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Nestedness in networks: A theoretical model
and some applications

Michael D. König
Department of Economics, University of Zurich

Claudio J. Tessone
Department of Management, Technology, and Economics, ETH Zurich

Yves Zenou
Department of Economics, Stockholm University and IFN

We develop a dynamic network formation model that can explain the observed
nestedness in real-world networks. Links are formed on the basis of agents’ cen-
trality and have an exponentially distributed lifetime. We use stochastic stability
to identify the networks to which the network formation process converges and
find that they are nested split graphs. We completely determine the topological
properties of the stochastically stable networks and show that they match fea-
tures exhibited by real-world networks. Using four different network data sets,
we empirically test our model and show that it fits well the observed networks.

Keywords. Nestedness, Bonacich centrality, network formation, nested split
graphs.

JEL classification. A14, C63, D85.

1. Introduction

Nestedness is an important aspect of real-world networks.1 For example, the organi-
zation of the New York garment industry (Uzzi 1996) and of the Fedwire bank network
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(Soramaki et al. 2007) is nested in the sense that their organization is strongly hierarchi-
cal. If we consider, for example, the Fedwire network, it is characterized by a relatively
small number of strong flows (many transfers) between banks, with the vast majority
of linkages being weak to nonexisting (few to no interbank payment flows). Further-
more, the topology of this network is highly dissortative since large banks are dispro-
portionately connected to small banks and vice versa; the average bank was connected
to 15 others. In other words, most banks have only a few connections, while a small
number of “hubs” have thousands. Åkerman and Larsson (forthcoming), who study the
evolution of the global arms trade network using a unique data set on all international
transfers of major conventional weapons over the period 1950–2007, also find that these
networks are nested and dissortative in the sense that big countries mainly trade arms
with small countries, but small countries do not trade with each other. Using aggregate
bilateral imports from 1950 to 2000, De Benedictis and Tajoli (2011) analyze the struc-
ture of the world trade network over time, detecting and interpreting patterns of trade
ties among countries. Figure 3 in their paper shows a clear core–periphery structure, in-
dicating nestedness of their networks. Interestingly, in all these networks, dissortativity
arises naturally since “big” agents tend to interact with “small” agents and vice versa.
For example, banks seek relationships with each other that are mutually beneficial. As a
result, small banks interact with large banks for security, lower liquidity risk, and lower
servicing costs, and large banks may interact with small banks in part because they can
extract a higher premium for services and can accommodate more risk.

Surprisingly, nestedness has not been studied from a theoretical point of view, even
though other salient features of networks such as “small world” properties with high
clustering and short average path lengths (Watts and Strogatz 1998) as well as “scale-
free” or power-law degree distributions (Barabási and Albert 1999) have received a lot of
attention.2

The first aim of this paper is to propose a dynamic network formation model that
exhibits not only the standard features of real-world networks (small worlds, high clus-
tering, short path lengths, and a power-law degree distributions), but also nestedness
and dissortativity. The second aim is to provide a microfoundation for the network
formation process where linking decisions are based on the utility maximization of
each agent rather than on a random process, which is often assumed in most dy-
namic models of network formation. The last aim of this paper is to provide some
evidence that our model matches well some real-world network features (interbank
loans, trade in conventional goods, and arms trade between countries), especially their
nestedness.

To be more precise, we develop a dynamic model where, at each period of time,
agents play a two-stage game: in the first stage, as in Ballester et al. (2006), agents play
their equilibrium contributions proportional to their Bonacich centrality,3 while in the

2See Jackson and Rogers (2007), who propose a model that has all these features, but not nestedness.
3Centrality is a fundamental measure of the importance of actors in social networks. See Wasserman

and Faust (1994) for an introduction and survey. The Bonacich centrality, introduced by Bonacich (1987),
of a particular node counts the total number of paths that start from this node in the graph, weighted by a
decay factor based on path length.
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second stage, a randomly chosen agent can update her linking strategy by creating a
new link as a best response to the current network. Links do not last forever, but have
an exponentially distributed lifetime. The most valuable links (i.e., the ones with the
highest Bonacich centrality) decay at a lower rate than those that are less valuable. As
a result, the formation of social networks can be regarded as a tension between the
search for new linking opportunities and the volatility that leads to the decay of existing
links.

We introduce noise into the decision process to form links (see, e.g., Sandholm 2010),
and analyze the limit of the invariant distribution, the stochastically stable networks, as
the noise vanishes to zero.4 We first show that in this limit, starting from arbitrary initial
conditions, at each period of time, the network generated by this dynamic process is a
nested split graph. These graphs, which are relatively well known in the applied mathe-
matics literature (Cvetković and Rowlinson 1990, Mahadev and Peled 1995), have a very
nice and simple structure that make them very tractable. To the best of our knowledge,
this is the first time that a complex dynamic network formation model can be charac-
terized by such a simple structure in terms of networks it generates. By doing so, we are
able to bridge the economics literature and the applied mathematics/physics literatures
in a simple way. Because of their simple features, we then show that degree, closeness,
eigenvector, and Bonacich centrality induce the same ordering of nodes in a nested split
graph (this is also true for betweenness centrality if the ordering is not strict). This im-
plies, in particular, that if we had a game where agents formed links according to mea-
sures of centrality (such as degree, closeness, or betweenness) other than the Bonacich
centrality, then all our results would be unchanged. We then show that the stochastically
stable network is a nested split graph. Instead of relying on a mean-field approximation
of the degree distribution as most dynamic network formation models do, because of
the nature of nested split graphs, we are able to derive explicit solutions for all network
statistics of the stochastically stable networks (by computing the adjacency matrix).5 We
also find that by altering the rate at which linking opportunities arrive and links decay,
a sharp transition takes place in the network density. This transition entails a crossover
from highly centralized networks when the linking opportunities are rare and the link
decay is high to highly decentralized networks when many linking opportunities arrive
and only few links are removed.

The intuition of these results is as follows. Agents want to link to other agents who
are more central since this leads to higher efforts (as efforts are proportional to central-
ity) and higher efforts raise payoffs. Similarly, links to agents with lower centrality last

4In the literature on coordination games (see, e.g., Kandori et al. 1993), the noise is introduced as an
equilibrium selection device, when, in the absence of noise, multiple equilibria can emerge. This is not the
case here since we have a unique steady-state equilibrium even when the noise tends to zero. Introducing
some noise allows us to better calibrate our model to the data since, when the noise goes to zero, the di-
ameter of the steady-state network is equal to 2, a feature that is not always observed in the data. In other
words, the noise allows us to have some flexibility with the model so that it can be calibrated to empirically
observed networks. This is what is done in Figure 11, where we show that our model matches well various
features of four real-world networks. Also, in Table 1, our estimates of the model’s parameters indicate that
the level of noise does not vanish.

5In a nested split graph, the degree distribution uniquely defines the adjacency matrix (up to a permu-
tation of the node labels).
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shorter. Notice, moreover, that once someone loses a link with an agent, she becomes
less central and this makes it more likely that the next link she has will also disappear.
Thus link gains and losses are self-reinforcing. This intuition suggests that if α, the prob-
ability of adding links, is large, then the process should approximate a complete net-
work, while if it is small, then the process should approximate the star network. The key
insight of our model is that for intermediate values of α, the stochastically stable network
is a nested split graph.

We then proceed by showing that our model reproduces some empirical observa-
tions of real-world networks. We show that the stochastically stable networks emerging
in our link formation process are characterized by short path length with high clustering,
exponential degree distributions with power-law tails, negative degree-clustering correla-
tion, and nestedness. These networks also show a clear core–periphery structure. More-
over, we show that stochastically stable networks are dissortative.

Using four different data sources, we empirically test our model. We analyze the net-
work of Austrian banks, the global banking network, the trade network (import–export
relationships between countries), and the network of arms trade between countries. De-
spite the fact that these networks are very different, they all exhibit strong nestedness
and dissortativity, and we find a reasonable goodness of fit of our model with these net-
works (even though it is only parsimoniously parameterized).

Our paper is organized as follows. Section 2 discussed the relation of our model to
the literature. In Section 3, we introduce the model and discuss the basic properties
of the network formation process. Next, Section 4 shows that stochastically stable net-
works exist, can be computed analytically, and are nested split graphs. After deriving
the stochastically stable networks in Section 5, we analyze their properties in terms of
topology and centralization. Using four different network data sets, we empirically test
our model in Section 6. All proofs can be found in Appendix A. Appendix B gives all
the necessary definitions and characterizations of networks used throughout the paper.
In Appendix C, we provide some general results for nested split graphs in terms of their
topology properties and centralization measures. For the purpose of motivating the em-
pirical test of our model with the four data sets mentioned above, we provide an inter-
pretation of our theoretical model in terms of networks of banks and trade networks
in Appendix D. Moreover, we extend our analysis in Appendix E by including linking
costs.

2. Relation to the literature

The literature on network formation is basically divided into two strands that are not
communicating very much with each other. In the random network approach (mainly
developed by mathematicians and physicists), which is mainly dynamic, the reason
why a link is formed is pure chance. In this approach, researchers study how emerg-
ing networks match real-world networks (see, e.g., Vega-Redondo 2007). While sharing
some common features with this literature, our model is quite different, since agents
do not create links randomly but in a strategic way, i.e., they maximize their utility
function.
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In the other approach (developed by economists; see, in particular, Jackson and
Wolinsky 1996), the reason for the formation of a link is strategic interactions. Individ-
uals carefully decide with whom to interact and this decision entails some consent by
both parties in a given relationship. There are some dynamic network formation mod-
els with strategic interactions. Bala and Goyal (2000), Watts (2001), Jackson and Watts
(2002a), and Dutta et al. (2005) are prominent papers of this literature. Our model is
different than the ones developed in these papers in the sense that we consider both dy-
namic models of network formation and optimal actions from agents. This allows us to
give a microfoundation of the network formation process as equilibrium actions trans-
form into equilibrium utility functions. Another crucial difference is that we are able to
match most features of real-world networks while these models do not.6

There is also another strand of the literature (called games on networks) that takes
the network as given and studies how the network structure impacts outcomes and in-
dividual decisions.7 A prominent paper of this literature is Ballester et al. (2006).8 They
mainly show that if agents’ payoffs are linear-quadratic, then the unique interior Nash
equilibrium of an n-player game in which agents are embedded in a network is such
that each individual effort and outcome is proportional to her Bonacich centrality mea-
sure. In the present paper, we introduce strategic interactions in a nonrandom dynamic
network formation game where agents also choose how much effort they put into their
activities.

There are some papers that, as in our framework, combine both network formation
and endogenous efforts. These papers include Bramoullé et al. (2004), Cabrales et al.
(2011), Calvó-Armengol and Zenou (2004), Galeotti and Goyal (2010), Goyal and Vega-
Redondo (2005), Goyal and Joshi (2003), and Jackson and Watts (2002a). Most of these
models are, however, static and the network formation process is different.

Our paper is also related to Jackson and Rogers (2007), who also motivate their mod-
eling approach by means of statistics of empirical networks.

Finally, the paper by König and Tessone (2011) shows that our model can be applied
not only to an economic context, but also to a variety of models studied in the physics
literature, ranging from the analysis of ecological systems to physical synchronization
processes being coupled to network dynamics. They extend our model by introducing
heterogeneous selection probabilities of the nodes depending on the number of links
they already have, derive the dynamics of the degree distribution in the continuous
limit, and analyze its properties. They show that the stationary degree distribution is
given by a double power law with a flexible exponent. It has to be clear, however, that

6Mele (2010) and Liu et al. (2012) provide interesting dynamic network formation models where indi-
viduals decide with whom to form links by maximizing a utility function. However, contrary to our model,
these papers do not characterize analytically the degree distribution and the resulting network statistics.

7See Jackson and Zenou (2014), for a recent overview of this literature.
8Bramoullé and Kranton (2007), Bramoullé et al. (2014), and Galeotti et al. (2010) are also important pa-

pers in this literature. The first paper focuses on strategic substitutabilities, while the second one provides
a general framework for solving any game on networks with perfect information and linear best-reply func-
tions. The last paper investigates the case when agents do not have perfect information about the network.
Because of its tractability, in the present paper, we use the model of Ballester et al. (2006), who analyze a
network game of local complementarities under perfect information.
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the paper by König and Tessone (2011) is just an extension of our framework that ana-
lyzes the nature of the phase transition from sparse to dense networks in the continuous
limit. It was written after our paper,9 and our main result that characterizes the steady-
state networks as nested split graphs is only proved in the current paper and then used
by König and Tessone (2011).

To summarize, our main contribution to the literature is that we are able to ex-
plain the emergence of nestedness in networks by analyzing a dynamic network for-
mation model with endogenous actions. We are also able to analytically characterize
the stochastically stable networks, which can be shown to be nested split graphs, and
to provide a microfoundation for the link formation process. Even if nested split graphs
have a much more regular structure than the complex networks we observe in many
real-world applications, they are easy to study, they are the result of endogenous ratio-
nal actions, and they have most of the properties of real-world networks. Finally, we
empirically test our model with four different data sets and show that our model fits
these observed networks well.

3. The model

In this section, we introduce the network formation process, which can be viewed as a
two-stage game on two separate time scales. On the fast time scale, all agents simul-
taneously choose their effort level in a fixed network structure. It is a game following
Ballester et al. (2006) with local complementarities where players have linear-quadratic
payoff functions. On the slow time scale, agents receive linking opportunities at a given
rate and decide with whom they want to form a link, while the links they have created de-
cay after having reached their finite lifetime. This introduces two different time scales,
one in which agents are choosing their efforts in a simultaneous move game, and the
second in which an agent forms a link and anticipates the equilibrium outcome in the
following simultaneous move game.

3.1 Nash equilibrium and Bonacich centrality

Consider a static network G in which the nodes represent a set N = {1�2� � � � � n} of
agents/players. Following Ballester et al. (2006), each agent i ∈ N in the network G se-
lects an effort level xi ≥ 0, x ∈R

n+. Denote by � the countable state space of all networks
with n nodes. Then each agent i receives a payoff πi :Rn+ ×�×R+ →R of the form

πi(x�G�λ) = xi − 1
2x

2
i + λ

n∑
j=1

aijxixj� (1)

where λ ≥ 0 and aij ∈ {0�1}, i� j = 1� � � � � n, are the elements of the symmetric n × n ad-
jacency matrix A of G. This utility function is additively separable in the idiosyncratic
effort component (xi − 1

2x
2
i ) and the peer effect contribution (λ

∑n
j=1 aijxixj). Payoffs

display strategic complementarities in effort levels, i.e., ∂2πi(x�G�λ)/∂xi ∂xj = λaij ≥ 0.

9See our working paper (König et al. 2009).
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The general payoff structure in (1) has a variety of applications. For example, (1) can
be interpreted as the profit function of a bank competing in quantities of lending à la
Cournot with other banks in a loan market where different types of loans cannot be sub-
stituted. Equation (1) can also be interpreted as the payoff function of a firm in country
i acting as a local monopolist supplying a nonsubstitutable good. In both cases, in-
terdependencies induce a reduction in marginal costs of production due to technology
spillovers and learning by doing effects. Appendix D provides a more detailed explana-
tion of these two examples.

So as to find the Nash equilibrium solution associated with the above payoff function
(1), we define a network centrality measure introduced by Bonacich (1987). Let λPF(G)

be the largest real eigenvalue of the adjacency matrix A of network G. The adjacency
matrix is a matrix that lists the direct connections in the network. If I denotes the (n×n)

identity matrix and u ≡ (1� � � � �1)� denotes the n-dimensional vector of 1s, then we can
define Bonacich centrality as follows.

Definition 1. If and only if λ < 1/λPF(G), then the matrix B(G�λ) ≡ (I − λA)−1 =∑∞
k=0 λ

kAk exists, is nonnegative, and the vector of Bonacich centralities is defined as

b(G�λ)≡ B(G�λ) · u�

We can write the vector of Bonacich centralities as b(G�λ) = ∑∞
k=0 λ

kAk · u =
(I − λA)−1 · u. For the components bi(G�λ), i = 1� � � � � n, we get

bi(G�λ)=
∞∑
k=0

λk(Ak · u)i =
∞∑
k=0

λk
n∑

j=1

(Ak)ij�

where (Ak)ij is the ijth entry of Ak.
Now we can turn to the equilibrium analysis of the game.

Theorem 1 (Ballester et al. 2006). Consider the n-player simultaneous move game with
payoffs given by (1) and strategy space R

n+. If λ < 1/λPF(G), there exists a unique interior
Nash equilibrium, which, for each agent i = 1� � � � � n, is given by

x∗
i = bi(G�λ)�

Moreover, the equilibrium payoff of each agent i is given by

π∗
i (G�λ)= πi(x∗�G�λ)= 1

2(x
∗
i )

2 = 1
2b

2
i (G�λ)�

Observe that the condition λ < 1/λPF(G) is an endogenous object. Below, we will
consider a dynamic network formation model where this condition has to hold at each
period of time.10

10For this condition not to depend on an endogenous variable (i.e., λPF(G) varies with the evolution

of the network), we can use the sufficient condition λ < 1/
√

2m(n− 1)/n, where m is an upper bound on
the number of links in G. See Cvetković and Rowlinson (1990) for various other bounds on the largest
eigenvalue λPF(G).
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Furthermore, Ballester et al. (2006) have shown that the equilibrium outcome and
the payoff for each player increases with the number of links in G (because the number
of network walks increases in this way). This implies that if an agent is given the oppor-
tunity to change her links, she will add as many links as possible. On the other hand,
if she is only allowed to form one link at a time, she will form the link to the agent that
increases her payoff the most. In both cases, eventually, the network will then become
complete, i.e., each agent is connected to every other agent. However, to avoid this latter
unrealistic situation, we assume that the agents are living in a volatile environment that
causes links to decay such that the complete network can never be reached. Instead the
architecture of the network adapts to the volatile environment. We will treat these issues
more formally in the next section.

3.2 The network formation process

We now introduce a network formation process that incorporates the idea that agents
with high Bonacich centrality (their equilibrium effort levels) are more likely to connect
to each other, while the links they have established between each other have a longer
lifetime if they are viewed as more valuable to them.

We consider a continuous time Markov chain (G(t))t∈R+ with G(t) = (N �E(t)) com-
prising the set of agents N = {1� � � � � n} together with the set of edges/links E(t) ⊂ N ×N
at time t between them. (G(t))t∈R+ is a collection of random variables G(t), indexed
by time t ∈ R+ on a probability space (��F�P), where � is the countable state space of
all networks with n nodes, F is the σ-algebra σ({G(t) : t ∈ R+}) generated by the collec-
tion of G(t), and P :F → [0�1] is a countably additive, nonnegative measure on (��F)

with total mass
∑

G∈� P(G) = 1. At every time t ≥ 0, links can be created or decay with
specified rates that depend on the current network G(t) ∈�.

Definition 2. Consider a continuous time Markov chain (G(t))t∈R+ on the probability
space (��F�P). Let π∗(G(t)�λ) ≡ (π∗

1 (G(t))� � � � �π∗
n(G(t))) denote the vector of Nash

equilibrium payoffs of the agents in G(t) derived from the payoff function (1) with pa-
rameter 0 ≤ λ < 1/λPF(G(t)).

(i) At rate αi ∈ (0�1), link creation opportunities arrive to each agent i ∈ N . If such an
opportunity arrives, then agent i computes the marginal payoff π∗

i (G(t)⊕(i� j)�λ)

for each agent j /∈ N \ (Ni ∪{i}) she is not already connected to, where this compu-
tation includes an additive, exogenous stochastic term εij , incorporating possible
mistakes in the computation of the agent. We assume that the exogenous ran-
dom terms εij are identically and independently type I extreme value distributed
(or Gumbel distributed) with scaling parameter ζ.11 Given that agent i ∈ N

11For the distribution of the error term, it holds that P(εij ≤ c) = e−ec/ζ−γ
, where γ ≈ 0�58 is Euler’s con-

stant. The expectation is E(εij) = 0 and the variance is given by Var(εij) = π2ζ2/6.
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receives a link creation opportunity, she then links to agent j ∈ N \ (Ni ∪ {i}) with
probability

b
ζ
i (j|G(t)) ≡ P

(
π∗
i (G(t)⊕ (i� j)�λ)+ εij = max

k∈N \(Ni∪{i})
π∗
i (G(t)⊕ (i�k)�λ)+ εik

)

= eπ
∗
i (G(t)⊕(i�j)�λ)/ζ∑

k∈N \(Ni∪{i}) eπ
∗
i (G(t)⊕(i�k)�λ)/ζ

�

It follows that the probability that, during a small time interval [t� t + 
t), a tran-
sition takes place from G(t) to G(t) ⊕ (i� j) is given by P(G(t + 
t) = G ⊕ (i� j)|
G(t) =G) = αib

ζ
i (j|G(t))
t + o(
t).12

(ii) We assume that a link (i� j), once established, has an exponentially distributed
lifetime τij ∈ R+ with parameter νζij(G(t)) ≡ 1/E(τij|G(t)) = βifij(G(t)), including
an agent-specific component βi ∈ (0�1) and a link-specific component

f
ζ
ij (G(t)) ≡ eπ

∗
i (G(t)�(i�j)�λ)/ζ∑

k∈Ni
eπ

∗
i (G(t)�(i�k)�λ)/ζ

for any i ∈ N and j ∈ Ni. The probability that, during a small time inter-
val [t� t + 
t), a transition takes place from G(t) to G(t) � (i� j) is given by
P(G(t +
t) =G� (i� j)|G(t) =G) = βif

ζ
ij (G(t))
t + o(
t).

Transitions to networks that differ by more than one link have probability o(
t).

In words, if agent i is chosen to form a link (at rate αi), she will choose the agent
that increases her utility the most. There is, however, a possibility of error, captured
by the stochastic term in the profit function. Furthermore, it is assumed that links do
not last forever, but have an exponentially distributed lifetime with an expectation that
depends on the relative payoff loss from removing that link. The specific functional form
of the pairwise component f ζij (·) in the expected lifetime of a link incorporates the fact
that links that are more valuable to an agent (i.e., the ones with the highest Bonacich
centrality) live longer than the ones that are viewed as less valuable to her. The value of
a link is measured by the perceived loss in payoff incurred by the agent from removing
the link.13,14

12f (t) = o(g(t)) as t → ∞ if limt→∞ f (t)/g(t) = 0.
13In a similar way, Staudigl (2011) assumes that the linking activity levels of agents depend on their rel-

ative marginal payoffs. Snijders (2001) and Snijders et al. (2010) introduced exponential link update rates,
which “depend on actor-specific covariates or on network statistics expressing the degree to which the actor
is satisfied with the present network structure.” See also (3.4) in Staudigl (2011) and Section 7.1 in Snijders
(2001).

14The fact that links do not last forever is a quite natural feature of real-world networks. For example, in
the context of interfirm alliances, Hagedoorn (2002) for research partnerships, Kogut et al. (2007) for joint
ventures, Harrigan (1988) for alliances, and Park and Russo (1996) for (equity-based) joint ventures provide
empirical evidence on this phenomenon. For example, Harrigan (1988) studies 895 alliances from 1924 to
1985 and concludes that the average lifespan of the alliance is relatively short, 3�5 years, with a standard
deviation of 5�8 years and that 85% of these alliances last less than 10 years. Park and Russo (1996) focus
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It should be clear that when a new link may be added to the network, then that link
proposal will always be accepted by the receiver. This is because it always increases the
utility of the receiver due to local complementarities in the utility function. In fact, we
will show below that it will also be the best reply for the receiver (i.e., the best alternative
in terms of link formation).

Observe that when agents decide to create a link, they do it in a myopic way, that is,
they only look at the agents that give them the current highest payoff. There is literature
on farsighted networks where agents calculate their lifetime expected utility when they
want to create a link. We adopt a myopic approach here because of its tractability and
because our model also incorporates effort decision.15

We now discuss the networks generated by our model for large times t and how they
depend on the error term parameterized by ζ. For this purpose, observe that the Markov
chain (G(t))t∈R+ can be described infinitesimally in time by the generator matrix Qζ

with elements given by the transition rates qζ :� × � → R defined by P(G(t + 
t) =
G′|G(t) = G) = qζ(G�G′)
t + o(
t) for G �= G′ and P(G(t + 
t) = G|G(t) = G) = 1 +
qζ(G�G)
t + o(
t) in the limit of 
t ↓ 0. Consequently, qζ(G�G ⊕ (i� j)) = αib

ζ
i (j|G)

and qζ(G�G� (i� j)) = βif
ζ
ij (G). The transition rates have the property that qζ(G�G′) =

qζ(G�G± (i� j)) ≥ 0 if G′ differs from G by the link (i� j) and that qζ(G�G′) = 0 if G′ dif-
fers from G by more than one link. Moreover, it must hold that

∑
G′∈� qζ(G�G′) = 0, and

one can show that P(G(t) = G′|G(0) = G) = eQζ t . If a nonnegative solution to μζQζ = 0
with

∑
G∈� μζ(G) = 1 exists, then μζ is the stationary distribution of the Markov chain

satisfying μζ(G′) = limt→∞ P(G(t) =G′|G(0) =G) (see, e.g., Liggett 2010).
The simplest case is the one where ζ diverges, the error term εij becomes dominant,

and the link formation and decay rates are payoff independent. The link creation and
decay rates for any i ∈ N are then given by

λi ≡ lim
ζ→∞qζ(G�G⊕ (i� j)) = αi

1
|N \ (Ni ∪ {i})| � j ∈ N \ (Ni ∪ {i})

μi ≡ lim
ζ→∞qζ(G�G� (i� j)) = βi

1
|Ni| � j ∈ Ni�

These transition rates correspond to a birth–death Markov chain with birth rates λi and
death rates μi (see, e.g., Liggett 2010, Chapter 2.7.1), and the stationary degree distribu-
tion is that of the corresponding birth–death chain. In the special case of αi = βi = 1

2
for all i ∈ N , we obtain a Poisson degree distribution corresponding to a random graph
G(n�p) with an independent link probability p = 1

2 .
A more interesting case, from a behavioral and topological point of view, is the

one where ζ converges to zero and the error term εij vanishes. For each agent
i ∈ N , let the best response be the set-valued map Bi :� → N defined as

on 204 joint ventures among firms in the electronics industry for the period 1979–1988. They show that less
than half of these firms remain active beyond a period of 5 years and for those that last less than 10 years
( 2

3 of the total), the average lifetime turns out to be 3�9 years.
15Jackson and Watts (2002b) argue that this form of myopic behavior makes sense if players heavily dis-

count the future.
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Bi(G) ≡ arg maxk∈N \(Ni∪{i})π∗
i (G ⊕ (i�k)�λ); similarly, we define the map Mi :� → N

as Mi(G) ≡ arg maxk∈Ni
π∗
i (G � (i�k)�λ). In the limit ζ → 0, we then have that the link

creation and decay rates for any i ∈ N are given by

q(G�G⊕ (i� j)) ≡ lim
ζ→0

qζ(G�G⊕ (i� j)) = αi
1

|Bi(G)| � j ∈ Bi(G)

(2)

q(G�G� (i� j)) ≡ lim
ζ→0

qζ(G�G� (i� j)) = βi
1

|Mi(G)| � j ∈ Mi(G)�

We call a network G ∈ � stochastically stable if μ(G) > 0, where μ ≡ μ0 is the stationary
distribution of the Markov chain with transition rates given in (2).16 The set of stochas-
tically stable networks is denoted by �̂ ≡ {G ∈� :μ(G) > 0}. We will analyze these states
in Section 4, while we will study the sample paths generated by the chain when ζ is zero
in the next section. We refer to this case (ζ = 0) as the unperturbed dynamics, while the
case of noise (ζ > 0) is referred to as perturbed dynamics.

3.3 Network formation and nested split graphs

In this section, we will focus on the unperturbed dynamics of the Markov chain intro-
duced in Definition 2. An essential property of the chain is that it produces networks
in a well defined class of graphs denoted nested split graphs (Cvetković and Rowlinson
1990).17 We will give a formal definition of these graphs and discuss an example in this
section. Nested split graphs include many common networks such as the star network.
Moreover, as their name already indicates, they have a nested neighborhood structure.
This means that the set of neighbors of each agent is contained in the set of neighbors
of each higher degree agent. Nested split graphs have particular topological properties
and an associated adjacency matrix with a well defined structure.

So as to characterize nested split graphs, it will be necessary to consider the degree
partition of a graph, which is defined as follows.

Definition 3 (Mahadev and Peled 1995). Let G= (N �E) be a graph whose distinct pos-
itive degrees are d(1) < d(2) < · · · < d(k) and let d0 = 0 (even if no agent with degree 0
exists in G). Further, define Di = {v ∈ N :dv = d(i)} for i = 0� � � � �k. Then the set-valued
vector D = (D0�D1� � � � �Dk) is called the degree partition of G.

With the definition of a degree partition, we can now give a more formal definition
of a nested split graph.18,19

16See also Young (2001, Chapter 3) and Sandholm (2010, Chapter 12).
17Nested split graphs are also called threshold networks (Mahadev and Peled 1995, Hagberg et al. 2006).
18Let x be a real-valued number x ∈ R. Then �x� denotes the smallest integer larger than or equal to x

(the ceiling of x). Similarly, �x� denotes the largest integer smaller than or equal to x (the floor of x).
19In general, split graphs are graphs whose nodes can be partitioned into a set of nodes that are all con-

nected among each other and sets of nodes that are disconnected. A nested split graph is a special case of
a split graph.
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Figure 1. Representation of a connected nested split graph (left) and the associated adjacency
matrix (right) with n = 10 agents and k = 6 distinct positive degrees. A line between Di and
Dj indicates that every node in Di is linked to every node in Dj . The solid frame indicates the
dominating set, and the nodes in the independent sets are included in the dashed frame. Next
to the set Di, the degree of the nodes in the set is indicated. The neighborhoods are nested such
that the degrees are given by d(i+1) = d(i) + |Dk−i+1| for i �= �k/2� and d(i+1) = d(i) + |Dk−i+1| − 1
for i = �k/2�. In the corresponding adjacency matrix A (on the right), the 0 entries are separated
from the 1 entries by a step function.

Definition 4 (Mahadev and Peled 1995). Consider a nested split graph G= (N �E) and
let D = (D0�D1� � � � �Dk) be its degree partition. Then the nodes N can be partitioned
in independent sets Di, i = 1� � � � � �k/2�, and a dominating set

⋃k
i=�k/2�+1 Di in the graph

G′ = (N \ D0�E). Moreover, the neighborhoods of the nodes are nested. In particular,
for each node v ∈ Di, i = 1� � � � �k,

Nv =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i⋃
j=1

Dk+1−j if i = 1� � � � �
⌊
k

2

⌋
i⋃

j=1

Dk+1−j

∖
{v} if i =

⌊
k

2

⌋
+ 1� � � � �k.

Figure 1 (left) illustrates the degree partition D = (D0�D1� � � � �D6) and the nested
neighborhood structure of a nested split graph. A line between Di and Dj indicates that
every node in Di is linked to every node in Dj for any i� j = 1� � � � �6. The nodes in the
dominating set included in the solid frame induce a clique while the nodes in the inde-
pendent sets that are included in the dashed frame induce an empty subgraph. In the
following discussion, we will call the sets Di, i = �k/2� + 1� � � � �k, dominating subsets,
since the set Di induces a dominating set in the graph obtained by removing the nodes
in the set

⋃k−i
j=0 Dj from G.

A nested split graph has an associated adjacency matrix that is called a stepwise ma-
trix and it is defined as follows.

Definition 5 (Brualdi and Hoffman 1985). A stepwise matrix A is a symmetric, binary
(n × n) matrix with elements aij satisfying the following condition: if i < j and aij = 1,
then ahk = 1 whenever h< k≤ j and h≤ i.

Figure 1 (right) shows the stepwise adjacency matrix A corresponding to the nested
split graph shown on the left hand side. If we let the nodes be indexed by the order of the
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rows in the adjacency matrix A, then it is easily seen that, for example, D6 = {1�2 ∈ N :
d1 = d2 = d(6) = 9} and D1 = {9�10 ∈ N :d9 = d10 = d(1) = 2}.

If a nested split graph is connected, we call it a connected nested split graph. The
representation and the adjacency matrix depicted in Figure 1 actually show a connected
nested split graph. From the stepwise property of the adjacency matrix, it follows that
a connected nested split graph contains at least one spanning star, that is, there is at
least one agent that is connected to all other agents. In Appendix C, we also derive the
clustering coefficient, the neighbor connectivity, and the characteristic path length of
a nested split graph. In particular, we show that connected nested split graphs have
small characteristic path length, which is at most 2. We also analyze different measures
of centrality (see Wasserman and Faust 1994, Chapter 5.2) in a nested split graph. One
important result is that degree, closeness, and Bonacich centrality induce the same or-
dering of nodes in a nested split graph. If the ordering is not strict, then this holds also
for betweenness centrality (see Appendix C.2.5).

In the next proposition, we identify the relationship between the Bonacich centrality
of an agent and her degree in a nested split graph. Denote by G ⊕ (i� j) the network G

for which a link between i and j has been added, and denote by G� (i� j) the network G

for which the link between i and j has been deleted.

Proposition 1. Consider a pair of agents i� j ∈ N of a nested split graph G= (N �E).

(i) If and only if agent i has a higher degree than agent j, then i has a higher Bonacich
centrality than j, i.e., di > dj ⇔ bi(G�λ) > bj(G�λ).

(ii) Assume that neither the links (i�k) nor (i� j) are in G, (i� j) /∈ E and (i�k) /∈ E . Fur-
ther assume that agent k has a higher degree than agent j, dk > dj . Then adding
the link (i�k) to G increases the Bonacich centrality of agent i more than adding
the link (i� j) to G, i.e., dk > dj ⇔ bi(G⊕ (i�k)�λ) > bi(G⊕ (i� j)�λ).

(iii) Consider two agents j�k ∈ Ni and assume that agent k has a higher degree than
agent j, dk > dj . Then removing the link (i�k) from G decreases the Bonacich
centrality of agent i more than removing the link (i� j) from G, i.e., dk > dj ⇔
bi(G� (i�k)�λ) < bi(G� (i� j)�λ).

From part (ii) of Proposition 1, we find that when agent i has to decide to create a
link to either agent k or j, with dk > dj , in the link formation process (G(t))t∈R+ , then
i will always connect to agent k because this link gives i a higher Bonacich centrality
than the other link to agent j. A similar argument holds for the removal of a link in part
(iii). We can make use of this property to show that the networks emerging from the link
formation process defined in the previous section actually are nested split graphs. This
result is stated in the next proposition.

Proposition 2. Consider the unperturbed dynamics of the network formation process
(G(t))t∈R+ introduced in Definition 2. Assume that at t = 0, we start with the empty net-
work G(0) = K̄n. Then, at any time t ≥ 0, the network G(t) is a nested split graph almost
surely and the set � ∈�, consisting of all possible unlabeled nested split graphs on n nodes
with |�| = 2n−1, has measure P(�) = 1.
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This result is due to the fact that agents, when they have the possibility of creating
a new link, always connect to the agent who has the highest Bonacich centrality (and
by Proposition 1 the highest degree). This creates a nested neighborhood structure that
can always be represented by a stepwise adjacency matrix after a possible relabeling of
the agents.20 The same applies for link decay.

Let us give some more intuition of this crucial result. Agents want to link to oth-
ers who are more central since this leads to higher actions (as actions are proportional
to centrality) and higher actions raise payoffs more. Similarly, links decay to those
with lower centrality as these agents have lower actions and hence lower payoff effects.
Notice, moreover, that once a link decays to an agent, she becomes less central and
this makes it more likely that another link decays. Thus link gains and losses are self-
reinforcing. This intuition suggests that if α, the probability of adding links, is large,
then the process should approximate the complete network, while if it is small, then the
process should approximate the star network. The key insight of our model is that for
intermediate values of α, the network is a nested split graph.

Observe that it is assumed that there is no cost of forming links. If links represent
a social tie, then there typically is a cost to maintaining a link since agents must spend
time with the person they are linked to. Because of the assumption of the absence of
any linking cost, each agent wants to connect to every other agent, which leads to the
formation of nested split graphs. In Appendix E, we extend the model to see what would
happen to our results if links were costly to maintain and only the links that increase
the payoff of an agent were formed. We show that as long as the cost is not too high,
marginal payoffs are positive and the networks always converge to nested split graphs
so that all our results hold.

Due to the nested neighborhood structure of nested split graphs, any pair of agents
in (the connected component of) a nested split graph is at most two links separated
from each other. From Proposition 1 it then follows that in a nested split graph G(t),
the best response of an agent i is the agents with the highest degrees in i’s second-order
neighborhood N (2)

i .21 Moreover, if G(t) is a nested split graph, then i ∈ Bj(G(t)) if and
only if j ∈ Bi(G(t)). Hence, we could require in addition that links are only formed under
mutual consent.

From the fact that G(t) is a nested split graph with an associated stepwise adjacency
matrix, it further follows that at any time t in the network evolution, G(t) consists of a
single connected component and possibly isolated nodes.

Corollary 1. Consider the unperturbed dynamics of the network formation process
(G(t))t∈R+ introduced in Definition 2. Assume that at t = 0, we start with the empty net-
work G(0) = K̄n. Then, at any time t ≥ 0, the network G(t) has at most one nonsingleton
component almost surely.

20Further, we will show in Proposition 3 that as ζ converges to zero, (G(t))t∈R+ induces a finite state

Markov chain where the recurrent states �̂ consist of nested split graphs.
21Let Ni = {k ∈ N : (i�k) ∈ E(t)} be the set of neighbors of agent i ∈ N and let N (2)

i = ⋃
j∈Ni

Nj \ (Ni ∪ {i})
denote the second-order neighbors of agent i in the current network G(t). Note that the connectivity rela-
tion is symmetric such that j is a second-order neighbor of i if i is a second-order neighbor of j, i.e., i ∈ N (2)

j

if and only if j ∈ N (2)
i for all i� j ∈ N .
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Nested split graphs are not only prominent in the literature on spectral graph the-
ory, but they have also appeared in the recent literature on economic networks. Nested
split graphs are called interlinked stars in Goyal and Joshi (2003).22 Subsequently, Goyal
et al. (2006) identified interlinked stars in the network of scientific collaborations among
economists. It is important to note that nested split graphs are characterized by a dis-
tinctive core–periphery structure (see the Introduction (Section 1) and Section 6).

Finally, note that the network formation process (G(t))t∈R+ introduced in Defini-
tion 2 is independent of initial conditions G(0).23 This means that even when we start
from an initial network G(0) that is not a nested split graph, then after some finite time
the Markov chain will reach a nested split graph. This is because there exists a positive
probability that all links in the current graph are removed. The resulting graph is then
empty. This graph is a special case of a nested split graph. Due to Proposition 2 for ζ = 0,
from then on all consecutive networks visited by the chain are nested split graphs and
the class of nested split graphs will never be left by the chain, that is, it forms an absorb-
ing set. Moreover, since the chain stays forever in the class of nested split graphs and
it takes only a finite number of transitions to reach this class from any other graph, all
other graphs form a transient set.

4. Stochastically stable networks: Characterization

In this section, we show that the network formation process (G(t))t∈R+ of Definition 2
induces an ergodic Markov chain with a unique invariant distribution. We then proceed
by analyzing the stochastically stables states in �̂ (in the limit of ζ → 0) of this process
as the number n of agents becomes large.

Proposition 3. The network formation process (G(t))t∈R+ introduced in Definition 2
induces an ergodic Markov chain on the finite state space � with a unique stationary dis-
tribution μζ such that μζ(G′) = limt→∞ P(G(t) = G′|G(0) = G) for any G�G′ ∈ �. More-
over, the stochastically stable states �̂ are given by the set of nested split graphs � such
that μ(�) = 1.

In the following discussion, we will assume for simplicity that αi = 1 − βi = α for
all i ∈ N in Definition 2, expressing the relative weights of link creation versus link de-
cay.24 In this case, the symmetry of the network formation process with respect to the
link arrival rate α and the link decay parameter 1 − α allows us to state the following
proposition.

Proposition 4. Consider the unperturbed dynamics of the Markov chain (G(t))t∈R+ in
Definition 2 with α ≡ αi = 1 − βi for all i ∈ N . Let G(t) be a sample path generated with

22Nested split graphs are interlinked stars, but an interlinked star is not necessarily a nested split graph.
Nested split graphs have a nested neighborhood structure for all degrees, while in an interlinked star, this
holds only for the nodes with the lowest and highest degrees.

23See Proposition 3 in Section 4 and its proof in Appendix A.
24Note that taking into account the possibility of an agent remaining quiescent only modifies the time

scale of the process discussed, thus yielding identical results to the model proposed. This implies that,
without any loss of generality, it is possible to assume αi + βi = 1 for all i ∈ N . For simplicity, we also
assume that these probabilities are the same across agents.
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the homogeneous link arrival rate α and let G′(t) be a sample path with arrival rate 1−α.
Let μ be the stationary distribution of G(t) and let μ′ be the stationary distribution of
G′(t). Then for each network G in the support of μ, the complement Ḡ of G has the same
probability in μ′, i.e., μ′(Ḡ) = μ(G).

Proposition 4 allows us to derive the stationary distribution μ for any value of
1
2 <α< 1 if we know the corresponding distribution for 1 − α. This follows from the fact
that the complement Ḡ of a nested split graph G is a nested split graph as well (Mahadev
and Peled 1995). In particular, the networks Ḡ are nested split graphs in which the num-
ber of nodes in the dominating subsets corresponds to the number of nodes in the in-
dependent sets in G and, conversely, the number of nodes in the independent sets in Ḡ

corresponds to the number of nodes in the dominating subsets in G.
With this symmetry in mind, we restrict our analysis in the following discussion

to the case of 0 < α ≤ 1
2 . Let {N(t)}t∈R+ be the degree distribution with the dth ele-

ment Nd(t), giving the number of nodes with degree d in G(t), in the tth sequence
N(t) ≡ {Nd(t)}n−1

d=0. Further, let Pt(d) ≡ Nd(t)/n denote the proportion of nodes with
degree d (P(t) ≡ N(t)/n) and let P(d) ≡ limt→∞ Pt(d) be its asymptotic value. In the
following proposition, we determine the asymptotic degree distribution of the nodes in
the independent sets for n large enough.25

Proposition 5. Consider the unperturbed dynamics of the Markov chain (G(t))t∈R+ in
Definition 2 with α ≡ αi = 1 −βi for all i ∈ N and let 0 < α ≤ 1

2 . Let Pt(d) denote the pro-
portion of nodes with degree d in G(t). Then the asymptotic expected proportion of nodes
in the independent sets with degrees d = 0�1� � � � � d∗ in the stochastically stable networks
G ∈ �̂ for large n is given by

lim
t→∞E(Pt(d)) = 1 − 2α

1 − α

(
α

1 − α

)d

� (3)

where26

d∗(n�α)= ln
( (1−2α)n

2(1−α)

)
ln

( 1−α
α

) (4)

and Pt(d) → Et (Pt(d)) almost surely as n → ∞.

The proof of the proposition follows from a series of intermediate steps, where we
can take advantage of the intuitively simple stepwise structure of the adjacency matrix
associated with a nested split graph (see Figure 1). First we use the fact that we can ap-
proximate the continuous time Markov chain with a sampled time Markov chain whose
stationary distributions are the same (see Lemma 1 in Appendix A). We then proceed

25As Proposition 5 speaks of the asymptotic degree distribution in the limit of large n, this is to be under-
stood as letting n→ ∞ after considering the limit of t → ∞.

26Note that d∗(n�α) from (4) might, in general, not be an integer. In this case, we take the closest integer

value to (4), that is, we take [d∗(n�α)] = �d∗(n�α)+ 1
2 �. The error we make in this approximation is negligible

for large n.
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by induction to show that (3) holds for all degrees smaller than an upper bound d∗ in
the support of the stationary distribution μ of the sampled time Markov chain. The
induction basis is concerned with the number of isolated nodes (separately derived in
Lemma 3 in Appendix A) and the number of nodes with degree 1. The induction step
assumes that (3) holds for d − 1 and d to show that it then must also hold for d + 1. To
draw this conclusion, we compute the fixed point of the expected change in the number
of nodes with degree d in an incremental time step using the fact that the underlying
network is a nested split graph. This is possible because of the particular structure in-
herent in the adjacency matrix of a nested split graph and our payoff maximizing link
formation protocol, which allows us to consider only a few cases for the formation or re-
moval of a link to compute that change. Finally, by requiring that the degree distribution
is a proper probability measure with mass 1, we can derive d∗ in (4). The details of the
proof can be found in Appendix A.

The structure of nested split graphs implies that if there exist nodes for all degrees
between 0 and d∗ (in the independent sets), then the dominating subsets with degrees
larger than d∗ contain only a single node. Further, using Proposition 4, we know that for
α> 1

2 , the expected number of nodes in the dominating subsets is given by the expected
number of nodes in the independent sets in (3) for 1 −α, while each of the independent
sets contains a single node. This determines the asymptotic degree distribution for the
independent or dominating subsets, respectively, for all values of α in the limit of large n.

From (4), we can directly derive the following corollary.

Corollary 2. Consider the unperturbed dynamics of the Markov chain (G(t))t∈R+ in
Definition 2 with αi = 1 − βi = α for all i ∈ N . Then there exists a phase transition in the
asymptotic average number of independent sets, d∗(n�α), for G ∈ �̂ as n becomes large
such that

lim
n→∞

d∗(n�α)
n

=

⎧⎪⎨
⎪⎩

0 if α< 1
2

1
2 if α = 1

2

1 if α> 1
2 .

Corollary 2 implies that as n grows without bound, the networks in the stationary
distribution μ are either sparse or dense, depending on the value of the link creation
probability α. Moreover, from the functional form of d(n�α) in (4), we find that there
exists a sharp transition from sparse to dense networks as α crosses 1

2 and the transition
becomes sharper the larger is n.

Observe that because a nested split graph is uniquely defined by its degree distribu-
tion,27

 Proposition 5 delivers us a complete description of a typical network generated
by our model in the limit of large t and n. We call this network the stationary network.
We can compute the degree distribution and the corresponding adjacency matrix of the
stationary network for different values of α.28 The latter is shown in Figure 2. From the

27The degree distribution uniquely determines the corresponding nested split graph up to a permutation
of the indices of nodes.

28Noninteger values for the partition sizes can be approximated with the closest integer while preserving
the nested structure of the degree partitions.
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Figure 2. Representation of the adjacency matrices of stationary networks with n = 1,000
agents for different values of parameter α: α = 0�2 (top-left plot), α = 0�4 (top-center plot),
α = 0�48 (top-right plot), α = 0�495 (bottom-left plot), α = 0�5 (bottom-center plot), and α = 0�52
(bottom-right plot). The solid line illustrates the step function separating the 0 from the 1 en-
tries in the matrix. The top-left matrix for α = 0�4 corresponds to a starlike network while the
bottom-right matrix for α = 0�52 corresponds to an almost complete network. Thus, there ex-
ists a sharp transition from sparse to densely connected stationary networks around α = 0�5.
Networks of smaller size for the same values of α can be seen in Figure 3.

structure of these matrices, we observe the transition from sparse networks containing
a hub and many agents with small degree to a quite homogeneous network with many
agents having similar high degrees. Moreover, this transition is sharp around α = 1

2 . In
Figure 3, we show particular networks arising from the network formation process for
the same values of α. Again, we can identify the sharp transition from hub-like networks
to homogeneous, almost complete networks.

Figure 4 (left) displays the number m̄ of links m relative to the total number of pos-
sible links n(n − 1)/2, i.e., m̄ = 2m/(n(n − 1)), and the number of distinct degrees k as
a function of α. We see that there exists a sharp transition from sparse to dense net-
works around α = 1

2 , while k reaches a maximum at α = 1
2 . This follows from the fact

that k = 2d∗ with d∗ given in (4) is monotonic increasing in α for α < 1
2 and monotonic

decreasing in α for α> 1
2 .

Note that Proposition 5 makes a statement in the limit of n → ∞. In the following
section (see in particular Figures 4–8), we compare various networks statistics computed
from the analytical solution in Proposition 5 with the results obtained from numerical
simulations for finite values of n. These figures illustrate that for relatively small values of
n there is almost no deviation from the theoretical prediction of Proposition 5, providing
evidence that our limit results also make reasonably good predictions in the case of a
finite number n of agents.29

29This also weakens the eigenvalue condition imposed on the spillover parameter λ introduced in Sec-
tion 3.1. See also footnote 10.
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Figure 3. Sample networks with n = 50 agents for different values of parameter α: α = 0�2
(top-left plot), α = 0�4 (top-center plot), α = 0�48 (top-right plot), α = 0�495 (bottom-left plot),
α = 0�5 (bottom-center plot), and α = 0�52 (bottom-right plot). The shade and size of the nodes
indicate their eigenvector centrality. The networks for small values of α are characterized by the
presence of a hub and a growing cluster attached to the hub. With increasing values of α, the
density of the network increases until the network becomes almost complete.

5. Stochastically stable networks: Statistics

In the following sections, we analyze some of the topological properties of the stochas-
tically stable networks in our model that are in the support of the stationary distribu-
tion μ. We simply refer to these networks as stationary networks. With the asymptotic
expected degree distribution derived in Proposition 5, we can calculate the expected
clustering coefficient, the clustering-degree correlation, the neighbor connectivity, the
assortativity, and the characteristic path length by using the expressions derived for
these quantities in Appendix C, where we show that these statistics are all functions of
the degree distribution.30

Note that since the stationary distribution μ is unique, we can recover the expected
value of any statistic by averaging over a large enough sample of empirical networks
generated by numerical simulations. We then superimpose the analytical predictions of
the statistic derived from Proposition 5 with the sample averages so as to compare the
validity of our theoretical results, also for small network sizes n. As we will show, there is
a good agreement of the theory with the empirical results for all n.

30Any network statistic f :� → R we consider can be expressed as a function of the (empir-
ical) degree distribution Pt :� → [0�1]n. Hence, we can compute the expectation as Et (f ) =∑

k∈(0�����n)n f (k/n)Pt (Pt = k/n). In Proposition 5, we show that the degree distribution converges to its ex-
pected value with probability 1. Therefore, we have that Et (f ) = ∑

k∈(0�����n)n f (k/n)1Et (Pt )(k/n) = f (Et (Pt ))

as n→ ∞.
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Figure 4. (Left) In the top panel we show the number m̄ of links m relative to the total number
of possible links n(n − 1)/2 of the stationary network. The number of distinct degrees k = 2d∗,
with d∗ from (4), found in the stationary network for different values of α are shown in the bot-
tom panel. The figures display both the results obtained by recourse of numerical simulations
(symbols) and by respecting theoretical predictions (lines) of the model. (Right) Degree distribu-
tion P(d) for different values of parameter α and a network size n= 10,000: α = 0�2 (top-left plot),
α = 0�4 (top-center plot), α = 0�48 (top-right plot), α = 0�49 (bottom-left plot), α = 0�5 (bottom–
center plot), and α = 0�52 (bottom-right plot). The solid line corresponds to the average of sim-
ulations, while the dashed line indicates the theoretical degree distribution from Proposition 5.
The degrees have been binned to smooth the degree distribution.

We would like now to investigate the properties of our networks and see how they
match real-world networks.

Degree distribution

From Proposition 5, we find that the degree distribution follows an exponential decay
with a power-law tail.31 The power-law tail has an exponent of −1.32

 Figure 4 displays
the relative degree in the network (left panel) and the degree distribution (right panel).

31For 0 <α≤ 1
2 and n large enough, the asymptotic expected degree distribution for the degrees d smaller

than or equal to d∗ is given by an exponential function P(d) = ((1 − 2α)/(1 − α))exp(− ln((1 − α)/α)d).
On the other hand, if we assume (i) that the degree of a node in a dominating subset is symmetrically
distributed around its expected value, (ii) we compute the integral over the probability density function by
a rectangle approximation, and (iii) we further assume that the degree distribution obtained in this way
has the same functional form for all degrees d larger than d∗, then one can show that for 0 < α ≤ 1

2 and n

large enough, the asymptotic expected degree distribution P(d) is given by P(d)= (α/((1 − 2α)n))d−1. The
power-law tail of the degree distribution can be confirmed by the empirical distribution from a logarithmic
binning of numerical simulations, as can be seen in Figure 4 (right).

32We can extend our model to obtain a degree distribution with an arbitrary power-law tail by making the
probability of selecting an agent depend on the number of links she already has, while preserving the nested
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Figure 5. The left panel shows the clustering coefficient C and the right panel the cluster-
ing-degree correlation of stationary networks. The symbols correspond to the results obtained
by recourse of numerical simulations. The solid lines correspond to the analytical results. We
show that the clustering-degree correlation is negative for different values of α and a network
size of n = 1,000. The different plots show different values of α: α = 0�2 (top-left plot), α = 0�4
(top-center plot), α = 0�48 (top-right plot), α = 0�49 (bottom-left plot), α = 0�5 (bottom-center
plot), and α = 0�52 (bottom-right plot).

Figure 6. In the left panel, we show the assortativity γ of stationary networks. In the right
panel, we show the average nearest neighbor connectivity dnn for α = 0�2 (top-left plot), α = 0�4
(top-center plot), α = 0�48 (top-right plot), α = 0�49 (bottom-left plot), α = 0�5 (bottom-center
plot), and α = 0�52 (bottom-right plot). The symbols correspond to the results obtained by re-
course of numerical simulations. The solid lines correspond to the analytical results.

Clustering

The clustering coefficient is shown in Figure 5 (left). We find that for practically all values
of α, the clustering in the stationary networks is high. This finding is in agreement with

structure of the network she is embedded in. This extension is further discussed in König and Tessone
(2011).
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Figure 7. (Left panel) The characteristic path length � of stationary networks and (right panel)
the results for the network efficiency ε, obtained by recourse of numerical simulations (symbols)
and respecting theoretical predictions (lines) of the model.

Figure 8. (From left to right) Degree, closeness, betweenness, and eigenvector centralization
in the stationary networks for different values of α. For all centralization measures, we obtain a
sharp transition between strongly centralized networks for lower values of α and decentralized
networks for higher values of α. Note that we have only considered the connected component
for the computation of the different centralization measures.

the vast literature on social networks that has reported high clustering to be a distinctive
feature of social networks. Moreover, Goyal et al. (2006) have shown that there exists a
negative correlation between the clustering coefficient of an agent and her degree. We
find this property in the stationary networks as well, as it is shown in Figure 5 (right).

Assortativity and nearest neighbor connectivity

We now turn to the study of correlations between the degrees of the agents and their
neighbors. This property is usually measured by the network assortativity γ (Newman
2002)33 and nearest neighbor connectivity dnn(d) (Pastor-Satorras et al. 2001). Dissor-
tative networks are characterized by negative degree correlations between a node and

33The assortativity coefficient γ ∈ [−1�1] is essentially the Pearson correlation coefficient of degree be-
tween nodes that are connected. Positive values of γ indicate that nodes with similar degrees tend to be
connected (and dnn(d) is an increasing function of the degree d), while negative values indicate that nodes
with different degrees tend to be connected (and dnn(d) is a decreasing function of the degree d). See
Newman (2002) for further details.
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its neighbors, and assortative networks show positive degree correlations. In dissorta-
tive networks, γ is negative and dnn(d) is monotonic decreasing, while in assortative
networks γ is positive and dnn(d) is monotonic increasing. In our model, we observe
dissortative networks.34

Assortativity and average nearest neighbor connectivity for different values of the
link creation probability α are shown in Figure 6. Clearly, stationary networks are dissor-
tative, while the degree of dissortativity decreases with increasing α. The dissortativity
of stationary networks simply reflects the fact that stationary networks are strongly cen-
tralized for values of α below 1

2 .

Characteristic path length

Figure 7 shows the characteristic path length � and the network efficiency ε (defined in
Appendix C.1.4). From these figures, one can see that the characteristic path length �

never exceeds a distance of 2. Together with the high clustering shown in this section,
the stationary networks can be seen as “small worlds” (Watts and Strogatz 1998). Sta-
tionary networks are efficient for values of α larger than 1

2 , in terms of short average

distance between agents, while for values of α smaller than 1
2 they are not. However, this

short average distance is attained at the expense of a large number of links.

Centralization of stochastically stable networks

In the following section, we analyze the degree of centralization in stationary networks.
For our analysis, we use the centralization index introduced by Freeman (1979). The

centralization C :� → [0�1] of a network G= (N �E) ∈� is given by

C ≡
∑

u∈G(C(u∗)−C(u))

maxG′
∑

v∈G′(C(v∗)−C(v))
�

where u∗ and v∗ are the agents with the highest values of centrality in the current
network and the maximum in the denominator is computed over all networks G′ =
(N �E ′) ∈� with the same number of agents.

From Figure 8 (right), showing degree, closeness, betweenness, and eigenvector cen-
tralization, we clearly see that there exists a phase transition at α = 1

2 from highly cen-
tralized to highly decentralized networks. This means that for low arrival rates of linking
opportunities α (and a strong link decay), the stationary network is strongly polarized,
composed mainly of a star (or an interlinked star as in Goyal and Joshi 2003), while for
high arrival rates of linking opportunities (and a weak link decay), stationary networks
are largely homogeneous. We can also see that the transition between these states is
sharp. It is interesting to note that the same pattern emerges for all centrality measures
considered, irrespective of whether the measures take into account only the local neigh-
borhood of an agent, such as in the case of degree centrality, or the entire network struc-
ture, as for the other centrality measures.

34In König et al. (2010), we show that by introducing capacity constraints in the number of links an agent
can maintain, we are able to produce both assortative as well as dissortative networks.
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Figure 9. The Austrian banking network, the global network of banks obtained from the Bank
of International Settlements (BIS) locational statistics, the gross domestic product (GDP) trade
network, and the arms trade network (from left to right). The shade and size of the nodes indicate
their eigenvector centrality. The GDP trade network is much more dense than the network of
banks and the network of arms trade. All four networks show a core of densely connected nodes.

6. Empirical implications

6.1 Data

In this section, we would like to provide real-world evidence for our model and estimate
the model’s parameters for four different empirical data sets, all of which are charac-
terized by a strongly nested network architecture. We essentially consider two types of
networks: bank and trade networks.35 In the following discussion, we describe in detail
the different data sets that we use.

The first network we analyze is a network of Austrian banks in the year 2008 (see
Boss et al. 2004). Links in the network represent exposures between Austrian-domiciled
banks on a nonconsolidated basis (i.e., no exposures to foreign subsidiaries are in-
cluded). We obtain a sample of n = 770 banks with m = 2,454 links between them and
an average degree of d̄ = 20�54. The degree variance is σ2

d = 1,273�22. The largest con-
nected component comprises 768 banks, which is 99�7% of the total of banks, and it is
illustrated in Figure 9.

Second, we consider the global banking network in the year 2011 obtained from the
Bank of International Settlements (BIS) locational statistics on exchange-rate-adjusted
changes in cross-border bank claims (see Minoiu and Reyes 2011). BIS locational statis-
tics are compiled on the basis of residence of BIS reporting banks and cover the cross-
border positions of all banks domiciled in the reporting area, including positions with
respect to foreign affiliates, loans, deposits, debt securities, and other assets provided by
banks. We obtain a network with n = 239 nodes and m = 2,454 links between them. An
illustration can be seen in Figure 9. The average degree of the network is d̄ = 20�54 and
we observe a high degree variance of σ2

d = 1,273�22.
The third empirical network we consider is the network of trade relationships be-

tween countries in the year 2000. The trade network is defined as the network of import–
export relationships between countries in a given year in millions of current-year U.S.

35In Appendix D, we discuss an application of our model to networks of banks (see Appendix D.1), where
links are loans between banks, and in terms of trade networks (see Appendix D.2), where links between
countries represent trade relationships (in imports or exports).



Theoretical Economics 9 (2014) Nestedness in networks 719

dollars. We construct an undirected network in which a link is present between two
countries if either one has exported to the other country. The trade network contains
n = 196 nodes, m= 4,138 links, has an average degree of d̄ = 42�22, and a degree variance
of σ2

d = 1,524�16.
Fourth, we consider the network of arms trade between countries (see Åkerman and

Larsson forthcoming). We use data obtained from the Stockholm International Peace
Research Institute (SIPRI) Arms Transfers Database that holds information on all inter-
national transfers between countries of seven categories of major conventional weapons
accumulated from 1950 to 2010. A link in the network represents a recipient or supply
relationship of arms between two countries during this period. We obtain a network
with n = 246 nodes and m = 2,245 links. The average degree is d̄ = 18�25 and the degree
variance is σ2

d = 589�97. An illustration can be seen in Figure 9.
All these four real-world networks are of similar size, show short average path lengths

of around 2, are dissortative, and have a monotonic decreasing average nearest neigh-
bor connectivity. They also show a relatively high clustering and the clustering degree
distribution is decreasing with the degree (see Figure 11). An important feature of these
networks is that they all show a high degree of nestedness. This can be witnessed from
the adjacency matrices depicted in Figure 10, which resemble the nested matrices we
derive from our theoretical model (see Figure 2). Similarly, when we compare the net-
works simulated from our model (see Figure 3) and the ones described in real-world net-
works (Figure 9), they are relatively similar (in terms of a clear core–periphery structure,
indicating nestedness).36�37

6.2 Estimating the model’s parameters

We then estimate the main parameters θ ≡ (α�ζ) of our model by using the likelihood-
free Markov chain Monte Carlo (LF-MCMC) algorithm suggested by Marjoram et al.
(2003). The purpose of this algorithm is to estimate the parameter vector θ of our
model on the basis of the summary statistics S ≡ (S1�S2�S3)n×3, where S1 ≡ (P(d))n−1

d=0,

S2 ≡ (C(d))n−1
d=0, and S3 ≡ (dnn(d))

n−1
d=0 are the degree distribution, the clustering degree

36We have performed a k-core decomposition of the empirical networks. A k-core is a maximal subnet-
work in which all nodes have a degree of at least k with the other nodes in the subnetwork. Examining the
k-cores with increasing values of k does not split the network into separate components. This is another
indicator for the nested structure observed in these networks.

37We can complement these observations of nested patterns in real-world networks by a rigorous sta-
tistical analysis. The key question is how to measure, precisely, the degree of nestedness of a network.
For that, we have computed the degree of nestedness by calculating the matrix temperature Tn using the
BINMATNEST algorithm proposed by Rodríguez-Gironés and Santamaría (2006). Typically, the lower the
temperature Tn, the higher the degree of nestedness. More precisely, Tn is normalized in such a way that it
ranges between 0 for a perfectly nested matrix and 100 for a maximally “unnested” matrix. For the network
of Austrian banks, we obtain Tn = 0�05; for the network of banks from BIS statistics, we get Tn = 0�75; for
the trade network, we obtain Tn = 7�26; and for the arms trade network, we obtain Tn = 1�72. This indi-
cates that the networks of banks have the highest degree of nestedness. Moreover, we can also compute
the probability of a certain degree of nestedness being generated at random. For all the networks consid-
ered, we obtain a p-value not distinguishable from 0 (using 500 null matrices), showing that all empirical
networks are significantly nested. See Rodríguez-Gironés and Santamaría (2006) for further details of the
BINMATNEST algorithm.
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distribution, and the average nearest neighbor degree distribution, respectively.
Moment conditions are obtained from the Euclidean distances 
(Si�So

i ) ≡√∑n
j=1(Si�j − Soi�j)

2 for each statistic Si (generated by the algorithm) and its observed

value So
i . The algorithm generates a Markov chain that is a sequence of parameters

{θs}Ss=1 with a stationary distribution that approximates the distribution of the parame-
ter values θ conditional on the observed statistic So.38 Since this estimation algorithm
would require the computation of the Bonacich centrality an extensive number of times,
we assume that the complementarity parameter λ is small such that we can approximate
the Bonacich centrality by the degree centrality when simulating the network formation
process.39,40

The estimated parameter values are shown in Table 1. We observe that the estimates
for ζ are higher for the network of GDP trading countries and the network of arms trade
than the corresponding estimates for the networks of banks. This confirms our intuition
that with increasing values of ζ, stationary networks become less nested (and we ob-
tain a random graph as ζ → ∞), and the values for the matrix temperature Tn become
lower for these networks (see also the adjacency matrices in Figure 10). Hence, our es-
timates support our earlier observation that the networks of banks have a higher degree
of nestedness than the networks of trade relationships between countries.

Moreover, Figure 11 shows the empirical distributions (squares) and typical simu-
lated distributions (circles) for the bank network, the network of GDP trade, and the
arms trade network. The comparison of observed and simulated distributions shown in
Figure 11 indicates that the model can relatively well reproduce the observed empirical
networks, even though the model is parsimoniously parameterized in relying only on
two exogenous variables α and ζ. The fit seems to be best for the networks of banks,
which also show the most distinct nestedness pattern (see Figure 10).

Appendix A: Proofs of propositions, corollaries, and lemmas

In this section we give the proofs of the propositions, corollaries, and lemmas stated
earlier in the paper.

Proof of Proposition 1. (i) A graph having a stepwise adjacency matrix is a nested
split graph G. A nested split graph has a nested neighborhood structure. The neigh-
borhood Nj of an agent j is contained in the neighborhood Ni of the next higher degree
agent i with |Ni| = di > |Nj| = dj with Nj ⊂ Ni. For the adjacency matrix A, the vector of

38For the implementation of the algorithm, we have chosen an initial uniform (prior) parameter distri-
bution. The proposal distribution is a normal distribution. During the “burn-in” phase (Chib 2001), we
consider a monotonic decreasing sequence of thresholds with appropriately chosen values from careful
numerical experimentation. For the Austrian banking network, we have chosen a burn-in period of 1,000
steps, while for the network of GDP trade, we have used a period of 3,000.

39The Bonacich centrality is defined by bi(G�λ) = ∑∞
k=0 λ

k(Ak · u)i = 1 + λdi + λ2 ∑
j∈Ni

dj +
λ3 ∑

j∈Ni

∑
k∈Nj

dk +· · · = 1+λdi +λ2 ∑
j∈Ni

dj +O(λ3). Marginal payoff from forming a link (i� j) for agent

i can then be written as π∗
i (G ⊕ (i� j)�λ) − π∗

i (G�λ) = λ(2 + λ)/2 + (λ2/2)di(di + 1) + λ2dj + O(λ3). When
computing marginal payoffs from forming a link (and the decay rates), we ignore terms of O(λ3).

40Note also that the reported estimates of ζ hold only up to a scaling factor, which depends on the choice
of λ. Hence, only the relative values of ζ between different samples is meaningful, but not its absolute value.
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Austrian bank network Global bank network GDP trade network Arms trade network

θ μθ σθ τθ pθ(S) μθ σθ τθ pθ(S) μθ σθ τθ pθ(S) μθ σθ τθ pθ(S)

α 0�45 0�00 29�63 0�99 0�45 0�01 10�65 0�91 0�44 0�00 6�49 0�96 0�44 0�00 50�67 0�99
ζ 1�13 0�06 68�98 0�99 1�70 0�18 91�64 0�96 20�51 0�32 143�30 0�89 24�87 0�16 657�82 0�93

n 770 239 196 246
S 3,000 700 2,000 5,000

aτθ is the integrated autocorrelation time, which should be much smaller than the number S of iterations of the Markov chain algorithm used to compute the parameter estimates (Sokal
1996).

bμθ is the mean and σθ is the simulation standard deviation calculated from batch means (of length 10) for each parameter θ ∈ θ (Chib 2001).
cpθ(S) is the p-value associated with Geweke’s spectral density diagnostic indicating the convergence of the chain (Brooks and Roberts 1998). The number S of iterations of the chain

have been chosen for each data set individually such that reasonably high values of pθ(S) are obtained.

Table 1. Estimation of the model parameters θ ∈ θ = (α�ζ) for the Austrian network of banks, the global network of banks obtained from the

Bank of International Settlements (BIS) locational statistics, the network of GDP trading countries, and the arms trade network.a The table

shows simulated averages of the parameters and their standard deviations,b after the chain has converged.c
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Figure 10. Adjacency matrices (sorted by the eigenvector centralities of the nodes) for the Aus-
trian banking network, the global network of banks obtained from the Bank of International
Settlements (BIS) locational statistics, the GDP trade network, and the arms trade network (from
left to right). All adjacency matrices are significantly nested.

Figure 11. The empirical (�) and an exemplary simulated ( ) degree distribution P(d), av-
erage nearest neighbor degree dnn(d), and clustering degree distribution C(d) for the Austrian
banking network (first column), the network of banks obtained from the Bank of International
Settlements (BIS) (second column), the GDP trade network (third column), and the arms trade
network (fourth column).

Bonacich centralities is given by b(G�λ)= λAb + u, with u = (1� � � � �1)�. For agent i, we

then get

bi(G�λ) = 1 + λ

n∑
k=1

aikbk(G�λ) = 1 + λ
∑
k∈Ni

bk(G�λ)
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Figure 12. An illustration of the two networks G′ and G′′, which differ in the links (i� j) and
(i�k). The neighborhood Nj of agent j and the neighborhood Nk of agent k are indicated by
corresponding boxes. Note that the neighborhood of agent j is contained in the neighborhood of
agent k. The loop at agent i indicates a walk starting at i and coming back to i before proceeding
to either agent j or k.

and similarly for agent j,

bj(G�λ)= 1 + λ
∑
k∈Nj

bk(G�λ)�

Since Nj ⊂ Ni and dj = |Nj| < |Ni| = di, we get

bi(G�λ)

bj(G�λ)
= 1 + λ

∑
k∈Ni

bk(G�λ)

1 + λ
∑

k∈Nj
bk(G�λ)

> 1�

The inequality follows from the fact that the Bonacich centrality is nonnegative and the
numerator contains the sum over the same positive numbers as the denominator plus
some additional values.

Conversely, in a nested split graph, we must either have Ni ⊂ Nj or Nj ⊂ Ni. Assum-
ing that bi(G�λ) > bj(G�λ), we can conclude from the above equation that Nj ⊂ Ni and,
therefore, |Ni| = di > |Nj| = dj . If there are l distinct degrees in G, then the ordering
of degrees d1 > d2 > · · · > dl is equivalent to the ordering of the Bonacich centralities
b1(G�λ) > b2(G�λ) > · · · > bl(G�λ).

(ii) Consider the agents i, j, and k in the nested split graph G(t), such that dj ≤ dk.
Let G′ be the graph obtained from G(t) by adding the link (i� j) and let G′′ be the graph
obtained from G(t) by adding the link (i�k). We want to show that the Bonacich central-
ity of agent i in G′′ is higher than in G′, that is, bi(G′�λ) < bi(G

′′�λ). For this purpose,
we count the number of walks emanating at agent i when connecting to either agent j or
agent k. Since G is a nested split graph, we have that Nj ⊂ Nk. An illustration is given
in Figure 12. We consider a walk Wl of length l ≥ 2 starting at agent i in G′. We want to
know how many such walks there are in G′ and G′′, respectively. For this purpose, we
distinguish the following cases:
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(a) Assume that Wl does not contain the link (i� j) or the link (i�k). Then each such
walk Wl in G′ is also contained in G′′, since G′ and G′′ differ only in the links (i� j)

and (i�k).

(b) Consider the graph G′ and a walk Wl starting at agent i and proceeding to agent j.
For each walkWl inG′, there exists a walk W̃l in G′′ that is identical toWl except that
instead of proceeding from i to j, it proceeds from i to k and then to the neighbor
of j that is visited after j in Wl. This is always possible since the neighbors of j are
also neighbors of k.

(c) Consider a walk Wl in G′ that starts at i but first takes a detour, returning to i before
proceeding from i to j. Using the same argument as in (ii), it follows that for each
such walk Wl in G′, there exists a walk of the same length in G′′.

(d) Consider a walk Wl in G′ that starts at agent i and at some point in its sequence
of agents and links proceeds from agent j to agent i. For each such walk Wl in G′,
there exists a walk W̃l in G′′ that is identical to Wl except that it does not proceed
from a neighbor of j to j and then to i; it proceeds from a neighbor of j to k and
then to i.

The above cases take into account all possible walks in G′ and G′′ of an arbitrary length
l and show that in G′′ there are at least as many walks of length l starting from agent i as
there are in G′.

Now consider the walks of length 2, W2, in G′ starting at agent i and proceeding to
agent j. Then there are |Nj| such walks in G′. However, there are |Nk| > |Nj| such walks
in G′′ of length 2 that start at agent i.

The Bonacich centrality bi(G(t)�λ) is computed by the number of all walks in G(t)

starting from i, where the walks of length l are weighted by their geometrically decaying
factor λl. We have shown that for each l, the number of walks in G′′ is larger than or
equal to the number of walks in G′, and for l = 2, it is strictly larger. Thus, the Bonacich
centrality of agent i in G′′ is higher than in G′.

(iii) An analogous argument as for the creation of a link holds for the removal of a
link for agent i from j�k ∈ Ni with dk > dj . Since the number of walks starting from i

is reduced more by removing the link (i�k) than by removing the link (i� j) (there are at
least as many walks from i passing through k than there are through j), we must have
that bi(G� (i�k)�λ) < bi(G� (i� j)�λ).

Finally, note that all agents in a nested split graph are at most two links separated
from each other (if there exists any walk between them). Thus, the agent with the highest
degree is also the agent with the highest degree among the neighbors’ neighbors. From
this discussion, we see that in a nested split graph G(t), the best response of an agent i
is the agents with the highest degrees in i’s second-order neighborhood. �

Proof of Proposition 2. It has to be clear that this proof only holds for the unper-
turbed dynamics when the noise vanishes, that is, when ζ = 0. This is the case of the
stochastically stable states. As a result, we are making a claim about the stochastically
stable states (ζ = 0), but not the case of ζ > 0.
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Figure 13. Two possible positions for the creation of a link from agent 4, either to agent 7 (right)
or to agent 10 (left). Agent 7 has degree 3, while agent 10 has degree 1. Creating a link to an agent
with higher degree results in higher equilibrium payoffs. Thus, the best response of agent 4 is
agent 7 and not agent 10.

Let us now start with the proof. We give a proof by induction. The induction basis is
trivial. We start at t = 0 from an empty network G(0) = K̄n, which has a trivial stepwise
adjacency matrix (see also Definition 5). Since there are no links present in K̄n, we can
omit the removal of a link. Consider a small time increment 
t > 0. During that time
interval, a one step transition with positive probability can only involve the creation of a
link by an isolated agent. All other isolated agents are best responses of this agent. The
formation of the link creates a path of length 1 whose adjacency matrix is stepwise. This
is true because we can always find a simultaneous columns and rows permutation that
makes the adjacency matrix stepwise. Thus, G(
t) has a stepwise adjacency matrix.

Next we consider the induction step of a one step transition from G(t) to G(t + 
t).
By the induction hypothesis, G(t) is a nested split graph with a stepwise adjacency ma-
trix. First, we consider the creation of a link (i� j). Let agent j be a best response of agent
i, that is, j ∈ Bi(G(t)). Using Proposition 1, this means that agent i must be the agent
with the highest degree not already connected to j. From the stepwise adjacency matrix
A(G(t)) of G(t) (see Definition 5), we find that adding the link (i� j) to the network G(t)

such that j has the highest degree among all agents not already connected to i results in
a matrix A(G(t)⊕ (i� j)) that is stepwise. Therefore, the network G(t)⊕ (i� j) is a nested
split graph.

We give an example in Figure 13. Let the agents be numbered by the rows, respec-
tively, columns, of the adjacency matrix. We assume that agent 4 receives a link creation
opportunity. Two possible positions for the creation of a link from agent 4, either to
agent 7 or to agent 10, are indicated with boxes. Since, in a stepwise matrix, the agent in
the best response set has the highest degree, agent 7 is a best response of agent 4, while
agent 10 is not. It further holds that agent 4 is also a best response of agent 7, since agent
4 is the agent with the highest degree not already connected to agent 7. Finally, we ob-
serve that creating the link 47 preserves the stepwise form of the adjacency matrix (see
also Definition 5).41

For the decay of a link, a similar argument can be applied as in the preceding dis-
cussion. Disconnecting from the agent with the smallest degree decreases the Bonacich
centrality and equilibrium payoffs the least, and, hence, this will be the link that decays

41The adjacency matrix is uniquely defined up to a permutation of its rows and columns. Applying such
a permutation, we can always find an adjacency matrix that is stepwise.
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as ζ = 0. From the properties of the stepwise matrix A(G(t)), it then follows that the
matrix A(G(t)� (i� j)) is stepwise.

Thus, at any time t ≥ 0 in the network formation process (G(t))t∈R+ , G(t) is a nested
split graph with an associated stepwise adjacency matrix A(G(t)). Let � denote the set
of nested split graphs on n nodes. It can be shown that |�| = 2n−1 (Mahadev and Peled
1995). We thus have shown that for the unperturbed dynamics in the limit of vanishing
mistakes (noise), when ζ = 0, the network G(t) is a nested split graph almost surely,
which is to say that P(G(t) ∈�|G(0) = K̄n) = 1 for all t ≥ 0. �

Proof of Corollary 1. In Proposition 2, we have shown that G(t) generated by
(G(t))t∈R+ is a nested split graph for all times t. In a nested split graph, any node in
the connected component is directly connected to the node(s) with maximum degree.
Thus, there exists a path of at most length 2 from any node to any other node in the con-
nected component. It follows that G(t) consists of a connected component and possible
isolated nodes. �

Proof of Proposition 3. First, we show that (G(t))t∈R+ is a Markov chain. Since the
transition rate qζ(G�G′) governing the transition from a network G to a network G′ de-
pends only on the current network G, the following Markov property holds:

P
(
G(t + s) =G′|G(s) =G� {G(u) : 0 ≤ u < s}) = P(G(t + s) =G′|G(s) =G)

for all t ≥ 0, s ≥ 0, and G�G′ ∈ �. The number of possible networks G(t) is finite for
any time t ≥ 0 and the transition rates depend on the state G(t) but not on the time t.
Therefore, (G(t))t∈R+ is a finite state, continuous time, homogeneous Markov chain.
Further, note that the transition rates are bounded.

Next, we show that the Markov chain is irreducible. Consider two networks
G�G′ ∈�. (G(t))t∈R+ is irreducible if there exists a positive probability to pass from
any G to any other G′ in �. This means that there exists a sequence of networks
G1�G2� � � � �Gn with the property that qζ(G�G1)q

ζ(G1�G2) · · ·qζ(Gn�G
′) �= 0. We say

that G′ is accessible from G. For ζ > 0, the logistic function in the transition rates im-
plies that such a sequence always exists and irreducibility follows. We then have that a
unique invariant distribution μζ exists.

Next, we consider the case of ζ = 0. Let � be the set of nested split graphs and denote
�̄ = � \ �. In the following discussion, we show that the networks in �̄ are transient.
Observe that for any network G ∈ �̄ and αi > 0, there exists a positive probability that in
a finite number of consecutive transitions in the Markov chain, links are removed and no
links are created until the empty network K̄n ∈ � is reached. Let T <∞ be the time when
this happens starting from G /∈�. Note that K̄n ∈� and, therefore, Proposition 2 implies
that all networks G(t), t > T , visited by the chain will be in �. A state G is transient if∫ ∞

0 P(G(t + s)= G|G(t) =G)ds < ∞ (see, e.g., Grimmett and Stirzaker 2001, Chapter 6).
We have that

∫ ∞
0 P(G(t + s) = G|G(t) = G)ds = E(

∫ ∞
0 1G(G(s))ds|G(t) = G) ≤ E(T) <

∞. Therefore, all networks that are not nested split graphs are transient and they have
vanishing probability in the stationary distribution, i.e., μ(�̄) = 0.
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In the following discussion, we show that the set � is a communicating class. Simi-
lar to our previous analysis, it holds that for any G ∈� and αi > 0, there exists a positive
probability that in all consecutive transitions in the Markov chain, links are created and
no links are removed until the complete network Kn ∈ � is reached. Then for βi > 0,
there exists a positive probability that from Kn only those links decay such that the net-
work G′ remains.42 Therefore, there exists a positive probability to pass from any net-
work G to any other network G′ with positive probability, as long as G�G′ ∈�. Similarly,
one can show that G is accessible from G′. States G and G′ in � are accessible from one
another. We say that they communicate and � is a communicating class.

Thus, in the case of ζ = 0, the state space � can be partitioned into a communicat-
ing class � and a set of transient states �̄. The long run behavior of the chain is de-
termined by the states in recurrent class � and we have a unique invariant distribution
with μ(�) = 1 (see, e.g., Ethier and Kurtz 1986). �

Before we proceed with the proof of Proposition 4, we introduce the sampled-
time Markov chain (G(t))t∈T , T ≡ {0�
t�2
t� � � �}, associated with the continuous time
Markov chain (G(t))t∈R+ in the limit of ζ = 0 on the same measure space (��F) (see,
e.g., Gallager 1996, Chapter 6). In the sampled-time Markov chain (G(t))t∈T , transitions
occur only at discrete times t ∈ T separated by (small) increments of size 
t.

Lemma 1. The continuous time Markov chain (G(t))t∈R+ and the sampled time Markov
chain (G(t))t∈T , T ≡ {0�
t�2
t� � � �}, 
t ≥ 0, have the same stationary distribution μ

on �.

Proof. To see this, consider a probability measure μ :� → [0�1]. The stationary distri-
bution of the sampled-time Markov chain satisfies

μ(G) =
∑
G′∈�

p(G′�G)μ(G′) =
∑
G′ �=G

q(G′�G)
tμ(G′)+ (1 − q(G�G)
t)μ(G)�

which implies the system of equations determining the stationary distribution of the
continuous time Markov chain μ(G)q(G�G) = ∑

G′ �=G q(G′�G)μ(G′) or, equivalently,
μQ = 0. �

Hence, so as to investigate the states in the support of the stationary distribution of
(G(t))t∈R+ , it suffices to study the stationary distribution of the discrete time Markov
chain (G(t))t∈T . Moreover, note that in the limit of 
t ↓ 0, also the sample paths of the
two chains agree (see, e.g., Gallager 1996, Chapter 6).

One can show that the sampled-time Markov chain on the nested split graphs �

(it is enough to require that G(0) ∈ � such that G(t) ∈ � for all t > 0) is irreducible and
aperiodic, and, hence, is ergodic. Moreover, it has a primitive transition matrix P defined
by (P)ij = P(G(t +
t) =Gj|G(t) = Gi) for any Gi�Gj ∈�.

42From the adjacency matrix associated with the complete network, there exists a sequence of stepwise
matrices in which a link to a neighbor with the smallest degree is removed such that any other stepwise
matrix can be obtained.
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Proof of Proposition 4. In the following discussion, we consider the sampled-time
Markov chain (G(t))t∈T with α ≡ αi = 1−βi for all i ∈N . Due to Lemma 1, the stationary
distribution of this chain is equivalent to the continuous time Markov chain of Defini-
tion 2 as ζ converges to 0. Moreover, because of ergodicity from Proposition 3, we can
assume without loss of generality (w.l.o.g.) that G(0) ∈ �. It then follows that G(t) ∈ �

for all t > 0 and, therefore, we restrict the state space � to the set of nested split graphs �.
At every step t ∈ T in the sampled-time Markov chain, a link is created with proba-

bility α and a link is removed with probability 1 − α. Further, we consider the comple-
mentary chain (G′(t))t∈T on the same state space �, where in every period t, a link is
created with probability α′ = 1 − α and a link is removed with probability 1 − α′ = α.43

This means that a link is removed in G′(t) whenever a link is created in G(t) and a link
is created in G′(t) whenever a link is removed in G(t).

As an example, consider the network G represented by the adjacency matrix A in
Figure 13. The complement Ḡ has an adjacency matrix Ā obtained from A by replacing
each 1 element in A by 0 and each 0 element by 1, except for the elements on the diag-
onal. Let H be the network obtained from G by adding the link 47 (setting a47 = a74 = 1
in A). The probability of this link being created and, thus, the probability of reaching H

after the process was in G is 3α/n, either by selecting one of the two nodes with degree 3
or the node with degree 5 to create a link. Observe that this is identical to the probability
of reaching the network H̄ from Ḡ if either the two nodes with degree 7 or the node with
degree 4 in Ḡ are selected to remove a link (with probability α′ = 1 − α).

In general, we can say that for any G1�G2 ∈�, we have that

P(G(t +
t) =G2|G(t) =G1) = P(G′(t +
t)= Ḡ2|G′(t) = Ḡ1)� (5)

Next consider the stationary distribution μ of (G(t))t∈T and the corresponding transi-
tion matrix P. Similarly, consider the stationary distribution μ′ of (G′(t))t∈T and the
corresponding transition matrix P′. Further, consider an ordering of states G1�G2� � � �

in � and the transition matrix P with elements (P)ij giving the probability of observing
Gj after the Markov chain (G(t))t∈T was in Gi. Similarly, consider an ordering of states
Ḡ1� Ḡ2� � � � in � and the transition matrix P′ with elements (P′)ij giving the probability
of observing Ḡj after the Markov chain (G′(t))t∈T was in Ḡi. Equation (5) implies that
P = P′. Moreover, for the stationary distributions, it must hold that μP = μ and μ′P′ = μ′.
Since P is primitive, P has a unique positive eigenvector and, therefore, μ′ = μ. It fol-
lows that for any network G ∈ � with probability μ(G), we can take the complement
Ḡ =G′ and assign it the probability μ(G) to get the corresponding probability in μ′, i.e.,
μ(G) = μ′(G′). �

Before we proceed with the proof of Proposition 5, we state two useful lemmas.

43Two nodes of G′(t) are adjacent if and only if they are not adjacent in G(t). Note that the complement
of a nested split graph is a nested split graph as well (Mahadev and Peled 1995). In particular, the networks
G′(t) are nested split graphs in which the number of nodes in the dominating subsets corresponds to the
number of nodes in the independent sets in G(t), and the number of nodes in the independent sets in G′(t)
corresponds to the number of nodes in the dominating subsets in G(t). Thus, (G′(t))t∈T has the same state
space � as (G(t))t∈T , namely the space � consisting all unlabeled nested split graphs on n nodes.
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Lemma 2. Consider the sampled-time Markov chain (G(t))t∈T , T ≡ {0�
t�2
t� � � �},

t ≡ 1/n, with α ≡ αi = 1 − βi for all i ∈ N , 0 < α ≤ 1

2 , and restrict the state space � to
the set � of all nested split graphs on n nodes. For any 0 ≤ d ≤ n− 1, let X denote the set of
states in � in which there is exactly one node with degree d + 1 and let Y denote the set of
states where there is no node with degree d + 1. Denote by μX the probability of the states
in X in the stationary distribution μ of (G(t))t∈T and by μY the probability of states in Y .
If the number Nd of nodes with degree d in Y is �(n) such that limn→∞ Nd/n > 0, then
limn→∞ μY = 0.44

Proof. Let N(X�Y�y) be the expected number of times states in X occur before the
process reaches Y (not counting the process as having immediately reached Y if y ∈ Y )
when the process starts in y. Then the following relation holds (see Theorem 6.2.3 in
Kemeny and Snell 1960 and also Ellison 2000):

μX

μY
= N(X�Y�y)�

Let pYX denote a lower bound on the probability that a state in X occurs after the
process is in a state in Y and, conversely, let pXY denote the probability that a state
in Y occurs after the process is in a state in X . This probability is the same for all
states in X , since from the properties of the Markov chain (G(t))t∈T , it follows that
pXY = 2(1 − α)/n, because there exist two possibilities to remove the link of the node
with degree d + 1 and the probability to select a node for link removal is (1 − α)/n. Ob-
serve that this probability vanishes for large n and that limn→∞ pXY = 0. Moreover, we
have that

N(X�Y�y) ≥ pYXpXY + 2pYX(1 −pXY)pXY + 3pYX(1 −pXY)
2pXY + · · ·

= pYXpXY

∞∑
i=1

i(1 −pXY)
i−1 = pYX

pXY
�

The right hand side of the above inequality takes into account the fact that states in X

can be reached once, twice, etc. before a state in Y is reached and assigns the corre-
sponding probabilities to compute the expected value.

By assuming that there exists a number Nd of nodes with degree d that is �(n), we
have that pYX ≥ αNd/n and limn→∞ pYX > 0. It then follows that

μX

μY
=N(X�Y�y) ≥ pYX

pXY
= α

2(1 − α)
Nd → ∞ as n → ∞� (6)

Since μX is a probability with μX ≤ 1, (6) implies that limn→∞ μY = 0. �

Lemma 3. Consider the sampled-time Markov chain (G(t))t∈T , T ≡ {0�
t�2
t� � � �},

t ≡ 1/n, with α ≡ αi = 1 −βi for all i ∈ N , and state space � consisting of all nested split
graphs on n nodes. Then for 0 < α ≤ 1

2 , the asymptotic expected proportion of isolated
nodes in the limit of large n is given by P(0) = (1 − 2α)/(1 − α).

44By f = �(g) we mean that 0 < lim infn→∞ |f (n)/g(n)| ≤ lim supn→∞ |f (n)/g(n)| < ∞. In particular, f =
�(1) implies that 0 < limn→∞ f (n) < ∞.
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Proof. We consider the expected change in the number of links m(t) in G(t) from t

to t + 
t.45 The number of links increases by 1 if any node that does not have the
maximum degree n − 1 is selected for creating a link. This happens with probability
α(n − Nn−1(t))/n. The number of links decreases whenever a node with degree higher
than 0 is selected for removing a link. This happens with probability (1−α)(n−N0(t))/n.
Putting the above contributions together, we can write for the expected change in the
total number of links from t to t +
t,

E(m(t +
t)|N(t))−m(t)= α

n
(n−Nn−1(t))− 1 − α

n
(n−N0(t))�

Taking expectations on both sides of the above equation and denoting P̄t(d) ≡
E(Nd(t)/n), we obtain

E(m(t +
t))−E(m(t)) = α(1 − P̄t(n− 1))− (1 − α)(1 − P̄t(0))� (7)

Let ρ denote the initial distribution of states, with ρi = 1 if Gi = K̄n and 0 otherwise.
Further, let m be the column vector whose jth coordinate, mj , is the number of links of
network Gj ∈� and let Gi = K̄n. Then we can write

E(m(t)) = E(m(t)|G(0) = Gi)=
∑
Gj∈�

P(G(t) = Gj|G(0) =Gi)mj =
∑
Gj∈�

(P�)ijmj

= (P�m)i = ρP�m�

For large times t, the expectation is computed over the invariant distribution μ. In
particular, limt→∞ ρP� = μ and, therefore, limt→∞E(m(t)) = limt→∞ ρP�m = μm =
limt→∞E(m(t + 
t)). Thus, we can set the left hand side of (7) to 0, in the limit of large
t, and obtain a relationship between the asymptotic expected proportion of nodes of
degree 0 and 1, respectively,

1 − 2α= (1 − α)P̄(0)− αP̄(n− 1)� (8)

where we have denoted P̄(d) = limt→∞ P̄t(d). Next, we consider the chain (G′(t))t∈T ,
which is constructed from (G(t))t∈T by taking the complement of each network G(t)

in every period t (see also the proof of Proposition 4). In the following discussion, de-
note the asymptotic expected number of links, limt→∞E(m(t)), of (G(t))t∈T by m̄ and of
(G′(t))t∈T by m̄′. By construction, we must have that m̄ = n(n− 1)/2 − m̄′. From Propo-
sition 4, we know that the Markov chain (G′(t))t∈T has the same stationary distribution
μ′ as the chain (G(t))t∈T for a link creation probability of α′ = 1 − α. For α = 1

2 , the two
processes are identical and we must have that also their expected number of links is the
same. This implies that for α = 1

2 , m̄ = m̄′ = n(n− 1)/4. The only nested split graph with
this number of links, for which the complement has the same number of links as the
original graph, is the one in which each independent set is of size 1 and also each dom-
inating subset has size 1 (except possibly for the set corresponding to the (�k/2� + 1)th
partition). Thus, for α = 1

2 , it must hold that P̄(0) = P̄(n− 1)= 1/n.

45We have that 2m(t) = ∑n−1
d=0 Nd(t)d.
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Moreover, we know that for α < 1
2 , the expected number of maximally connected

nodes (with degree n− 1) is at most as large as the expected number for α = 1
2 , since the

probability of links being created strictly decreases, while the probability of links being
removed increases for values of α below 1

2 (and the probability of a maximally connected
node losing a link strictly increases). Thus, P̄(n − 1) ≤ 1/n for α ≤ 1

2 and for large n, we
can write (8) as 1 − 2α= (1 − α)P̄(0). This is equivalent to

P̄(0) = 1 − 2α
1 − α

�

For α = 0, no links are created and all nodes are isolated, that is, P̄(0) = 1, while for α = 1
2 ,

the asymptotic expected number of isolated nodes vanishes in the limit of large n. �

With these two lemmas in hand, let us now prove Proposition 5.

Proof of Proposition 5. For the proof of the proposition, it is enough to consider
the sampled-time Markov chain (G(t))t∈T with αi = 1 − βi = α for all i ∈ N . Due to
Lemma 1, it has the same stationary distribution as the continuous time Markov chain of
Definition 2 when ζ converges to 0. Moreover, because of ergodicity from Proposition 3,
we can assume w.l.o.g. that G(0) ∈ � and G(t) ∈ � for all t > 0. We can then restrict the
state space � to the nested split graphs � ⊂ �. We further assume w.l.o.g. that the step
size is given by 
t = 1/n, which becomes arbitrarily small as n grows.

Note that G(t) is completely determined by N(t) and vice versa. Thus, it follows
that {N(t)}t∈T is a Markov chain. Denote by P̄t(d) ≡ E(Nd(t)/n) the expected propor-
tion of nodes with degree d at time t and let us denote P̄(d) = limn→∞ P̄t(d); P̄(d) is
determined by the invariant distribution μ in the limit of large times t. Lemma 3 shows
that (3) holds for d = 0. In the following discussion, we show by induction that, given
that (3) holds for P̄(d − 1) and P̄(d), as n becomes large, also P̄(d + 1) satisfies (3) for all
0 ≤ d < d∗, in the limit of large n. For this purpose, we consider (a) the expected number
of isolated nodes E(N0(t + 
t)|N(t)) and (b) the expected number of nodes with de-
gree d = 1� � � � � d∗, E(Nd(t + 
t)|N(t)) at time t + 
t, conditional on the current degree
distribution N(t).

(a) Consider a particular network G(t) in period t generated by (G(t))t∈R+ and its
associated degree distribution N(t). Figure 14 (left) shows an illustration of the
corresponding stepwise matrix. In the following discussion, we compute the ex-
pected change of the number N0(t) of isolated nodes in G(t).

The expected change of N0(t) due to the creation of a link has the following
contributions. An agent with the highest degree k in Nk(t) can create a link to
an isolated agent and, thus, decreases the number of isolated agents by 1. The
expected change from this link is −αNk(t)/n. On the other hand, if an isolated
agent creates a link, then the expected change in the number of isolated agents is
−αN0(t)/n.

Moreover, the removal of links can affect N0(t) if there is only one agent with
maximal degree, i.e., Nk(t) = 1. In this case, if the agent with the highest degree
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Figure 14. (Left) Representation of the stepwise matrix A of a nested split graph G and some
selected degree partitions. The step function separating the 0 entries in the matrix from the
1 entries is shown with a thick line. (Right) Representation of the stepwise matrix A of a nested
split graph G. The step function separating the 0 entries in the matrix from the 1 entries is shown
with a thick line.

removes a link, then an additional isolated agent is created, yielding an expected
increase in N0(t) of (1 − α)Nk(t)/n. Next, if an agent with degree 1 in N1(t) re-
moves a link, then the number of isolated agents increases. Note that in a nested
split graph, N1(t) > 0 implies that Nk(t) = 1 and vice versa. This gives an expected
change of N0(t) given by (1 − α)N1(t)/n.

Putting the above contributions together, the expected change in the number of
isolated nodes at time t +
t, conditional on N(t), is given by the expression46

E(N0(t +
t)|N(t))−N0(t) = −α

n
(N0(t)+Nk(t))+ 1 − α

n
(N1(t)+ 1)δNk(t)�1� (9)

We can take expectations on both sides of (9). For large times t, the expectation is
computed on the basis of the invariant distribution μ, and similarly to the proof
of Lemma 3, after taking expectations, we can set the left hand side of (9) to 0 for
large times t. Note that from Lemma 3, we know that the asymptotic expected
proportion P̄(0) of isolated nodes is �(1) for n large. Thus, we can apply the result
of Lemma 2 that tells us that the networks in which there does not exist a node with
degree 1 have vanishing probability in μ for large n. Since the existence of a node
with degree 1 implies that Nk(t) = 1, in the limit of large n we can set δNk(t)�1 = 1.
We then obtain from (9),

P̄(1) = α

1 − α
P̄(0)�

This shows that also P̄(1) satisfies (3). Together with Lemma 3, this proves the
induction basis.

46δi�j denotes the usual Kronecker delta, which is 1 if i = j and is 0 otherwise.
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(b) We give a proof by induction on the number Nd(t) of nodes with degree 0 < d < d∗
in a network G(t) in the support of the stationary distribution μ. In the following
discussion, we compute the expected change in Nd(t) due to the creation or the
removal of a link. An illustration can be found in Figure 14 (right).

Let us investigate the creation of a link. With probability α/n, a link is cre-
ated from an agent in Nk−d(t) to an agent in Nd(t). This yields a contribu-
tion to the expected change of Nd(t) of −αNk−d(t)/n. If a link is created from
an agent in Nk−d+1(t) to an agent in Nd(t), then the expected change is α/n if
Nk−d+1(t) contains only a single agent. Similarly, if a link is created from an agent
in Nd−1(t) to an agent in Nd(t), then the expected change of Nd(t) is αNd−1(t)/n

if Nk−d+1(t) = 1. Moreover, if an agent in Nd(t) is selected for link creation, then
we get an expected decrease of −αNd(t)/n.

Now we consider the removal of a link. If a link is removed from the agent in
Nk−d+1(t) to an agent in Nd(t), then the expected change of Nd(t) is
−(1 − α)Nk−d+1(t)/n. If a link is removed from an agent in Nk−d(t) to an agent
in Nd+1(t), then the expected increase of Nd(t) is (1 − α)/n if Nk−d(t) = 1. More-
over, if an agent in Nd+1(t) is selected for removing a link, then we get an expected
increase of (1 − α)Ni+d(t)/n if Nk−d(t) = 1. Finally, if an agent in Nd(t) is selected
for removing a link, then we get an expected change of −(1 − α)Nd(t)/n.

Putting the above contributions together, the expected change in Nd(t) is given
by

E(Nd(t +
t)|N(t))−Nd(t)

= α

n

(−Nd(t)+ (Nd−1(t)+ 1)δNk−d+1(t)�1 −Nk−d(t)
)

(10)

+ 1 − α

n

(−Nd(t)+ (Nd+1(t)+ 1)δNk−d(t)�1 −Nk−d+1(t)
)
�

We can take expectations on both sides of (10), and similarly to part (a) of this
proof, we can set the left hand side of (10) as t becomes large. For large times t,
the above expectation is computed on the basis of the invariant distribution μ. By
the induction assumption, the asymptotic expected proportion P̄(d − 1) of nodes
with degree d − 1 is �(1) in the limit of large n (as follows from (3)). Thus we can
apply Lemma 2 and neglect the networks in which there does not exist a node
with degree d since they have vanishing probability in μ for large n. Similarly,
we know from the induction assumption that the asymptotic proportion P̄(d) of
nodes with degree d is �(1) and, by virtue of Lemma 2, we know that the networks
in which there does not exist a node with degree d + 1 have vanishing probability
in μ for large n. Thus, in the limit of large n, we can set δNk−d+1(t)�1 = δNk−d(t)�1 = 1,
since the existence of nodes with degrees d and d + 1 implies that Nk−d+1(t) =
Nk−d(t) = 1 in the limit of large t and n. Therefore, we get from (10) the
relationship

P̄(d + 1)= 1
1 − α

P̄(d)− α

1 − α
P̄(d − 1)� (11)
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Inserting the expressions for P̄(d − 1) and P̄(d) from (3) into (11) yields

P̄(d+1)= 1
1 − α

1 − 2α
1 − α

(
α

1 − α

)d

− α

1 − α

1 − 2α
1 − α

(
α

1 − α

)d−1

= 1 − 2α
1 − α

(
α

1 − α

)d+1

�

Thus, (3) also holds for P̄(d + 1). This proves the induction step.

Finally, we have that the degree distribution must be normalized to 1, i.e.,
∑n−1

d=0 P̄(d)= 1.
We know that the number of agents in the dominating subsets with degrees larger than
d∗ is d∗ (since each set contains only one node and there are d∗ such sets).47 Adding
this to the number of agents in the independent sets with degree d = 0� � � � � d∗ yields
n

∑d∗
d=0 P̄(d)+d∗ = n. Further, inserting (3), we can derive the number d∗ of independent

sets as a function of n and α:

d∗(n�α)= ln
( 2(1−α)
(1−2α)n

)
ln

(
α

1−α

) �

d∗ is a monotonic decreasing function of n for a fixed value of α. Conversely, for a fixed
value of n, we get the limits limα→0 d

∗ = 0 and limα→1/2 d
∗ = n/2.

We finish the proof with the following observation, showing that the empirical de-
gree distribution concentrates around its expected value in the limit of large n when 
t =
1/n. More precisely, for any ε > 0, we have that P(|Pt(d)−E(Pt(d))| ≥ ε) ≤ 2e−ε2n2
t/(8t).
To see this, let us define the random variable Yd(s) ≡ E(Nd(t)|N(s)), s ∈ T . Since
{N(t)� t ∈ T } is a Markov chain, the sequence {Yd(s)� s ∈ T � s ≤ t} is a Martingale with re-
spect to {N(t)� t ∈ T }.48 Moreover, the change in the number of nodes with degree d per
period t is bounded by 2, i.e. |Nd(t)−Nd(t −
t)| ≤ 2, since at most one link is added or
removed in every period t and this can change the degrees of at most two nodes. There-
fore, we can apply Hoeffding’s inequality (see, e.g., Theorem 3, Section 12.2 in Grimmett
and Stirzaker 2001), which states that for any 0 < s ≤ t with |Y(s) − Y(s − 
t)| ≤ c and
any ε > 0, P(|Y(t)−Y(0)| > ε) ≤ 2e−ε2
t/(2tc2). With c = 2, Y(t) = E(Nd(t)|N(t)) = Nd(t),
Y(0) = E(Nd(t)|N(0)) = E(Nd(t)), and 
t = 1/n, it then follows that

P

(∣∣∣∣Nd(t)

n
−E

(
Nd(t)

n

)∣∣∣∣ ≥ ε

)
= P

(∣∣Nd(t)−E(Nd(t))
∣∣ ≥ nε

) ≤ 2e−ε2n2
t/(8t)

(12)
= 2e−ε2n/(8t) → 0

as n → ∞. This implies that the empirical proportion Nd(t)/n of nodes with degree d

converges in probability to its expected value E(Nd(t)/n) as n becomes large.
Since (��F�P) is a discrete probability space, this also implies convergence al-

most surely. To see this, let An ≡ {G ∈ � : |Nd(t)
n − E(Nd(t)

n )| ≥ ε}. By (12), we have that

47Note that since networks in which there does not exist a node with degree 0 ≤ d ≤ d∗ in the corre-
sponding independent set can be neglected, the structure of nested split graphs implies that all dominating
subsets have size 1.

48We have that E(Yd(s)|N(s −
t))= E(E(Nd(t)|N(s))|N(s −
t)) = E(Nd(t)|N(s−
t)) = Yd(s−
t). Fur-
ther, one can show that the first and second moments of {Yd(s)� s ≤ t} are bounded. Thus, {Yd(s)� s ≤ t} is a
Martingale with respect to {N(t)} for s� t ∈ T (see, e.g., Grimmett and Stirzaker 2001, Chapter 12).
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limn→∞ Pt (An) = 0. Then there exists and n0 ∈ N such that Pt (An) < Pt (G) for all G ∈ �

with Pt (G) > 0 and n > n0. Hence, for all n > n0, we have that {G ∈ � :Pt (G) > 0} /∈ An,
{G ∈� :Pt (G) > 0} ∩An =∅ and, therefore, Pt (

⋂∞
n=1

⋃∞
m=nAm) = 0. �

The proof of Corollary 2 follows directly from the functional form of d∗(n�α) in
Proposition 5.

For the proof of Corollary 3, see Theorem 1.2.4 in Mahadev and Peled (1995).

Appendix B: Network definitions and characterizations

A network (graph) G is the pair (N �E) consisting of a set of nodes (vertices) N = {1� � � � � n}
and a set of edges (links) E ⊂ N × N between them. A link (i� j) is incident with nodes
i and j. The neighborhood of a node i ∈ N is the set Ni = {j ∈ N : (i� j) ∈ E}. The degree
di of a node i ∈ N gives the number of links incident to node i. Clearly, di = |Ni|. Let
N (2)

i = ⋃
j∈Ni

Nj \ (Ni ∪ {i}) denote the second-order neighbors of node i. Similarly, the

kth order neighborhood of node i is defined recursively from N (0)
i = {i}, N (1)

i = Ni, and

N (k)
i = ⋃

j∈N (k−1)
i

Nj \ (
⋃k−1

l=0 N (l)
i ). A walk in G of length k from i to j is a sequence

〈i0� i1� � � � � ik〉 of nodes such that i0 = i, ik = j, and ip �= ip+1, and ip and ip+1 are (directly)
linked, that is, ipip+1 ∈ E for all 0 ≤ p ≤ k − 1. Nodes i and j are said to be indirectly
linked in G if there exists a walk from i to j in G containing nodes other than i and j.
A pair of nodes i and j is connected if they are either directly or indirectly linked. A node
i ∈ N is isolated in G if Ni =∅. The network G is said to be empty (denoted by K̄n) when
all its nodes are isolated.

A subgraph, G′, of G is the graph of subsets of the nodes, N (G′) ⊆ N (G), and links,
E(G′) ⊆ E(G). A graph G is connected if there is a path connecting every pair of nodes.
Otherwise G is disconnected. The components of a graph G are the maximally con-
nected subgraphs. A component is said to be minimally connected if the removal of any
link makes the component disconnected.

A dominating set for a graph G = (N �E) is a subset S of N such that every node not
in S is connected to at least one member of S by a link. An independent set is a set of
nodes in a graph in which no two nodes are adjacent. For example, the central node in a
star K1�n−1 forms a dominating set while the peripheral nodes form an independent set.

In a complete graph Kn, every node is adjacent to every other node. The graph in
which no pair of nodes is adjacent is the empty graph K̄n. A clique Kn′ , n′ ≤ n, is a com-
plete subgraph of the network G. A graph is k-regular if every node i has the same num-
ber of links di = k for all i ∈ N . The complete graph Kn is (n − 1)-regular. The cycle
Cn is 2-regular. In a bipartite graph, there exists a partition of the nodes into two dis-
joint sets V1 and V2 such that each link connects a node in V1 to a node in V2. V1 and V2
are independent sets with cardinalities n1 and n2, respectively. In a complete bipartite
graph Kn1�n2 , each node in V1 is connected to each other node in V2. The star K1�n−1 is a
complete bipartite graph in which n1 = 1 and n2 = n− 1.

The complement of a graph G is a graph Ḡ with the same nodes as G such that any
two nodes of Ḡ are adjacent if and only if they are not adjacent in G. For example, the
complement of the complete graph Kn is the empty graph K̄n.
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Let A be the symmetric n × n adjacency matrix of the network G. The element
aij ∈ {0�1} indicates whether there exists a link between nodes i and j such that aij = 1
if (i� j) ∈ E and aij = 0 if (i� j) /∈ E . The kth power of the adjacency matrix is related to
walks of length k in the graph. In particular, (Ak)ij gives the number of walks of length
k from node i to node j. The eigenvalues of the adjacency matrix A are the numbers
λ1�λ2� � � � �λn such that Avi = λivi has a nonzero solution vector vi, which is an eigen-
vector associated with λi for i = 1� � � � � n. Since the adjacency matrix A of an undirected
graph G is real and symmetric, the eigenvalues of A are real, λi ∈ R for all i = 1� � � � � n.
Moreover, if vi and vj are eigenvectors for different eigenvalues, λi �= λj , then vi and vj
are orthogonal, i.e., v�

i vj = 0 if i �= j. In particular, Rn has an orthonormal basis consist-
ing of eigenvectors of A. Since A is a real symmetric matrix, there exists an orthogonal
matrix S such that S�S = SS� = I (that is S� = S−1) and S�AS = D, where D is the diago-
nal matrix of eigenvalues of A and the columns of S are the corresponding eigenvectors.
The Perron–Frobenius eigenvalue λPF(G) is the largest real eigenvalue of A associated
with G, i.e., all eigenvalues λi of A satisfy |λi| ≤ λPF(G) for i = 1� � � � � n and there exists
an associated nonnegative eigenvector vPF ≥ 0 such that AvPF = λPF(G)vPF. For a con-
nected graph G, the adjacency matrix A has a unique largest real eigenvalue λPF(G) and
a positive associated eigenvector vPF > 0. There exists a relation between the number
of walks in a graph and its eigenvalues. The number of closed walks of length k from a
node i in G to herself is given by (Ak)ii and the total number of closed walks of length k

in G is tr(Ak) = ∑n
i=1(Ak)ii = ∑n

i=1 λ
k
i . We further have that tr(A) = 0, tr(A2) gives twice

the number of links in G and tr(A3) gives six times the number of triangles in G.

Appendix C: Topological properties of nested split graphs

In this appendix, we discuss in more detail the topological properties of nested split
graphs that arise from our network formation process. We first derive several network
statistics for nested split graphs. We compute the degree distribution, the clustering
coefficient, average nearest neighbor connectivity, and the characteristic path length in
a nested split graph. In particular, we show that connected nested split graphs have
small characteristic path length, which is at most 2. We then analyze different measures
of centrality in a nested split graph.49 From the expressions of these centrality measures,
we then can show that degree, closeness, eigenvector, and Bonacich centrality induce
the same ordering of nodes in a nested split graph. If the ordering is not strict, then this
holds also for betweenness centrality. Finally, for all statistics derived in this section, we
show that they are all completely determined by the degree partition in a nested split
graph.

C.1 Network statistics

In the following sections we will compute the degree connectivity, the clustering coef-
ficient, assortativity and average nearest neighbor connectivity, and the characteristic
path length in a nested split graph G as a function of the degree partition D (introduced
in Definition 3).

49See Wasserman and Faust (1994, Chapter 5.2) for an overview of different measures of centrality.
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Figure 15. Representation of nested split graphs and their degree partitions D with corre-
sponding adjacency matrices A. A line between Di and Dj indicates that every node in Di is adja-
cent to every node in Dj . The partitions included in the solid frame (Di with �k/2�+1 ≤ i ≤ k) are
the dominating subsets, while the partitions in the dashed frame (Di with 1 ≤ i ≤ �k/2�) are the
independent sets. The figure on the left considers the case of k = 6 (even) and the figure on the
right considers the case of k= 7 (odd). The illustration follows Mahadev and Peled (1995, p. 11).

C.1.1 Degree connectivity The nested neighborhood structure of a nested split graph
allows us to compute the degrees of the nodes according to a recursive equation that is
stated in the next corollary.

Corollary 3. Consider a nested split graph G = (N �E) and let D = (D0�D1� � � � �Dk) be
the degree partition of G. Then du = 0 if u ∈ D0 and for each u ∈ Di, v ∈ Di−1, i = 1� � � � �k,
we get

du =

⎧⎪⎪⎨
⎪⎪⎩
dv + |Dk−i+1| if i �=

⌊
k

2

⌋
+ 1

dv + |Dk−i+1| − 1 if i =
⌊
k

2

⌋
+ 1

(13)

or, equivalently,

du =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i∑
j=1

|Dk+1−j| if 1 ≤ i ≤
⌊
k

2

⌋
i∑

j=1

|Dk+1−j| − 1 if
⌊
k

2

⌋
+ 1 ≤ i ≤ k.

(14)

Equation (13) shows that the neighborhoods of the agents in a nested split graph are
nested (see also Definition 4). The degrees of the agents in ascending order of the graph
in Figure 15, left, are 2, 3, 4, 5, 7, 9, while in the graph in Figure 15, right, they are 1, 2, 3,
4, 7, 8, 9.

C.1.2 Clustering coefficient The clustering coefficient C(u) for an agent u is the pro-
portion of links between the agents within her neighborhood Nu divided by the number
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of links that could possibly exist between them (Watts and Strogatz 1998). It is given by

C(u) ≡ |{vw :v�w ∈ Nu ∧ vw ∈ E}|
du(du − 1)/2

�

In a nested split graph, the clustering coefficient can be derived from the degree parti-
tion, as the following corollary shows.

Corollary 4. Consider a nested split graph G = (N �E) and let D = (D0�D1� � � � �Dk) be
the degree partition of G. Denote by SiD = ∑k

j=i |Dj|. Then for each u ∈ Di, i = 0� � � � �k,
and du ≥ 2, the clustering coefficient is given by

C(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0

1 if 1 ≤ i ≤
⌊
k

2

⌋
1

du(du − 1)
(S

�k/2�+1
D − 1)[(S�k/2�+1

D − 2)+ 2|D�k/2�|] if i =
⌊
k

2

⌋
+ 1, k even

1
du(du − 1)

(S
�k/2�+1
D − 1)(S�k/2�+1

D − 2) if i =
⌊
k

2

⌋
+ 1, k odd

1
du(du − 1)

[
(S

�k/2�+1
D − 1)(S�k/2�+1

D − 2)

+ 2
�k/2�∑

j=k−i+1

|Dj|(Sk−j+1
D − 1)

]
if

⌊
k

2

⌋
+ 2 < i ≤ k,

(15)

where du is given by (14).

Proof. Note that for all agents in the independent sets, u ∈ Di with 1 ≤ i ≤ �k/2�,
the clustering coefficient is 1, since their neighbors are all connected among each
other. Next, we consider the agents u ∈ Di with �k/2� + 1 ≤ i ≤ k and degree du =∑i

j=1 |Dk+1−j|− 1. The neighbors of agent u in the dominating subsets are all connected

among each other with a total of 1
2(

∑k
j=�k/2�+1 |Dj| − 1)(

∑k
j=�k/2�+1 |Dj| − 2) links, ex-

cluding agent u from the dominating subset. The neighbors of u in the independent
sets are not connected. Finally, we consider the links between neighbors for which
one neighbor is in a dominating subset and one neighbor is in an independent set.
If k is even, we get

∑�k/2�
j=k−i+1 |Dj|(∑k

l=k−j+1 |Dl| − 1) links, excluding agent u in the
dominating subset (see Figure 15 (left)). If k is odd, there is no such contribution for
the agents in the set D�k/2�+1 (see Figure 15 (right)). Putting these contributions to-
gether, we obtain the clustering coefficient of an agent u ∈ Di for all i = 1� � � � �k, as given
by (15). �

The total clustering coefficient is the average of the clustering coefficients over all
agents, C ≡ (1/n)

∑
u∈N C(u). The clustering coefficients of the agents in ascending or-

der of the graph in Figure 15 (left) are 5
12 , 5

12 , 13
21 , 9

10 , 1, 1, 1, 1, 1, 1, with a total clustering
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coefficient of C = 0�84. In the graph in Figure 15 (right) it is 13
36 , 13

28 , 4
7 , 1, 1, 1, 1, 1, 1, with

a total clustering of C = 0�74.

C.1.3 Assortativity and nearest neighbor connectivity There exists a measure of de-
gree correlation called average nearest neighbor connectivity (Pastor-Satorras et al. 2001).
More precisely, the average nearest neighbor connectivity dnn(u) is the average degree
of the neighbors of an agent with degree du. It is defined by

dnn(u) ≡ 1
du

∑
v∈Nu

dv�

In a nested split graph, the average nearest neighbor connectivity is determined by its
degree partition.

Corollary 5. Consider a nested split graph G = (N �E) and let D = (D0�D1� � � � �Dk)

be the degree partition of G. Denote SiD = ∑i
j=1 |Dk+1−j|. Then for each u ∈ Di,

i = 0� � � � �k,

dnn(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0

1

SiD

i∑
j=1

|Dk+1−j|(Sk+1−j
D − 1) if i = 1� � � � �

⌊
k

2

⌋

1

S
�k/2�+1
D − 1

[
k∑

j=�k/2�+2

|Dj|(SjD − 1)

+ (|D�k/2�+1| − 1)(S�k/2�+1
D − 1)+ |D�k/2�|S�k/2�

D

]
if i =

⌊
k

2

⌋
+ 1, k even

1

S
�k/2�+1
D − 1

[
k∑

j=�k/2�+1

|Dj|(SjD − 1)

]
− 1 if i =

⌊
k

2

⌋
+ 1, k odd

1
SiD − 1

[
k∑

j=�k/2�+1

|Dj|(SjD − 1)+
�k/2�∑

j=k−i+1

|Dj|SjD
]

− 1 if i =
⌊
k

2

⌋
+ 2� � � � �k.

Proof. First, consider an agent u ∈ Di with i = 1� � � � � �k/2� corresponding to the in-
dependent sets. We know that the number of neighbors (degree) of agent u is given
by

∑i
j=1 |Dk+1−j|. The neighbors of agent u are the agents in the dominating subsets

with degrees given in (14). Thus, the number of neighbors of the neighbors of u in the

sets Dk+1−j is
∑k+1−j

l=1 |Dk+1−l| − 1. Putting the above results together, we obtain for the
average nearest neighbor connectivity of agent u ∈ Di, i = 1� � � � � �k/2�, the expression

dnn(u) = 1∑i
j=1 |Dk+1−j|

i∑
j=1

|Dk+1−j|
(k+1−j∑

l=1

|Dk+1−l| − 1

)
�

Next, we consider an agent u in the set Di with �k/2� + 2 ≤ i ≤ k corresponding to the
dominating subsets. The number of neighbors of agent u is given by

∑i
j=1 |Dk+1−j| − 1.

The number of neighbors of an agent v ∈ Dj , �k/2� + 1 ≤ j ≤ k, in the dominating

subsets is given by
∑j

l=1 |Dk+1−l| − 1. Since agent u is connected to all other agents
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in the dominating subsets, we can sum over all their neighborhoods with a total of∑k
j=�k/2�+1 |Dj|(∑j

l=1 |Dk+1−l| − 1) neighbors. Note, however, that we have to subtract
agent u herself from this sum. Moreover, the number of neighbors of an agent w ∈ Dj ,

1 ≤ j ≤ �k/2� in the independent sets is given by
∑j

l=1 |Dk+1−l|. Thus, the average nearest
neighbor connectivity of agent u ∈Di, �k/2� + 2 ≤ i ≤ k, is given by

dnn(u) = 1∑i
j=1 |Dk+1−j| − 1

[
k∑

j=�k/2�+1

|Dj|
( j∑

l=1

|Dk+1−l| − 1

)

+
�k/2�∑

j=k−i+1

|Dj|
j∑

l=1

|Dk+1−l|
]

− 1�

In a similar way we can consider the cases i = �k/2� + 1 for both k even and k odd. �

When the average nearest neighbor connectivity is a monotonic increasing function
of the degree d, then the network is assortative, while if it is monotonic decreasing with
d, it is dissortative (Pastor-Satorras et al. 2001, Newman 2002). Nested split graphs are
dissortative, since for i < j and du ∈ Di < dv ∈ Dj , it follows that dnn(u) > dnn(v). This is
because the higher is the degree of an agent in a dominating subset, the more neighbors
she has from the independent sets with low degrees, which decreases her average near-
est neighbor connectivity. For example, the average nearest neighbor connectivities of
the agents in the graph in Figure 15 (left) in ascending order are 13

3 , 13
3 , 37

7 , 33
5 , 15

2 , 15
2 , 25

3 ,
25
3 , 9, 9, while in the graph in Figure 15 (right), they are 35

9 , 35
8 , 34

7 , 7, 7, 8, 8, 8, 17
2 , 9.

C.1.4 Characteristic path length The characteristic path length is defined as the num-
ber of links in the shortest path between two agents, averaged over all pairs of agents
(Watts and Strogatz 1998). This can be written as

�(G) ≡ 1
n(n− 1)/2

∑
u�=v∈G

d(u�v)� (16)

where d(u�v) is the geodesic (shortest path) between agent u and agent v in N \ D0.50

Then the characteristic path length in a nested split graph is given by the following
corollary.

Corollary 6. Consider a nested split graph G = (N �E) and let D = (D0�D1� � � � �Dk) be
the degree partition of G. Then the characteristic path length of G is given by

�(G) = 1
n(n− 1)/2

[
1
2

k∑
j=�k/2�+1

|Dj|
(

k∑
j=�k/2�+1

|Dj| − 1

)
+

�k/2�∑
j=1

|Dj|
(�k/2�∑

j=1

|Dj| − 1

)

+
�k/2�∑
l=1

|Dl|
(

k∑
j=k−l+1

|Dj| + 2
k−l∑

j=�k/2�+1

|Dj|
)]

�

50Note that we do not consider the isolated agents in the set D0 because the characteristic path length
�(G) is not defined for disconnected networks G.
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Proof. We first consider all pairs of agents in the dominating subsets. All these agents
are adjacent to each other and thus the shortest path between them has length 1. More-
over, there are 1

2
∑k

j=�k/2�+1 |Dj|(∑k
j=�k/2�+1 |Dj| − 1) pairs of agents in the dominating

subsets.
Next, we consider all pairs of agents in the independent sets. From (17), we know

that all of them are at a distance of two links separated from each other. Moreover, there
are 1

2
∑�k/2�

j=1 |Dj|(∑�k/2�
j=1 |Dj| − 1) pairs of agents in which both agents stem from an in-

dependent set.
Further, consider the pairs of agents in which one agent is in the independent set

D1 and the other is in a dominating subset. Then there are |D1||Dk| pairs of agents
with shortest path 1 and |D1|∑k−1

j=�k/2�+1 |Dj| pairs of agents with shortest path 2. Sim-
ilarly, we can consider the pairs in which one agent is in the set D2. Then we have
|D2|(|Dk| + |Dk−1|) pairs of agents with shortest path 1 and |D2|∑k−2

j=�k/2�+1 |Dj| pairs
of agents with shortest path 2. Finally, if one agent is in the set D�k/2�, then we have

|D�k/2�|
∑k

j=�k/2�+1 |Dj| pairs of agents with distance 1 and none with distance 2 if k is
even (see Figure 15 (left)). If k is odd (see Figure 15 (right)) and we have one agent in
the set D�k/2�, then we have |D�k/2�|

∑k
j=�k/2�+2 |Dj| pairs of agents with distance 1 and

|D�k/2�||D�k/2�+1| pairs with distance 2.
Therefore, the average path length �(G) defined in (16) is given by the equation

n(n− 1)
2

�(G) = 1
2

k∑
j=�k/2�+1

|Dj|
(

k∑
j=�k/2�+1

|Dj| − 1

)
+ 2 1

2

�k/2�∑
j=1

|Dj|
(�k/2�∑

j=1

|Dj| − 1

)

+
�k/2�∑
l=1

|Dl|
[

k∑
j=k−l+1

|Dj| + 2
k−l∑

j=�k/2�+1

|Dj|
]
�
�

Considering the graph in Figure 15 (left), the characteristic path length is �(G) = 22
15 ,

while in the graph in Figure 15 (right), we get �(G) = 68
45 .

Note that by taking the inverse of the shortest path length, one can introduce a re-
lated measurement—the network efficiency,51 ε(G) ≡ (1/(n(n−1)))

∑
u�=v∈G 1/d(u�v)—

that is also applicable to disconnected networks. Finally, we find that in a connected
nested split graph, agents are at most two links separated from each other and, thus,
these graphs are characterized by a short characteristic path length.

C.2 Centrality

In the next sections we analyze different measures of centrality in a nested split graph G.
We derive the expressions for degree, closeness, and betweenness centrality as a func-
tion of the degree partition of G. Finally, we show that these measures are similar in
the sense that they induce the same ordering of the nodes in G based on their centrality
values.

51The network efficiency must not be confused with the efficiency of a network. The first is related to
short paths in the network, while the latter measures social welfare, that is, the efficient network maximizes
aggregate payoff.
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C.2.1 Degree centrality The degree centrality of an agent u ∈ N is given by the propor-
tion of agents that are adjacent to u (Wasserman and Faust 1994). We obtain the nor-
malized degree centrality simply by dividing the degree of agent u with the maximum
degree n− 1. This yields the following corollary.

Corollary 7. Consider a nested split graph G = (N �E) and let D = (D0�D1� � � � �Dk) be
the degree partition of G. Then for each u ∈ Di, i = 0� � � � �k, the degree centrality is given
by

Cd(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
n− 1

i∑
j=1

|Dk+1−j| if 1 ≤ i ≤
⌊
k

2

⌋

1
n− 1

(
i∑

j=1

|Dk+1−j| − 1

)
if

⌊
k

2

⌋
+ 1 ≤ i ≤ k.

The result follows directly from Corollary 3.
We observe that degree centrality as well as the degree are increasing with increasing

index i of the set Di to which agent u belongs. Degree centralities for the graphs shown
in Figure 15 can be derived from the degrees given in Appendix C.1.1 by dividing the
degrees with n− 1.

C.2.2 Closeness centrality Excluding the isolated nodes in G, closeness centrality of
agent u ∈N \D0 is defined as

Cc(u) = n− 1∑
v �=u∈G d(u�v)

�

where d(u�v) measures the shortest path between agent u and agent v in N \ D0. For a
nested split graph, we obtain the following corollary.

Corollary 8. Consider a nested split graph G = (N �E) and let D = (D0�D1� � � � �Dk) be
the degree partition of G. Then for each u ∈ Di, i = 0� � � � �k, the closeness centrality is
given by

Cc(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n− 1∑k
j=k−i+1 |Dj| + 2

∑k−i
j=1 |Dj| − 2

if 1 ≤ i ≤
⌊
k

2

⌋
n− 1∑k

j=k−i+1 |Dj| + 2
∑k−i

j=1 |Dj| − 1
if

⌊
k

2

⌋
+ 1 ≤ i ≤ k.

Proof. For both agents in the independent sets, u ∈ Di with 1 ≤ i ≤ �k/2�, and in the
dominating subsets, u ∈ Di with �k/2� + 1 ≤ i ≤ k, we can compute the length of the
shortest paths as

d(u�v)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for all v ∈
k⋃

j=k−i+1

Dj

2 for all v ∈
k−i⋃
j=1

Dj .

(17)
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To compute the closeness centrality we have to consider all pairs of agents in the graph
and compute the length of the shortest path between them, which is given in (17). We
obtain for any agent u ∈ Di, i = 1� � � � �k, the expression

Cc(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n− 1∑k
j=k−i+1 |Dj| + 2

∑k−i
j=1 |Dj| − 2

if 1 ≤ i ≤
⌊
k

2

⌋
n− 1∑k

j=k−i+1 |Dj| + 2
∑k−i

j=1 |Dj| − 1
if

⌊
k

2

⌋
+ 1 ≤ i ≤ k.

Note that we have subtracted 1 and 2 in the denominator, respectively, since the sums
would otherwise include the contribution of agent u herself. �

We have that closeness centrality is identical for all agents in the same set. Also note
that Cc(u) = 1 for u ∈ Dk. Moreover, closeness centrality is increasing with increasing
degree. The closeness centralities of the agents in descending order for the graph in
Figure 15 (left) are 1, 1, 9

11 , 9
13 , 9

14 , 9
14 , 9

15 , 9
15 , 9

16 , 9
16 , while in the graph in Figure 15 (right),

they are 1, 9
10 , 9

11 , 9
14 , 9

14 , 9
15 , 9

15 , 9
15 , 9

16 , 9
17 .

C.2.3 Betweenness centrality Betweenness centrality is defined as (Freeman 1977)

Cb(u) =
∑

u�=v �=w∈G

g(v�u�w)

g(v�w)
�

where g(v�w) denotes the number of shortest paths from agent v to agent w and
g(v�u�w) counts the number of paths from agent v to agent w that pass through agent u.

The betweenness centrality for a nested split graph can be derived from its degree
partition as follows.

Corollary 9. Consider a nested split graph G = (N �E) and let D = (D0�D1� � � � �Dk) be
the degree partition of G. Then cb(u) = 0 if u ∈ Di, i = 0� � � � � �k/2�, and for each u ∈ Di,
v ∈ Di−1, i = �k/2� + 1� � � � �k, the betweenness centrality is given by

Cb(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i =
⌊
k

2

⌋
+ 1, k odd

|D�k/2�|(|D�k/2�| − 1)∑k
j=�k/2�+1 |Dj|

if i =
⌊
k

2

⌋
+ 1, k even

cb(v)+ |Dk−i+1|(|Dk−i+1| − 1)∑k
j=i |Dj|

+ 2|Dk−i+1|
∑i−1

j=k−i+2 |Dj|∑k
j=i |Dj|

if
⌊
k

2

⌋
+ 2 ≤ i ≤ k.

Proof. In this proof, we follow closely Hagberg et al. (2006). The agents in the inde-
pendent sets Di, 0 ≤ i ≤ �k/2�, do not lie on any shortest path between two other agents
in the network and, thus, their betweenness centrality vanishes. For the agents in the
dominating subsets, we have that the betweenness centrality of the agent u ∈ D�k/2�+1
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vanishes if k is odd and is given by |D�k/2�|(|D�k/2�| − 1)/
∑k

j=�k/2�+1 |Dj| if k is even. The
latter result is due the shortest path between agents that are both in D�k/2�. Next, con-
sider an agent u ∈ Di and v ∈ Di−1, with �k/2� + 2 ≤ i ≤ k. Then the betweenness cen-
trality of agent u is given by the recursive relationship

Cb(v)+ |Dk−i+1|(|Dk−i+1| − 1)∑k
j=i |Dj|

+
2|Dk−i+1|

∑i−1
j=k−i+2 |Dj|∑k

j=i |Dj|
� (18)

The first term in (18) is due to the fact that all shortest paths through lower dominating
nodes v ∈ Di−1 have the same length as through u ∈ Di. The second term in (18) rep-
resents the contribution of paths between nodes in Dk−i+1, divided by the number of
shortest paths passing through the agents in the dominating subsets Dj , i ≤ j ≤ k. The
third term in (18) represents all paths between an agent in Dk−i+1 and the other being
in Dj , k− i + 2 ≤ j ≤ i − 1, divided by the number of shortest paths passing through the
agents in the dominating subsets Dj , i ≤ j ≤ k. �

From Corollary 9, we find that the agents in the independent sets Di with 1 ≤ i ≤
�k/2� have vanishing betweenness centrality. From the above equation, we also observe
that the betweenness centrality is increasing with degree such that the agents in Dk have
the highest betweenness centrality, the agents in Dk−1 have the second highest between-
ness centrality, and so on. Thus, the ordering of betweenness centralities follows the
degree ordering for all agents in the dominating subsets, while the agents in the inde-
pendent sets have vanishing betweenness centrality. For the betweenness centralities of
the agents in the graph in Figure 15 (left), we obtain in descending order 109

6 , 109
6 , 31

6 , 1
2 ,

0, 0, 0, 0, 0, 0, while in the graph in Figure 15 (right), they are 28, 12, 6, 0, 0, 0, 0, 0, 0, 0.

C.2.4 Eigenvector centrality There is a central property that holds for nested split
graphs in relation to Bonacich centrality, namely that the agents with higher degree also
have higher Bonacich centrality. Similar to part (i) of Proposition 1, we can give the
following corollary.52

Corollary 10. Let v be the eigenvector associated with the largest real eigenvalue
λPF(G) of the adjacency matrix A of a nested split graph G = (N �E). For each i ∈ N ,
let vi be the eigenvector centrality of agent i. Consider a pair of agents i� j ∈ N . If and only
if agent i has a higher degree than agent j, then i has a higher eigenvector centrality than
j, i.e., di > dj ⇔ vi > vj .

The proof of Corollary 10 is identical to the proof of part (i) of Proposition 1.

C.2.5 Centrality rankings Putting together the results for different centrality measures
derived in the previous sections, we can make the following observation of the rankings
of agents for different centrality measures in a nested split graph.

52A similar result can be found in Grassi et al. (2007).
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Corollary 11. Consider a nested split graph G = (N �E). Let Cd , Cc , Cb, and Cv denote
the vectors of degree, closeness, betweenness, and eigenvector centrality in G. Then for
any l�m ∈ {d� c� v}, l �= m, and i� j ∈ N , we have that Cl(i) ≥ Cl(j) ⇔ Cm(i) ≥ Cm(j) and
Cl(i) ≥ Cl(j) ⇒ Cb(i) ≥ Cb(j).

The proof is a direct application of Corollaries 7, 8, and 9, and Proposition 1. If and
only if an agent i has the kth highest degree centrality, then i is the agent with the kth
highest closeness and eigenvector centrality. This result also holds for Bonacich cen-
trality (see Proposition 1). Moreover, if an agent i has the kth highest degree centrality,
then she also has the kth highest betweenness centrality and this also holds for close-
ness, eigenvector, and Bonacich centrality, respectively. The ordering induced by degree,
closeness, eigenvector, and Bonacich centrality coincide, and these orderings also apply
in a weak sense for betweenness centrality.

Appendix D: Interpreting the model for financial and trade networks

In this section, we discuss two stylized applications of our payoff function introduced in
(1) that will be useful for our empirical analysis. Appendix D.1 introduces networks of
banks operating in loan markets, while Appendix D.2 discusses networks of trade rela-
tionships between countries.

D.1 Networks of banks

Consider a population of banks N = {1�2� � � � � n} and a network G ∈� representing links
between them. Links in this context can be defined in a variety of ways. In the banking
networks that we study, the links represent the presence of an interbank loan. In this
context, we consider a model of quantity choice based on competition in quantities of
lending à la Cournot between banks with a single product (a loan). Each bank i ∈N pro-
vides a quantity xi ≥ 0 of loans. As in Cohen-Cole et al. (2011), we assume the following
inverse linear demand function for the price (interest rate) of the loans of bank i,

pi = 1 − θxi� (19)

where θ > 0. Equation (19) implies that banks offer different types of loans that cannot
be substituted and, therefore, operate in independent loan markets.53 The marginal cost
of each bank i is ci(G) ≥ 0. The profit function πi :Rn+ × � → R of bank i in a network
G ∈� is given by

πi(x�G) = pixi − ci(G)xi = xi − θx2
i − ci(G)xi�

53This is an extreme assumption where customers are typically not able to substitute one type of loan
for another and each type of loan constitutes an independent market. Adams et al. (2002) provide a related
empirical study of the market power of banks offering different loan types. See Cohen-Cole et al. (2011),
where banks operate in a single loan market and loans are perfectly substitutable.
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We consider an interrelated cost function defined as (see Cohen-Cole et al. 2011)

ci(G) = c0 − λ

n∑
j=1

aijxj� (20)

where c0 > 0 represents a bank’s marginal cost when it has no links and λ > 0 is the cost
reduction induced by each link formed by a bank. Equation (20) means that the marginal
cost of each bank i is a decreasing function of the quantities produced by all banks j ∈Ni

that have a direct link with bank i. As stated above, this is because the operational costs
of a trading floor or treasury operation decline per dollar of loan as loan size increases.
We further assume that c0 is large enough such that ci(G) ≥ 0 for all i ∈ N and G ∈ �.
The profit function for bank i is then given by

πi(x�G) = xi − θx2
i − ci(G)xi = axi − θx2

i + λ

n∑
j=1

aijxixj� (21)

where we have denoted a = 1 − c0. In the following discussion, we normalize θ = 1. We
are in the framework of our model since the utility functions in (1) and (21) are equiva-
lent. It is then straightforward to show that the equilibrium loan quantities are given by
q∗
i = abi(G�λ), where bi(G�λ) is the Bonacich centrality of bank i in the network G, and

equilibrium profits are π∗
i = (q∗

i )
2 = a2bi(G�λ)2 (Ballester et al. 2006).

D.2 International trade networks

Consider a set of countries N = {1�2� � � � � n} and a network G ∈ � representing links be-
tween them. A link in this context indicates the presence of an (import or export) trade
relationship between two countries. Each country i provides a volume xi ≥ 0 of trade.
Countries are local monopolists and the inverse demand function for country i ∈ N is
given by (19) with a parameter θ > 0. This means that we assume that products pro-
duced by different countries are not substitutable. The marginal cost of production of
each country i is ci(G) ≥ 0. The profit function πi :Rn+ × � → R of country i in a trade
network G ∈ � is given by (21), where xi is the quantity produced by country i. We
consider the marginal cost function defined in (20), where c0 > 0 represents a country’s
marginal cost when it has no links and λ > 0 is the cost reduction induced by each trade
relationship formed by a country. Production costs decrease with the volume of trade
of the trading partner due to technology spillovers (see, e.g., Coe and Helpman 1995,
Grossman and Helpman 1991). We further assume that c0 is large enough such that
ci(G) ≥ 0 for all i ∈ N and G ∈ �. The profit function for country i is then given by (21),
where we denote a = 1 − c0 and normalize θ = 1. It is clear that, as for the banking net-
work, we are again in the framework of our model. Note also that in the context of trade,
the influence of centrality has been documented in De Benedictis and Tajoli (2011).

Appendix E: Introducing link formation costs

Consider the network formation process of Definition 2 with one modification: The
agent who wants to create a link needs to pay a cost c and creates the link only of it
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increases her payoff. The following proposition gives a bound on the linking cost c such
that link monotonicity holds,54 that is, marginal payoffs from forming a link are always
positive.

Proposition 6. Consider the network formation process (G(t))t∈R+ in Definition 2. As-
sume that there is a cost c ≥ 0 of creating a link for the agent who initiates that link. Fur-
ther assume that agents create links only if it increases their payoff. Then, if c is smaller
than λ(2 −λ)/(2(1 −λ)2), link monotonicity holds and the emerging network will always
be a nested split graph.

Proof. For notational simplicity, we drop the time index and denote G≡ G(t). We con-
sider the network G ⊕ (i� j) obtained by adding the link (i� j) /∈ G. The marginal payoff
from forming a link (i� j) for agent i ∈N is given by

π∗
i (G⊕ (i� j)�λ)−π∗

i (G�λ) = 1
2

(
bi(G⊕ (i� j)�λ)2 − bi(G�λ)2)

= 1
2

(
bi(G⊕ (i� j)�λ)− bi(G�λ)

)(
bi(G⊕ (i� j)�λ)+ bi(G�λ)

)
�

Note that the Bonacich centrality of agent i ∈ N can be written as bi(G�λ) =
1 + ∑

j∈Ni
bj(G�λ). The change in the Bonacich centrality from forming the link (i� j)

is given by

bi(G⊕ (i� j)�λ)− bi(G�λ) =
∑

k∈Ni\{j}

(
bk(G⊕ (i� j)�λ)− bk(G�λ)

)
︸ ︷︷ ︸

>0

+λbj(G⊕ (i� j)�λ)

≥ λbj(G⊕ (i� j)�λ) ≥ λ min
k∈N

bk(G⊕ (i� j)�λ)�

In the first line above, we have used the fact that the number of walks emanating at i is
increasing with the addition of a link and so is the Bonacich centrality.

The smallest Bonacich centrality in a nonempty graph G (after the creation of a
link, the graph is always nonempty) is obtained in a path of length 2 (dyad), P2, for
which bi(P2�λ) = 1/(1 − λ). Hence, we have that bi(G ⊕ (i� j)�λ) − bi(G�λ) > λ/(1 − λ)

and bi(G⊕ (i� j)�λ) + bi(G�λ) > (2 − λ)/(1 − λ), so that the marginal payoff of agent
i from forming a link (i� j) is bounded from below by π∗

i (G ⊕ (i� j)�λ) − π∗
i (G�λ) >

λ(2 − λ)/(2(1 − λ)2). This bound might seem crude, but note that if the linking cost
is higher than λ(2 − λ)/(2(1 − λ)2), the empty graph is a stable network, irrespective of
how we allow agents to remove links. Hence, we find that if the cost c of a link is lower
than λ(2 − λ)/(2(1 − λ)2), a link will always be formed and the networks generated in
our network formation process will all be nested split graphs. �

The above proposition shows that nested split graphs can also arise even when links
are costly to be formed, as long as the costs are not too large.

54Link monotonicity requires that π∗
i (G ⊕ (i� j)�λ) > π∗

i (G�λ) for all agents i� j ∈ N and links (i� j) /∈ G

(see, e.g., Dutta et al. 2005).
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