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We develop a model of information exchange through communication and inves-
tigate its implications for information aggregation in large societies. An under-
lying state determines payoffs from different actions. Agents decide which other
agents to form a costly communication link with, incurring the associated cost.
After receiving a private signal correlated with the underlying state, the agents
exchange information over the induced communication network until they take
an (irreversible) action. We define asymptotic learning as the fraction of agents
who take the correct action, converging to 1 as a society grows large. Under truth-
ful communication, we show that asymptotic learning occurs if (and under some
additional conditions, also only if) in the induced communication network most
agents are a short distance away from “information hubs,” which receive and dis-
tribute a large amount of information. Asymptotic learning therefore requires in-
formation to be aggregated in the hands of a few agents. We also show that while
truthful communication may not always be a best response, it is an equilibrium
when the communication network induces asymptotic learning. Moreover, we
contrast equilibrium behavior with a socially optimal strategy profile, that is, a
profile that maximizes aggregate welfare. We show that when the network in-
duces asymptotic learning, equilibrium behavior leads to maximum aggregate
welfare, but this may not be the case when asymptotic learning does not occur.
We then provide a systematic investigation of what types of cost structures and as-
sociated social cliques (consisting of groups of individuals linked to each other at
zero cost, such as friendship networks) ensure the emergence of communication
networks that lead to asymptotic learning. Our result shows that societies with
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too many and sufficiently large social cliques do not induce asymptotic learning,
because each social clique has sufficient information by itself, making commu-
nication with others relatively unattractive. Asymptotic learning results either if
social cliques are not too large, in which case communication across cliques is
encouraged, or if there exist very large cliques that act as information hubs.

Keywords. Information aggregation, learning, search, social networks.

JEL classification. C72, D82, D83, D85.

1. Introduction

Most social decisions, ranging from product and occupational choices to voting and
political behavior, rely on the information agents gather through communication with
friends, neighbors, and co-workers as well as information obtained from news sources
and prominent webpages. A central question in social science concerns the dynamics of
communication and information exchange, and whether such dynamics lead to the ef-
fective aggregation of dispersed information. Our objective in this paper is to develop a
tractable benchmark model to study the dynamics of belief formation and information
aggregation through communication and the choices that individuals make concern-
ing whom to communicate with. A framework for the study of these questions requires
communication to be strategic, time-consuming, and/or costly, since otherwise all in-
formation could be aggregated immediately by simultaneous communication among
the agents. Our approach focuses on dynamic and costly communication (and we also
allow strategic communication, though this turns out to be less important in the present
context).

As a motivating example, consider a group of consumers who are contemplating
the purchase of one among a number of competing new products. Each consumer has
a prior about the benefits of each available option (for example, through advertising
or prior experience with similar products), and in addition can communicate with her
friends and neighbors about their views and experiences. Communication is costly both
because of the direct costs this may entail (including costs in processing information),
and because obtaining information from friends, neighbors, and co-workers involves
delays. Once a particular choice has been made, reversing it is costly. Moreover, new in-
formation obtained soon after an action is taken (e.g., purchase of a product) is limited,
as customers find it hard to precisely identify their valuations. Markets for several prod-
ucts and services naturally fit our framework. Duflo and Saez in a series of papers (Duflo
and Saez 2002, 2003) provide evidence that retirement decisions by employees in a uni-
versity are largely influenced by the information they receive from their social connec-
tions. Sorensen (2006) uses data from the University of California to empirically examine
the role of social learning in employees’ choices of health plans. His analysis reveals a
significant social effect, which is present even when the model allows for department-
specific employee heterogeneity. In a different context, Nair et al. (2010) and Iyengar
et al. (2011) study the role of “opinion leaders” and word-of-mouth communication
in the diffusion of new prescription drugs among physicians. They show that physi-
cians’ behavior is significantly influenced by prominent colleagues in their peer groups.
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Finally, there is strong empirical evidence that individuals are more likely to invest in the
stock market if their peers are also investing (Hong et al. 2004), and that word-of-mouth
effects play a crucial role in the portfolio choices of mutual fund managers (Hong et al.
2005).1

Our model provides a stylized but general environment to study this type of prob-
lems. An underlying state of the world determines the action with the highest payoff,
which is assumed to be the same for all agents.2 Each agent receives a private signal
correlated with the underlying state and can communicate with her direct neighbors.
We assume that the social network is also endogenous and results from the costly for-
mation of links in the first stage of the game. Thereafter, agents communicate with their
neighbors until they irreversibly choose an action. Earlier actions are preferred to later
ones because of discounting, and communication is time-consuming because at later
stages of the game, the neighbors of an agent will be able to acquire and communicate
more information. This setup thus enables us to understand the trade-offs in the new
product diffusion example mentioned in the previous paragraph and also to study the
endogenous formation of a social network simultaneously with the process of commu-
nication over that network.

We characterize the equilibria of this network formation and communication game,
and then investigate the structure of these equilibria as the society becomes large (i.e.,
for a sequence of games). Our main focus is on how well information is aggregated,
which we capture with the notion of asymptotic learning. We say that there is asymptotic
learning if the fraction of agents taking the correct action converges to 1 (in probability)
as the society becomes large.

Our analysis proceeds in several stages. First, we take the communication graph
as given and assume that agents are nonstrategic in their communication, that is, they
disclose truthfully all the information they possess when communicating. Under these
assumptions, we provide a condition that is sufficient and (under an additional mild
assumption) necessary for asymptotic learning. Intuitively, this condition requires that
most agents are a short distance away from information hubs, which comprise agents
who have a very large (in the limit, infinite) number of connections.3 Two different
types of information hubs can be conduits of asymptotic learning in our benchmark
model. The first are information mavens who receive communication and aggregate in-
formation from many other agents. If most agents are close to an information maven,
asymptotic learning is guaranteed. The second type of hubs are social connectors who
communicate to many agents, enabling them to spread their information widely.4 So-
cial connectors are only useful for asymptotic learning if they are close to mavens so

1Another natural application is the adoption of new technologies. Conley and Udry (2010) and Bandiera
and Rasul (2006) provide evidence that technology adoption by farmers in Ghana and Mozambique, re-
spectively, is influenced by the information they obtain from their social networks. In this case, individuals
are learning about both the opinions and the experiences of others.

2This is not a crucial assumption as long as agents know each others’ preferences, since our model does
not feature payoff externalities.

3We also derive conditions under which ε�δ-asymptotic learning occurs at an equilibrium strategy pro-
file. We say that ε�δ-asymptotic learning occurs when at least 1 − ε fraction of the population takes an
ε-optimal action with probability at least 1 − δ.

4Both of these terms are inspired by Gladwell (2000).
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that they can distribute their information. Thus asymptotic learning is also obtained if
most agents are close to a social connector, who is in turn a short distance away from a
maven. The intuition for why such information hubs and almost all agents being close
to information hubs are necessary for asymptotic learning is instructive: were it not so,
a large fraction of agents would prefer to act before waiting for sufficient information
to arrive. But then a nontrivial fraction of those agents would take the incorrect action
and, moreover, they would also disrupt the information flow for the agents to whom
they are connected. The advantage of the first part of our analysis is that it enables a
relatively simple characterization of equilibria and the derivation of intuitive conditions
for asymptotic learning.

Second, we show that even if individuals misreport their information (which they
may want to do to delay the action of their neighbors and obtain more information
from them in future communication), it is an equilibrium of the strategic communi-
cation game to report truthfully whenever truthful communication leads to asymptotic
learning. Interestingly, the converse is not necessarily true: strategic communication
may lead to asymptotic learning in some special cases in which truthful communication
precludes learning. From a welfare perspective, we show a direct connection between
asymptotic learning and the maximum aggregate welfare that can be achieved by any
strategy profile: when asymptotic learning occurs, all equilibria are (asymptotically) so-
cially efficient, that is, they achieve the maximum welfare. However, when asymptotic
learning does not occur, equilibrium behavior can lead to inefficiencies that arise from
the fact that agents do not internalize the positive effect of delaying their action and
continuing information exchange. Thus our analysis identifies a novel information ex-
ternality that is a direct product of the agents being embedded in a network: the value of
an agent to her peers does not only originate from her initial information, but also from
the paths she creates between different parts of the network through her social connec-
tions. It is precisely the destruction of these paths when the agent takes an action that
may lead to a welfare loss in equilibrium.

Our characterization results on asymptotic learning can be seen both as positive and
negative. On the one hand, to the extent that most individuals obtain key information
from either individuals or news sources (websites) approximating such hubs, efficient
aggregation of information may be possible in some settings. We show in particular
that hierarchical graph structures where agents in the higher layers of the hierarchy can
communicate information to many agents at lower layers lead to asymptotic learning.5

On the other hand, communication structures that do not feature such hubs appear
more realistic in most contexts, including communication between friends, neighbors,
and co-workers.6 Our model thus emphasizes how each agent’s incentive to act sooner
rather than later makes information aggregation significantly more difficult.

Third, armed with the analysis of information exchange over a given communica-
tion network, we turn to the study of the endogenous formation of this network. We

5An additional challenge when significant information is concentrated in the hands of a few hubs may
arise because of misalignment of interests, which our approach ignores.

6In particular, the popular (though not always empirically plausible) random graph models such as pref-
erential attachment and Poisson (Erdős–Renyi) graphs do not lead to asymptotic learning.
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assume that the formation of communication links is costly, though there also exist so-
cial cliques, groups of individuals who are linked to each other at zero cost. These can be
thought of as “friendship networks” that are linked for reasons unrelated to information
exchange and thus act as conduits of such exchange at low cost. Agents have to pay a
cost at the beginning to communicate with (receive information from) those who are not
in their social clique. Even though network formation games have several equilibria, the
structure of our network formation and information exchange game enables us to ob-
tain relatively sharp results on what types of societies lead to endogenous communica-
tion networks that ensure asymptotic learning. In particular, we show that societies with
too many (disjoint) and sufficiently large social cliques induce behavior that is inconsis-
tent with asymptotic learning. The reason why relatively large social cliques may dis-
courage efficient aggregation of information is that because they have enough informa-
tion, communication with others (from other social cliques) becomes unattractive. As a
consequence, the society gets segregated into a large number of disjoint social cliques
that do not share information. In contrast, asymptotic learning occurs in equilibrium if
social cliques are not too large so that it is worthwhile for at least some members of these
cliques to communicate with members of other cliques, forming a structure in which in-
formation is shared across (almost) all members of the society. Asymptotic learning also
occurs when there exist very large social cliques that act as information hubs.

These results also illustrate an interesting feature of the information exchange pro-
cess: an agent’s willingness to perform costly search (which here corresponds to form-
ing a link with another social clique) is decreasing with the precision of the information
that is readily accessible to her. This gives a natural explanation for informational seg-
regation: agents do not internalize the benefits for the group of forming an additional
link, leading to a socially inefficient information exchange structure. It further suggests a
form of the informational Braess paradox,7 whereby the introduction of additional infor-
mation may have adverse effects for the welfare of a society by discouraging the forma-
tion of additional links for information sharing (see also Morris and Shin 2002 and Duffie
et al. 2009 for a related result). Consider, for example, the website of a film critic that can
be viewed as a good but still imprecise information source (similar to a reasonable-sized
social clique in our model). Other agents can access the critic’s information and form an
opinion about a movie quickly. However, this precludes information sharing among the
agents and may lead to a decrease in aggregate welfare.

Our paper is related to several strands of the literature on social and economic net-
works.8 First, it is related to the large and growing literature on social learning. Much
of this literature focuses on Bayesian models of observational learning, where each in-
dividual learns from the actions of others taken in the past. A key impediment to in-
formation aggregation in these models is the fact that actions do not reflect all of the
information that an individual has and this can induce a pattern reminiscent of a herd,
where individuals ignore their own information and copy the behavior of others (see, for

7In the original Braess paradox, the addition of a new road may increase the delays faced by all motorists
in a Nash equilibrium.

8Here we briefly describe the papers that are closest to our work. Jackson (2008) and Goyal (2007) provide
excellent surveys of the extensive literature on social and economic networks.
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example, Bikhchandani et al. 1992, Banerjee 1992, Moscarini et al. 1998, and Smith and
Sørensen 2000, as well as Bala and Goyal 1998, for early contributions, and see Gale and
Kariv 2003, Banerjee and Fudenberg 2004, Smith and Sørensen 2010, Acemoglu et al.
2011, and Mueller-Frank 2013 for models of Bayesian learning with richer observational
structures). While observational learning is important in many situations, a large part of
information exchange in practice is through communication.

Several papers in the literature study communication, though typically they use
non-Bayesian or “myopic” rules (for example, Ellison and Fudenberg 1995, DeMarzo
et al. 2003, Acemoglu et al. 2010, and Golub and Jackson 2010). A major difficulty faced
by these approaches, often precluding Bayesian and dynamic game theoretic analysis
of learning in communication networks, is the complexity of updating when individu-
als share their ex post beliefs (because of the difficulty of filtering out common sources
of information). We overcome this difficulty by adopting a different approach, whereby
individuals can directly communicate their signals and information is “tagged,” that is,
signals are communicated along with their sources. This leads to a tractable structure for
updating beliefs and enables us to study perfect Bayesian equilibria of a dynamic game
of network formation, communication, and decision-making. It also reverses one of
the main insights of these papers, also shared by the pioneering social learning work by
Bala and Goyal (1998), that the presence of “highly connected” or “influential” agents,
or what Bala and Goyal (1998) call a royal family, acts as a significant impediment to
the efficient aggregation of information. On the contrary, in our model the existence
of such highly connected agents (information hubs, mavens, or connectors) is crucial
for the efficient aggregation of information. Moreover, the existence of such highly con-
nected agents also reduces incentives for nontruthful communication and is the key
input into our result that truthful communication can be an equilibrium. The recent
paper by Duffie et al. (2009) is also noteworthy: in their model, agents are randomly
matched according to endogenously determined search intensities, and because they
focus on an environment with a continuum of agents, communication of beliefs in their
setup is equivalent to exchanging signals, and thus enables them to avoid the issues that
arise in the previous literature. Their main focus is on characterizing equilibrium search
intensities as a function of the information that an agent already has access to. In con-
trast to our work, there is no explicit network structure. Möbius et al. (2010) empirically
compare a non-Baysian model of communication (similar to the one adopted by Golub
and Jackson 2010) with a model in which, similar to ours, signals are communicated
and agents are Bayesian. Although their study is not entirely conclusive on whether
agents behave according to one or the other model, their evidence broadly supports the
Bayesian alternative. Finally, Fan et al. (2012) build on our model and investigate other
notions of learning.

Our work is also related to the growing literature on network formation, since com-
munication takes place over endogenously formed networks.9  Bala and Goyal (2000)
model strategic network formation as a noncooperative game and study its equilibria
under various assumptions on the benefits of forming a link. In particular, they dis-
tinguish between one-way and two-way flow of benefits, depending on whether a link

9For a comprehensive survey on the literature in network formation, see Jackson (2005).
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benefits only the agent who decides to form it or both participating agents. They identify
a number of simple structures that arise in equilibrium: the empty network, the wheel,
the star, and the complete network. More recently, Galeotti et al. (2006) and Galeotti
(2006) study the role of heterogeneity among agents in the network structures that arise
in equilibrium. Closer to our work is Hojman and Szeidl (2008), who study a network
formation model where the benefits from connecting to other agents have decreasing
returns to scale (which is also the case in our model of information exchange because
of endogenous reasons). The main focus of the network formation literature has been
on characterizing equilibrium structures and comparing them with patterns observed
in real world networks (e.g., small distances between agents, high centrality etc.). In
most of the literature, the benefits and costs associated with forming a link are exoge-
nous. A novel aspect of our work is that the benefits of forming links are endogenously
determined through the subsequent information exchange. Our focus is also different:
although we also obtain characterization results on the shape of the network structures
that arise in equilibrium (e.g., ring structures emerge as equilibrium configurations un-
der some conditions as in Bala and Goyal 2000), our focus is on whether these structures
lead to asymptotic learning. Interestingly, while network formation games have a large
number of equilibria, the simple structure of our model enables us to derive relatively
sharp results about environments in which the equilibrium networks lead to asymptotic
learning.

Finally, our paper is related to the literature on strategic communication, pioneered
by the cheap talk framework of Crawford and Sobel (1982). While cheap talk models
have been used to study information aggregation with one receiver and multiple senders
(e.g., Morgan and Stocken 2008) and multiple receivers and a single sender (e.g., Farrell
and Gibbons 1989), most relevant to our paper are two recent papers that consider
strategic communication over general networks, Galeotti et al. (2011) and Hagenbach
and Koessler (2010). A major difference between these works and ours is that we con-
sider a model where communication is allowed for more than one time period, thus
enabling agents to receive information outside their immediate neighborhood (at the
cost of a delayed decision), and we also endogenize the network over which communi-
cation takes place. Alternatively, our framework assumes that an agent’s action does not
directly influence others’ payoffs, while such payoff interactions are the central focus of
Galeotti et al. (2011) and Hagenbach and Koessler (2010); in our model, the incentives
for strategic communication arise solely for informational purposes. Our paper is also
related to the existing work by Ambrus et al. (2013), where the sender and the receiver
communicate strategically through a chain of intermediaries. Their primary focus is in-
formation intermediation; thus communication takes place over multiple rounds, but
it is restricted to be on a ordered line from the sender to the receiver, where each agent
sends information only once.

The rest of the paper is organized as follows. Section 2 develops a general model of
information exchange among rational agents, who are embedded in a communication
network. Also, it introduces the two main environments we study. Section 3 contains
our main results on asymptotic learning given a communication graph. It also includes
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a welfare discussion that draws the connection between learning and efficient commu-
nication. Finally, it illustrates how our results can be applied to a number of random
graph models. Section 4 incorporates endogenous network formation into the informa-
tion exchange model. Our main result in this section shows the connection between
incentives to form communication links and asymptotic learning. Section 5 concludes.
All proofs are presented in Appendix B.

2. A model of information exchange in social networks

In the first part of this paper, we focus on modeling information exchange among agents
over a given communication network. In the second part (Section 4), we investigate the
question of endogenous formation of this network. We start by presenting the informa-
tion exchange model for a finite set N n = {1�2� � � � � n} of agents. We also describe the
limit economy as n→ ∞.

2.1 Actions, payoffs, and information

Each agent i ∈ N n chooses an irreversible action xi ∈ R. Her payoff depends on her ac-
tion and an underlying state of the world θ ∈R, which is an exogenous random variable.
In particular, agent i’s payoff when she takes action xi and the state of the world is θ is
given by ψ− (xi − θ)2, where ψ is a constant.

The state of the world θ is unknown and agents observe noisy signals about it. In
particular, we assume that θ is drawn from a Normal distribution with known mean μ
and precision ρ. Each agent receives a private signal si = θ + zi, where the zi’s are id-
iosyncratic, independent from one another and θ, and normally distributed with com-
mon mean μ̄ (normalized to 0) and precision ρ̄ (variance 1/ρ̄).10 Finally, we assume that
ψ> ψ̄≥ 1/(ρ+ ρ̄).11

2.2 Communication

Our focus is on information aggregation when agents are embedded in a network that
imposes communication constraints. In particular, agent i forms beliefs about the state
of the world from her private signal si, as well as information she obtains from other
agents through a given communication network Gn, which, as will be described shortly,
represents the set of communication constraints imposed on them. We assume that
time t ∈ [0�∞) is continuous and there is a common discount rate r > 0. Communi-
cation times are stochastic. In particular, communication times are exponentially dis-
tributed with parameter λ > 0. Equivalently, agents “wake” up and communicate simul-
taneously with their neighbors when a Poisson clock with rate λ ticks.12 Thus the prob-
ability that communication occurs in time interval [t� t + dt) is equal to λdt. At a given

10The assumption that all agents receive signals with equal precision is for simplicity and can be relaxed,
as our analysis in Section 4 shows (see, in particular, footnote 23).

11As shown in Section 3.1, the expected utility of an agent when she takes an action at t = 0 based only
on her private signal is given by ψ− 1/(ρ+ ρ̄). Waiting is costly when ψ> ψ̄= 1/(ρ+ ρ̄) and, in particular,
it is costlier the larger the constant ψ is.

12We assume that communication between pairs of agents occurs simultaneously as opposed to at inde-
pendent and identically distributed (i.i.d.) times for each pair for simplicity. When communication occurs
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time instant t, agent i decides whether to take action xi (and receive payoff ψ− (xi − θ)2
discounted by e−rt ) or “wait” to obtain more information in subsequent communication
rounds from her peers. Throughout the rest of the paper, we say that the agent exits at
time t if she chooses to take the irreversible action at time t.

As mentioned above, each agent obtains information from other agents through a
communication network represented by a directed graph Gn = (N n�En), where En is
the set of directed edges with which agents are linked. We say that agent j can obtain
information from i or that agent i can send information to j if there is an edge from i to j
in graphGn, that is, (i� j) ∈ En. Let Ini�t denote the information set of agent i at time t and
let Ini�t denote the set of all possible information sets. Then, for every pair of agents i, j,
such that (i� j) ∈ En, we say that agent j communicates with agent i or that agent i sends
a message to agent j and we define the map

mnij�t :Ini�t → Mn
ij�t for (i� j) ∈ En�

where Mn
ij�t ⊆ R

n denotes the set of messages that agent i can send to agent j at time t.
For the remainder of the paper, mnij�t denotes the map from information sets to mes-
sages, whereas mnij�t denotes an actual message, i.e., mnij�t ∈ Mn

ij�t . Note that without loss
of generality the kth component of mnij�t represents the information that agent i sends

to agent j at time t regarding the signal of agent k.13 Moreover, the definition of mnij�t
captures the fact that communication is directed and is allowed only between agents
who are linked in the communication network, i.e., j communicates with i if and only
if (i� j) ∈ En. The direction of communication should be clear: when agent j commu-
nicates with agent i, then agent i sends a message to agent j that could, in principle,
depend on the information set of agent i as well as the identity of agent j.

Importantly, we assume that the cardinality (“dimensionality”) of Mn
ij�t is such that

communication can take the form of agent i sharing all her information with agent j.
This has two key implications. First, an agent can communicate (indirectly) with a much
larger set of agents than just her immediate neighbors, albeit with a time delay. For ex-
ample, the second time agent j communicates with agent i, then j can send informa-
tion not just about her direct neighbors, but also their neighbors (since presumably she
obtained such information during the first communication step). Second, mechanical
duplication of information can be avoided. In particular, the second time agent j com-
municates with agent i, she can repeat her original signal, but this is not recorded as
an additional piece of information by agent j, since given the size of the message space
Mn

ij�t , each piece of information is tagged. This ensures that there need be no confound-
ing of new information and previously communicated information.

simultaneously, the amount of information (number of private signals) that the agent receives at each com-
munication step is deterministic. If communication did not occur simultaneously (for example, if at each
tick of the Poisson clock a single link was activated and communication occurred only on that link), agents
would have to form beliefs about the amount of information they are likely to receive when they next ex-
change information.

13As will become evident in subsequent discussion, we assume that communication involves exchange
of signals and not posterior beliefs. Moreover, information is tagged, i.e., the receiver of the message un-
derstands that its kth component is associated with agent k.
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Let Tt denote the set of times that agents communicated with their neighbors before
time t. That defines the information set of agent i at time t > 0 as

Ini�t = {si�mnji�τ�mnik�τ for all τ ∈ Tt and j�k such that (j� i) ∈ En and (i�k) ∈ En}
and Ini�0 = {si}. In particular, the information set of agent i at time t > 0 consists of her
private signal and all the messages her neighbors sent to i as well as all the messages
agent i sent to her neighbors in previous communication times.14 Agent i’s action at
time t is a mapping from her information set to the set of actions, i.e.,

σni�t :Ini�t → {“wait”} ∪R�

The trade-off between taking an irreversible action and waiting should be clear at
this point. An agent would wait so as to communicate indirectly with a larger set of
agents and choose a better action. Alternatively, the future is discounted, therefore, de-
laying is costly. In particular, agent i’s value function at time t when her information set
is Ini�t is given by the expression

Uni�t(I
n
i�t)= max

{
max
xi

E[ψ− (xi − θ)2|Ini�t]� lim
dt→0

e−r dtE(Uni�t+dt(I
n
i�t+dt)|Ini�t)

}
�

Note that this expression involves a double maximization: first, the agent decides
whether to wait or to take an irreversible action, and in the case that she decides to
take an action, she chooses the one that maximizes her expected instantaneous payoff.
It is worthwhile to highlight at this point that the optimal stopping problem for agent
i depends crucially on the actions of the rest of the agents, since the latter affect agent
i’s information set. For the rest of the paper, Uni denotes the expected value function of
agent i at time t = 0.

We close the section with a number of definitions. We define a path between agents i
and j in networkGn as a sequence i1� � � � � iK of distinct nodes such that i1 = i, iK = j, and
(ik� ik+1) ∈ En for k ∈ {1� � � � �K− 1}. The length of the path is defined asK− 1. Moreover,
we define the distance of agent i to agent j as the length of the shortest path from i to j
in networkGn if such a path exists, i.e.,

distn(i� j)= min{length of P | P is a path from i to j inGn}�
If no path exists, we let distn(i� j) = ∞. Finally, the k-step neighborhood of agent i is
defined as

Bni�k = {j | distn(j� i)≤ k}�
where Bni�0 = {i}, i.e., Bni�k consists of all agents who are at most k links away from agent i
in graph Gn. Intuitively, if agent i waits for k communication steps and all of the inter-
mediate agents receive and communicate information truthfully, iwill have access to all
of the signals of the agents in Bni�k.

14It will become clear why the information set of an agent should include the messages she has sent to
her neighbors when we introduce strategic communication, i.e., when we allow agents to misrepresent or
not fully disclose their information.
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2.3 Equilibria of the information exchange game

We refer to the game defined above as the information exchange game. We next define
the equilibria of the information exchange game �info(G

n) for a given communication
network Gn. We use the standard notation σ−i to denote the strategies of agents other
than i and we let σi�−t denote the vector of actions of agent i at all times except t. Also, let
Pσ and Eσ denote the conditional probability and the conditional expectation, respec-
tively, when agents behave according to profile σ .

Definition 1. An action strategy profile σn�∗ is a pure-strategy perfect Bayesian equi-
librium of the information exchange game �info(G

n) if for every i ∈ N n and time t, and
given the strategies of other agents σn�∗−i , agent i’s action σn�∗i�t obtains expected payoff
equal to the value function of agent i at time t, Uni�t(I

n
i�t). We denote the set of equilibria

of this game by INFO(Gn).

Recall that agent i’s strategy profile depends on other agents’ strategies through the
evolution of the information set Ini�t . For the remainder, we refer to a pure-strategy per-
fect Bayesian equilibrium simply as an equilibrium (we do not study mixed strategy
equilibria). It is important to note here that although equilibria depend on the discount
rate r, we do not explicitly condition on r for convenience.

If agent i decides to exit and take an action at time t, then the optimal action would
be

x
n�∗
i�t = arg max

x
E[ψ− (x− θ)2|Ini�t] = E[θ|Ini�t]�

Since actions are irreversible, the agent’s decision problem reduces to determining the
timing of her action. It is straightforward to see that in equilibrium an agent takes the
irreversible action immediately after some communication step concludes. Thus an
equilibrium strategy profile σ induces an equilibrium timing profile τn�σ , where τn�σi
designates the communication step after which agent i exits by taking an irreversible
action. The τ notation is convenient to use for the statement of some of our results be-
low. Finally, similar to the set Bni�k, we define the k-step neighborhood of agent i under
equilibrium σ as follows: a path Pσ between agents i and j inGn under σ is a sequence
i1� � � � � iK of distinct nodes such that i1 = i, iK = j (ik� ik+1 ∈ En), and τn�σik ≥ k− 1, which
ensures that it is possible for the information from agent j to reach i in equilibrium. In
other words, the information is received by every agent in the path before she takes an
irreversible action. Then, we can define

distn�σ(i� j)= min{length of Pσ | Pσ is a path from i to j inGn under equilibrium σ}

and

Bn�σi�k = {j | distn�σ(j� i)≤ k}�
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2.4 Assumptions on the information exchange process

The communication model described in Section 2.2 is fairly general. In particular, the
model does not restrict the set of messages that an agent can send. Throughout, we
maintain the assumption that the communication network Gn is common knowledge.
Also, we focus on the following two environments defined by Assumptions 1 and 3,
respectively.

Assumption 1 (Truthful communication). Communication between agents is truthful,
i.e.,

mnij�t =
{
m̂nij�t if |Tt | ≤ τn�σi
m̂n
ij�τ

n�σ
i

otherwise

and

(m̂nij�t) =
{
s if distn�σi� ≤ |Tt |
∈R otherwise.

Intuitively, this assumption compactly imposes three crucial features: (i) Commu-
nication takes place by sharing signals, so that when agent j communicates with agent
i at time t, then agent i sends to j all the information agent i has obtained thus far.15

(ii) Agents cannot strategically manipulate the messages they sent, i.e., an agent’s pri-
vate signal is hard information. Moreover, they cannot refuse to disclose the informa-
tion they possess. (iii) When an agent takes an irreversible action, then she no longer
obtains new information and, thus, can only communicate the information she has ob-
tained until the time of her decision. The latter feature captures the fact that an agent,
who engages in information exchange to make a decision, would have weaker incentives
to collect new information after reaching that decision. Nevertheless, she can still com-
municate the information she had previously obtained to other agents. An interesting
consequence of this feature is that it imposes dynamic constraints on communication:
agent i can communicate with agent j only if there is a directed path between them in
the communication network Gn and the agents in the path do not exit early. Our mo-
tivating application—new product diffusion—fits the environment defined by Assump-
tion 1, especially in environments for which it is time-consuming to assess the quality
of a new technology even after adopting it.16

15Figure 1 illustrates the evolution of the information set of an agent: in the first communication step,
agent 2 sends to agent 1 only her own private signal, while in the second communication step, she sends
the signal of agent 3.

16An obvious extension (and a very interesting avenue for future research) would be to incorporate in-
formation generation after an irreversible action is taken into the current framework. This feature would
capture the fact that in some cases agents may obtain additional information after taking an action, e.g.,
buying a product or adopting a new technology. For example, an agent may obtain a second private signal
of higher precision after taking an action.
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(a) Time t = 0. (b) First communication step. (c) Second communication step.

Figure 1. The information set of agent 1 under truthful communication.

We call this type of communication truthful to stress the fact that the agents cannot
strategically manipulate the information they communicate.17 We discuss the implica-
tions of relaxing Assumption 1 by allowing strategic communication in Section 3.4.

2.5 Learning in large societies

We are interested in whether equilibrium behavior leads to information aggregation.
This is captured by the notion of “asymptotic learning,” which characterizes the behav-
ior of agents over communication networks with growing size.

We consider a sequence of communication networks {Gn}∞n=1, whereGn = {N n�En},
and refer to this sequence of communication networks as a society. A sequence of com-
munication networks induces a sequence of information exchange games, and with a
slight abuse of notation we use the term equilibrium to denote a sequence of equilib-
ria of the information exchange games. We denote such an equilibrium by σ = {σn}∞n=1,
which designates that σn ∈ INFO(Gn) for all n. For any fixed n≥ 1 and any equilibrium
of the information exchange game σn ∈ INFO(Gn), we introduce the indicator variable

M
n�ε
i =

{
1 if agent i takes an action that is ε-close to the optimal
0 otherwise.

In other words,Mn�ε
i = 1 (for some ε) if and only if agent i chooses irreversible action xi,

such that |xi − θ| ≤ ε.

17Yet another variant of this assumption would be that agents exit the social network after taking an
action and stop communicating entirely. In this case, the results are essentially identical when their action
is observed by their neighbors. However, if their action is not observable, then the analysis needs to be
modified. In particular, there exist other equilibria where several agents might exit together, expecting
others to exit.
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The next definition introduces the notion of ε�δ-asymptotic learning for a given
society.18

Definition 2. We say that ε�δ-asymptotic learning occurs in society {Gn}∞n=1 along equi-
librium σ if we have

lim sup
n→∞

Pσ

([
1
n

n∑
i=1

(1 −Mn�ε
i )

]
> ε

)
< δ�

This definition states that ε�δ-asymptotic learning occurs when the probability that
at least (1 − ε) fraction of the agents takes an action that is ε-close to the optimal action
(as the society grows infinitely large) is at least 1 − δ.

Definition 3. We say that perfect asymptotic learning occurs in society {Gn}∞n=1 along
equilibrium σ if we have

lim
n→∞Pσ

([
1
n

n∑
i=1

(1 −Mn�ε
i )

]
> ε

)
= 0

for any ε > 0. Equivalently, perfect asymptotic learning occurs in society {Gn}∞n=1 along
equilibrium σ if ε�δ-asymptotic learning occurs in {Gn}∞n=1 along σ for any ε�δ > 0.

Perfect asymptotic learning is naturally a stronger definition (corresponding to ε and
δ being arbitrarily small in the definition of ε�δ-asymptotic learning) and requires all but
a negligible fraction of the agents taking the optimal action in the limit as n→ ∞.

3. Learning and efficient communication

In this section, we present our main results on learning and discuss their implications
for the aggregate welfare. Before doing so, we discuss the decision problem of a sin-
gle agent, which characterizes her optimal stopping time, i.e., the time to take an irre-
versible action given the strategy profile σ of the rest of the agents. Then we contrast
the single agent problem with that of a social planner, whose objective is to maximize
expected aggregate welfare. The analysis in the next three subsections assumes that
communication is truthful (cf. Assumption 1).

3.1 Agent i’s problem

The (nondiscounted) expected payoff of agent i taking an action after observing k truth-
ful private signals (including her own) is given by

E[ψ− (θ̂− θ)2|Ini�t] =ψ− var(θ̂− θ|Ini�t)=ψ− 1
ρ+ ρ̄k�

18Note that we could generalize Definition 2 by introducing yet another parameter and study ε�δ�ζ-
asymptotic learning, in which case we would require that limn→∞ Pσ([1/n∑n

i=1(1 −Mn�ε
i )]> ζ) < δ�
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where recall that ρ and ρ̄ are the precisions of the state θ and the idiosyncratic noise,
respectively. To obtain the second equality, note that if agent i exits, then the optimal
action would be θ̂ = E[θ|Ini�t] and the posterior distribution of θ given the information
set Ini�t has precision equal to ρ+ ρ̄k.

By the principle of optimality, the value function for agent i at information set Ini�t
and assuming that the rest of the agents behave according to profile σ is given by

Uni�t(I
n
i�t)= max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ− 1
ρ+ρ̄kn�σi�t

(when she takes the optimal irreversible action)
e−r dtE[Eσ(Uni�t+dt |Ini�t+dt)|Ini�t]
(when she decides to wait, i.e., x= wait)�

where kn�σi�t = |Bn�σi�t | denotes the number of distinct private signals agent i has observed
up to time t. The first line is equal to the expected payoff for the agent when she chooses
the optimal irreversible action under information set Ini�t , i.e., E[θ|Ini�t], and she has ob-

served kn�σi�t private signals, while the second line is equal to the discounted expected
continuation payoff. Specifically, if the agent decides to wait’ at time t, then she in-
curs the discounting cost (term e−r dt ) in exchange for potentially more information, as
designated by the information set Ini�t+dt , where Ini�t ⊆ Ini�t+dt and Ini�t ⊂ Ini�t+dt if new infor-
mation is communicated within the time interval [t� t + dt).

The following lemma states that an agent’s optimal action takes the form of a thresh-
old rule: there exists a threshold (kn�σi�|Tt |)

∗, such that an agent decides to take an irre-

versible action at time t as long as she has observed more than (kn�σi�|Tt |)
∗ private signals.

Like all other results in this paper, the proof of this lemma is provided in Appendix B.

Lemma 1. Suppose that Assumption 1 holds, so that communication is truthful. Then,
given communication networkGn and equilibriumσ ∈ INFO(Gn), there exists a sequence
of signal thresholds for each agent i, {(kn�σi�τ )∗}∞τ=0, that depend on the current communi-
cation round, the identity of the agent i, the communication network Gn, and σ such
that agent imaximizes her expected utility at information set Ini�t by taking action xni�t(I

n
i�t)

defined as

xni�t(I
n
i�t)=

{
E[θ|Ini�t] if kni�t ≥ (kn�σi�|Tt |)∗
wait otherwise�

where kni�t is the number of private signals that agent i has observed up to time t.

A consequence of Lemma 1 is that an equilibrium strategy profile σ defines both a
time at which agent i acts (immediately after communication step τn�σi ) and the number
of signals that agent i has access to when she acts.

3.2 Asymptotic learning

We begin the discussion by introducing the concepts that are instrumental for asymp-
totic learning: the observation radius and k-radius sets. Recall that an equilibrium of the
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information exchange game on communication networkGn, σn ∈ INFO(Gn), induces a
timing profile τn�σ , such that agent i takes an irreversible action after τn�σi communica-
tion steps. We call τn�σi the observation radius of agent i under equilibrium profile σn.
We also define agent i’s perfect observation radius, τni , as the communication round that
agent iwould exit, assuming that all other agents never exit. Note that an agent’s perfect
observation radius is independent of the strategies of other agents and depends only on
the network structure. Alternatively, τn�σi is an endogenous object and depends on both
the network and the specific equilibrium profile σ . Given the notion of an observation
radius, we define k-radius sets (and similarly perfect k-radius sets) as follows.

Definition 4. Let V n�σk be defined as

V n�σk = {i ∈ N | |Bn�σ
i�τ

n�σ
i

| ≤ k}�

We refer to V n�σk as the k-radius set (along equilibrium σ). Similarly, we refer to

V nk = {i ∈ N | |Bni�τni | ≤ k}

as the perfect k-radius set.

Intuitively, V n�σk includes all agents that take an action before they receive signals
from more than k other individuals in equilibrium σ . Equivalently, the size of their (in-
direct) neighborhood by the time they take an irreversible action is no greater than k.
From Definition 4, it follows immediately that

i ∈ V n�σk ⇒ i ∈ V n�σk′ for all k′ > k�

Proposition 1 below provides conditions for perfect asymptotic learning to occur in
any equilibrium profile as a function of only exogenous objects, i.e., the perfect k-radius
sets, that depend exclusively on the structure of the communication network (for con-
ditions that guarantee that ε�δ-asymptotic learning occurs/does not occur in an equi-
librium profile σ , refer to Proposition 8 in Appendix A). Before stating Proposition 1, we
define the notion of leading agents. Intuitively, a society contains a set of leading agents
if there is a negligible fraction of the agents (the leading agents) whose actions affect the
equilibrium behavior of a much larger set of agents (the followers). Let indegni = |Bni�1|
and outdegni = |{j | i ∈ Bnj�1}| denote the in-degree and out-degree of agent i in commu-
nication network Gn, respectively.

Definition 5. A collection {Sn}∞n=1 of sets of agents is called a set of leading agents if
the following conditions hold:

(i) There exists k> 0, such that Snj ⊆ V njk for all j ∈ J, where J is an infinite index set.

(ii) We have limn→∞(1/n) · |Sn| = 0, i.e., the collection {Sn}∞n=1 contains a negligible
fraction of the agents as the society grows.
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Figure 2. Leading agents and asymptotic learning.

(iii) We have limn→∞(1/n) · |Snfollow|> ε for some ε > 0, where Snfollow denotes the set of
followers of Sn. In particular,

Snfollow = {i | there exists j ∈ Sn such that j ∈ Bni�1}�

Proposition 1. Suppose that Assumption 1 holds, so that communication is truthful.
Then the following cases occur:

(i) Perfect asymptotic learning occurs in society {Gn}∞n=1 in any equilibrium σ if

lim
k→∞

lim
n→∞

1
n

· |V nk | = 0� (1)

(ii) Conversely, if condition (1) does not hold for society {Gn}∞n=1and the society does not
contain a set of leading agents, then perfect asymptotic learning does not occur in
any equilibrium σ .

Proposition 1 is not stated as an if and only if result because the fact that condition
(1) does not hold in a society does not necessarily preclude perfect asymptotic learning
in the presence of leading agents. In particular, depending on their actions, a large set of
agents may exit early before obtaining enough information to learn the underlying state
or may delay their actions and learn it. Figure 2 clarifies this point: if the leading agents
(agents A and B) delay their irreversible decision for one communication round, then a
large fraction of the rest of the agents (agents 1 to n) may take (depending on the dis-
count rate) an irreversible action as soon as they communicate with the leading agents
and their neighbors (i.e., after the second communication round concludes), thus, per-
fect asymptotic learning fails. However, if the leading agents do not “coordinate,” then
they exit early and this may lead the rest of the agents to take a delayed (after the third
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communication round), but more informed action. Generally, in the presence of lead-
ing agents, asymptotic learning may occur in all or some of the induced equilibria, even
when condition (1) does not hold.

In the rest of this section, we present two corollaries that help clarify the intuition
behind the asymptotic learning result and identify the role of certain types of agents on
information spread in a given society. We focus on perfect asymptotic learning, since we
can obtain sharper results, though we can state similar corollaries for ε�δ-asymptotic
learning for any ε and δ. All corollaries are again expressed in terms of the network
topology. Also, for simplicity, for the rest of this section, we assume that the in-degree
and the out-degree of an agent are nondecreasing with n.

In particular, Corollary 1 identifies a group of agents that is crucial for a society to
permit asymptotic learning: information mavens (a term inspired by Gladwell 2000),
who have high in-degrees (“information hubs”) and can thus act as effective aggrega-
tors of information. The importance of information mavens is clearly illustrated by our
learning results. Our next definition formalizes this notion.

Definition 6. Agent i is called an information maven of society {Gn}∞n=1 if i has an
infinite in-degree, i.e., if

lim
n→∞ indegni = ∞�

Let MAVEN({Gn}∞n=1) denote the set of mavens of society {Gn}∞n=1.

For any agent j, let dMAVEN�n
j denote the shortest distance defined in communication

networkGn between j and a maven k ∈ MAVEN({Gn}∞n=1). Finally, letW n denote the set
of agents who are at distance at most equal to their perfect observation radius from a
maven in communication networkGn, i.e.,W n = {j | dMAVEN�n

j ≤ τnj }.
The following corollary highlights the importance of information mavens for asymp-

totic learning. Informally, it states that if almost all agents have a short path to a maven,
then asymptotic learning occurs.

Corollary 1. Suppose that Assumption 1 holds, so that communication is truthful.
Then asymptotic learning occurs in society {Gn}∞n=1 if

lim
n→∞

1
n

· |W n| = 1�

According to Corollary 1, asymptotic learning is obtained when almost all agents are
at a short distance away from an information maven (less than their observation radius).

As mentioned in the Introduction, a second type of information hub also plays an
important role in asymptotic learning. While mavens have high in-degree and are thus
able to effectively aggregate dispersed information, they may not be in the right position
to distribute this aggregated information. If so, even in a society that has several infor-
mation mavens, a large fraction of the agents may not benefit from their information.
Social connectors, on the other hand, are defined as agents who have a high out-degree
and, thus, play the role of spreading the information aggregated by the mavens. Before
stating the proposition, we define social connectors.
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Definition 7. Agent i is called a social connector of society {Gn}∞n=1 if i has an infinite
out-degree, i.e., if

lim
n→∞ outdegni = ∞�

The following corollary illustrates the role of social connectors for asymptotic
learning.

Corollary 2. Suppose that Assumption 1 holds, so that communication is truthful.
Consider a society {Gn}∞n=1, such that the set of information mavens does not grow at the
same rate as the society itself, i.e.,

lim
n→∞

|MAVEN({Gn}∞n=1)∩ {1� � � � � n}|
n

= 0�

Moreover, all mavens in the society have bounded out-degree, i.e., there exists k > 0 such
that

lim sup
n→∞

outdegni < k� for all i ∈ MAVEN({Gn}∞n=1)�

Then, for asymptotic learning to occur, the society should contain a social connector
within a short distance to a maven, i.e.,

dMAVEN�n
i ≤ τni � for some social connector i�

Recall that the corollaries were expressed for societies for which both the in-degree
and the out-degree of an agent are nondecreasing in the size of the society n. This choice
simplified the exposition considerably; if this was not the case, the corollaries would
have been expressed in terms of the agents with the largest in-degree and out-degree
within the observation radius of an agent for each n.

Corollary 2 thus states that unless the set of mavens grows at the same rate as the
society or there are agents who are both mavens and connectors, then information ag-
gregated at the mavens is spread through the out-links of a connector. These two corol-
laries highlight two ways in which society can achieve perfect asymptotic learning. First,
it may contain several information mavens who not only collect and aggregate informa-
tion, but also distribute it to almost all the agents in the society. Second, it may contain
a sufficient number of information mavens who pass their information to social con-
nectors, and almost all the agents in the society are a short distance away from social
connectors and thus obtain accurate information from them. This latter pattern is more
plausible in practice than one in which the same agents collect and distribute dispersed
information. For example, a website or a news source may need to rely on information
mavens (journalists, researchers, or analysts) to collect sufficient information and then
reach a large number of individuals, and this may permit information to be aggregated
efficiently.

The results summarized in Proposition 1, as well as in Corollaries 1 and 2, can be
seen both as positive and negative, as already noted in the Introduction. On the one
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hand, communication structures that do not feature information mavens (or connec-
tors) do not lead to perfect asymptotic learning, and information mavens may be viewed
as unrealistic or extreme. On the other hand, as already noted above, much communi-
cation in modern societies happens through agents who play the role of mavens and
connectors (see again Gladwell 2000). These are highly connected agents who are able
to collect and distribute crucial information. Perhaps more importantly, most individ-
uals obtain some of their information from news sources, media, and websites, which
exist partly or primarily for the purpose of acting as information mavens and connec-
tors.19 In particular, Reinstein and Snyder (2005) exploit the difference in timing be-
tween the release of a movie and the posting of a review by two of the most prominent
critics, Siskel and Ebert, to argue for the importance of a positive review, especially in
movie categories with a lot of uncertainty and little prior information (e.g., narrower re-
lease movies). Moreover, they show that a positive review increases the total number
of consumers who attend the movie rather than simply shifting consumers to view the
movie earlier. Similarly, Sorensen (2007) exploits time lags between the release of a book
and its inclusion on the New York Times bestsellers list to establish similar results. We
view the above evidence as conforming with our findings: in the absence of input from
mavens–connectors, information is not aggregated efficiently, since it is their input that
induces agents to buy certain products.

The result that asymptotic learning requires the presence of information hubs (infor-
mation mavens and social connectors) is in contrast to one of the key insights of several
non-Bayesian models of learning. Both in Bala and Goyal (1998) and in models based on
DeGroot’s approach to learning (e.g., DeMarzo et al. 2003 and Golub and Jackson 2010),
the existence of a highly connected individual or group of individuals (a “royal family” in
the terminology of Bala and Goyal 1998) precludes learning because it leads to excessive
duplication of information. In our framework, because agents are fully Bayesian and in-
formation is tagged, such duplication does not take place and information hubs play a
central role in quickly aggregating and disseminating dispersed information. Thus they
are conduits rather than barriers to asymptotic learning.

Finally, an important point to highlight is that although our results are shown in a
setting where agents may end up passing a number of signals that grows with the size
of the society (which might be considered an unappealing feature of the model), our
qualitative insights regarding asymptotic learning remain true even if a summary statis-
tic rather than the entire tagged information that an agent has is communicated. In
the environment we described, the posterior mean and precision about the state given
the messages that an agent has received comprise a sufficient statistic of her informa-
tion. Thus in this case, the agent can simply exchange this low-dimensional information
rather than all the messages she has received. This would be without any loss of gener-
ality when the network structure does not contain loops and, therefore, there exists no
agent who receives the information of another agent from more than one sources (there
is no replication of information). Even when the network contains loops, we show in

19For example, a news website such as cnn.com acts as a connector that spreads the information aggre-
gated by the journalists–mavens to interested readers. Similarly, a movie review website, e.g., imdb.com,
spreads the aggregate knowledge of movie reviewers to interested movie aficionados.

http://www.cnn.com
http://www.imdb.com
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Figure 3. Hierarchical society.

Proposition 2 that asymptotic learning obtains when individuals report just their pos-
terior mean under the same conditions as when they report their entire information
set.

Assumption 2 (Low-dimensional communication). Communication between agents is
low dimensional when agents just report their posterior mean about the underlying state
θ when communication takes place, i.e., if agent j communicates with agent i at time t,
then i sends to j the message

mnij�t = E[θ|Ini�t]�

Proposition 2. If perfect asymptotic learning occurs in society {Gn}∞n=1 under Assump-
tion 1, then perfect asymptotic learning occurs in society {Gn}∞n=1 under Assumption 2,
i.e., when agents just report their posterior mean about the underlying state θ.

Proposition 1 and Corollary 1 imply that asymptotic learning occurs under Assump-
tion 1 when the underlying network structure features information mavens, i.e., agents
with an arbitrarily large in-degree. The intuition behind Proposition 2 above is simply
that mavens can still aggregate and distribute a large amount of information, even when
they receive low-dimensional communication.

3.3 Asymptotic learning in random graphs

We now illustrate the results outlined in Section 3.2 by applying them to hierarchical
graphs, a class of random graphs defined below (also see Figure 3). Note that in the
present section, we assume that communication networks are bidirectional or, equiva-
lently, that if agent i ∈ Bnj�1, then j ∈ Bni�1. Conditional on the realization of the network
structure, both the state of the world θ and the private signals are distributed as in the
previous sections.

Definition 8 (Hierarchical graphs). A sequence of communication networks {Gn}∞n=1,
whereGn = {N n�En}, is called ζ-hierarchical (or simply hierarchical) if it was generated
by the following process:
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(i) Agents are born and placed into layers. In particular, at each step n, a new agent
is born and placed in layer .

(ii) Layer index  is initialized to 1 (i.e., the first node belongs to layer 1). A new layer
is created (and subsequently the layer index increases by 1) at time period n ≥ 2
with probability 1/n1+ζ , where ζ > 0.

(iii) Finally, for every n, we have

P((i� j) ∈ En)= p

|N n
 |
�

independently for all i� j ∈ N n that belong to the same layer �

where N n
 denotes the set of agents who belong to layer  at step n and p is a

scalar, such that 0<p< 1. Moreover,

P((i�k) ∈ En)= 1
|N<| and P

(⋃
k

(i�k) ∈ En
)

= 1 for all i ∈Nn
 �k ∈Nn

<�  > 1�

where N n
< denotes the set of agents who belong to a layer with index lower than

 at step n.

In words, agents are born sequentially and placed into layers starting from layer 1
(the top layer). As long as the layer index does not increase, a new agent is placed into
the same layer as her predecessor. The layer index increases at every step with some
probability that decreases with the number of steps (and, thus, ensures that with high
probability, layers with high indices contain more agents than layers with low indices).
Finally, each agent has an edge with her predecessors in the same layer and with her
predecessors in layers with lower indices uniformly at random with some probability.
The last property implies that older agents (agents who were born earlier) connect to
more agents.

Intuitively, a hierarchical sequence of communication networks resembles a pyra-
mid, where the top contains only a few agents and as we move toward the base, the num-
ber of agents grows. The following argument provides an interpretation of the model.
Agents on top layers can be thought of as “special” nodes, that the rest of the nodes
have a high incentive to connect to. Moreover, agents tend to connect to other agents
in the same layer, as they share common features with them (which can be interpreted
as a form of homophily). As a concrete example, academia can be thought of as such a
pyramid, where the top layer includes the few institutions, then the next layer includes
academic departments, then research labs, and finally at the lower levels reside the web-
pages of professors and students.

Proposition 3. Suppose that Assumption 1 holds, so that communication is truthful,
and consider society {Gn}∞n=1. There exist r̄ > 0 and a function ζ(η) such that perfect
asymptotic learning occurs in society {Gn}∞n=1 with probability at least 1 − η if the se-
quence of communication networks {Gn}∞n=1 is ζ(η)-hierarchical and the discount rate is
r < r̄.
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The probabilityη that perfect asymptotic learning fails is related here to the stochas-
tic process that generated the graph. We can also show that the popular preferential
attachment and Erdős–Renyi graphs do not lead to asymptotic learning (we omit these
results to save space). This can be interpreted as implying that asymptotic learning is
unlikely in several important networks. Nevertheless, these network structures, though
often used in practice, do not provide a good description of the structure of many real
life networks. In contrast, our results show that asymptotic learning takes place in hi-
erarchical graphs, where special agents are likely to receive and distribute information
to lower layers of the hierarchy. Although this result is useful in pointing out certain
structures where information can be aggregated efficiently, our analysis on the whole
suggests that the conditions for perfect asymptotic learning are somewhat stringent.

3.4 Strategic communication

Next we explore the implications of relaxing the assumption that agents cannot manip-
ulate the messages they send. In particular, we replace Assumption 1 with the following
assumption.

Assumption 3 (Strategic communication). Communication between agents is strategic
if

mnij�t ∈R
n

for all agents i, j and time t.

This assumption highlights that strategic communication does not impose any con-
straints on the messages exchanged (except that they belong to R

n). In particular, mnij�t
is a decision variable of agent i at time t and it is measurable with respect to the infor-
mation available to agent i at time t. Allowing strategic communication adds an extra
dimension in an agent’s strategy, since the agent can choose not to disclose (part) of
her information set in the hope that this increases her expected payoff. In contrast with
“cheap talk” models, externalities in our framework are purely informational. Thus an
agent may have an incentive not to disclose (part of) her information as a means to ob-
tain more information from the information exchange process (by inducing a later exit
decision from her neighbors).20

Figure 4 illustrates how incentives for nontruthful communication may arise. Here,
agent B may have an incentive not to disclose her information to agent A. In particu-
lar, for a set of parameter values, we have that if agent B is truthful to A, then A takes
an action after the first communication round. Alternatively, if B does not disclose her
information to A, then A waits for an additional time period and B obtains access to the
information of agents 9, 10, and 11.

Let (σn�mn) denote an action–message strategy profile, where mn = {mn1� � � � �mnn}
and mni = [mnij�τ]t=0�1���� for j such that i ∈ Bnj�1. Also let Pσn�mn refer to the condi-
tional probability when agents behave according to the action–message strategy profile
(σn�mn).

20Recall that when an agent exits, then she does not communicate new information (but she can still
communicate the information she obtained up to the time of her exit).
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Figure 4. Agents may have an incentive to misreport/not disclose their information.

Definition 9. An action–message strategy profile (σn�∗�mn�∗) is a pure-strategy perfect
Bayesian equilibrium of the information exchange game �info(G

n) if for every i ∈ N n and
communication round τ, we have

E(σn�∗�mn�∗)(U
n
i�τ|Ini�τ)≥ E((σni�τ�σ

n
i�−τ�σ

n�∗
−i )�(m

n
i�τ�m

n
i�−τm

n�∗
−i ))

(Uni�τ|Ini�τ)

for all mni�τ, mni�−τ, and σni�τ , σni�−τ . We denote the set of equilibria of this game by
INFO(Gn).

Similarly, we extend the definitions of asymptotic learning (cf. Definitions 2 and 3).
We show that strategic communication does not harm perfect asymptotic learning. The
main intuition behind this result is that it is weakly dominant for an agent to report her
private signal truthfully to a neighbor with a high in-degree (maven), as long as others
are truthful to the maven.

Proposition 4. If perfect asymptotic learning occurs in society {Gn}∞n=1 under truthful
communication (cf. Assumption 1), then there exists an equilibrium (σ�m), such that per-
fect asymptotic learning occurs in society {Gn}∞n=1 along equilibrium (σ�m) when we al-
low strategic communication (cf. Assumption 3).

This proposition therefore implies that the focus on truthful reporting was without
much loss of generality as far as perfect asymptotic learning is concerned. In any com-
munication network in which there is perfect asymptotic learning, even if agents can
strategically manipulate information, there is arbitrarily little benefit in doing so. Thus,
the main lessons about asymptotic learning derived above apply regardless of whether
communication is strategic.

However, this proposition does not imply that all learning outcomes are identical
under truthful and strategic communication. In particular, as illustrated in Figure 5,
strategic communication may lead agents to take a better action with higher probability
than under truthful communication (cf. Assumption 1). The main reason for this (coun-
terintuitive) fact is that under strategic communication, an agent may delay taking an
action compared to the nonstrategic environment. Therefore, the agent obtains more
information from the communication network and, consequently, chooses an action,
that is closer to optimal. In particular, in the example illustrated in Figure 5, if agents
A and B decide not to disclose their information, then agents 1� � � � � n may delay their
action so as to communicate with the neighbors of A1� � � � �An and thus take an action
based on more information.
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Figure 5. Strategic communication may lead to better actions.

Finally, note that relaxing Assumption 1 by imposing no restrictions on the messages
that agents exchange would lead to multiple equilibria. In particular, a “babbling” equi-
librium always exists: agents send uninformative messages and ignore the messages
they receive from their peers. A complete characterization of the equilibria of the infor-
mation exchange game under strategic communication is beyond the scope of this pa-
per. Our main goal in this section was to show that perfect asymptotic learning is robust
(at least in some equilibria) to strategic communication. Moreover, we illustrated that
the introduction of strategic communication has nontrivial welfare implications even in
the case when externalities among agents are purely informational.

3.5 Welfare

In this subsection, we turn to the question of efficient communication and compare
equilibrium allocations (communication and action profiles in equilibrium) with those
that would be dictated by the welfare-maximizing social planner. We identify conditions
under which a social planner can improve over an equilibrium strategy profile. In doing
so, we illustrate that communication over social networks might be inefficient because
agents do not internalize the positive externality that delaying their action generates for
their peers.21

A social planner whose objective is to maximize the aggregate expected welfare of
the population of n agents would implement the timing profile that is a solution to the

21We compare equilibrium outcomes to the best society could do under the constraint that information
available to the agents at the beginning of the horizon cannot be redistributed among them before the
information exchange process. In other words, our efficiency benchmark is the optimal mapping from
information available to each agent to actions that maximize the aggregate utility. Angeletos and Pavan
(2007) use a similar benchmark to compare equilibrium use and the social value of information for a class
of economies that feature externalities among the agents and heterogeneous information.
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optimization problem

max
spn

n∑
i=1

Espn [Uni ]�

where spn = (τ
n�sp
1 � � � � � τ

n�sp
n ) and τn�sp

i implies that agent i stops exchanging informa-
tion and takes an action after τn�sp

i communication rounds. With some abuse of nota-
tion, for the rest of this section, we denote by spn the optimal allocation, i.e., the solution
to the optimization problem defined above.

Similarly with the asymptotic analysis for equilibria, we define a sequence of optimal
allocations for societies of growing size, sp = {spn}∞n=1. We are interested in identifying
conditions under which the social planner can/cannot achieve an asymptotically bet-
ter allocation than an equilibrium (sequence of equilibria) σ , i.e., we are looking at the
expression

lim
n→∞

∑
i∈Nn Espn [Uni ] − ∑

i∈Nn Eσ [Uni ]
n

�

The next proposition shows a direct connection between learning and efficient
communication.

Proposition 5. Consider society {Gn}∞n=1. If condition (1) holds, i.e.,

lim
k→∞

lim
n→∞

1
n

|V nk | = 0�

then

(i) perfect asymptotic learning occurs in all equilibria σ

(ii) all equilibria are asymptotically efficient, i.e.,

lim
n→∞

∑
i∈Nn Espn[Uni ] − ∑

i∈Nn Eσ [Uni ]
n

= 0

for all equilibria σ .

However, communication is not always efficient. In what follows, we contrast the
decision problem of an individual agent iwith that of the social planner and show when
equilibria can be inefficient. With a slight abuse of notation, Uni (k�σ) denotes the ex-
pected payoff of agent i when agents behave according to profile σ and the agent has
observed k signals. Agent i decides to take an irreversible action at time t and not to
wait for an additional dt, when other agents behave according to σ , if (see Appendix B)

r + λ
λ

(
ψ− 1

ρ+ ρ̄kn�σi�t

)
≥Uni (kn�σi�t + |Bn�σi�|Tt |+1| − |Bn�σi�|Tt ||�σ)� (2)
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Similarly, in the corresponding optimal allocation, agent i exits at time t and does
not wait if

r + λ
λ

(
ψ− 1

ρ+ ρ̄kn�sp
i�t

)
(3)

≥Uni (kn�sp
i�t + |Bn�sp

i�|Tt |+1| − |Bn�sp
i�|Tt ||� sp)+

∑
j �=i

Esp[Unj |i waits at t] −Esp[Unj |i exits at t]�

Comparison of (2) with (3) shows the reason why equilibria may be inefficient in this
setting: when determining when to act, agent i does not take into account the posi-
tive externality that a later action exerts on others. This externality is expressed by the
summation on the right-hand side of (3) (which is always nonnegative).

We next derive sufficient conditions under which a social planner outperforms an
equilibrium allocation σ . Consider agents i and j such that i ∈ Bnj�1 and τn�σj > τn�σi + 1,
which implies that Bn

j�τ
n�σ
j

⊃ Bn
i�τ

n�σ
i

(i.e., agent j communicates with a superset of the

agents that i communicates with before taking an action). Also, let kn�σ
ij�τ

n�σ
i

denote the

additional agents that j would observe if i delayed her irreversible action by dt. Then
the aggregate welfare of the two agents increases if the following condition holds:

Unj (k
n�σ

j�τ
n�σ
j

+ kn�σ
ij�τ

n�σ
i

)+Uni (kn�σi�τn�σi + kn�σ
ij�τ

n�σ
i

) > Unj (k
n�σ

j�τ
n�σ
j

)+ r + λ
λ

Uni (k
n�σ

i�τ
n�σ
i

)�

Let setDn�σk� denote the set of agents j ∈Dn�σk� under the following conditions:

(i) If kn�σ
j�τ

n�σ
j

≤ k.

(ii) If there exists an agent i ∈ Bn�σj�1 such that τn�σj > τ
n�σ
i + 1 and if i exits at τn�σi + 1,

then j gains access to at least  additional signals.

Intuitively, set Dn�σk� contains agents who would obtain higher payoff in expectation if
one of their neighbors delayed taking her irreversible action. In particular, under equi-
librium profile σ , agent j ∈ Dn�σk� takes an action after observing at most k signals. If
her neighbor i delayed her action by one communication round, then she would have
access to at least k+  signals by the time of her action.

The following proposition provides a sufficient condition for an equilibrium to be
inefficient. It simply states that if there is a sufficiently large set of agents who would ob-
tain higher expected payoff if one of their neighbors deviates from equilibrium profile σ
by delaying her action, then (i) the equilibrium profile σ is inefficient and (ii) asymptotic
learning does not occur at σ for an appropriate choice of parameters.

Proposition 6. Consider society {Gn}∞n=1 and equilibrium σ = {σn}∞n=1. Assume that
limn→∞ |Dn�σk� |/n > ξ > 0 for k,  that satisfy

r

λ
ψ+ 2

ρ+ ρ̄(k+ ) <
(

2 + r

λ

)
1

ρ+ ρ̄k �
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Then there exists a ζ > 0, such that

lim
n→∞

∑
i∈Nn Espn[Uni ] − ∑

i∈Nn Eσ [Uni ]
n

> ζ�

i.e., equilibrium σ is asymptotically inefficient. Moreover, there exist ε, δ such that
ε�δ-asymptotic learning fails in equilibrium σ .

We close this section with a discussion on the implications of increasing the infor-
mation that agents have access to at the beginning of the information exchange process.
Consider the following setting: agents at time t = 0 have access to k public signals in ad-
dition to their private signal. This results in the following trade-off: on the one hand,
agents are better informed about the underlying state, but then, on the other hand,
they have less incentive to delay taking an action, and obtain and share information
with others. In particular, one can show that when all agents have access to the same
k public signals, then information sharing will be reduced compared to a setting with-
out public signals, in the sense that agents take an irreversible action earlier. Moreover,
in some cases, the presence of public signals leads to a strict decrease in the aggregate
welfare. Thus more information is not necessarily better for the aggregate welfare of the
agents.22 In view of this result, the recent surge of user-generated content in the form
of product reviews and recommendations may not be as beneficial as it is sometimes
argued, since there is some evidence (although not conclusive) that online recommen-
dation systems tend to steer consumers toward popular choices and reduce product
diversity (see Sorensen 2007 and Fleder and Hosanagar 2009).

4. Network formation

We have so far studied information exchange among agents over a given communication
networkGn = (N n�En). We now analyze how this communication network emerges. We
assume that link formation is costly. In particular, communication costs are captured by
an n × n nonnegative matrix Cn, where Cnij denotes the cost that agent i has to incur
to form the directed link (j� i) with agent j. As noted previously, a link’s direction co-
incides with the direction of the flow of messages. In particular, agent i incurs a cost
to form in-links. We refer to Cn as the communication cost matrix. We assume that
Cnii = 0 for all i ∈ N n. Our goal in this section is to provide conditions under which the
network structures that emerge as equilibria of the network formation game defined be-
low guarantee asymptotic learning. Our results indicate that easy access to information
may preclude asymptotic learning, as it reduces the incentives for further information
sharing. Moreover, asymptotic learning may depend on how well agents coordinate in
equilibrium: we show that there may be multiple equilibria that induce sparser/denser
network structures and lead to different answers for asymptotic learning.

We define agent i’s link formation strategy, gni , as an n-tuple such that gni ∈ {0�1}n
and gnij = 1 implies that agent i forms a link with agent j. The cost agent i has to incur if

22This result is similar in spirit to those in Duffie et al. (2009) and in Morris and Shin (2002), both of which
show how greater availability of public information may reduce welfare.



Theoretical Economics 9 (2014) Endogenous social networks 69

she implements strategy gni is given by

Cost(gni )=
∑
j∈N

Cnij · gnij�

The link formation strategy profile gn = (gn1 � � � � � g
n
n) induces the communication net-

workGn = (N n�En), where (j� i) ∈ En if and only if gnij = 1.
We extend our environment to the two-stage network learning game �(Cn), where

Cn denotes the communication cost matrix. The two stages of the network learning
game can be described as follows:
Stage 1 (Network formation game): Agents choose their link formation strategies simul-
taneously. The link formation strategy profile gn induces the communication network
Gn = (N n�En). We refer to Stage 1 of the network learning game, when the communica-
tion cost matrix is Cn, as the network formation game and we denote it by �net(C

n).
Stage 2 (Information exchange game): Agents communicate over the induced network
Gn as studied in previous sections.

We next define the equilibria of the network learning game �(Cn). Note that we use
the standard notation g−i and σ−i to denote the strategies of agents other than i. Also,
we let σi�−t denote the vector of actions of agent i at all times except t.

Definition 10. A pair (gn�∗�σn�∗) is a pure-strategy perfect Bayesian equilibrium of the
network learning game �(Cn) if the following conditions hold:

(a) We have σn�∗ ∈ INFO(Gn), whereGn is induced by the link formation strategy gn�∗.

(b) For all i ∈ N n, gn�∗i maximizes the expected payoff of agent i given the strategies of
other agents gn�∗−i , i.e.,

gn�∗i ∈ arg max
gni ∈{0�1}n

Eσ [χi(gni � gn�∗−i )] ≡ Eσ(U
n
i |Ini�0)− Cost(gni )

for all σ ∈ INFO(G̃n), where G̃n is induced by link formation strategy (gni � g
n�∗
−i ).

We denote the set of equilibria of this game by NET(Cn).

Similar to the analysis of the information exchange game, we consider a sequence of
communication cost matrices {Cn}∞n=1, where for fixed n,

Cn :N n ×N n →R
+ and Cnij =Cn+1

ij for all i� j ∈ N n� (4)

For the remainder of the section, we focus on the social cliques communication
cost structure. The properties of this communication structure are stated in the next
assumption.

Assumption 4. Let cnij ∈ {0� c} for all pairs (i� j) ∈ N n × N n, where c < (1/ρ+ ρ̄). More-
over, let cij = cji for all i� j ∈ N n (symmetry) and let cij + cjk ≥ cik for all i� j�k ∈ N n

(triangle inequality).
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Figure 6. Social cliques.

The assumption that c < 1/(ρ + ρ̄) rules out the degenerate case where no agent
forms a costly link. The symmetry and triangle inequality assumptions are imposed to
simplify the definition of a social clique, which is introduced next. Suppose Assump-
tion 4 holds. We define a social clique (cf. Figure 6) Hn ⊂ N n as a set of agents such
that

i� j ∈Hn if and only if cij = cji = 0�

Note that this set is well defined since, by the triangle inequality and symmetry as-
sumptions, if an agent i does not belong to social clique Hn, then cij = c for all j ∈Hn.
Hence, we can uniquely partition the set of nodes N n into a set of Kn pairwise dis-
joint social cliques Hn = {Hn

1 � � � � �H
n
Kn}. We use the notation Hn

k to denote the set of
pairwise disjoint social cliques that have cardinality greater than or equal to k, i.e.,
Hn
k = {Hn

i � i = 1� � � � �Kn | |Hn
i | ≥ k}. We also use SCn(i) to denote the social clique that

agent i belongs to. Social cliques represent groups of individuals who are linked to each
other at zero cost. These can be thought of as friendship networks, which are linked
for reasons unrelated to information exchange and thus can act as conduits of such ex-
change at low cost. Agents can exchange information without incurring any costs (be-
yond the delay necessary for obtaining information) within their social cliques. How-
ever, if they wish to obtain further information from outside their social cliques, they
have to pay a cost at the beginning so as to form a link.23

We consider a sequence of communication cost matrices {Cn}∞n=1 that satisfy condi-
tion (4) and Assumption 4, and we refer to this sequence as a communication cost struc-
ture. As shown above, the communication cost structure {Cn}∞n=1 uniquely defines se-
quences, {Hn}∞n=1 and {Hn

k}∞n=1 for k> 0, which are sets of pairwise disjoint social cliques.
Our goal is to identify conditions on the communication cost structure that lead to the
emergence of networks that guarantee asymptotic learning. For brevity, we focus en-
tirely on perfect asymptotic learning. Similar results can be obtained for ε�δ-asymptotic
learning.

23It is straightforward to see that social cliques of different sizes are isomorphic to agents having access
to signals of varying precision.
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Proposition 7. Suppose that Assumption 1 holds, so that communication is truthful,
and let {Cn}∞n=1 satisfy Assumption 4, i.e., {Cn}∞n=1 is a social cliques communication cost
structure. Then there exists a constant k̄= k̄(c) such that the following statements hold:

(a) Suppose that

lim sup
n→∞

|Hn
k̄
|

n
≥ ε for some ε > 0� (5)

Then perfect asymptotic learning does not occur in any network equilibrium (g�σ).

(b) Suppose that

lim
n→∞

|Hn
k̄
|

n
= 0 and lim

n→∞|Hn
 | = ∞ for some � (6)

Then perfect asymptotic learning occurs in all network equilibria (g�σ) when the
discount rate r satisfies 0< r < r̄, where r̄ > 0 is a constant.

(c) Suppose that there existsM > 0 such that

lim
n→∞

|Hn
k̄
|

n
= 0 and lim sup

n→∞
|Hn

 |<M for all � (7)

and let agents be patient, i.e., consider the case when the discount rate r → 0.24

Then there exists c̄ > 0 such that we have two cases:

(i) If c ≤ c̄, perfect asymptotic learning occurs in all network equilibria (g�σ).

(ii) If c > c̄, there exists at least one network equilibrium (g�σ) where there is no
perfect asymptotic learning and there exists at least one network equilibrium
(g�σ)where perfect asymptotic learning occurs.

Even though network formation games have several equilibria, the structure of our
network formation and information exchange game enables us to obtain a fairly com-
plete characterization of what types of environments lead to the formation of networks
that subsequently induce perfect asymptotic learning. In particular, the first part of
Proposition 7 shows that perfect asymptotic learning cannot occur in any equilibrium
if the number of sufficiently large social cliques increases at the same rate as the size of
the society. This is intuitive; when this is the case, there are many social cliques of suffi-
ciently large size that none of their members wishes to engage in further costly commu-
nication with members of other social cliques. But since several of these do not contain
an information hub, social learning is precluded.

In contrast, the second part of the proposition shows that if the number of disjoint
and sufficiently large social cliques is limited (grows less rapidly than the size of the
society) and some of them are large enough to contain information hubs, then perfect

24Formally, we study the expression limn→∞ limr→0 P(g�σ)([(1/n)∑n
i=1(1 −Mn�ε

i )]> ε).
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(a) Equilibrium network, when (6) holds. (b) Equilibrium network, when (7) holds.

Figure 7. Network formation among social cliques.

asymptotic learning takes place in all equilibria25 (provided that the future is not heavily
discounted). In this case, as shown by Figure 7(a), sufficiently many social cliques con-
nect to the larger social cliques acting as information hubs, ensuring effective aggrega-
tion of information for the great majority of the agents in the society. It is important that
the discount factor is not too small; otherwise, smaller cliques do not find it beneficial
to form links with larger cliques.

The third part of the proposition outlines a more interesting configuration, poten-
tially leading to perfect asymptotic learning. In this case, many small social cliques form
an “informational ring” (Figure 7(b)). Each is small enough that it finds it beneficial to
connect to another social clique, provided that this other clique also connects to others
and obtains further information. This intuition also clarifies why such information ag-
gregation takes place only in some equilibria. The expectation that others do not form
the requisite links leads to a coordination failure. Interestingly, however, if agents are
sufficiently patient and the cost of link formation is not too large, the coordination fail-
ure equilibrium disappears, because it becomes beneficial for each clique to form links
with another one, even if further links are not forthcoming. Finally, the ring structure is a
direct consequence of the fact that agents are patient (and has been shown to emerge as
an equilibrium configuration in other models of network formation, e.g., Bala and Goyal
2000).

5. Conclusion

We have developed a framework for the analysis of information exchange through com-
munication and investigated its implications for information aggregation in large soci-
eties. An underlying state determines the payoffs from different actions. Agents decide

25The result no longer holds when we replace Assumption 1 with Assumption 3, as there would then
exist additional equilibria (e.g., babbling equilibria) in the information exchange stage, which would lead
to different equilibrium network configurations in the first stage.
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which agents to form a communication link with, incurring the associated cost. After re-
ceiving a private signal correlated with the underlying state, they exchange information
over the induced communication network until taking an (irreversible) action.

Our model draws close attention to two main features of social learning: First, the
timing of actions is often endogenous and it is determined by the trade-off between the
cost of waiting and the benefit of becoming more informed over time about the underly-
ing environment. Second, the communication network typically imposes constraints on
the rate at which an agent acquires information and plays an important role in whether
agents end up taking “good” actions.

Our focus has been on asymptotic learning, defined as the fraction of agents who
take the correct action converging to 1 in probability as a society grows large. We showed
that asymptotic learning occurs if and, under some additional mild assumptions, only
if the induced communication network includes information hubs and most agents are
at a short distance from a hub. Thus asymptotic learning requires information to be
aggregated in the hands of a few agents. This kind of aggregation also requires truth-
ful communication, which we show is an equilibrium even when we allow for strategic
communication in large societies (partly as a consequence of the fact that there is no
conflict among the agents concerning which action is the best). This insight offers a
sharp contrast to a result often seen in the social learning literature: in our setting, the
existence of highly connected agents is a necessary condition for learning, not an im-
pediment to it. In particular, in several myopic models of learning, widely observed
individuals obstruct learning, since their private information is overrepresented in the
communication process. In our approach, agents are fully Bayesian and information is
tagged and, thus, such duplication of information is avoided. To the contrary, hubs fa-
cilitate efficient information aggregation and are prerequisites for asymptotic learning.

Our welfare analysis identifies a novel information externality that arises in commu-
nication over networks. Individuals serve two roles: they are both sources of informa-
tion, but they enable the transmission of information between different parts of the net-
work through their social connections as well. This leads to an interesting insight on the
dynamics of information exchange over networks: more precise signals (or larger social
cliques) reduce the incentives for communication and may lead to a decrease in aggre-
gate welfare. Interestingly, this information externality can explain in a fully Bayesian
model the empirical observation that agents’ actions are often grouped according to
their social network position (for a myopic learning model that delivers the same pre-
diction, see DeMarzo et al. 2003).

We also provide a systematic investigation of what types of cost structures and as-
sociated social cliques that consist of groups of individuals linked to each other at zero
cost (such as friendship networks) ensure the emergence of communication networks
that lead to asymptotic learning. Our main result on network formation shows that soci-
eties with too many (disjoint) and sufficiently large social cliques do not form commu-
nication networks that lead to asymptotic learning, because each social clique would
have sufficient information to make communication with others not sufficiently attrac-
tive. Asymptotic learning results if social cliques are not too large so as to encourage
communication across cliques.
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Beyond the specific results presented in this paper, we believe that the modeling
framework developed here opens the way for a more general analysis of the impact of
the structure of social networks on social learning. An interesting avenue for future
research would be to investigate how our results would change in the presence of ex
ante or ex post heterogeneity of preferences. Another notable direction is to consider
an environment where agents exchange information over multiple issues (and end up
taking multiple actions), i.e., communication is over a multidimensional state of the
world (x�θ ∈ R

k). Then we conjecture that a one-dimensional quantity that captures
the agent’s position in the network would be sufficient to predict her actions along all
dimensions.26

Appendix A: ε�δ-asymptotic learning

In Appendix A, we present a generalization of Proposition 1. In particular, we provide
conditions that guarantee that ε�δ-asymptotic learning occurs/does not occur in a so-
ciety under equilibrium profile σ . Recall that erf(x) = (2/

√
π)

∫ x
0 e

−t2dt denotes the er-
ror function of the normal distribution. The proof of the proposition can be found in
Appendix B.

Proposition 8. Suppose that Assumption 1 holds, so that communication is truthful.
Then,

(a) ε�δ-asymptotic learning does not occur in society {Gn}∞n=1 under equilibrium pro-
file σ if there exists k�η > 0 such that

lim inf
n→∞

1
n

· |V n�σk | ≥ η> ε and erf
(
ε

√
ρ+ kρ̄

2

)
< (1 − δ)(1 − ε/η)� (8)

(b) ε�δ-asymptotic learning occurs in society {Gn}∞n=1 under equilibrium profile σ if
there exists k�ζ > 0 such that

lim sup
n→∞

1
n

· |V n�σk | ≤ ζ < ε and erf
(
ε

√
ρ+ ρ̄k

2

)
> 1 − δ(ε− ζ)

1 − ζ � (9)

This proposition provides conditions such that ε�δ-asymptotic learning takes place
(or does not take place). Intuitively, asymptotic learning is precluded if there exists a
significant fraction of the society that takes an action before seeing a large set of signals,
since in this case there is a large enough probability that these agents will take an action
far away from the optimal one. The proposition quantifies the relationship between the
fraction of agents taking actions before seeing a large set of signals and the quantities

26A similar result, i.e., that agents’ beliefs over multiple issues can be characterized by a unidimensional
measure, was established in DeMarzo et al. (2003). There, the result was an outcome of the overrepresen-
tation of the prior information of “central” agents. In our model, this is no longer possible as information
is tagged and agents are Bayesian. However, agents choose the timing of their actions and we expect that
their network distance to information hubs will be sufficient to predict their actions over multiple issues.



Theoretical Economics 9 (2014) Endogenous social networks 75

ε and δ. Because agents are estimating a normal random variable from noisy observa-
tions (where the noise is also normally distributed), their probability of error is captured
by the error function erf(x), which is naturally decreasing in the number of observations.
In particular, the probability that an agent with k signals takes an action at least ε away
from the optimal action is equal to erfc(ε

√
(ρ+ ρ̄k)/2), and this enables us to charac-

terize the fraction of agents that will take an action at least ε away from the optimal one
in terms of the set V n�σk as well as ε and δ. We thus obtain sufficient conditions for both
ε�δ-learning to take place and for it to be incomplete. Finally, recall that equilibria and
subsequently k-radius sets depend on the discount rate (thus, different discount rates
result in different answers for ε�δ-learning). In this context, Proposition 8 implies that if
ε�δ-learning occurs in a society under an equilibrium profile when the discount rate is
r, then there exists an equilibrium profile for which ε�δ-learning occurs in that society
for all r′ < r, i.e., when agents are more patient.

Appendix B: Proofs

Proofs for Section 3

Proof of Lemma 1. Recall that, by the principle of optimality, agent i’s optimal con-
tinuation payoff at information set Ini�t , when the rest of the agents behave according to
strategy profile σ , is given by

Uni�t = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ− 1
ρ+ρ̄kni�t

(when she takes the optimal irreversible action)
e−r dtE[Eσ(Uni�t+dt |Ini�t+dt)|Ini�t]

(when she decides to wait, i.e., x= wait)�

where kni�t denotes the number of distinct private signals agent i has observed up to
time t. The first line is equal to the expected payoff for the agent when she chooses
the optimal irreversible action under information set Ini�t , i.e., E[θ|Ini�t], and she has ob-
served kni�t private signals, while the second line is equal to the discounted expected
continuation payoff.

For the latter, note first that since the discount rate r is greater than zero, agent i will
exit after a finite number of communication rounds. Thus the following set represents
the number of signals agent i observes if she decides to wait for 1�2� � � � communication
rounds:

{kni�t + |Bn�σi�|Tt |+1| − |Bn�σi�|Tt ||�kni�t + |Bn�σi�|Tt |+2| − |Bn�σi�|Tt ||� � � �}�
Note that given the other agents’ strategy profiles, the quantities |Bn�σi�|Tt |+s| are determin-
istic for every s. This is a consequence of the normality assumption on the private sig-
nals. In particular, when signals are normal, agents exit after they observe a given num-
ber of signals and this number does not depend on the actual realization of the signals
(as opposed to if the signals were binary, for example). Moreover, since communication
follows a Poisson process with rate λ, we obtain that the expected delay ts before an ad-
ditional s communication rounds are completed satisfies E(e−rts )= (λ/(λ+ r))s . There-
fore, if agent i decides to wait for s additional communication rounds and to take an
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action after the additional sth communication round is completed, her expected utility
is given by (

λ

λ+ r
)s(

ψ− 1
ρ+ ρ̄(kni�t + |Bn�σi�|Tt |+s| − |Bn�σi�|Tt ||)

)
�

Note that since we assume that signals are identically distributed and independent,
the value function can simply be expressed as a function of the number of distinct sig-
nals in Ini�t , k

n
i�t and profile σ . The agent chooses to take an irreversible action and not to

wait if

ψ− 1
ρ+ ρ̄kni�t

≥ e−r dtE[Eσ(Uni�t+dt |Ini�t+dt)|Ini�t]
(10)

≥ max
s

(
λ

λ+ r
)s(

ψ− 1
ρ+ ρ̄(kni�t + |Bn�σi�|Tt |+s| − |Bn�σi�|Tt ||)

)
�

Note that the right-hand side of (10) is upper bounded by λ(λ+r)ψ (since s ≥ 1), whereas
the left-hand side is increasing in the number of private signals kni�t and in the limit is
equal to ψ. This establishes the lemma. �

The next lemma will be used in the rest of the Appendix. It shows that the probability
of choosing an action that is more than ε away from the optimal for agent i ∈ V n�σk , i.e.,
Pσ(M

n�ε
i = 0), is uniformly bounded away from 0.

Lemma 2. Let k > 0 be a constant, such that the k-radius set V n�σk is nonempty. Then

P(Mn�ε
i = 0)≥ erfc

(
ε

√
ρ+ ρ̄k

2

)
for all i ∈ V nk�σ�

where erfc(x) = 1 − erf(x) = 1 − (2/
√
π)

∫ x
0 e

−t2 dt is the complementary error function.
Moreover, if i /∈ V n�σk , then

P(Mn�ε
i = 0) < erfc

(
ε

√
ρ+ ρ̄k

2

)
�

Proof. Note that because of our normality assumption, after observing  private sig-
nals, the posterior distribution of θ is normal with precision ρ+ ρ̄. Then the probability
that Mn�ε

i = 0 is simply equal to the probability that the error does not belong to the
interval [−ε� ε], i.e.,

P(Mn�ε
i = 0)= erfc

(
ε

√
ρ+ ρ̄

2

)
�

The lemma follows since agent i ∈ V n�σk and thus she takes an irreversible action after
observing at most k private signals. Similarly, we obtain the expression for an agent
i /∈ V n�σk . �
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Figure 8. Proof of Proposition 9.

Let jni = arg maxk∈Bn
i�τn
i

indegnk and define setX as

X =
{
i ∈N

∣∣ lim
n→∞ indegnjni

= ∞
}
�

In other words, consider the agent with the maximum in-degree in i’s neighborhood.
Then i belongs to set X if the maximum in-degree grows to infinity as the society grows
larger. Note that the superscript n at the definition of j implies that the agent with the
maximum in-degree depends on the size of the society and might be different for differ-
ent n’s.

Proposition 9. Suppose that Assumption 1 holds, so that communication is truthful.
Then perfect asymptotic learning occurs in society {Gn}∞n=1 in any equilibrium σ if

lim
n→∞

1
n

|X| = 1�

Proof. Consider equilibrium profile σ and society {Gn}∞n=1 such that

lim
n→∞

1
n

|X| = 1�

Let jn�σi = arg maxk∈Bn�σ
i�τn
i

indegnk and define set Zσ as the set of agents

Zσ =
{
i ∈ N

∣∣ lim
n→∞ indegn

j
n�σ
i

= ∞
}
�

Next, we show thatX =Zσ .
Consider i ∈X and let Pn = {� i1� � � � � iK� i} denote the shortest path in communica-

tion network Gn between i and agent = jni , i.e.,  is such that = arg maxk∈Bn
i�τn
i

. Let N0

be such that maxz∈Bn
i�τn
i

indegnz > k for all n > N0, where k is sufficiently large. Then we

show that (refer to Figure 8) for n >N0,

 ∈ Bns�τns for all s ∈ Pn� (11)
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Assume for the sake of contradiction that condition (11) does not hold. Then let

j = arg min
j′

{distn(� j′) | j′ ∈ Pn and distn(� j′) > τnj′ }�

where we recall that τni denotes the perfect observation radius of agent i. For agents i, j
we have τni > τ

n
j and dist(j� i)+τnj < dist(� i)≤ τni , since otherwise  ∈ Bn

j�τnj
. This implies

that Bn
j�τnj

⊂ Bn
i�τni

. Furthermore,

ψ− 1
ρ+ ρ̄|Bn

j�τnj
| >

(
λ

λ+ r
)dist(�j)−τnj (

ψ− 1
ρ+ ρ̄k

)
�

In particular, the left-hand side is equal to the expected payoff of agent j if she takes
an irreversible action at time τnj after receiving |Bn

j�τnj
| observations, whereas the right-

hand side is a lower bound on the expected payoff if agent j delays taking an action until
after she communicates with agent . The inequality follows from the definition of the
observation radius for agent j. Alternatively, since for agent i,  ∈ Bn

i�τni
, we have

ψ− 1
ρ+ ρ̄(|Bn

j�τnj
|) <

(
λ

λ+ r
)dist(�i)−dist(j�i)−τnj (

ψ− 1
ρ+ ρ̄(k+ k′)

)
for some k′ > 0�

For k large enough, we conclude that dist(� j) > dist(� i)− dist(j� i), which is a contra-
diction. This implies that (11) holds.

To complete the proof, we need to show that if s ∈ Pn, where Pn is the shortest path
defined above, i.e., the shortest path from agent i ∈X to the agent with the largest in-
degree in her neighborhoodBn

i�τni
(call the latter ), then  ∈ Bn�σ

s�τns
for every equilibrium σ .

We will show the claim by induction on the distance from agent . Obviously, the claim is
true for length equal to zero. Suppose that the claim is true for distance at most t. Then
we will show that the claim is true for distance t + 1. Let w denote the agent w ∈ Pn and
dist(w�)= t+1. Then, from above,  ∈ Bn

w�τnw
. Moreover, from the induction hypothesis,

for an agent i in the shortest path from w to , we have that  ∈ Bn�σ
i�τni

, which implies that

distn�σ(w�) = distn(w�). Thus for k sufficiently large (i.e., for n > N0),  ∈ Bn�σ
w�τnw

, i.e.,
agent w will not exit before communicating with . If this was not the case, then we
would have that  /∈ Bn

w�τnw
, i.e., w /∈ Pn. Note that the crucial point in this part of the

proof was that all agents in the path from w to  do not exit before communicating with
 along equilibrium strategy profile σ .

Finally, by the hypothesis of the proposition, i.e., limn→∞(1/n)|X| = 1, we conclude
that limn→∞(1/n)|Zσ | = 1 for any equilibrium σ . The latter implies that

lim
k→∞

lim
n→∞

1
n

|V n�σk | = 0�

thus asymptotic learning occurs along equilibrium σ from Proposition 8. �
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Proof of Proposition 1. The first part of Proposition 1 follows directly from Proposi-
tion 9, since

lim
k→∞

lim
n→∞

1
n

|V nk | = 0 ⇒ lim
n→∞

1
n

|X| = 1�

and the fact that agents exit after a finite number of communication rounds (since the
discount rate r is greater than zero).

To conclude the proof, we need to show that if asymptotic learning occurs along
some equilibrium σ when condition (1) does not hold, then the society contains a set of
leading agents. In particular, consider a society {Gn}∞n=1 in which condition (1) does not
hold and equilibrium σ = {σn}∞n=1 along which asymptotic learning occurs in the society.
This implies that there should exist a subset {Rn�σ }∞n=1 of agents and an ε > 0 such that
limn→∞(1/n)|Rn�σ |> ε, and there is an infinite index set J for which

i ∈Rnj�σ and τ
nj
i < τ

nj�σ

i for j ∈ J (12)

and

|Bnj
i�τ

nj
i

|< |Bnj�σ
i�τ

nj
i

|� (13)

From equations (12) and (13), we obtain that there exists a collection of agents {Sn}∞n=1
such that the following statements hold:

(i) We haveRn�σ ⊆ Snfollow. If this were not true, then agents inRn�σ would not obtain
any information from the network along σ and, thus, would not learn.

(ii) There exists a k> 0 such that Sn ⊆ V nk .

(iii) We have limn→∞(1/n)|Sn| = 0, since otherwise asymptotic learning would not oc-
cur under equilibrium σ .

Note that {Sn}∞n=1 is a set of leading agents (cf. Definition 5) and Proposition 1(ii)
follows. �

Proof of Proposition 2. Consider ε�δ > 0 and recall from Corollary 1 that asymptotic
learning occurs when almost all agents are at a short distance away from an information
maven. Let i be a maven and let n̄ be such that indegni > k for n > n̄, where k is such that
erfc(ε

√
(ρ+ ρ̄k)/2) < δ. Then Lemma 2 implies that

P
(|E[θ|Ini�t1] − θ|> ε)< δ for all n > n̄ (14)

holds for maven i, where t1 is the first time when communication takes place. Note
that (14) holds even under the assumption of low-dimensional communication (cf. As-
sumption 2), since an agent can infer the private signals of her direct neighbors from the
messages she receives in the first communication round (if agent j sends a message to
agent i at time t = t1, thenmnji�t1 = E[θ|sj] = sj).27

27Agent j’s information set before communication first takes place contains only her private signal.
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Furthermore, consider any agent j who is directly connected to maven i, i.e., i ∈ Bnj�1.
Then, after the second communication round, the information monotonicity

P
(|E[θ|Inj�t2] − θ|> ε) ≤ P

(|E[θ|Ini�t1] − θ|> ε)� (15)

holds for agent j’s information set, where t2 denotes the second time when commu-
nication takes place. This relies on the simple observation that one strategy available
to the agents that communicate directly with a maven is to imitate the action taken by
the maven. Similarly, the observation can be generalized for the direct neighbors of j
(who communicate indirectly with the maven in two communication rounds) and for
the neighbors of the neighbors of j and so on. The claim follows by combining (15) with
the arguments in the proof of Proposition 1. �

Proof of Proposition 3. Consider the following two eventsA and B.
EventA: Layer 1 (the top layer) has more than k agents, where k> 0 is a scalar.
Event B: The total number of layers is more than k.
From the definition of a hierarchical sequence of communication networks, we have

P(A)=
k∏
i=2

(
1 − 1

i1+ζ

)
< exp

(
−

k∑
i=2

1
i1+ζ

)
� (16)

Also,

P(B)≤ E(L)
k

= 1
k

∞∑
i=2

1
i1+ζ � (17)

from Markov’s inequality, where L is a random variable that denotes the number of lay-
ers in the hierarchical society. Let ζ(η) be small enough and let k (and consequently
n) be large enough such that

∑k
i=2 1/(i1+ζ) > log(4/η) and

∑∞
i=2 1/(i1+ζ) < k · η/4. For

those values of ζ and k, we obtain P(A) < η/4 and P(B) < η/4. Next, consider the event
C =Ac ∩Bc , which from (16) and (17) has probability P(C) > 1 −η/2 for the values of ζ
and k chosen above. Moreover, we consider the following event.
Event D: The agents on the top layer are information mavens, i.e., limn→∞ |Bni�1| =
∞ for all i ∈ N n

1 . We claim that event D occurs with high probability if C occurs, i.e.,
P(D|C) > 1 −η/2, which implies

P(C ∩D)= P(D|C)P(C) > (1 −η/2)2 > 1 −η�
In particular, note that conditional on event C occurring, the total number of layers
and the total number of agents in the top layer is at most k. From the definition of a
hierarchical society, agents in layers with index  > 1 have an edge to a uniform agent
who belongs to a layer with lower index, with probability 1. Therefore, if we denote the
degree of an agent in a top layer by Dn1 , we have

Dn1 =
T n

2∑
i=1

I level 2
i�1 + · · · +

T n
L∑
i=1

I levelL
i�1 � (18)
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where T ni denotes the random number of agents in layer i and I level j
i�1 is an indicator

variable that takes value 1 if there is an edge from agent i to agent 1 (here level j denotes

that i belongs to level j). Again from the definition, we have P(I
level j
i1 = 1)= 1/

∑j−1
=1 T

n
 ,

where the sum in the denominator is simply the total number of agents who lie in layers

with lower index, and, finally, T n1 + · · ·+T nL = n. We can obtain a lower bound on the

expected degree of an agent in the top layer conditional on event C by viewing (18) as

the optimization problem

min
x2

x1
+ · · · + xk

x1 + · · · + xk−1

s.t.
k∑
j=1

xj = n

0 ≤ x1 ≤ k
0 ≤ x2� � � � � xk−1�

since the number of layers is bounded by k, as we condition on C. By solving the prob-

lem, we obtain that the objective function is lower bounded by φ(n), where φ(n) =
O(n1/k) for every n. Then

E[Dn1 |C] =
k∑
=2

∑
k1≤k�����k
k1+···+k=n

P(L = �T n1 = k1� � � � �T n = k|C)

·E[Dn1 |C�L = �T n1 = k1� � � � �T n = k] (19)

≥
k∑
=2

∑
k1≤k�����k
k1+···+k=n

P(L = �T n1 = k1� � � � �T n = k|C) ·φ(n)=φ(n)�

where (19) follows since E[Dn1 |C�L = �T n1 = k1� � � � �T n = k] ≥ φ(n) for all values of 

(2 ≤  ≤ k) and k1� � � � �k (k1 ≤ k�k1 + · · · + k = n) from the optimal solution of the

optimization problem. The same lower bound applies for all agents in the top layer.

Similarly, we have for the variance of the degree of an agent in the top layer (we use

�k1� � � � �k as a shorthand for L = �T n1 = k1� � � � �T n = k)

var[Dn1 |C] =
k∑
=2

∑
k1≤k�����k
k1+···+k=n

P(�k1� � � � �k|C) · var[Dn1 |C��k1� � � � �k]

(20)

=
k∑
=1

∑
k1≤k�����k
k1+···+k=n

P(�k1� � � � �k|C) · (k2 var(Ilevel 2
i�1 )+ · · · + k var(Ilevel

i�1 ))
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≤
k∑
=1

∑
k1≤k�����k
k1+···+k=n

P(�k1� � � � �k|C) · (k2E(I
level 2
i�1 )+ · · · + kE(Ilevel

i�1 ))

(21)
= E[Dn1 |C]�

where (20) follows by noting that conditional on event C and the number of layers and
the agents in each layer being fixed, the indicator variables (defined above) are inde-
pendent and (21) follows since the variance of an indicator variable is smaller that its
expectation. We conclude that the variance of the degree is smaller than the expected
value, and from Chebyschev’s inequality, we conclude that

P(D)≥ P

( ⋂
i∈N n

1

Dni
φ(n)

> ζ

)
> 1 −η/2�

where ζ > 0, i.e., with high probability, all agents in the top layer are information mavens
(recall that limn→∞φ(n)= ∞).

We have shown that when event C ∩ D occurs, there is a path of length at most k
(the total number of layers) from each agent to an agent at the top layer, i.e., an infor-
mation maven, with high probability. Therefore, if the discount rate r is smaller than
some bound (r < r̄), then perfect asymptotic learning occurs by Corollary 1. Finally, we
complete the proof by noting that P(C ∩D)> (1 −η/2)2 > 1 −η. �

Proof of Proposition 4. Proposition 4 is a direct consequence of the next lemma,
which intuitively states that there is no incentive to lie to an agent who has a large num-
ber of neighbors, assuming that everybody else is truthful. For the remainder of the
proof, we restrict attention to strategies for all agents except the deviating party, where
the recipient of a message considers its content to be truthful, unless she spots an incon-
sistency with other messages she has received in previous time periods, in which case
she ignores the later message. If an inconsistency is spotted between messages received
in the same time period, the recipient ignores all those messages.

Lemma 3 (Truthful communication to a high degree agent). There exists a scalar k > 0,
such that truth-telling to agent i, with indegni ≥ k, in the first time period is an equilib-
rium of INFO(Gn). Formally,

(σn�truth�mn�truth) ∈ INFO(Gn)�

wheremn�truth
ji�0 = sj for j ∈ Bni�1.

Proof. The proof is based on the following argument. Suppose that all agents in Bni�1
except j report their signals truthfully to i. Moreover, let |Bni�1| ≥ k, where k is a large
constant (see below). Then it is a weakly dominant strategy for j to report her signal
truthfully to i, since j’s message is not pivotal for agent i, i.e., i will take an irreversible
action after the first communication step, no matter what j reports. In particular, let k̄
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be such that ψ − 1/(ρ + (k̄ − 1)ρ̄) > λ/(λ + r)ψ (such a k̄ exists when r > 0). The left-
hand side of the expression is the expected payoff of agent i in an equilibrium profile,
where she receives k− 1 truthful messages in the first communication step (measured
at the time that the first communication step occurs). The right-hand side is an upper
bound on the expected continuation payoff. Note that if |Bni�1| ≥ k ≥ k̄ and all but j re-
port their signal truthfully, then i will exit after the first communication step (no matter
what j reports). Moreover, agent j will exit in the second communication round after
receiving the information from agent i. Therefore, it is weakly dominant for agent j to
report truthfully to agent i in the first communication round. �

Corollary 1 implies that asymptotic learning occurs thanks to high degree agents–
mavens. In particular, for asymptotic learning to occur in a society along equilibrium σ

when communication is truthful, it has to be that all but a negligible fraction of the
agents acquire information from mavens. Given this fact and Lemma 3, we obtain that
there exists an equilibrium (σ�m) where asymptotic learning occurs, even when we al-
low for strategic communication (an agent can simply act on the information propa-
gated by the mavens and ignore all other information).

Proof of Proposition 5. The first part follows directly from Proposition 1(i). The sec-
ond part is derived using similar arguments as those in the proof of Proposition 9. In
particular, for all but a negligible fraction of the agents and k, n large enough it holds
that Xn

k = Zn�σk for all σ . Moreover, for i ∈ Xn
k ∩ Zn�σk , τni = τn�σi . This implies that all

equilibria are asymptotically efficient, since the expected payoff an agent achieves in
the “no exit” benchmark, i.e., in the idealized setting that the agent exits optimally when
she assumes that no other agent exits, is an upper bound on the payoff that the agent
can achieve under any strategy profile (and, in particular, under the socially optimal
allocation). �

Proof of Proposition 6. The claim follows by noting that the social planner could
choose the following strategy profile: for each j ∈ Dn�σk� , delay i’s irreversible action by
at least one communication step, where i is an agent such that if i delays, then j gains
access to at least  additional signals. Moreover, it is straightforward to see that there
exist ε, δ for which ε�δ-learning fails. �

Proofs for Section 4

Proof of Proposition 7. First we make an observation that is used frequently in the
subsequent analysis. Consider an agent i such that Hn

SC(i) ∈ Hn
k̄

, where k̄ is an integer
appropriately chosen (see below), i.e., the size of the social clique of agent i is greater
than or equal to k̄, |Hn

SC(i)| ≥ k̄. Suppose agent i does not form a link with cost c with
any agents outside her social clique. If she makes a decision at time t = 0 based on
her signal only, her expected payoff is ψ − 1/(ρ + ρ̄). If she waits for one period, she
has access to the signals of all the agents in her social clique (i.e., she has access to at
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least k̄ signals), implying that her expected payoff would be bounded from below by
λ/(r + λ)(ψ− 1/(ρ+ ρ̄)k̄). Hence, her expected payoff E[ψi(gn)] satisfies

E[ψi(gn)] ≥ max
{
ψ− 1

ρ+ ρ̄ �
λ

r + λ
(
ψ− 1

ρ+ ρ̄k̄
)}

for any link formation strategy gn and along any σ ∈ INFO(Gn) (whereGn is the commu-
nication network induced by gn). Suppose now that agent i forms a link with cost c with
an agent outside her social clique. Then her expected payoff is bounded from above by

E[ψi(gn)]<max
{
ψ− 1

ρ+ ρ̄ �
λ

r + λ
(
ψ− 1

ρ+ ρ̄k̄
)
�

(
λ

λ+ r
)2

ψ− c
}
�

where the third term in the maximum is an upper bound on the payoff she could get
by having access to the signals of all agents she is connected to in two time steps (i.e.,
signals of the agents in her social clique and in the social clique that she is connected
to). Combining the preceding two relations, we see that an agent i with Hn

SC(i) ∈ Hn
k̄

will
not form any costly links in any network equilibrium, i.e.,

gnij = 1 if and only if SC(j)= SC(i) for all i such that |Hn
SC(i)| ≥ k̄� (22)

where k̄ is the smallest constant such that

λ

r + λ
(
ψ− 1

ρ+ ρ̄k̄
)

≥
(

λ

λ+ r
)2

ψ− c�

(a) Condition (5) implies that for all sufficiently large n, we have

|Hn
k̄
| ≥ ξn� (23)

where ξ > 0 is a constant. For any ε with 0< ε< ξ, we have

P

(
n∑
i=1

1 −Mn�ε
i

n
> ε

)
= P

([ ∑
i||Hn

SC(i)|<k̄

1 −Mn�ε
i

n
+

∑
i||Hn

SC(i)|≥k̄

1 −Mn�ε
i

n

]
> ε

)

≥ P

( ∑
i||Hn

SC(i)|≥k̄

1 −Mn�ε
i

n
> ε

)
�

The right-hand side of the preceding inequality can be rewritten as

P

( ∑
i||Hn

SC(i)|≥k̄

1 −Mn�ε
i

n
> ε

)
= 1 − P

( ∑
i||Hn

SC(i)|≥k̄

1 −Mn�ε
i

n
≤ ε

)

= 1 − P

( ∑
i||Hn

SC(i)|≥k̄

Mn�ε
i

n
≥w− ε

)
�
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where w= ∑
i||Hn

SC(i)|≥k̄ 1/n. By (23), it follows that for n sufficiently large, we have w≥ ξ.

Using Markov’s inequality, the preceding relation implies

P

( ∑
i||Hn

SC(i)|≥k̄

1 −Mn�ε
i

n
> ε

)
≥ 1 −

∑
i||Hn

SC(i)|≥k̄E[Mn�ε
i ]

n
· 1
w− ε � (24)

By Lemma 2 and observation (22), for an agent i with |Hn
SC(i)| ≥ k̄, it holds that

P(Mn�ε
i = 0)≥ erfc

(
ε

√
ρ+ |Hn

SC(i)|ρ̄
2

)
�

and, therefore,

E[Mn�ε
i ] ≤ 1 − erfc

(
ε

√
ρ+ |Hn

SC(i)|ρ̄
2

)
�

Now assuming that social cliques are ordered by size (Hn
1 is the biggest), we can rewrite

(24) as

P

( ∑
i||Hn

SC(i)|≥k̄

1 −Mn�ε
i

n
> ε

)
≥ 1 −

∑|Hn
k̄
|

j=1 |Hn
j |(1 − erfc(ε

√
(ρ+ |Hn

j |ρ̄)/2))
(w− ε) · n

≥ 1 − w · (1 − ζ)
w− ε ≥ 1 − ξ · (1 − ζ)

ξ− ε > δ�

Here, the second inequality is obtained since the largest value for the sum is achieved

when all summands are equal and ζ = erfc(ε
√
ρ+ k̄ρ̄/2). The third inequality holds us-

ing the relation w≥ ξ and choosing appropriate values for ε, δ.
This establishes that for all sufficiently large n, we have

P

(
n∑
i=1

1 −Mn�ε
i

n
> ε

)
> δ> 0�

which implies

lim sup
n→∞

P

(
n∑
i=1

1 −Mn�ε
i

n
> ε

)
> δ

and shows that perfect asymptotic learning does not occur in any network equilibrium.
(b) We show that if the communication cost structure satisfies condition (6), then

asymptotic learning occurs in all network equilibria (g�σ) = ({gn�σn})∞n=1. For an il-
lustration of the resulting communication networks when condition (7) holds, refer to
Figure 7(a). Let Bni (G

n) be the neighborhood of agent i in communication network Gn

(induced by the link formation strategy gn),

Bni (G
n)= {j | there exists a path P inGn from j to i}�
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i.e., Bni (G
n) is the set of agents inGn whose information agent i can acquire over a suffi-

ciently large (but finite) period of time.
We first show that for any agent i such that lim supn→∞ |Hn

SC(i)| < k̄, her neighbor-
hood in any network equilibrium satisfies limn→∞ |Bni | = ∞. We use the notion of an
isolated social clique to show this. For a given n, we say that a social cliqueHn

 is isolated
(at a network equilibrium (g�σ)) if no agent inHn

 forms a costly link with an agent out-
side Hn

 in (g�σ). Equivalently, a social clique Hn
 is not isolated if there exists at least

one agent j ∈Hn
 , such that j incurs cost c and forms a link with an agent outsideHn

 .
We show that for an agent i with lim supn→∞ |Hn

SC(i)| < k̄, the social clique Hn
SC(i) is

not isolated in any network equilibrium for all sufficiently large n. Using condition (6),
we can assume without loss of generality that social cliques are ordered by size from
largest to smallest and that limn→∞ |Hn

1 | = ∞. Suppose that Hn
SC(i) is isolated in a net-

work equilibrium (g�σ). Then the expected payoff of agent i is upper bounded (similarly
to above)

E[ψi(gn)] ≤ max
{
ψ− 1

ρ+ ρ̄ �
λ

r + λ
(
ψ− 1

ρ+ ρ̄(k̄− 1)

)}
�

Using the definition of k̄, it follows that for some ε > 0,

E[ψi(gn)] ≤ max
{
ψ− 1

ρ+ ρ̄ �
(

λ

r + λ
)2

ψ− c− ε
}
� (25)

Suppose next that agent i forms a link with an agent j ∈ Hn
1 . Her expected payoff

E[χi(gn)] satisfies

E[χi(gn)] ≥
(

λ

r + λ
)2

·
(
ψ− 1

ρ+ ρ̄|Hn
1 |

)
− c�

since in two time steps, she has access to the signals of all agents in the social cliqueHn
1 .

Since limn→∞ |Hn
1 | = ∞, there exists someN1 such that

E[χi(gn)]>
(

λ

λ+ r
)2

ψ− c− ε for all n >N1�

Comparing this relation with (25), we conclude that under the assumption that r < r̄ (for
appropriate r̄), the social clique Hn

SC(i) is not isolated in any network equilibrium for all
n >N1.

Next, we show that limn→∞ |Bni | = ∞ in any network equilibrium. To arrive at a con-
tradiction, assume that lim supn→∞ |Bni |<∞ in some network equilibrium. This implies
that lim supn→∞ |Bni | < |Hn

1 | for all n > N2 > N1. Consider some n > N2. Since Hn
SC(i) is

not isolated, there exists some j ∈ Hn
SC(i) such that j forms a link with an agent h out-

side Hn
SC(i). Since lim supn→∞ |Bni | < |Hn

1 |, agent j can improve her payoff by changing
her strategy to gnjh = 0 and gnjh′ = 1 for h′ ∈ Hn

1 , i.e., j is better off deleting her existing
costly link and forming one with an agent in social clique Hn

1 . Hence, for any network
equilibrium, we have

lim
n→∞|Bni | = ∞ for all i with lim sup

n→∞
|Hn

SC(i)|< k̄� (26)
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We next consider the probability that a nonnegligible fraction (ε-fraction) of agents
take an action that is at least ε away from optimal with probability at least δ along a
network equilibrium (g�σ). For any n, we have, from Markov’s inequality,

P

(
n∑
i=1

1 −Mn�ε
i

n
> ε

)
≤ 1
ε

·
n∑
i=1

E[1 −Mn�ε
i ]

n
� (27)

We next provide upper bounds on the individual terms in the sum on the right-hand
side. We have

E[1 −Mn�ε
i ] ≤ erfc

(
ε

√
ρ+ ρ̄|Bni |

2

)
� (28)

Consider an agent i with lim supn→∞ |Hn
SC(i)|< k̄ (i.e., |Hn

SC(i)|< k̄ for all n large). By
(26), we have limn→∞ |Bni | = ∞. Together with (28), this implies that for some ζ > 0, there
exists someN such that for all n >N , we have

E[1 −Mn�ε
i ]< εζ

2
for all i with lim sup

n→∞
|Hn

SC(i)|< k̄� (29)

Consider next an agent i with lim supn→∞ |Hn
SC(i)| ≥ k̄ and, for simplicity, let us as-

sume that the limit exists, i.e., limn→∞ |Hn
SC(i)| ≥ k̄.28

This implies that |Hn
SC(i)| ≥ k̄ for all large n and, therefore,

∑
i|lim supn→∞ |Hn

SC(i)|≥k̄

E[1 −Mn�ε
i ]

n
≤

|Hn
k|∑

j=1

|Hn
j |
n

· erfc
(
ε

√
ρ+ ρ̄|Hn

j |
2

)
≤

|Hn
k̄
|

n
· k̄�

where the first inequality follows from (28). Using condition (6), i.e., limn→∞ |Hn
k̄
|/n= 0,

this relation implies that there exists some Ñ such that for all n > Ñ , we have

∑
i|lim supn→∞ |Hn

SC(i)|≥k̄

E[1 −Mn�ε
i ]

n
<
εζ

2
� (30)

Combining (29) and (30) with (27), we obtain for all n >max {N�Ñ},

P

(
n∑
i=1

1 −Mn�ε
i

n
> ε

)
< ζ�

where ζ > 0 is an arbitrary scalar. This implies that

lim
n→∞P

(
n∑
i=1

1 −Mn�ε
i

n
> ε

)
= 0

28The case when the limit does not exist can be proven by focusing on different subsequences. In par-

ticular, along any subsequence Ni such that limn→∞�n∈Ni |Hn
SC(i)| ≥ k̄, the same argument holds. Along any

subsequence Ni with limn→∞�n∈Ni |Hn
SC(i)|< k̄, we can use an argument similar to the previous case to show

that limn→∞�n∈Ni |Bni | = ∞ and, therefore, E[1 −Mn�ε
i ]< εζ/2 for n large and n ∈ Ni .
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for all ε, showing that perfect asymptotic learning occurs along every network
equilibrium.

(c) The proof proceeds in two parts. First, we show that if condition (7) is satis-
fied, learning occurs in at least one network equilibrium (g�σ). In particular, we ex-
plicitly profile a strategy profile (g�σ) such that when condition (7) is satisfied, (g�σ)
is a network equilibrium along which learning occurs. Then we show that there ex-
ists a c̄ > 0, such that if c < c̄, then learning occurs in all network equilibria. We com-
plete the proof by showing that if c > c̄, then there exist network equilibria in which
asymptotic learning fails, even when condition (7) holds. We consider the case when
agents are patient, i.e., the discount rate r → 0. We consider k̄, such that c > 1/(ρ+ ρ̄k̄)
and c < 1/(ρ+ ρ̄(k̄− 1))− ε′ for some ε′ > 0 (such a k̄ exists). Finally, we assume that
c < 1/(ρ+ ρ̄), since otherwise no agent would have an incentive to form a costly link.
Part 1: We assume, without loss of generality, that social cliques are ordered by size (Hn

1
is the smallest). Let Hn

<k̄
denote the set of social cliques of size less than k̄, i.e., Hn

<k̄
=

{Hn
i � i = 1� � � � �Kn | |Hn

i | < k̄}. Finally, let rec(j) and send(j) denote two special nodes
for social clique Hn

j , the receiver and the sender (they might be the same node). We
claim that (gn�σn) described below and depicted in Figure 7(b) is an equilibrium of the
network learning game �(Cn) for n large enough and r sufficiently close to zero,

gnij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if SC(i)= SC(j), i.e., i� j belong to the same social clique
1 if i= rec(− 1) and j = send() for 1< ≤ |Hn

<k̄
|

1 if i= rec(|Hn
<k̄

|) and j = send(1)
0 otherwise�

and σn ∈ INFO(Gn), where Gn is the communication network induced by gn. In this
communication network, social cliques with size less than k̄ are organized in a directed
ring, and all agents i, such that |Hn

SC(i)|< k̄, have the same neighborhood, i.e., Bni = Bn

for all such agents. Note that in this network equilibrium, only the receivers of each
social clique form costly links (it is exactly those links that facilitate the exchange of in-
formation among different cliques).

Next, we show that the strategy profile (gn�σn) described above is indeed an equi-
librium of the network learning game �(Cn). We restrict attention to large enough n’s.

In particular, let N be such that
∑|HN

<k̄
|

i=1 |HN
i |> k̄ and consider any n >N (such N exists

from condition (7)). Moreover, we assume that the discount rate is sufficiently close to
zero. We consider the following two cases.
Case 1: Agent i is not a receiver. Then gnij = 1 if and only if SC(j) = SC(i). Agent i’s
neighborhood as noted above is set Bn, which is such that ψ − 1/(ρ + ρ̄|Bn|) > ψ − c

from the assumption on n, i.e., n >N , whereN is such that
∑|HN

<k̄
|

i=1 |HN
i |> k̄. Agent i can

communicate with all agents in Bn in at most |H<k̄| communication steps. Therefore,
her expected payoff is lower bounded by

E[χi(gn)] ≥
(

λ

λ+ r
)|Hn

<k̄
|
·
(
ψ− 1

ρ+ ρ̄k̄
)
>ψ− c
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under any equilibrium σn for r sufficiently close to zero. Agent i can deviate by forming
a costly link with agentm, such that SC(m) �= SC(i). However, this is not profitable since
from above, her expected payoff under (gn�σn) is at least ψ− c (which is the maximum
possible payoff if an agent chooses to form a costly link).
Case 2: Agent i is a receiver, i.e., there exists exactly one j, such that SC(j) �= SC(i) and
gnij = 1. Using a similar argument as above, we can show that it is not profitable for agent i
to form an additional costly link with an agentm, such that SC(m) �= SC(i). Alternatively,
agent i could deviate by setting gnij = 0. However, then her expected payoff would be

E[χi(gn)] = max
{
ψ− 1

ρ+ ρ̄ �
λ

r + λ
(
ψ− 1

ρ+ ρ̄|Hn
i |

)}

≤ max
{
ψ− 1

ρ+ ρ̄ �
λ

r + λ
(
ψ− 1

ρ+ ρ̄(k̄− 1)

)}
<ψ− c− ε′

<

(
λ

r + λ
)|Hn

<k̄
|(
ψ− 1

ρ+ ρ̄|Bn|
)

− c− ε

for discount rate sufficiently close to zero. Therefore, deleting the costly link is not a
profitable deviation. Similarly, we can show that it is a (weakly) dominant strategy for
the receiver not to replace her costly link with another costly link.

We showed that (gn�σn) is an equilibrium of the network learning game. Note that
we described a link formation strategy in which social cliques connect to each other in a
specific order (in increasing size). There is nothing special about this ordering and any
permutation of the first |Hn

<k̄
| cliques is an equilibrium as long as they form a directed

ring. Finally, any node in a social clique can be a receiver or a sender.
Next, we argue that asymptotic learning occurs in network equilibria (g�σ) =

{(gn�σn)}∞n=1, where for all n > N , N is a large constant, and gn has the form described
above. As shown above, all agents i for which Hn

SC(i) < k̄ have the same neighborhood,
which we denoted by Bn. Moreover, limn→∞ |Bn| = ∞, since social cliques with size less
than k̄ are connected to the ring and, by condition (7), limn→∞

∑
i||Hn

i |<k̄ |Hn
i | = ∞. For

discount rate r sufficiently close to zero and from arguments similar to those in the
proof of part (b), we conclude that asymptotic learning occurs in network equilibria
(g�σ).
Part 2: We have shown a particular form of network equilibria in which asymptotic
learning occurs. The following proposition states that for a discount rate sufficiently
close to zero, network equilibria fall in one of two forms.

Proposition 10. Suppose Assumptions 1 and 4 and condition (7) hold. Then an equi-
librium (gn�σn) of the network learning game �(Cn) can be in one of the following two
forms.

(i) (Incomplete) ring equilibrium: Social cliques with indices {1� � � � � j}, where j ≤
|Hn

<k̄
|, form a directed ring as described in Part 1 and the rest of the social cliques
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(a) Deviation for i ∈Hn - property (ii). Deviation for i ∈Hn - property (ii).

Figure 9. Communication networks under condition (7).

are isolated. We call those equilibria ring equilibria and, in particular, a ring equi-
librium is called complete if j = |Hn

<k̄
|, i.e., if all social cliques with size less than k̄

are not isolated.

(ii) Directed line equilibrium: Social cliques with indices {1� � � � � j}, where j ≤ |Hn
<k̄

|,
and a clique with index |Hn

Kn | (the largest clique) form a directed line with the latter
being the endpoint. The rest of the social cliques are isolated.

Proof. Let (gn�σn) be an equilibrium of the network learning game �(Cn). Monotonic-
ity of the expected payoff as a function of the number of signals observed implies that if
clique Hn

 is not isolated, then no clique with index less than  is isolated in the com-
munication network induced by gn. In particular, let rec() be the receiver of social
clique Hn

 and let E[ψrec()(g
n)] be her expected payoff. Consider an agent i such that

SC(i) = ′ <  and, for the sake of contradiction, Hn
′ is isolated in the communication

network induced by gn. Social cliques are ordered by size; therefore, |Hn
′ | ≤ |Hn

 |. Now,
we use the monotonicity mentioned above. Consider the expected payoff of i,

E[ψi(gn)] = max
{
ψ− 1

ρ+ ρ̄ �
λ

λ+ r
(
ψ− 1

ρ+ ρ̄|Hn
′ |

)}
(31)

≤ max
{
ψ− 1

ρ+ ρ̄ �
λ

λ+ r
(
ψ− 1

ρ+ ρ̄|Hn
 |

)}
< E[ψrec()(g

n)]�

where the last inequality follows from the fact that agent rec() formed a costly link.
Consider a deviation gn�deviation

i for agent i, in which gn�deviation
i�rec() = 1 and gn�deviation

ij = gnij ,
i.e., agent i forms a costly link with agent conn(). Then

E[ψi(gn�deviation)] ≥ λ

λ+ rE[ψrec()(g
n)]> E[ψi(gn)]

from (31) and for a discount rate sufficiently close to zero. Therefore, social clique Hn
′

will not be isolated in any network equilibrium (gn�σn).
Next, we show two structural properties that all network equilibria (gn�σn) should

satisfy, when the discount rate r is sufficiently close to zero. We say that there ex-
ists a path P between social cliques Hn

1
and Hn

2
if there exists a path between some

i ∈Hn
1

and j ∈Hn
2

. Also, we say that the in-degree (out-degree) of social clique Hn
1

is
k, if the sum of in-links (out-links) of the nodes in Hn

1
is k, i.e., Hn

1
has in-degree k if∑

i∈Hn
1

∑
j /∈Hn

1
gnij = k.
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(i) Let Hn
1
�Hn

2
be two social cliques that are not isolated. Then there should exist a

directed path P inGn induced by gn between the two social cliques.

(ii) The in-degree and out-degree of each social clique is at most 1.

Figure 9 provides an illustration of why the properties hold for patient agents. In par-
ticular, for property (i), let i = rec(Hn

1
) and j = rec(Hn

2
), and assume, without loss of

generality, that |Bni | ≤ |Bnj |. Then, for discount rate sufficiently close to zero and from
monotonicity of the expected payoff, we conclude that i has an incentive to deviate,
delete her costly link, and form a costly link with agent j. Property (ii) follows due to
similar arguments. From the above, we conclude that the only two potential equilib-
rium topologies are the (incomplete) ring and the directed line with the largest clique
being the endpoint under the assumptions of the proposition. �

So far we have shown a particular form of network equilibria that arise under condi-
tion (7), in which asymptotic learning occurs. We also argued that under condition (7),
only (incomplete) ring or directed line equilibria can arise for network learning game
�(Cn). In the remainder, we show that there exists a bound c̄ > 0 on the common cost
c for forming a link between two social cliques, such that if c < c̄, all network equilib-
ria (g�σ) that arise satisfy that gn is a complete ring equilibrium for all n > N , where
N is a constant. In those network equilibria, asymptotic learning occurs as argued in
Part 1. Alternatively, if c > c̄, coordination among the social cliques may fail and addi-
tional equilibria arise in which asymptotic learning does not occur. Let

c̄n = min
k≥k1

{
− 1

ρ+ ρ̄(∑k
j=1 |Hn

j | + |Hn
k+1|)

+ 1
ρ+ ρ̄|Hn

k+1|
}
�

where k1 is such that
∑k1
j=1 |Hn

j | ≥ |Hn
Kn | (size of the largest clique). Moreover, let c̄ =

lim infn→∞ c̄n. The following proposition concludes the proof.

Proposition 11. Suppose Assumptions 1 and 4 and condition (7) hold. If c < c̄, asymp-
totic learning occurs in all network equilibria (g�σ). Otherwise, there exist equilibria in
which asymptotic learning does not occur.

Proof. Let the common cost c be such that c < c̄, where c̄ is defined as above, and
consider a network equilibrium (g�σ). Let N be a large enough constant and consider
the corresponding gn for n > N . We claim that gn is a complete ring equilibrium for
all such n. Assume for the sake of contradiction that the claim is not true. Then, from
Proposition 10, gn is either an incomplete ring equilibrium or a directed line equilib-
rium. We consider the former case (the latter case can be shown with similar argu-
ments). There exists an isolated social clique Hn

 , such that |Hn
 | < k̄ and all cliques

with index less than  are not isolated and belong to the incomplete ring. However, from
the definition of c̄, we obtain that an agent i ∈Hn

 would have an incentive to connect
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to the incomplete ring; thus we reach a contradiction. In particular, consider the link
formation strategy for agent i:

gn�deviation
im = 1 for agentm ∈Hn

−1 and gn�deviation
ij = gnij for j �=m�

Then

E[χni (gn�deviation)] ≥
(

λ

λ+ r
)|Hn

<k̄
|(
ψ− 1

ρ+ ρ̄(∑−1
j=1 |Hn

j | + |Hn
 |)

)
− c

>max
{
ψ− 1

ρ+ ρ̄ �
λ

λ+ r
(
ψ− 1

ρ+ ρ̄|Hn
 |

)}
= E[χni (gn)]�

where the strict inequality follows from the definition of c̄ for r sufficiently close to zero.
Thus we conclude that if c < c̄, then gn is a complete ring for all n >N , whereN is a large
constant, and we conclude from Part 1 that asymptotic learning occurs in all network
equilibria (g�σ). On the contrary, if c > c̄, then there exists an infinite index setW , such
that for all n in the (infinite) subsequence, {nw}w∈W , there exists a k, such that

1

ρ+ ρ̄(∑k
j=1 |Hn

j | + |Hn
k+1|)

− c < 1
ρ+ ρ̄|Hn

k+1|
� (32)

Moreover, |Hn
k+1| < k̄ and

∑k
j=1 |Hn

j | ≥ |Hn
Kn |. We conclude that for (32) to hold, it

has to be that
∑k
j=1 |Hn

j | < R, where R is a uniform constant for all n in the subse-
quence. Consider (g�σ)∞n=1, such that for every n in the subsequence, gn is such that
social cliques with index greater than k (as described above) are isolated and the rest
form an incomplete ring or a directed line and σn = INFO(Gn), where Gn is the com-
munication network induced by gn. From above, we obtain that for c > c̄, (gn�σn) is
an equilibrium of the network learning game �(Cn). Perfect asymptotic learning, how-
ever, fails in such an equilibrium, since for every i ∈Nn, |Bni | ≤R, where Bni denotes the
neighborhood of agent i. �

Proofs for Appendix A

Proof of Proposition 8. First, we show that learning fails if condition (8) holds, i.e.,
there exists a k> 0, such that

η= lim inf
n→∞

1
n

· |V n�σk |> ε and erf
(
ε

√
ρ+ ρ̄k

2

)
< (1 − δ)(1 − ε/η)� (33)

From condition (33), we obtain that there exists an infinite index set J such that for the
sequence of communication networks restricted to index set J, i.e., {Gnj }∞j=1, it holds
that

|V njk | ≥ η · nj for j ∈ J�
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Now restrict attention to index set J, i.e., consider n= nj for some j ∈ J. Then

Pσ

(
1
n

n∑
i=1

M
n�ε
i > 1 − ε

)
= Pσ

(
1
n

[ ∑
i∈V n�σk

M
n�ε
i +

∑
i /∈V n�σk

M
n�ε
i

]
> 1 − ε

)

≤ Pσ

(
1
n

[ ∑
i∈V n�σk

Mn�ε
i + n− |V n�σk |

]
> 1 − ε

)

= Pσ

(
1
n

∑
i∈V n�σk

Mn�ε
i >

|V n�σk |
n

− ε
)
�

where the inequality follows since we let Mn�ε
i = 1 for all i /∈ V n�σk . Next we use Markov’s

inequality

Pσ

(
1
n

∑
i∈V n�σk

Mn�ε
i >

|V n�σk |
n

− ε
)

≤
Eσ

[∑
i∈V n�σk

Mn�ε
i

]
n · (|V n�σk |/n− ε) �

We can view each summand above as an independent Bernoulli variable with success
probability bounded above by erfc(ε

√
(ρ+ ρ̄k)/2) from Lemma 2. Thus

Eσ
[∑

i∈V n�σk
Mn�ε
i

]
n · (|V n�σk |/n− ε) ≤ |V n�σk |erf(ε

√
(ρ+ ρ̄k)/2)

n · (|V n�σk |/n− ε)

≤ η

η− ε erf
(
ε

√
ρ+ ρ̄k

2

)
< 1 − δ�

where the second inequality follows from the fact that n was chosen such that |V n�σk | ≥
η · n. Finally, the last expression follows from the choice of k (cf. condition (8)). We
obtain that for all j ∈ J, it holds that

Pσ

([
1
nj

nj∑
i=1

(1 −Mnj�ε

i )

]
> ε

)
≥ δ�

Since J is an infinite index set, we conclude that

lim sup
n→∞

Pσ

([
1
n

n∑
i=1

(1 −Mn�ε
i )

]
> ε

)
≥ δ;

thus ε�δ-asymptotic learning is incomplete when (8) holds.
Next, we prove that condition (9) is sufficient for ε�δ-asymptotic learning. As men-

tioned above, if agent i takes an irreversible action after observing  signals, then the
probability thatMn�ε

i = 1 is equal to

Pσ(M
n�ε
i = 1)= erf

(
ε

√
ρ+ ρ̄

2

)
� (34)
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Similar to above, we have

Pσ

([
1
n

n∑
i=1

(1 −Mn�ε
i )

]
> ε

)
≤ Pσ

([
1
n

∑
i /∈V
(1 −Mn�ε

i )

]
> ε− |V |

n

)
(35)

≤ Eσ
[∑

i /∈V (1 −Mn�ε
i )

]
n(ε− |V |/n) �

where V = {i | |Bn
i�τ

n�σ
i

| ≤ k} and the second inequality follows from Markov’s inequality.

By combining (34) and (35), and letting kn�σi denote the number of private signals that
agent i observed before taking an action,

Eσ
[∑

i /∈V (1 −Mn�ε
i )

]
n(ε− |V |/n) ≤

∑
i /∈V 1 − erf(ε

√
ρ+ ρ̄kn�σi /2)

n(ε− |V |/n) � (36)

We have

erf
(
ε

√
ρ+ ρ̄kn�σi

2

)
> 1 − δ(ε− ζ)

1 − ζ (37)

for all i /∈ V from the definition of k (cf. condition (9)). Thus combining (35), (36), and
(37), we obtain

Pσ

([
1
n

n∑
i=1

(1 −Mn�ε
i )

]
> ε

)
< δ for all n >N�

whereN is a sufficiently large constant, which implies that condition (9) is sufficient for
asymptotic learning. �
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