated with the
interval [r�ρ(θ)]. For any σ > 0, any c.d.f. F ∈ F , any θ1 < θ2, and any r > r, then let

P̂(r� θ1� θ2;F�σ)≡ 1
θ2 − θ1

∫ θ2

θ1

∫
s∈[r�ρ(θ)]

I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF(s)dθ�

with the convention that, given any s ∈ [r�ρ(θ)], I{θ∈[θ∗
s �θ

∗∗
s (σ)]} = 0 if there is no θ′′

s ≥ θ∗
s

that satisfies condition (8) or condition (9). Note that

P̂(r� θ1� θ2;F�σ)= P(r�θ1� θ2;F�σ)≡ 1
θ2 − θ1

∫ θ2

θ1

P(r�θ;F�σ)dθ

if F ∈ F(σ), that is, if, given σ > 0, one restricts F to have support Supp[F] ⊂
[r� r#(σ)].

By Proposition 9 in Appendix A, for any s ≤ r#(0+), limσ→0+ �s(σ)= 0. This implies
that, for any θ ∈ [θ1� θ2] and any s ∈ [r�ρ(θ)] with θ∗

s 	= θ,

lim
σ→0+ I{θ∈[θ∗

s �θ
∗∗
s (σ)]} = 0�

By the Lebesgue dominated convergence theorem, we then have that, for any θ ∈
[θ1� θ2],

lim
σ→0+

∫
s∈[r�ρ(θ)]

I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF(s)=

∫
s∈[r�ρ(θ)]

lim
σ→0+ I{θ∈[θ∗

s �θ
∗∗
s (σ)]} dF(s)�

where the last integral is equal to zero unless F has a mass point at an s such that θ∗
s = θ.

It follows that

lim
σ→0+

∫ θ2

θ1

{∫
s∈[r�ρ(θ)]

I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF(s)

}
dθ

(20)

=
∫ θ2

θ1

{
lim
σ→0+

∫
s∈[r�ρ(θ)]

I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF(s)

}
dθ= 0�

where the first equality is again by the dominated convergence theorem, while the
second equality follows from the following property. Given any c.d.f. F with support
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Supp[F] ⊂ [r�ρ(θ)], there does not exist a Lebesgue positive-measure set E ⊂ [θ1� θ2]
such that, for any θ ∈ E, θ∗

s = θ with strictly positive probability. Formally, the set

S ≡
{
s ∈ [r�ρ(θ)] :F(s) > lim

x→s−
F(x)

}
has zero Lebesgue measure, which in turn implies that the set

�+ ≡
{
θ ∈ [θ1� θ2] :θ∗

s = θwith F(s) > lim
x→s−

F(x)
}

also has zero Lebesgue measure. This means that the set of points θ ∈ [θ1� θ2] such that

lim
σ→0+

∫
s∈[r�ρ(θ)]

I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF(s) > 0

has zero Lebesgue measure, which implies the result in (20).
Having established that, for any c.d.f. F ∈ F , limσ→0+ P̂(r� θ1� θ2;F�σ) = 0, we now

show that this property also implies that

lim
σ→0+

{
sup

F∈F(σ)
P(r�θ1� θ2;F�σ)

}
= 0�

First note that, by definition, for any σ > 0,

sup
F∈F(σ)

P(r�θ1� θ2;F�σ)≤ sup
F∈F

P̂(r� θ1� θ2;F�σ)�

which implies that

lim
σ→0+

{
sup

F∈F(σ)
P(r�θ1� θ2;F�σ)

}
≤ lim
σ→0+

{
sup
F∈F

P̂(r� θ1� θ2;F�σ)
}
� (21)

To establish the result, it thus suffices to show that the right-hand side of (21) is zero. This
is established as follows. First, recall that, by assumption, F is compact in the metric
d(F1�F2)≡ sup{|F1(A)− F2(A)| :A ∈ �}. Because it is metric, then F is also Hausdorff.
Next note that, for any σ > 0, the function family {P̂(r� θ1� θ2; ·�σ)}σ∈(0�σ] with domain
F and range in [0�1] is uniform equicontinuous in the metric d(·) defined above. This
means that for any ε > 0, there exists a δ > 0 (which may depend on ε only) such that for
any σ ∈ (0�σ] (i.e., for any family member P̂(r� θ1� θ2; ·�σ)) and any F1�F2 ∈ F such that
d(F1�F2) < δ,

|P̂(r� θ1� θ2;F1�σ)− P̂(r� θ1� θ2;F2�σ)|< ε�
To see that this is true, note that

|P̂(r� θ1� θ2;F1�σ)− P̂(r� θ1� θ2;F2�σ)|

= 1
θ2 − θ1

∣∣∣∣
∫ θ2

θ1

[∫
s∈[r�ρ(θ)]

I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF1(s)−

∫
s∈[r�ρ(θ)]

I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF2(s)

]
dθ

∣∣∣∣
= 1
θ2 − θ1

∣∣∣∣
∫ θ2

θ1

[
F1(A(θ�σ))− F2(A(θ�σ))

]
dθ

∣∣∣∣�
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where A(θ�σ) ≡ {s ∈ [r�ρ(θ)] :θ ∈ [θ∗
s � θ

∗∗
s (σ)]}. It is then easy to see that, for any

σ ∈ (0�σ], the result follows by letting δ = ε. It is also easy to see that the function
family {P̂(r� θ1� θ2; ·�σ)}σ∈(0�σ] is uniformly bounded, i.e., that there exists M > 0 such
that |P̂(r� θ1� θ2;F�σ)| < M for all F ∈ F and for all σ ∈ (0�σ]. From the Ascoli–Arzela
theorem, any sequence of equicontinuous, uniformly bounded functions defined on a
compact Haurdorff space has a uniformly convergent subsequence (i.e., a subsequence
that is convergent in the sup-norm). This implies limσ→0+{supF∈F P̂(r� θ1� θ2;F�σ)} = 0.

Last, we show that whenZ(θ� r)= z > r for all θ, then the boundD is independent of
σ , whereas the bound P(r�θ1� θ2;σ) is a nondecreasing function of σ . The first property
follows directly from the fact that, in this case, θ#(σ) and hence r#(σ) are independent
of σ > 0, together with the fact that, for any θ > θ#, Ds(θ;σ) = 0 for all s, while for any
θ ≤ θ#, Dr(θ�σ)= 1 for all σ > 0. The second property follows from the fact that, given
any distribution F with support42 Supp[F] ⊂ [r� r#],

P(r�θ1� θ2;F�σ)= 1
θ2 − θ1

∫ θ2

θ1

∫
s∈[r�r#]

I{θ∈[θ∗
s �θ

∗∗
s (σ)]} dF(s)dθ�

That P(r�θ1� θ2;F�σ) is increasing in σ then follows from the fact that θ∗∗
s (σ) is increas-

ing in σ . By the envelope theorem, that each P(r�θ1� θ2;F�σ) is weakly increasing in σ ,
then implies that the upper bound P(r�θ1� θ2;σ) is also weakly increasing in σ , which
establishes the result. �

Proof of Proposition 5. For any θ, let

��s(θ;σ)≡W (θ� s�0)−U(
θ� r�


(
(x#(σ)− θ)/σ))

denote the difference between the payoff W (θ� s�0) that type θ obtains by raising the
policy to r = s in case regime change does not occur and no agent attacks in the
game in which policy interventions are possible and the equilibrium payoff Uo(θ;σ)=
U(θ� r�
((x#(σ)−θ)/σ)) that the same type obtains in the game in which the option to
intervene is absent. The fact that s < r#(σ) implies that, for any type θ ∈ (θ∗

s � θ
#(σ)],

��s(θ;σ) = W (θ� s�0) − L(θ� r) > 0; indeed any such type, by raising the policy to
r = s, can guarantee himself a payoff W (θ� s�0) that is strictly higher than the payoff
Uo(θ;σ) = L(θ� r) that the same type would obtain absent the possibility to intervene.
Furthermore, for any θ > θ#(σ), ��s(θ;σ) = W (θ� s�0) − W (θ� r�
((x#(σ) − θ)/σ)).
The fact that ��s(θ;σ) is continuous over (θ#(σ)�+∞) together with SCC and the
limit condition that limθ→∞ ρ(θ)= r (which, recall, is equivalent to limθ→+∞W (θ� s�0)−
W (θ� r�1) < 0), imply that there exists a unique θ†

s (σ) ≥ θ#(σ) such that ��s(θ;σ) > 0
for θ ∈ [θ#(σ)�θ†

s (σ)] and ��s(θ;σ) < 0 for θ > θ†
s (σ). Hence, no matter which particu-

lar equilibrium in E(s;σ) is played, any type θ ∈ (θ∗
s � θ

†
s (σ)] is necessarily strictly better

off with the option to intervene, whereas any type θ≤ θ∗
s is just as well off.

Next note that any type θ > θ†
s (σ) can be strictly worse off with the option to in-

tervene only if the attack he expects when leaving the policy at r = r is strictly greater

42Recall that in this case F(σ)= F(σ ′) for all σ�σ ′ > 0.
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than the attack he would have faced without the option to intervene, which is possi-
ble if and only if X(θ∗

s � θ
∗∗
s (σ);σ) > x#(σ).43 However, σ small enough ensures that

X(θ∗
s � θ

∗∗
s (σ);σ) < x#(σ) and hence that the policy maker is always better off with the

option to intervene, no matter what his type is. This follows from the fact that when
σ → 0+, θ∗∗

s (σ)→ θ∗
s and X(θ∗

s � θ
∗∗
s (σ);σ)→ θ∗

s in the game with policy intervention,44

whereas x#(σ)→ θ#(σ) in the game in which the option to intervene is absent. This,
together with the fact that θ∗

s < θ
#(σ), then gives the result. �

Proof of Proposition 6. First consider the supremum of the equilibrium payoffs.
For any θ > θ, the highest feasible payoff is W (θ� r�0), the payoff enjoyed when regime
change is avoided without facing any attack and without incurring any cost of policy
intervention. This payoff can be approximated arbitrarily well in the game in which in-
tervention is possible (it suffices to take any equilibrium in which s is sufficiently close
to r), which implies that U(θ;σ) ≥ Uo(θ;σ) for all θ > θ. That U(θ;σ) > Uo(θ;σ) for
θ ∈ (θ�θ#(σ)] follows directly from the fact that without the option to intervene, these
types experience regime change. That limθ→+∞ |U(θ;σ) − Uo(θ;σ)| = 0 follows from
the fact that, in the game without the option to intervene, limθ→+∞A(θ� r) = 0. This
establishes the first part of the proposition.

Next consider the infimum of the equilibrium payoffs. As explained in the proof of
Proposition 5, type θ can be worse off with the option to intervene only if there exists
an s ∈ (r� r#(σ)] such that X(θ∗

s � θ
∗∗
s (σ);σ) > x#(σ); recall that this means that there

exists an equilibrium in which the attack that type θ faces when he does not raise the
policy above r is larger than in the game without the option to intervene. Now suppose
that such an s exists. From the result in Proposition 5, in this case, any type θ≤ θ†

s (σ) is
still weakly better off (strictly for θ ∈ (θ∗

s � θ
†
s (σ)]). However, by taking the equilibrium in

E(s;σ) in which all agents attack when r = r if and only if x < X(θ∗
s � θ

∗∗
s (σ);σ) ensures

that, for all θ > θ†
s (σ), the payoff

max
{
W (θ� s�0);U(

θ� r�

((
X(θ∗

s � θ
∗∗
s (σ);σ)− θ)/σ))}

that type θ obtains with the option to intervene is (weakly) lower than his payoff in the
game in which the option to intervene is absent.45 This means that there exists θ†(σ)

such that U(θ;σ) < Uo(θ;σ) only if θ > θ†(σ). That θ†(σ) > θ#(σ) is immediate given
that there is no equilibrium in which a type θ≤ θ#(σ) can be made worse off.

43Recall from the analysis in Section 3 that (i) in any equilibrium in E(s;σ), no agent attacks when, af-
ter observing r = r, he receives a signal x > X(θ∗

s � θ
∗∗
s (σ);σ), and (ii) that there always exists one equi-

librium in E(s;σ) such that, after observing r = r, each agent attacks if and only if he receives a signal
x <X(θ∗

s � θ
∗∗
s (σ);σ).

44The first property follows directly from Proposition 9 in Appendix A. To see that the second property
also holds, note that if this were not true, then the size of attack A(θ∗∗

s (σ)� r) at θ= θ∗∗
s (σ) would converge

to either 0 or 1, making it impossible for type θ∗∗
s (σ) to be indifferent between raising the policy to r = s and

setting r = r.
45To see this, note that if W (θ� s�0) > U(θ� r�
((X(θ∗

s � θ
∗∗
s (σ);σ) − θ)/σ)), the result follows from the

definition of θ†
s (σ). If, instead, the inequality is reversed, the result follows from the fact that by not raising

the policy, type θ faces an attack 
((X(θ∗
s � θ

∗∗
s (σ);σ)− θ)/σ) greater than the attack 
((x#(σ)− θ)/σ) he

would have faced without the option to intervene.
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Finally, to see why, for any θ, the difference between U(θ;σ) and Uo(θ;σ) vanishes
as σ → 0+, note that, for any θ≤ θ#(0+)≡ limσ→0+ θ#(σ), this difference is clearly zero
because the lower bound is simply the payoff obtained in any equilibrium in which type
θ is forced to experience regime change. For types θ > θ#(0+), the result follows from
the fact that for any s ∈ (r� r#(0+)], limσ→0+ �s(σ)= 0 and

lim
σ→0+X(θ

∗
s � θ

∗∗
s (σ);σ)= θ∗

s ≤ lim
σ→0+ x

#(σ)�

This implies that the lowest bound on the payoff for each θ > θ#(0+) is attained under
any of the pooling equilibria, which is clearly the same payoff as in the game in which
the option to intervene is absent. �

Proof of Proposition 7. For θ ≤ θ, it is dominant for the policy maker to set r. Sim-
ilarly, for θ > θ, it is dominant for the agents not to attack, which makes it iteratively
dominant for the policy maker to set r = r. Finally, take any θ ∈ (θ�θ]. Clearly, there
is no subgame-perfect equilibrium in which r(θ) > ρ(θ). For any r ≤ ρ(θ), instead, the
assumption that Z(θ� r) ≥ r implies that the continuation game among the agents is a
coordination game with two Nash equilibria—one where nobody attacks and the status
quo is maintained, and another where everybody attacks and the status quo is aban-
doned. This implies that, for any r ′ ≤ ρ(θ), there exists a subgame-perfect equilibrium
in which the agents attack if and only if r < r ′ and the policy maker raises the policy at
r(θ)= r ′. This establishes part (i). Part (ii) follows from the properties above along with
the fact that, for any θ ∈ (θ�θ], there always exists a subgame-perfect equilibrium where
all agents attack if and only if r ≤ ρ(θ), in which case the policy maker optimally chooses
not to intervene and henceD(θ)= 1. �

Proof of Proposition 8. The characterization of G(0) follows directly from Proposi-
tion 7. Thus consider G(σ) for σ > 0 and note that this set is given by

G(σ)= {
(θ� r) : either r = r and θ ∈ R�or r ∈ (r�ρ+] and θ ∈ (θ∗

r � θ
∗∗
r ]�where θ∗

r = θ�
or r ∈ (ρ+� r#(σ)] and θ ∈ [θ∗

r � θ
∗∗
r ]�where θ∗

r > θ
}
�

Next, pick an arbitrary ε ∈ (0�ρ(θ)− r#(0+)) if ρ+ = r and some ε ∈ (0�ρ+ − r) if ρ+ > r,
and for any ε < ε, define the set H(ε) as follows: if ρ+ = r, then

H(ε)≡ {
(θ� r) : either r = r and θ ∈ R�or r ∈ (r� r + ε) and θ > θ

or r ∈ [r + ε� r#(0+)+ ε] and θ ∈ [ρ−1(r)�ρ−1(r)+ ε]}�
whereas, if ρ+ > r, then

H(ε)≡ {
(θ� r) : either r = r and θ ∈ R�or r ∈ (r� r + ε) and θ > θ

or r ∈ [r + ε�ρ+] and θ ∈ (θ�θ+ ε)
or r ∈ [ρ+� r#(0+)+ ε] and θ ∈ [ρ−1(r)�ρ−1(r)+ ε]}�
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Note that in either case the results in Proposition 9 in Appendix A guarantee that, for any
ε ∈ (0� ε), there exists σ > 0 such that

G(σ)⊂ H(ε)

for all σ ∈ (0�σ). Finally, note that for all σ > 0,

G(σ)⊃ {
(θ� r) : either r = r and θ ∈ R� or r ∈ (ρ+� r#(σ)] and θ= ρ−1(r)

}
�

Combining the above two properties gives the result. �

Proof of Proposition 9. Fix ε > 0 and let

θ#(0+)≡ lim
σ→0+ θ

#(σ) and r#(0+)≡ lim
σ→0+ r

#(σ)= lim
σ→0+ r̂(θ

#(σ))�

where, for any θ≥ θ, r̂(θ) is implicitly defined byW (θ� r̂(θ)�0)=L(θ� r).
Part (i). Clearly, irrespective of σ , E(s;σ) = ∅ whenever {θ ≥ θ :W (θ� s�0) ≥

L(θ� r)} = ∅. Thus assume that this set is nonempty and denote by θ∗
s its largest lower

bound. We establish the result using the properties below.

Property 3. There exist δ > 0 and σ̂ > 0 such that for any σ < σ̂ , θ∗
s > θ

#(0+)+δwhen-
ever s > r#(σ)+ ε.

To see this, take ε′ < ε/2. By continuity of r̂(θ) and θ#(σ), and the fact that r#(σ)=
r̂(θ#(σ)), there exists σ̂ > 0 such that whenever σ < σ̂ , |r#(σ) − r#(0+)| < ε′. Hence,
for any σ < σ̂ , s > r#(σ) + ε implies that s > r#(0+) − ε′ + ε > r#(0+) + ε′. Further-
more, by the continuity of r̂(θ), there exists δ > 0 such that |r̂(θ)− r#(0+)|< ε′ whenever
|θ − θ#(0+)| < δ. By the monotonicity of r̂(θ), we then have that r̂(θ) < s for any
θ < θ#(0+)+ δ, which means that θ∗

s ≥ θ#(0+)+ δ.

Property 4. Let σ̂ be the threshold in Property 3. There exist 0 < σ ′ < σ̂ and θ > θ

such that, for any σ < σ ′, any s > r#(σ) + ε, any A, and any θ > θ, R(θ� r�A) > 0 and
W (θ� s�0) <W (θ� r�A).

This follows from the limit condition that, for any s > r, limθ→+∞[W (θ� s�0) −
W (θ� r�1)]< 0.

Property 5. For any (θ∗� θ), with θ≥ θ∗ ≥ θ, B(θ∗� θ; ·) is increasing in σ with

lim
σ→0+B(θ

∗� θ;σ)=
{

0 if θ > θ∗
(Z(θ∗)−Q(r))/Z(θ∗) if θ= θ∗�

Recall that B(θ∗� θ;σ) is defined as

B(θ∗� θ;σ)≡

(
X(θ∗� θ;σ)− θ

σ

)
� (22)



930 Angeletos and Pavan Theoretical Economics 8 (2013)

where X(θ∗� θ;σ) is implicitly defined by condition (5). To simplify the exposition, let
us momentarily use X and B as shortcuts for, respectively, X(θ∗� θ;σ) and B(θ∗� θ;σ).
Condition (5) can then be restated as∫ θ∗

−∞
Z(θ̃� r)

1
σ
ψ

(
X − θ̃
σ

)
dθ̃−Q(r)

[
1 −


(
X − θ∗

σ

)
+


(
X − θ
σ

)]
= 0�

From (22), X = σ
−1(B) + θ. Replacing this in the above equality and integrating the
first term by parts, we conclude that condition (5) can be restated as

(Z(θ∗� r)−Q(r))
(

1 −

(

−1(B)+ θ− θ∗

σ

))
(23)

+
∫ θ∗

−∞

(
−dZ(θ̃� r)

dθ̃

)(
1 −


(

−1(B)+ θ− θ̃

σ

))
dθ̃−Q(r)B= 0�

Note that the left-hand side of (23) is decreasing in B. This guarantees that (23) admits a
unique solution for B and, therefore, that (5) admits a unique solution, as stated in the
main text. Next, noting that the left-hand side of (23) is increasing in σ , it then follows
from the implicit function theorem that B is also increasing in σ , as claimed above. Fi-
nally, one can also use (23) to verify that, for any θ > θ∗, limσ→0+ B(θ∗� θ;σ) = 0, while
for θ = θ∗, limσ→0+ B(θ∗� θ;σ) = (Z(θ∗� r)−Q(r))/Z(θ∗� r), which completes the proof
of Property 5.

Property 6. Let δ > 0 be the threshold in Property 3 and let σ ′ be the threshold in
Property 4. Define

�̂≡ {
(θ∗� θ) :θ∗ ∈ [θ#(0+)+ δ�θ]� θ ∈ [θ∗� θ]}�

There exists 0<σ1 <σ
′ such that, for any σ < σ1 and any (θ∗� θ) ∈ �̂,

G(θ;θ∗�σ) < 0<R(θ� r�B(θ∗� θ;σ))�
where, for any σ > 0 and any (θ∗� θ) with θ≥ θ∗ ≥ θ,

G(θ;θ∗�σ)≡W (θ� r̂(θ∗)�0)−W (θ� r�B(θ∗� θ;σ))�

Using Property 5, for any (θ∗� θ) ∈ �̂,

lim
σ→0+R(θ� r�B(θ

∗� θ;σ))=
{
R(θ� r�0) > 0 if θ > θ∗
R(θ∗� r� (Z(θ∗� r)−Q(r))/Z(θ∗� r)) > 0 if θ= θ∗�

where the second inequality follows from the fact that the function R(θ∗� r�
(Z(θ∗� r) − Q(r))/Z(θ∗� r)) is strictly increasing in θ∗ and equal to zero at θ∗ = θ#(0+)
(this follows from Lemma 1) along with the fact that θ∗ > θ#(0+)+ δ.

Likewise, for any (θ∗� θ) ∈ �̂,

lim
σ→0+G(θ;θ

∗�σ)=
{
W (θ� r̂(θ∗)�0)−W (θ� r�0) < 0 if θ > θ∗
L(θ∗� r)−W (θ∗� r� (Z(θ∗� r)−Q(r))/Z(θ∗� r)) < 0 if θ= θ∗�
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where the second inequality follows from the fact that R(θ∗� r� (Z(θ∗� r) − Q(r))/

Z(θ∗� r)) > 0 impliesW (θ∗� r� (Z(θ∗� r)−Q(r))/Z(θ∗� r)) > L(θ∗� r).
Next note that for any σ > 0, the functions R(·� r�B(·� ·;σ)) andG(·; ·�σ) are contin-

uous on �̂, and that for any (θ∗� θ) ∈ �̂, they are monotone in σ (by the monotonicity of
B in σ). Because �̂ is compact, the result then follows from Dini’s theorem.

Property 7. Let δ > 0 be the threshold in Property 3 and let σ1 > 0 be the threshold in
Property 6. For any σ < σ1,

G(θ;θ∗�σ) < 0<R(θ� r�B(θ∗� θ;σ))

for any (θ∗� θ) such that either (a) θ∗ ∈ [θ#(0+)+ δ�θ] and θ > θ or (b) θ∗ > θ and θ≥ θ∗.

The result follows directly from Properties 4 and 6.
Together, the above properties imply that for any σ < σ1 and s > r#(σ)+ ε, there ex-

ists no pair (θ∗
s � θ

′′
s ) such that θ∗

s satisfies conditions (7) and θ′′
s ≥ θ∗

s satisfies either condi-
tion (8) or condition (9). From Proposition 1, this means that for any σ < σ1, E(s;σ)= ∅

for any s > r#(σ)+ ε.
Part (ii). Let ε > 0 be the same as in part (i). By the continuity and strict monotonicity

of the function r̂(θ) over [θ�+∞), together with the continuity of the θ#(σ) function,
there exist σ+ > 0 and ε+ ∈ (0� ε) such that, for any σ < σ+, θ∗

s > θ
#(σ)+ ε implies that

s > r#(σ) + ε+. The result in part (i) then implies that there exists a σ2 ∈ (0�σ+) such
that for any σ < σ2, E(s;σ) 	= ∅ only if θ∗

s ≤ θ#(σ)+ ε.
Part (iii). Take the same ε > 0 as in parts (i) and (ii) and let r = r + ε. By the limit

condition that limθ→+∞[W (θ� r�0)−W (θ� r�1)]< 0, there exists a θ > θ such that for any

θ > θ, any A, and any s ≥ r + ε, R(θ� r�A) > 0 and W (θ� s�0) < W (θ� r�A). This means
that for any s ≥ r+ε, if a pair (θ∗

s � θ
′′
s ) exists such that θ∗

s satisfies condition (7) and θ′′
s ≥ θ∗

s

satisfies either condition (8) or condition (9), then necessarily θ∗
s � θ

′′
s ≤ θ. In turn, this

also means that for any s ≥ r + ε, E(s;σ) 	= ∅ only if s ≤ r̂(θ). Thus assume r̂(θ)≥ r + ε.

For any s ∈ [r+ ε� r̂(θ)], then let θ∗
s be the threshold corresponding to s, as defined in (7),

and take any arbitrary θ > θ∗
s . Because limσ→0+ B(θ∗

s � θ;σ)= 0 and because B(θ∗
s � ·;σ) is

decreasing in θ (this can be seen from (23)), we then have that for any s ∈ [r + ε� r̂(θ)],
either there exists no θ′′

s ≥ θ∗
s that satisfies condition (8) or condition (9) when σ is small

enough, in which case E(s;σ)= ∅; else, if such a θ′′
s exists, then the highest θ′′

s ≥ θ∗
s that

satisfies either condition (8) or condition (9), which is θ∗∗(σ), must converge to θ∗
s as

σ → 0.
For any s ∈ [r + ε� r̂(θ)] and any σ , then let �s(σ)= θ∗∗(σ)− θ∗

s if a θ′′
s ≥ θ∗

s that satis-
fies either condition (8) or condition (9) exists and let �s(σ)= 0 otherwise. Because for
any θ∗� θ, θ ≥ θ∗, B(θ∗θ; ·) is increasing in σ , we then have that for any s ∈ [r + ε� r̂(θ)],
�s(σ) is increasing in σ with limσ→0+ �(σ)= 0. Because, for any σ > 0, �s(σ) is clearly

continuous in s over [r + ε� r̂(θ)], from Dini’s theorem we then have that there exists a

σ3 > 0 such that for σ < σ3 and any s ∈ [r + ε� r̂(θ)], either E(s;σ)= ∅ or θ∗∗
s (σ)≤ θ∗

s + ε,
which establishes the result.
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Combining the proofs of parts (i)–(iii), the result in the proposition then follows by
letting σ = min{σ1�σ2�σ3}. �

Proof of Proposition 10. Part (i) follows from Lemma A3 below, whose proof is sim-
ilar to that of Proposition 5 in Angeletos et al. (2006), adapted to the payoff structure
considered here. Part (ii) follows from Lemma A4.

Lemma A3. Assume ψ is log-concave. For any σ > 0 and any s ∈ (r� r#(σ)], there exists
a nonempty set of types �s(σ)⊂ [θ∗

s � θ
∗∗
s (σ)], with inf�s(σ)= θ∗

s , a threshold x∗
s , and an

equilibrium in which

r(θ)=
{
s if θ ∈�s(σ)
r otherwise

and D(θ)=
{

1 if θ < θ∗
s

0 if θ > θ∗
s �

The equilibrium is sustained by the following strategy for the agents: for r = r,
a(x� r) = 1 if and only if x < x∗

s ; for any r ∈ (r� s), a(x� r) = 1, irrespective of x; for any
r ≥ s, a(x� r)= 0, irrespective of x.

Proof. The proof is in three steps. Steps 1 and 2 construct the set �s(σ) and establish
properties that are useful for Step 3. Step 3 shows that there exists a system of beliefs
that support the proposed strategies as part of an equilibrium.

Step 1. Fix s ∈ (r� r#(σ)] and let θ∗
s = inf{θ ≥ θ :W (θ� s�0) ≥ L(θ� r)}. Next let S :R →

2R andm :R2 → [0�1] denote, respectively, the correspondence and the function defined
as

S(x) ≡
{
θ > θ :W (θ� s�0)≥U

(
θ� r�


(
x− θ
σ

))}

m(x�x′) ≡
∫ θ∗

s

−∞
Z(θ̃� r)

1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃

/(
1 −

∫
S(x)

1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃

)
−Q(r)�

The set S(x) represents the set of types who prefer raising the policy to r = s and then
facing no attack to leaving the policy at r, facing an attack of size
((x− θ)/σ), and then
obtaining a payoff

U

(
θ� r�


(
x− θ
σ

))
=

⎧⎪⎪⎨
⎪⎪⎩
W

(
θ� r�


(
x− θ
σ

))
if R

(
θ� r�


(
x− θ
σ

))
> 0

L(θ� r) if R
(
θ� r�


(
x− θ
σ

))
≤ 0�

By definition, any type below θ∗
s prefers leaving the policy at r = r to raising the policy

to r = s, irrespective of the size of the attack. It follows that θ∗
s ≤ infS(x) for any x. In

turn, m(x�x′) is the expected payoff from attacking for an agent with signal x′ when he
observes r and believes that regime change will occur if and only if θ < θ∗

s and that the
policy is r(θ)= r if and only if θ /∈ S(x).

Step 2 below shows that when ψ is log-concave, then for any x, the function m(x� ·)
is nonincreasing in x′. It then uses this property to show that either (i) there exists an
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x∗
s ∈ R such that m(x∗

s � x
∗
s )= 0 or (ii) m(x�x) > 0 for all x, in which case we let x∗

s = +∞.
In either case, the triple (x∗

s � θ
∗
s ��s(σ)) with �s(σ)= S(x∗

s ) identifies an equilibrium for
the fictitious game in which the policy maker is restricted to set r ∈ {r� s} and the agents
are restricted not to attack when r = s. Step 3 concludes the proof by showing that the
same triple identifies an equilibrium for the unrestricted game.

Step 2. Note that S(x) is continuous in x, with S(x1) ⊆ S(x2) for any x1 ≤ x2 (this
follows from the fact that the policy maker’s payoff from not raising the policy declines
with the aggressiveness of the agents’ behavior). Also note that m(x�x′) is continuous
in (x�x′) and nondecreasing in x (by the monotonicity of S(x)). Below we show that
when ψ is log-concave,m(x�x′) is also nonincreasing in x′. To see this, note that for any
θ′ ≤ θ∗

s , the probability that an agent with signal x′ assigns to θ̃ < θ′ when observing r = r
is μ(θ′|x′� r)= (1 + 1/M(x′))−1, where

M(x′)≡
(

1 −

(
x′ − θ′

σ

))/∫ ∞

θ′

[
1 − Ix

(
θ̃

)]
1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃�

with Ix(θ̃) = 1 when θ̃ ∈ S(x) and Ix(θ̃) = 0 otherwise. It follows that μ(θ′|x′� r) is de-
creasing in x′ if d lnM(x′)/dx′ < 0 or, equivalently, if

∫ θ′

−∞
1
σ2ψ

′
(
x′ − θ̃
σ

)
dθ̃

/∫ θ′

−∞
1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃

(24)

−
∫ ∞

θ′

[
1 − Ix(θ̃)

]
1
σ2ψ

′
(
x′ − θ̃
σ

)
dθ̃

/∫ ∞

θ′

[
1 − Ix(θ̃)

]
1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃ < 0�

Using the fact that Ix(θ̃)= 0 for all θ̃≤ θ′, (24) is equivalent to

Eθ̃

[
ψ′

(
x′ − θ̃
σ

)/
ψ

(
x′ − θ̃
σ

)∣∣∣θ̃≤ θ′�x′� r
]

− Eθ̃

[
ψ′

(
x′ − θ̃
σ

)/
ψ

(
x′ − θ̃
σ

)∣∣∣θ̃ > θ′�x′� r
]
< 0�

which holds true when ψ′/ψ is decreasing, i.e., when ψ is log-concave. That Z(·� r) is
nonincreasing together with the fact that μ(θ′|x′� r) is decreasing in x′ for any θ′ ≤ θ∗

s

then imply that the expected payoff from attacking,

m(x�x′)=
∫ θ∗

s

−∞
Z(θ̃� r)

1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃

/(
1 −


(
x′ − θ∗

s

σ

)
+

∫ ∞

θ∗
s

[1 − Ix(θ̃)] 1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃

)
− r�

is nonincreasing in x′.46 For future reference, also note that limx′→+∞m(x�x′) < 0.

46To see this, note that given any two absolutely continuous c.d.f.’s F1 and F2 with F1(θ)≤ F2(θ) for all θ <

θ∗
s , and any nonincreasing differentiable positive function h : R → R+,

∫ θ∗
s−∞ h(θ̃)dF1(θ̃) ≤ ∫ θ∗

s−∞ h(θ̃)dF2(θ̃).
Interpreting h as the payoff Z from regime change, and interpreting F1 and F2 as the agent’s posterior for
two different signals x1 and x2, with x1 ≥ x2, gives the result.
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Having established that the expected payoff from attackingm(x�x′) is continuous in
(x�x′), nondecreasing in x, and nonincreasing in x′, next note that

S(x)⊆ S ≡ {θ :W (θ� s�0)≥U(θ� r�1)}�
which in turn implies that for any (x�x′) ∈ R

2,

∫ θ∗
s

−∞
Z(θ̃� r)

1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃

/(
1 −

∫
S

1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃

)
−Q(r)

≥m(x�x′)≥
∫ θ∗

s

−∞
Z(θ̃� r)

1
σ
ψ

(
x′ − θ̃
σ

)
dθ̃−Q(r)�

It follows that for any x,m(x�x′)≥ 0 for all x′ ≤ x̂, where x̂ ∈ R is the unique solution to

∫ θ∗
s

−∞
Z(θ̃� r)

1
σ
ψ

(
x̂− θ̃
σ

)
dθ̃=Q(r)�

Now define the sequence {xk}∞k=0, with xk ∈ R ∪ {+∞}, as follows. For k = 0, let
x0 ≡ x̂. For k ≥ 1, let xk be the solution to m(xk−1�xk) = 0 if xk−1 < +∞; if, instead,
xk−1 = +∞, let xk ≡ inf{x′ :m(xk−1�x

′) ≤ 0} if {x′ :m(xk−1�x
′) ≤ 0} 	= ∅ and xk ≡ +∞

otherwise. The fact that

m(x̂� x̂)≥
∫ θ∗

s

−∞
Z(θ̃� r)

1
σ
ψ

(
x̂− θ̃
σ

)
dθ̃−Q(r)= 0

together with the continuity and monotonicities of m ensure that this sequence is well
defined and nondecreasing. It follows that either limk→∞ xk ∈ [x̂�+∞) or limk→∞ xk =
+∞. In the former case, let x∗

s = limk→∞ xk and �s(σ) = S(x∗
s ); in the latter case, let

x∗
s = +∞ and �s(σ)= S(∞)≡ S.

Finally, to see that inf�s(σ)= θ∗
s , note that the threshold x̂ defined above coincides

withX(θ∗
s � θ

∗
s ;σ). Because θ∗

s ≤ θ#(σ), from the results in the proof of Lemma A1 above,
we then have that R(θ∗

s � r�
((X(θ
∗
s � θ

∗
s ;σ)− θ∗

s )/σ)) ≤ 0. Because x∗
s ≥ x̂, we then have

that R(θ∗
s � r�
((x

∗
s − θ∗

s )/σ)) ≤ 0. Because R(θ� r�A) is increasing in θ and decreasing
in A, and because A(θ� r) = 
((x∗

s − θ)/σ) is decreasing in θ, this in turn implies that
there exists θ̂s ∈ [θ∗

s � θ
∗∗
s (σ)] such that R(θ̂s� r�
((x∗

s − θ̂s)/σ))≤ 0 if and only if θ≤ θ̂s . It
follows that necessarily r(θ)= s for all θ ∈ (θ∗

s � θ̂s], thus establishing that inf�s(σ)= θ∗
s .

We conclude that the triple (x∗
s � θ

∗
s ��s(σ)) identifies an equilibrium for the fictitious

game in which the policy maker is restricted to set r ∈ {r� s} and the agents are restricted
not to attack when r = s.

Step 3. We now show how the triple (x∗
s � θ

∗
s ��s(σ)) of Step 2 also identifies an equi-

librium for the unrestricted game. The proof here parallels that of Lemma A2. Below we
simply show the existence of beliefs for the agents that satisfy conditions (15), (16), and
(17).

When r = r, beliefs are pinned down by Bayes rule and are such that for any θ≤ θ∗
s ,

μ(θ|x� r)=
(

1 −

(
x− θ
σ

))/(
1 −

∫
�s(σ)

1
σ
ψ

(
x− θ̃
σ

)
dθ̃

)
�
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while for any θ ∈ (θ∗
s � θ̂s),

47

μ(θ|x� r)=
(

1 −

(
x− θ∗

s

σ

))/(
1 −

∫
�s(σ)

1
σ
ψ

(
x− θ̃
σ

)
dθ̃

)
�

As shown above, these beliefs are decreasing in x. By the definition of x∗
s , it then follows

that condition (15) is satisfied when r = r. Next consider r = s. Again, in this case be-
liefs are pinned down by Bayes rule and such that μ(θ|x� s) = 0 for all x, in which case
condition (17) is clearly satisfied. Finally, whenever r /∈ {r� s}, there exists an arbitrarily
large set of out-of-equilibrium beliefs that satisfy (16) and (17); see the construction in
Lemmas A0 and A2 above. �

Lemma A4. Suppose SCC holds and ψ is log-concave. Then for any σ > 0 and any s ∈
(r� r#(σ)], any equilibrium in E(s;σ) is such that r(θ)= s for all θ ∈ (θ∗

s � θ
∗∗
s (σ)).

Proof. The result for s = r#(σ) follows directly from the fact that when SCC holds, then
θ∗
s = θ#(σ) = θ∗∗

s (σ). That θ∗
s = θ#(σ) is immediate. To see that θ∗∗

s (σ) = θ#(σ), recall
that by the properties of the pooling equilibria, for any θ > θ#(σ),

R

(
θ� r�


(
X(θ#(σ)�θ#(σ);σ)− θ

σ

))
> 0�

which implies that

U

(
θ� r�


(
X(θ#(σ)�θ#(σ);σ)− θ

σ

))
=W

(
θ� r�


(
X(θ#(σ)�θ#(σ);σ)− θ

σ

))
(25)

> L(θ� r)�

By continuity, when applied to θ= θ#(σ), (25) implies that

W (θ#(σ)� r#(σ)�0)=L(θ#(σ)� r)≤W
(
θ#(σ)� r�


(
X(θ#(σ)�θ#(σ);σ)− θ#(σ)

σ

))
�

Under SCC, this means that for any θ > θ#(σ),

U(θ� r#(σ)�0) =W (θ� r#(σ)�0)≤U
(
θ� r�


(
X(θ#(σ)�θ#(σ);σ)− θ#(σ)

σ

))

=W

(
θ� r�


(
X(θ#(σ)�θ#(σ);σ)− θ#(σ)

σ

))
�

Because 
((X(θ#(σ)�θ#(σ);σ)− θ#(σ))/σ) > 
((X(θ#(σ)�θ;σ)− θ)/σ), as shown
in the proof of Proposition 2, this means that for any θ > θ#(σ), R(θ� r�


((X(θ#(σ)�θ;σ) − θ)/σ)) > 0 and W (θ� r#(σ)�0) ≤ W (θ� r�
((X(θ#(σ)�θ;σ)− θ)/
σ)), which implies that the only θ′′

s ≥ θ∗
s = θ#(σ) that possibly satisfies (8) or (9) is

θ′′
s = θ#(σ), which means that θ∗∗

s (σ)= θ∗
s = θ#(σ) for s = r#(σ).

47Recall that all types θ ∈ (θ∗
s � θ̂) necessarily raise the policy to r = s.
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Thus consider s ∈ (r� r#(σ)). From the proof of Lemma 4, a(x� r) = 0 for all x >
X(θ∗

s � θ
∗∗
s (σ);σ), while from the proof of Lemma 5, a(x� r) = 1 for all x < X(θ∗

s � θ
∗
s ;σ).

It follows that 
((X(θ∗
s � θ

∗∗
s (σ))− θ)/σ) ≥ A(θ� r) ≥ 
((X(θ∗

s � θ
∗
s )− θ)/σ) for all θ.

By the fact that R(θ� r�
((X(θ�θ;σ)− θ)/σ)) < 0 for θ < θ#(σ), we then have that
R(θ∗

s � r�
((X(θ
∗
s � θ

∗
s (σ))− θ∗

s )/σ)) < 0, while by the fact that θ∗∗
s (σ) satisfies condition

(8) or (9), we have that R(θ∗∗
s (s)� r�
((X(θ

∗
s � θ

∗∗
s (σ))− θ∗∗

s (σ))/σ)) ≥ 0. By combining,
we have that

R(θ∗
s � r�A(θ

∗
s � r)) < 0 ≤R(θ∗∗

s (s)� r�A(θ
∗∗
s (s)� r))� (26)

Now the fact that the noise distribution ψ is log-concave implies that after observing
r = r, irrespective of the shape of the equilibrium policy r(θ) in the region [θ∗

s � θ
∗∗
s (σ)]

of possible intervention, the aggregate attack A(θ� r) is monotone in θ; see the proof
of Lemma A3. Condition (26) together with the monotonicity of A(θ� r) in θ and the
property that Rθ > 0 > RA then ensure that there exists a unique θ̂s ∈ [θ∗

s � θ
∗∗
s (σ)] such

that R(θ� r�A(θ� r)) ≤ 0 if and only if θ ≤ θ̂s. Now if θ̂s = θ∗∗
s (σ), then obviously r(θ) =

s for all θ ∈ (θ∗
s � θ

∗∗
s (σ)]. Thus suppose that θ̂s < θ∗∗

s (σ), which means θ∗∗
s (σ) satisfies

condition (8). Now let θsup
s ≡ sup{θ : r(θ) = s}. Clearly, θsup

s ≥ θ̂s; if θsup
s < θ̂s, then types

θ ∈ (θsup
s � θ̂s] would be better off by raising the policy to r = s rather than leaving the

policy at r and then facing regime change.
We now show that all types θ ∈ (θ∗

s � θ
sup
s ] necessarily raise the policy to r = s.

This is immediate when θ
sup
s = θ̂s. Thus suppose θsup

s > θ̂s. Because, in this case,
R(θ

sup
s � r�A(θ

sup
s � r)) > 0, then θsup

s must satisfy

W (θ
sup
s � s�0)=W (θsup

s � r�A(θ
sup
s � r))�

Now let

h(θ)≡W (θ� s�0)−W (θ� r�A(θ� r))�

Note that SCC along with the monotonicity of A(·� r) imply that h(θ) > 0 for all θ ∈
(θ∗
s � θ

sup
s ), which in turn implies that all θ ∈ (θ∗

s � θ
sup
s ) necessarily raise the policy to r = s.

But then necessarily

A(θ� r)=

(
X(θ∗

s � θ
sup
s ;σ)− θ
σ

)
�

This means that θsup
s must satisfy condition (8). Now recall that θ∗∗

s (σ) is the highest θ′′
s

that satisfies (8). That θsup
s = θ∗∗

s (σ) in turn follows from the fact that, under SCC, the
function

G(θ;θ∗
s �σ)≡W (θ� s�0)−W

(
θ� r�


(
X(θ∗

s � θ;σ)− θ
σ

))

is strictly negative for all θ≥ θsup
s , which implies that θsup

s = θ∗∗
s (σ). �
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