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A common real-life problem is to fairly allocate a number of indivisible objects
and a fixed amount of money among a group of agents. Fairness requires that
each agent weakly prefers his consumption bundle to any other agent’s bundle.
In this context, fairness is incompatible with budget balance and nonmanipula-
bility (Green and Laffont 1979). Our approach here is to weaken or abandon non-
manipulability. We search for the rules that are minimally manipulable among all
fair and budget-balanced rules. First, we show for a given preference profile, all
fair and budget-balanced rules are either (all) manipulable or (all) nonmanipula-
ble. Hence, measures based on counting profiles where a rule is manipulable or
considering a possible inclusion of profiles where rules are manipulable do not
distinguish fair and budget-balanced rules. Thus, a “finer” measure is needed.
Our new concept compares two rules with respect to their degree of manipula-
bility by counting for each profile the number of agents who can manipulate the
rule. Second, we show that maximally preferred fair allocation rules are the mini-
mally (individually and coalitionally) manipulable fair and budget-balanced allo-
cation rules according to our new concept. Such rules choose allocations with the
maximal number of agents for whom the utility is maximized among all fair and
budget-balanced allocations.
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1. Introduction

We consider the allocation of indivisible objects and a fixed amount of money among
a set of agents through a mechanism (Alkan et al. 1991, Svensson 1983, Tadenuma and
Thomson 1991). The important criterion in this literature is fairness (or envy-freeness),
meaning that each agent should like his own consumption bundle (consisting of an ob-
ject and a monetary compensation) at least as well as that of anyone else.

When analyzing this type of allocation problem, fairness is often coupled with other
properties. One such property is nonmanipulability, which guarantees that no agent can
gain by strategic misrepresentation. Another one is budget balance, saying that the sum
of monetary compensations should equal the fixed amount of money. A famous result
by Green and Laffont (1979) shows that there exists no allocation mechanism that is
nonmanipulable, fair, and budget-balanced. In this paper, we will weaken or abandon
nonmanipulability and offer results that facilitate the comparison of fair and budget-
balanced mechanisms according to their level of manipulability when preferences are
represented by quasi-linear utility functions.1

One way of evaluating the degree of manipulability of a mechanism (e.g., Aleskerov
and Kurbanov 1999, Kelly 1988, 1993, Maus et al. 2007a, 2007b) is the idea of counting the
number of preference profiles at which a given mechanism is manipulable. A second di-
rection (Pathak and Sönmez 2013) relies on comparing the sets of preference profiles on
which any two mechanisms are manipulable. Previous papers have investigated a num-
ber of different problems, including voting rules, matching mechanisms, and school
choice mechanisms. However, we are not aware of any study with attention to fair and
budget-balanced rules.2

Our first main result shows for a given preference profile that all fair and budget-
balanced rules are either (all) manipulable or (all) nonmanipulable. Therefore, mea-
sures based on counting profiles where a rule is manipulable and/or considering the
inclusion of profiles where a rule is manipulable do not distinguish fair and budget-
balanced allocation rules. With respect to those measures, all fair and budget-balanced
allocation rules are equally manipulable. The above-mentioned measures of minimal
manipulability are “coarse” in the sense that preference profiles are categorized as ma-
nipulable (for all fair and budget-balanced rules) or nonmanipulable (for all fair and
budget-balanced rules). For this reason, none of the existing measures is satisfactory
when evaluating rules in our context.

In resolving this problem, we introduce a new “finer” measure of minimal manipula-
bility. Because this measure cannot be based solely on the preference domain, a natural
approach is to compare two rules via the number of agents who can manipulate the
rule at a given preference profile. Then a rule is minimally manipulable (with respect
to agents counting) if, for each preference profile, the number of manipulating agents

1In the early literature (e.g., Moulin 1980), the primary focus was on restricting the preference domain
under which a mechanism is nonmanipulable.

2Subsequent to this paper, Fujinaka and Wakayama (2011) and Andersson et al. (2012) adopted a fun-
damentally different approach by searching for the fair and budget-balanced allocation rules that mini-
mize the maximal manipulation possibilities (defined in terms of an agent’s utility gain from manipulation)
across agents.
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is smaller than or equal to the number of manipulating agents at an arbitrary fair and
budget-balanced allocation rule. This guarantees that the minimally manipulable rule
is nonmanipulable whenever there exists a nonmanipulable rule. The main feature of
(global) nonmanipulability is respected as much as possible in the sense that the ul-
timate goal of our new notion is to have zero manipulating agents at each preference
profile. Our second main result shows that “maximally preferred” fair allocation rules
are agents-counting-minimally manipulable among all fair and budget-balanced allo-
cation rules. Roughly, speaking those rules choose allocations with the maximal num-
ber of agents for whom the utility is maximized among all fair and budget-balanced
allocations.

We further show that any fair and budget-balanced allocation rule that is not max-
imally preferred is strongly more manipulable with respect to agents counting than a
maximally preferred fair allocation rule. We also show that these results are robust with
respect to coalitional manipulations. In the same vein as before, when comparing two
mechanisms we count the number of coalitions that can manipulate at a given pro-
file. Again, maximally preferred fair allocation rules are least coalitionally manipulable
among all fair and budget-balanced allocation rules. Finally, when comparing two rules
with respect to inclusion of the agents who can manipulate the rule at a profile (à la
Pathak and Sönmez 2013), we show that preferred fair allocation rules are minimally
manipulable among all fair and budget-balanced allocation rules. Such rules choose,
for any profile, an arbitrary agent k and then select the allocations that maximize agent
k’s utility among all fair and budget-balanced allocations. Here it is possible that the
same agent k is chosen for any profile.

An alternative approach to ours is to abandon budget balance. A complete charac-
terization of the class of fair and nonmanipulable allocation rules has been provided by
Andersson and Svensson (2008), Sun and Yang (2003), and Svensson (2009). Any such
rule fixes a maximal compensation for each object, and for any profile, a “maximal” fair
allocation is chosen without exceeding the fixed compensations for any object. As a
result, the allocation rules in this class violate budget balance. However, in many fair
allocation problems, budget balance is a necessary requirement and nonmanipulabil-
ity must be abandoned. Even though this type of problem has been considered previ-
ously by, e.g., Tadenuma and Thomson (1993), Aragones (1995), Haake et al. (2002), Klijn
(2000), Abdulkadiroğlu et al. (2004), Azacis (2008), and Velez (2011), two issues have not
been investigated. First, although it is known that each fair and budget-balanced alloca-
tion rule is manipulable at some preference profile, a characterization of the preference
profiles where successful misrepresentations are possible is missing. Second, there is a
large class of fair and budget-balanced allocation rules but it is not known exactly which
rules are “minimally” or “least” manipulable. Our paper addresses these two issues.

The paper is organized as follows. In Section 2, we introduce assignment with com-
pensation, and fair and budget-balanced allocation rules. In Section 3, our first main
result shows that for a given preference profile, all fair and budget-balanced rules are
either (all) manipulable or (all) nonmanipulable. In Section 4, we discuss different mea-
sures of the degree of manipulability of rules. We show that measures that compare
different rules via profiles counting or profiles inclusion cannot be used to distinguish
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among fair and budget-balanced allocation rules. Then we introduce our new crite-
rion of minimal manipulability by counting at each profile the number of agents who
can manipulate. In Section 5, we define k-preferred fair allocations. We show that k-
preferred fair allocations always exist and that all agents are indifferent between all k-
preferred fair allocations. We then introduce components and maximally preferred fair
allocation rules. Our second main result shows that maximally preferred fair allocation
rules are agents-counting-minimally manipulable among all fair and budget-balanced
allocation rules. We show that the same result holds if we compare two rules by count-
ing the number of coalitions that can manipulate the rule at the profile. Finally, we show
that when comparing rules with respect to inclusion of the set of agents who can manip-
ulate, preferred fair allocation rules are agents-inclusion-minimally manipulable among
all fair and budget-balanced allocation rules. All technical results and proofs omitted in
the main text are relegated to the Appendix.

2. Assignment with compensations

Let N = {1� � � � � n} and M = {1� � � � �m} denote the set of agents and objects, respectively.
The number of agents and objects are assumed to coincide, i.e., |N| = |M|.3 Each agent
i ∈N consumes exactly one object j ∈M together with some amount of money. A con-
sumption bundle is a pair (j�xj) ∈M × R, where xj is the monetary compensation re-
ceived when consuming object j. An allocation (a�x) is a list of |N| consumption bun-
dles, where a :N →M is a mapping assigning object ai to agent i ∈N and where x ∈ RM

(or x :M → R) assigns the amount xj of money for the object j ∈M . An allocation (a�x)
is feasible if ai �= aj whenever i �= j for i� j ∈N , and

∑
j∈M xj ≤ 0.4 If

∑
j∈M xj = 0, then the

allocation (a�x) satisfies budget balance. Let A denote the set of feasible and budget-
balanced allocations.

Each agent i ∈N has preferences over consumption bundles (j�xj), which are rep-
resented by continuous utility functions ui :M ×RM →R. We will write uij(x) instead of
ui(j�x) to denote the utility of agent i ∈N when consuming object j ∈M and receiving
compensation xj in the distribution vector x. The utility function ui is assumed to be
quasi-linear and strictly increasing (or monotonic) in money, i.e.,

uij(x)= vij + xj for some vij ∈R�

A list of utility functions u= (ui)i∈N is a preference profile. We also adopt the notational
convention of writing u= (uC�u−C) for C ⊆N . The set of preference profiles with utility
functions having the above properties is denoted by U .

Let u ∈ U and (a�x) be a feasible allocation. Then (a�x) is efficient if there exists
no feasible allocation (b� y) such that uibi(y) ≥ uiai(x) for all i ∈N with strict inequality
holding for some i ∈N . Obviously, if (a�x) is efficient, then (a�x) is budget-balanced.

3If |N|> |M|, then we simply add |N| − |M| null objects with zero value for all agents.
4All our results remain true if the budget constraint is replaced by

∑
j∈M xj ≤ x0 for an arbitrary constant

x0 ∈R.
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Throughout we focus on feasible allocations satisfying budget balance.5 For con-
venience, in the following, “allocation” stands for “feasible allocation satisfying budget
balance.”

The important concept in this literature is fairness, which corresponds to envy-
freeness (Foley 1967). It says that each agent weakly prefers his consumption bundle
to any other agent’s bundle.

Definition 1. For a given profile u ∈ U , an allocation (a�x) is fair if uiai(x)≥ uiaj (x) for
all i� j ∈N . Let F(u) denote the set of fair allocations for a given profile u ∈ U .

Under fairness, for feasible allocations, efficiency is equivalent to budget balance.6

An allocation rule is a nonempty correspondence ϕ choosing for each profile u ∈ U a
nonempty set of allocations, ϕ(u)⊆ A, such that (i) uibi(y)= uiai(x) for all i ∈N and all
(a�x)� (b� y) ∈ ϕ(u), and (ii) for all (a�x) ∈ ϕ(u) and all (b� y) ∈ A, if uibi(y) = uiai(x) for
all i ∈N , then (b� y) ∈ ϕ(u). Hence, (i) the various allocations in the set ϕ(u) are utility
equivalent (essentially single-valuedness) and (ii) any allocation, which is utility equiva-
lent to an allocation in ϕ(u), belongs to ϕ(u) (Pareto indifference). Alternatively, we may
consider essentially single-valued allocation rules (which do not necessarily satisfy (ii))
or single-valued allocation rules choosing for each profile u ∈ U a unique allocation. All
our results remain unchanged for (essentially) single-valued allocation rules.7

An allocation rule ϕ is called fair (and budget-balanced) if for any profile u ∈ U ,
ϕ(u)⊆ F(u).

3. Manipulability and nonmanipulability

Our first main result will determine the (non-)manipulation possibilities of fair alloca-
tion rules.

Definition 2. An allocation rule ϕ is manipulable at a profile u ∈ U by an agent i ∈N if
there exists a profile (ûi� u−i) ∈ U and two allocations (a�x) ∈ ϕ(u) and (b� y) ∈ ϕ(ûi�u−i)
such that uibi(y) > uiai(x). If the allocation rule ϕ is not manipulable by any agent at
profile u ∈ U , then ϕ is nonmanipulable at profile u ∈ U .

Since allocation rules may choose sets of allocations, one may alternatively employ
a more conservative notion of manipulability: ϕ is strongly manipulable at a profile
u ∈ U by an agent i ∈ N if there exists a profile (ûi� u−i) ∈ U such that uibi(y) > uiai(x)
for all (a�x) ∈ ϕ(u) and all (b� y) ∈ ϕ(ûi�u−i). From Svensson (2009, Proposition 3 and
its proof), it follows that for any fair allocation rule ϕ and any profile u ∈ U , ϕ is strongly

5When budget balance is relaxed to
∑
j∈M xj ≤ 0, then general nonmanipulability results are possible;

see, e.g., Andersson and Svensson (2008), Sun and Yang (2003), or Svensson (2009).
6This is due to the fact that any fair allocation must assign the objects efficiently.
7Details can be found in Andersson et al. (2010a).
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manipulable at profile u ∈ U by i ∈N if and only if ϕ is manipulable at profile u ∈ U by
i ∈N .8 Hence, we may use the conservative notion of manipulability instead of ours.

It is well known (Green and Laffont 1979) that any fair and budget-balanced rule ϕ
is manipulable for some profile u ∈ U . Even though we are primarily interested in ma-
nipulation by individuals, it will be interesting to formulate our main results in terms of
manipulation by coalitions. We adopt the following version of coalitional manipulability
and coalitional nonmanipulability.9 As usual, a coalition is a nonempty subset ofN .

Definition 3. An allocation rule ϕ is (coalitionally) manipulable at a profile u ∈ U by
a coalition C ⊆ N if there are a profile (ûC�u−C) ∈ U and two allocations (a�x) ∈ ϕ(u)
and (b� y) ∈ ϕ(ûC�u−C) such that uibi(y) > uiai(x) for all i ∈ C. If the allocation rule ϕ is
not manipulable by any coalition at profile u, then ϕ is coalitionally nonmanipulable at
profile u ∈ U .

Our first main result shows that a fair and budget-balanced allocation rule is non-
manipulable at a profile if and only if all fair and budget-balanced allocation rules are
nonmanipulable at this profile. Furthermore, the same equivalence holds when consid-
ering coalitional nonmanipulability instead of individual nonmanipulability.

Theorem 1. Let ϕ and ψ be two arbitrary fair and budget-balanced allocation rules.
Then ϕ is (coalitionally) nonmanipulable at profile u ∈ U if and only ifψ is (coalitionally)
nonmanipulable at profile u ∈ U .

4. Minimal manipulability

Fairness, budget balance, and (global) nonmanipulability are incompatible (Green and
Laffont 1979). Our approach is to weaken or abandon nonmanipulability.10 A natural
question is whether there is a “minimally (or least) manipulable” allocation rule among
all fair and budget-balanced rules. Several recent contributions11 use a notion of the
degree of manipulability to compare the ease of manipulation in allocation mechanisms
that are known to be manipulable. The common feature is that these results (except for
Theorem 4 in Pathak and Sönmez 2013) use measures for the degree of manipulability
that are based on the preference domain.

To define the various notions of minimal manipulability, given an allocation rule ϕ,
let Uϕ ⊆ U denote the subset of preference profiles at which ϕ is manipulable (by some

8Note that this equivalence does not hold in general: for instance, let �i denote agent i’s preference
where a �i b �i c for three alternatives a, b, and c. Suppose that the rule chooses b when i reports �i and
the rule chooses a and c when i reports a preference �′

i (where a and c are indifferent and preferred to b).
Then the rule is manipulable at �i by agent i but the rule is not strongly manipulable at �i by agent i.

9Again, in the same vein as above, we may use a more conservative notion of coalitional manipulability
where all deviating agents are strictly better off after the deviation for any of the chosen allocations. This
would not change any of our results.

10Several papers weaken or abandon budget balance (Sun and Yang 2003, Andersson and Svensson 2008,
and Svensson 2009).

11See, e.g., Aleskerov and Kurbanov (1999), Kelly (1988, 1993), Maus et al. (2007a, 2007b), or Pathak and
Sönmez (2013).
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agent). In addition, let Pϕ(u) denote the set of agents who can manipulate the allocation
rule ϕ at profile u ∈ U .

In Definitions 4–7, we make weak comparisons of two rules and “more” stands for
“weakly more” (like “preferred” stands for “weakly preferred”).

Definition 4 (Profiles counting). Let ϕ and ψ be two allocation rules.

(a) ϕ is profiles-counting-more manipulable than ψ if |Uϕ| ≥ |Uψ|.
(b) ϕ and ψ are profiles-counting-equally manipulable if |Uϕ| = |Uψ|.

Note that any two rules can be compared regarding their manipulability with re-
spect to profiles counting. The following partial comparison was proposed by Pathak
and Sönmez (2013).

Definition 5 (Profiles inclusion). Let ϕ and ψ be two allocation rules.

(a) ϕ is profiles-inclusion-more manipulable than ψ if Uϕ ⊇ Uψ.

(b) ϕ and ψ are profiles-inclusion-equally manipulable if Uϕ = Uψ.

Note that if ϕ is profiles-inclusion-more manipulable than ψ, then ϕ is profiles-
counting-more manipulable than ψ. However, neither of these measures can be used
to distinguish fair and budget-balanced allocation rules with respect to their degree of
manipulability.

Proposition 1. Let ϕ and ψ be two fair and budget-balanced allocation rules. Then
(i) ϕ and ψ are profiles-counting-equally manipulable, and (ii) ϕ and ψ are profiles-
inclusion-equally manipulable.

Proof. By Theorem 1, both Uϕ = Uψ and |Uϕ| = |Uψ|, which yields the desired
conclusion. �

Since all fair and budget-balanced rules are equally manipulable if the measure is
based only on the cardinality and/or set inclusions of subsets in the preference domain,
a finer notion is needed. Note that an equivalent way of stating (global) nonmanipu-
lability (or “strategy-proofness”) is the following. Allocation rule ϕ is (globally) nonma-
nipulable if

|Pϕ(u)| = 0 for all u ∈ U � (1)

Given the fact that (1) never can be satisfied for fair and budget-balanced rules and the
above insights, it is natural to search for rules where |Pϕ(u)| is minimized for each profile
u ∈ U . This guarantees that the rule is nonmanipulable whenever a nonmanipulable
rule exists for a specific profile, and that the core idea of (global) nonmanipulability is
respected as much as possible.

Definition 6 (Agents counting). Let ϕ and ψ be two allocation rules. Then ϕ is agents-
counting-more manipulable than ψ if |Pϕ(u)| ≥ |Pψ(u)| for all u ∈ U .
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The corresponding notion with respect to inclusion was introduced by Pathak and
Sönmez (2013).

Definition 7 (Agents inclusion). Let ϕ andψ be two allocation rules. Then ϕ is agents-
inclusion-more manipulable than ψ if Pϕ(u)⊇ Pψ(u) for all u ∈ U .

While it is clear that these measures are partial comparisons of allocation rules, the
following diagram shows the relations among the various measures of the degree of ma-
nipulability: For any two allocation rules ϕ and ψ, we have12

ϕ is agents-inclusion-more manipulable than ψ

⇒ ϕ is agents-counting-more manipulable than ψ

⇒ ϕ is profiles-inclusion-more manipulable than ψ

⇒ ϕ is profiles-counting-more manipulable than ψ�

The relations between the different concepts are general and do not depend on our spe-
cific model.

Note that Definitions 4–7 (weakly) compare two rules with respect to their manip-
ulability. Naturally, any of these concepts would strongly compare two rules ϕ and ψ
if ϕ is comparable to ψ but ψ is not comparable to ϕ. In other words, under a strong
comparison, Definition 4(a) requires a strict inequality for some profile, Definition 5(a)
requires a strict inclusion for some profile, Definition 6 requires a strict inequality for
some profile, and Definition 7 requires a strict inclusion for some profile. Actually, as
the careful reader may check, Pathak and Sönmez’s (2013) second concept makes (only)
a strong comparison in the vein of Definition 7 but requires, in addition, Uϕ � Uψ. Of
course, again by Theorem 1, in this sense no two fair and budget-balanced rules would
be strongly comparable.

5. Agent k-preferred allocation rules

The concept of agent k-preferred allocations will play an important role. At these allo-
cations, agent k’s utility is maximized among all fair and budget-balanced allocations.

Definition 8. Let k ∈ N and u ∈ U . Allocation (a�x) ∈ F(u) is agent k-preferred if it
maximizes the utility of agent k in F(u), i.e., ukak(x) ≥ ukbk(y) for all (b� y) ∈ F(u). Let
ψk(u) ⊆ F(u) denote the set of all fair and budget-balanced allocations that are agent
k-preferred at profile u.

Thus, at an agent k-preferred allocation, agent k’s utility is maximized among all
fair and budget-balanced allocations. Our next result establishes (i) the existence of a
k-preferred (fair and budget-balanced) allocation for all k ∈N and all u ∈ U , and (ii) ψk

12In showing Uϕ ⊇ Uψ for the second implication, note that for any u ∈ Uϕ, we have 0 = |Pϕ(u)| ≥
|Pψ(u)| ≥ 0. Thus, both |Pψ(u)| = 0 and u ∈ Uψ.
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is an allocation rule, i.e., that for any profile, all agents are indifferent between all agent
k-preferred fair allocations. The allocation rule ψk will be called the agent k-preferred
fair allocation rule henceforth.

Theorem 2. Let k ∈N .

(i) For each profile u ∈ U , there exists an agent k-preferred allocation in F(u), i.e.,
ψk(u) �=∅.

(ii) ψk is an allocation rule.

The corollary below will follow from the proof of Theorem 1.

Corollary 1. (i) ψk cannot be manipulated by agent k at any profile u ∈ U .

(ii) For any two distinct agents i� j ∈N , there exists no fair and budget-balanced allo-
cation rule ϕ such that neither i nor j can manipulate ϕ at any profile u ∈ U .

Corollary 1 has the same flavor as the corresponding results in two-sided matching
(with men and women): (i) for any agent there exists a stable matching rule that is not
manipulable by this agent at any profile, and (ii) there is no stable matching rule that
cannot be manipulated by at least one man and at least one woman (Ma 1995).

We next introduce a more demanding notion, namely components. A component
is a set of agents such that there exist fair and budget-balanced allocations that are pre-
ferred for all agents in the component and there is no superset of the component having
the same property.

GivenG⊆N and u ∈ U , let ψG(u)= ⋂
k∈Gψk(u).

Definition 9. Let u ∈ U and G ⊆ N . The set G is a component at u if ψG(u) �= ∅ and
there exists no G�G′ ⊆N such that ψG

′
(u) �= ∅. Let G(u) denote the set of all compo-

nents at u.

The next result states an important characteristic of components, namely that if
agent k belongs to a component G, then all agent k-preferred allocations are also pre-
ferred for all agents belonging toG.

Lemma 1. Let u ∈ U . If k ∈G ∈ G(u), then ψk(u)=ψG(u).

By Lemma 1, G(u) induces a partition of N because for any G′�G′′ ∈ G(u) with k ∈
G′ ∩G′′, we have ψk(u) = ψG

′
(u) = ψG

′′
(u) and G′ ∪G′′ ∈ G(u) (and, hence, G′ =G′′).

Thus, for any k ∈N , there exists a uniqueG ∈ G(u) with k ∈G.
In determining the least manipulable fair and budget-balanced allocation rules, for

agent k-preferred fair allocation rules, not only the preference profile, but also the se-
lection of k ∈ N may influence the manipulability possibilities. In the search for the
agents-counting-minimally manipulable fair and budget-balanced allocation rules, it is
important to select the right k ∈N for any given profile u ∈ U . For this reason, the selec-
tion of agent kwill be endogenously determined by the profile u ∈ U . The general idea is



762 Andersson, Ehlers, and Svensson Theoretical Economics 9 (2014)

first to select a component with maximal cardinality, then select some agent k belonging
to this component, and, finally, select the set of agent k-preferred fair allocations.

Let

Ḡ(u)= {G ∈ G(u) : |G| ≥ |G′| for allG′ ∈ G(u)}

denote the set of components with maximal cardinality. Let

Ḡ(u)=
⋃

G∈Ḡ(u)
G

denote the union of all components with maximal cardinality.
A (component) selection is a function κ :U →N . The preferred fair allocation rule φκ

based on κ :U →N is defined as follows: for all u ∈U , φκ(u)=ψκ(u)(u). In other words,
a preferred fair allocation rule selects for each u an agent κ(u) and chooses all κ(u)-
preferred fair allocations. Note that (i) by Theorem 2, φκ is a well defined allocation rule
and (ii) by Lemma 1, equivalently, κ chooses for all u ∈ U the component G ∈ G(u) such
that κ(u) ∈G (and φκ(u)=ψG(u)). Furthermore, we will say that an allocation rule ϕ is
a preferred fair allocation rule if there exists a selection κ such that for all u ∈ U , we have
ϕ(u)=φκ(u).

A maximally preferred fair allocation rule chooses for each profile (i) a componentG
with maximal cardinality, (ii) some agent k belonging toG, and (iii) all agent k-preferred
fair allocations. Note that different ks may be selected for different profiles. A maximal
(component) selection is a function κ :U →N such that for all u ∈ U , we have κ(u) ∈ Ḡ(u).
The maximally preferred fair allocation ruleφκ is the preferred fair allocation rule based
on κ. Again by Lemma 1, equivalently, κ chooses for all u ∈ U a component (with maxi-
mal cardinality)G ∈ Ḡ(u) such that κ(u) ∈G. Furthermore, we will say that an allocation
rule ϕ is a maximally preferred fair allocation rule if there exists a maximal selection κ
such that for all u ∈ U , we have ϕ(u) = φκ(u). Note that the function κ is a systematic
selection from Ḡ(u). The meaning of “systematic selection” is that there is a well defined
rule for selecting k. This rule can be arbitrary and all our results hold independently of
this rule. For example, the rule could be based on a randomized selection from Ḡ(u) or
simply the k with the lowest or highest index in Ḡ(u).

Our second main result establishes that maximally preferred fair allocation rules
are agents-counting-minimally manipulable among all fair and budget-balanced allo-
cation rules. Here a rule ϕ is agents-counting-minimally manipulable among all fair
and budget-balanced allocation rules if for any fair and budget-balanced allocation rule
ϕ′, ϕ′ is agents-counting-more manipulable than ϕ.

Theorem 3. Let ϕ be an arbitrary fair and budget-balanced allocation rule. Then ϕ is
agents-counting-minimally manipulable among all fair and budget-balanced allocation
rules if and only if ϕ is a maximally preferred fair allocation rule.

By Theorem 3, any fair and budget-balanced allocation rules can be compared to
a maximally preferred fair allocation rule via agents-counting manipulability, and any
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fair and budget-balanced allocation rule that is not maximally preferred fair is strongly
agents-counting-more manipulable (with a strict inequality for some profile in Defi-
nition 6) than any maximally preferred fair allocation rule. Note that except for de-
generate preference profiles where N is the unique component, the set of fair and
budget-balanced allocations is a continuum. Thus, any rule that chooses for some
nondegenerate preference profile an allocation that is not preferred is strongly agents-
counting-more manipulable than any maximally preferred fair allocation rule. Hence,
the comparison is often strict.

In checking the robustness of Theorem 3, we consider the degree of coalitional ma-
nipulability. Using the same arguments as above, by Theorem 1, it is in general impos-
sible to define a fair and budget-balanced rule to be less coalitionally manipulable than
some other fair and budget-balanced rule if the measure is based only on the cardinality
and/or set inclusions of subsets in the preference domain. Let Qϕ(u) denote the coali-
tions C ⊆ N that can manipulate the allocation rule ϕ at profile u ∈ U . We adopt the
following notion.

Definition 10. Let ϕ and ψ be two allocation rules. Then ϕ is coalitions-counting-
more manipulable than ψ if |Qϕ(u)| ≥ |Qψ(u)| for all u ∈ U .

The following result states that maximally preferred fair allocation rules are
coalitions-counting-minimally manipulable among all fair and budget-balanced allo-
cation rules. This can be seen as an extension of Theorem 3 from minimal individual
manipulability to minimal coalitional manipulability, i.e., that Theorem 3 is robust with
respect to coalitional manipulations.

Theorem 4. Let ϕ be an arbitrary fair and budget-balanced allocation rule. Then ϕ is
coalitions-counting-minimally manipulable among all fair and budget-balanced alloca-
tion rules if and only if ϕ is a maximally preferred fair allocation rule.

Finally we will establish that preferred fair allocation rules are agents-inclusion-
minimally manipulable among all fair and budget-balanced allocation rules.13 We show
that any fair and budget-balanced allocation rule is agents-inclusion-more manipula-
ble than some preferred fair allocation rule. Here a rule ϕ is agents-inclusion-minimally
manipulable among all fair and budget-balanced allocation rules if there exists no fair
and budget-balanced allocation rule ϕ′ �= ϕ such that ϕ is agents-inclusion-more ma-
nipulable than ϕ′.

Theorem 5. Let ϕ be an arbitrary fair and budget-balanced allocation rule. Then ϕ is
agents-inclusion-minimally manipulable among all fair and budget-balanced allocation
rules if and only if ϕ is a preferred fair allocation rule.

13The careful reader may note that Theorem 5 is the only new result that is not included in Andersson
et al. (2010a).
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Similar as above for agents-counting-minimal manipulability, Theorem 5 is robust
with respect to coalitional manipulability (by considering inclusions of the set of coali-
tions that can manipulate the rule at a profile).

By Theorem 5, any fair and budget-balanced allocation rule that is not preferred fair
is strongly agents-inclusion-more manipulable (with a strict inclusion for some profile
in Definition 7) than some preferred fair allocation rule. A direct consequence of Theo-
rem 5 is that for any k ∈N , the agent k-preferred fair allocation rule is agents-inclusion-
minimally manipulable among all fair and budget-balanced allocation rules.

Corollary 2. Let k ∈N . Then ψk is agents-inclusion-minimally manipulable.

Obviously, by Corollary 1, for distinct k� i ∈N , ψk and ψi cannot be compared with
respect to agent-inclusion-more manipulability (because for all u ∈ U , k /∈ Pψk(u) and
i /∈ Pψi(u)).

Appendix

The following lemmas are two well known properties of fair allocations (see, e.g.,
Svensson 2009): first, if two allocations are fair at a given profile, then one may inter-
change both the assignment of objects and the monetary distribution without losing
fairness. Obviously, this result holds for fair allocations satisfying budget balance.

Lemma 2. Suppose that allocations (a�x) and (b� y) are fair at profile u ∈ U . Then allo-
cations (a� y) and (b�x) are also fair at profile u ∈ U .

Second, for fair allocation rules, a unique distribution of money is chosen for any
given preference profile.14

Lemma 3. Let ϕ be a fair allocation rule and u ∈ U . If (a�x)� (b� y) ∈ ϕ(u), then x= y.

Proof. Since (a�x)� (b� y) ∈ ϕ(u), we have uiai(x) = uibi(y) for all i ∈ N . By fairness,
uiai(x) ≥ uibi(x). Thus, uibi(y) ≥ uibi(x) and ybi ≥ xbi . Similarly, we obtain xbi ≥ ybi .
Hence, x= y, the desired conclusion. �

We proceed as follows. First, showing our main results requires a structural analysis
with respect to indifferences at fair and budget-balanced allocations. We show that for
any agent k and any fair and budget-balanced allocation, agent k’s utility is maximized
among all fair and budget-balanced allocations if and only if the allocation is agent k-
linked: any agent can be linked to agent k through a sequence of agents (an indifference
chain) whereby any agent in this sequence is indifferent between his consumption bun-
dle and the bundle received by the next agent in the sequence.

An indifference component at an allocation is a set of agents such that any two
agents can be linked through an indifference chain in this set at this allocation. We

14To make the presentation self-contained, we include the proof of Lemma 3 (which follows, for instance,
from Lemma 3 in Alkan et al. (1991)).
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show that for a given profile, indifference components are invariant among all fair
and budget-balanced allocations, i.e., if G is an indifference component at a fair and
budget-balanced allocation, thenG is an indifference component at all fair and budget-
balanced allocations. Therefore, if a fair and budget-balanced allocation is agent k-
linked and k belongs to the indifference component G, then this allocation is agent
i-linked for all agents i belonging to G (and the utility of agent i is maximized among
all fair and budget-balanced allocations). Therefore, the set of indifference components
and the set of components coincide. In Lemma 5, we show that indifference compo-
nents are related to “isolated groups” (Definition 14 below) in the following way at fair
allocations: if N −G is an isolated group with maximal cardinality at a fair allocation,
thenG is an indifference component.

Second, for any fair and budget-balanced allocation rule and any preference profile,
we characterize the set of agents and the set of coalitions who can profitably manipulate
the rule at this profile: (i) if a group G is isolated at a chosen allocation, then any coali-
tion contained in G can manipulate the rule at this profile, and (ii) if the rule chooses
k-linked fair allocations at this profile, then no coalition containing agent k can manip-
ulate the rule at this profile. The (non-)manipulability results Theorem 1 and Corollary 1
then follow easily.

Third, we show our minimal manipulability results Theorem 3, Theorem 4, and The-
orem 5.

A.1 Agent k-linked allocations

It is well established that the possibility for agents to manipulate a fair allocation rule
depends on the structure of the indifference relations at the allocation(s) chosen by the
rule.15 Below we introduce the concepts of indifference chains and agent k-linked (fair)
allocations.

Definition 11. Let (a�x) ∈ A.

(i) For any i� j ∈N , we write i→(a�x) j if uiai(x)= uiaj (x).
(ii) An indifference chain at allocation (a�x) consists of a tuple of distinct agents

g= (i0� i1� � � � � ik) such that i0 →(a�x) i1 →(a�x) · · · →(a�x) ik.

Note that i →(a�x) j means that agent i is indifferent between his consumption bun-
dle and agent j’s consumption bundle, and agent i is directly linked via indifference to
agent j at allocation (a�x). An indifference chain at an allocation is simply a sequence
of agents such that any agent in the sequence is indifferent between his bundle and the
bundle of the agent following him in the sequence. Indifference chains indirectly link
agents via indifference in a sequence of directly linked agents.

The following concept of agent k-linked allocations will be useful.

15See, for example, Andersson and Svensson (2008), Andersson et al. (2010b), or Mishra and Talman
(2010) for theoretical results, and Sankaran (1994) or Mishra and Parkes (2009) for efficient procedures to
calculate allocations with the maximal number of indifference relations. Similar observations have previ-
ously also been made by, e.g., Dubey (1982) and Svensson (1991), where the “tightness” of the market is
demonstrated to have a significant impact on manipulation possibilities.
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Definition 12. Let (a�x) ∈ A.

(i) Agent i ∈N is linked to agent k ∈N at allocation (a�x) if there exists an indiffer-
ence chain (i0� � � � � it) at allocation (a�x) with i= i0 and it = k.

(ii) Allocation (a�x) is agent k-linked if each agent i ∈N is linked to agent k ∈N .

Thus, at an agent k-linked allocation, each agent is linked to agent k ∈ N through
some indifference chain. The following is a slightly stronger result than Theorem 2
whereby we also show that a fair and budget-balanced allocation is agent k-preferred
if and only if it is agent k-linked.

Theorem 6. Let k ∈N .

(i) For each profile u ∈ U , there exists an agent k-preferred allocation in F(u), i.e.,
ψk(u) �= ∅. Moreover, for any allocation (a�x) ∈ F(u), (a�x) ∈ ψk(u)⇔ (a�x) is
agent k-linked.

(ii) ψk is an allocation rule.

Proof. Let k ∈N and u ∈ U . First, we show (i). Note that agent k-preferred allocations
exist in F(u) since F(u) is compact. Thus, ψk(u) �= ∅.

Let (a�x) ∈ ψk(u). We show that (a�x) is agent k-linked. By contradiction, suppose
that (a�x) is not k-linked, i.e., that there is an agent l ∈N that is not linked to agent k.
Let

G= {i ∈N : i is linked to k at (a�x)} ∪ {k}�

Because k ∈G and l ∈N −G, bothG andN −G are nonempty. Moreover, by construc-
tion, uiai(x) > uiaj (x) if i ∈N−G and j ∈G. From the perturbation lemma in Alkan et al.
(1991), it then follows that there exists another allocation (b� y) ∈ F(u) such that yai > xai
for all i ∈G.16 Then by fairness and monotonicity in money, we have

uibi(y)≥ uiai(y)= viai + yai > viai + xai = uiai(x) for all i ∈G�

Because k ∈ G, it follows that ukbk(y) > ukak(x), which contradicts the fact that (a�x)
maximizes k’s utility in F(u). Hence, any agent k-preferred fair allocation is agent
k-linked.

Next we show (ii) and that any agent k-linked allocation maximizes agent k’s utility
in F(u).17 It suffices to show that if (a�x)� (b� y) ∈ F(u) are agent k-linked, then uiai(x)=
uibi(y) for all i ∈N . By the first part of the proof for (i), any agent k-preferred allocation
is agent k-linked. Thus, we may suppose without loss of generality that (b� y) ∈ψk(u).

16Because preferences are quasi-linear, this can be simply done by infinitesimally increasing equally the
compensations of {ai : i ∈ G} and infinitesimally decreasing equally the compensations of {ai : i ∈ N −G}
(while preserving budget balance).

17Again, to make the presentation self-contained, we include the proof (which follows Theorem 6 in
Alkan et al. 1991).



Theoretical Economics 9 (2014) Budget balance, fairness, and minimal manipulability 767

We first demonstrate the analogue of Lemma 3 for agent k-linked fair allocations:
if (a�x)� (b� y) ∈ F(u) are agent k-linked, then x = y. To see this, note that (a� y) is also
fair by Lemma 2. First, we show that (a� y) is agent k-linked if (b� y) is agent k-linked.
Fairness implies

uiai(y)= uibi(y) for all i ∈N� (2)

Since (b� y)maximizes the utility of agentk inF(u), (2) implies that (a� y) also maximizes
the utility of agent k in F(u). Thus, by the first part of the proof for (i), (a� y) is agent
k-linked. Hence, without loss of generality we may assume a= b.

Suppose that the fair allocations (a�x) and (a� y) are agent k-linked but x �= y. Then
by budget-balance and x �= y, there must be two nonempty groups of agents:

A = {i ∈N :xai > yai}
B = {i ∈N :xai ≤ yai}�

Note that for all i ∈A and all j ∈ B, uiai(x) > uiai(y)≥ uiaj (y)≥ uiaj (x). Hence, no agent
inA can be linked to any agent in B at allocation (a�x). Because (a�x) is agent k-linked,
we must have k ∈A. Let j ∈ B and i ∈A. By fairness and monotonicity in money,

ujaj (y)≥ ujaj (x)≥ ujai(x) > ujai(y)�

Thus, at allocation (a� y), no agent in B can be linked to any agent inA. Hence, by k ∈A,
allocation (a� y) cannot be agent k-linked, which contradicts our assumption.

Let (a�x)� (b� y) be agent k-linked and i ∈N . By the above, we have x= y. Obviously,
if ai = bi, then uiai(x) = uibi(y). If ai �= bi, then by fairness both uiai(x) ≥ uibi(x) and
uiai(y)≤ uibi(y). Hence, by x= y, we have uiai(x)= uibi(y), the desired conclusion. �

Theorem 6 implies that (i) the set of agent k-linked fair allocations and the set of
agent k-preferred fair allocations coincide, and (ii) all agents are indifferent between all
fair allocations that maximize agent k’s utility in F(u).

We next introduce a more demanding notion of indifference structures, namely in-
difference components. In each indifference component, any two agents are linked
through an indifference chain in this component and there is no superset of this com-
ponent where any two agents are linked.

Definition 13. Let (a�x) ∈ A. An indifference component at allocation (a�x) is a
nonempty setG⊆N such that for all i�k ∈G, there exists an indifference chain at (a�x)
inG, say g= (i0� � � � � ik)with {i0� � � � � ik} ⊆G, such that i= i0 and ik = k, and there exists
noG′ �G satisfying the previous property at allocation (a�x).

The next result states an important characteristic of indifference components,
namely that if there are two allocations that are fair and budget-balanced at some profile
u ∈ U and if there is an indifference component at one of these allocations, then the very
same indifference component must be present at the other allocation. In other words,
indifference components at fair and budget-balanced allocations only depend on the
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preference profile u ∈ U because they are invariant with respect to the selected fair and
budget-balanced allocation.

Lemma 4. Suppose that allocations (a�x) and (b� y) are fair and budget-balanced at pro-
file u ∈ U . IfG is an indifference component at allocation (a�x), thenG is an indifference
component at allocation (b� y).

Proof. By Lemma 2, we know that (a� y) is fair. First we show that the indifference
componentG is present at (a� y).

Because G is an indifference component at (a�x), G consists of indifference chains
g = (i0� i1� � � � � ik) such that ik →(a�x) i0. Thus, we have i0 →(a�x) i1 →(a�x) · · · →(a�x)

ik →(a�x) i0. We show i0 →(a�y) i1 →(a�y) · · · →(a�y) ik →(a�y) i0.
For any i ∈ N , let �ai = yai − xai . To obtain a contradiction, suppose that we do

not have i0 →(a�y) i1 →(a�y) · · · →(a�y) ik →(a�y) i0, say ui0ai0 (x) = ui0ai1
(x) but ui0ai0 (y) >

ui0ai1
(y). Thus, �ai0 > �ai1 . Now, fairness is respected among the agents in G at alloca-

tion (a� y) only if

�aij ≥ �aij+1
for all j ∈ {0� � � � �k− 1} (3)

�aik ≥ �ai0 � (4)

From (3) and �ai0 > �ai1 , we obtain �ai0 > �aik . Hence, (4) is not satisfied. Thus, alloca-
tion (a� y) cannot be fair, which contradicts our assumption. Hence, i0 →(a�y) i1 →(a�y)

· · · →(a�y) ik →(a�y) i0. Note that there exists no G′ � G such that G′ is an indifference
component at (a� y) because otherwise, using the previous arguments, any two agents
in G′ are connected through some indifference chain at (a�x) in G′, which contradicts
the definition of G being an indifference component at (a�x). Thus, the indifference
componentG is present at (a� y).

Next, we show that G must be also an indifference component at (b� y). Fairness
implies

uiai(y)= uibi(y) for all i ∈N� (5)

Let j�k ∈G and suppose that j →(a�y) k. If ak = bk, then by (5), j →(b�y) k. Let ak �= bk
and l1 ∈ N be such that al1 = bk. Obviously, (5) implies k→(a�y) l1. More generally, let
l1� � � � � lt be such that alr = blr−1 with r = 2� � � � � t and ak = blt . Note that such a “cycle”
exists because |N| = |M|. Now obviously we have k →(a�y) l1, lr →(a�y) lr+1 for all r =
1� � � � � t− 1, and lt →(a�y) k. Since k ∈G andG is an indifference component at (a� y), we
must have {l1� � � � � lt} ⊆G.

Now by (5), we have ujbj (y) = ujaj (y) = ujak(y) = ujblt (y), which implies j →(b�y) lt .
Note that by construction, we also have l1 →(b�y) k and lr →(b�y) lr−1 for all r = 2� � � � � t.
This means that j and k are connected through the indifference chain j→(b�y) lt →(b�y)

lt−1 →(b�y) · · · →(b�y) l1 →(b�y) k in G under (b� y) (if ak �= bk). If ak = bk, then j→(b�y) k.
Because this is true for any j�k ∈ G such that j →(a�y) k, it also follows that any two
agents belonging to G must be connected through an indifference chain in G at (b� y).
Furthermore, there can be noG′ �G satisfying this property under (b� y) because by the
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same argumentG′ would also satisfy this property under (a�x), which would contradict
the definition of an indifference component. �

Lemma 4 implies that the set of components and the set of indifference components
are identical, i.e.,

G(u)= {G⊆N :G is an indifference component at all (a�x) ∈ F(u)}�
Furthermore, Lemma 1 follows directly from Lemma 4 and Theorem 6: Given u ∈U and
k ∈N , by Lemma 4, there is a unique indifference component G such that k ∈G. Then
for all i ∈G, by definition of an indifference component, any allocation (a�x) ∈ψk(u) is
agent i-linked. Thus, by Theorem 6, (a�x) ∈ψi(u). Interchanging the roles of i and k, we
now obtain ψk(u)=ψi(u) for all i ∈G and ψk(u)=ψG(u).

The existence of indifference components is closely related to the presence of iso-
lated groups (or coalitions): a group of agents C �N is isolated if no agent outside this
group can be linked to any agent in C.

Definition 14. A group of agents C �N is isolated at allocation (a�x) if i�(a�x) j for
all i ∈N −C and all j ∈ C.

The following lemma relates isolated groups and indifference components.

Lemma 5. Let ϕ be a fair and budget-balanced allocation rule, u ∈ U and (a�x) ∈ ϕ(u).
If N − G is the (possibly empty) isolated group with maximal cardinality at allocation
(a�x), thenG is an indifference component at allocation (a�x).

Proof. We first show that all i� j ∈G can be linked via an indifference chain in G. Sup-
pose not, i.e., there exist i� j ∈G such that i cannot be linked to j via some indifference
chainG. Let

H = {k ∈G :k can be linked to j via some indifference chain inG}�
Since i ∈G−H, we have G−H �= ∅. Because no agent in G−H can be linked to any
agent in H, by construction, it follows that (N − G) ∪ H � N (by i ∈ G − H), the set
(N −G)∪H is isolated, and |(N −G)∪H|> |N −G|, which contradicts the assumption
thatN −G is the isolated group with maximal cardinality at allocation (a�x) ∈ ϕ(u).

Now, the proof follows directly because the group N − G is isolated at allocation
(a�x), i.e., i�(a�x) j for all i ∈G and all j ∈N −G. Consequently, there is noG′ �G such
thatG′ is an indifference component by Definition 13. �

A.2 Manipulability and nonmanipulability

Below we determine the (non-)manipulation possibilities of fair allocation rules. The
first result describes the relation between isolated groups and the possibility to manip-
ulate ϕ at a specific profile. We show that any coalition contained in an isolated group
can manipulate the fair and budget-balanced allocation rule.18

18Note that Beviá’s (2010) results do not allow for single-valued allocation rules whereas all our re-
sults hold any single-valued allocation rule (and Beviá’s Theorem 2.1 does not have any implication for
Lemma 6).
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Lemma 6. Let ϕ be a fair and budget-balanced allocation rule, u ∈ U , and (a�x) ∈ ϕ(u).
If the nonempty group G � N is isolated at allocation (a�x), then each coalition C ⊆G

can manipulate ϕ at profile u ∈ U .

Proof. Let (a�x) ∈ ϕ(u) and suppose that G�N is a nonempty isolated coalition, i.e.,
that both i�(a�x) j and uiai(x) > uiaj (x) for all i ∈N −G and all j ∈G. Now simultane-
ously all compensations for objects ai (i ∈G) can be increased by the same amount and
all compensations for objects aj (j ∈N−G) can be decreased by the same amount with-
out losing budget balance and fairness. Hence, there is a number τ > 0 and (a� y) ∈ F(u)
such that uiai(y) > uiai(x)+ τ for all i ∈G (and yai > xai + τ for all i ∈G). Fix 0 < ε < τ
and define for any i ∈G, the function ûi as follows: for all j ∈M and all x′ ∈RM , let

ûij(x
′)= (−yj + εij)+ x′

j�

where εij = 0 if j �= ai and εiai = ε > 0. Note that v̂ij = −yj + εij . Let C ⊆ G and ûC =
(ûi)i∈C . By construction of ûC , we have (a� y) ∈ F(ûC�u−C).19

Let (b� z) ∈ ϕ(ûC�u−C). We first show bi = ai for all i ∈ C. Let δj = zj − yj for all j ∈M .
Without loss of generality, orderM such that δj ≥ δj+1 for all j = 1� � � � � |M| − 1.

If z = y, then by fairness, ûibi (y)= ûiai (y) for all i ∈ C. Since for all i ∈ C, ûiai (y)= ε

and ûij(y)= 0 for j �= ai, we obtain bi = ai for all i ∈ C.
If z �= y, then by budget balance of both (b� z) and (a� y), δ1 > 0 and δn < 0. Let (jl)l

be a subsequence of (1� � � � � n) such that jl < jl+1, δjl > δjl+1 and δj = δjl if jl ≤ j < jl+1.
Let Sl = {i ∈N : jl ≤ ai < jl+1}. Then for i ∈ Sl,
uiai(z) = uiai(y)+ δai ≥ uibi(y)+ δai > uibi(y)+ δbi = uibi(z) if bi ≥ jl+1 and i ∈N −C
ûiai(z) = zai − yai + ε= δai + ε > δbi = ûibi (z) if bi ≥ jl+1 and i ∈ C�

Thus, by fairness, for all l, i ∈ Sl implies jl ≤ bi < jl+1. Moreover, for i ∈ C, ûiai (z) =
δai + ε > δbi = ûibi (z) if bi �= ai and bi ≥ jl. Hence, by fairness, bi = ai for all i ∈ C.

It remains to prove that uibi(z) > uiai(x) for all i ∈ C, i.e., ϕ is manipulable at u by
coalition C. From the above, we have ai = bi for all i ∈ C. Since ϕ is fair, we have (b� z) ∈
F(ûC�u−C). Now we have for all i ∈ C with bi �= 1,

ûibi (z)= ûiai (z)= ziai − yiai + ε≥ zi1 − yi1 = ûi1(z)�
Because δj = zj − yj , it follows from the above condition that δbi ≥ δ1 − ε for i ∈ C with
bi �= 1. Note that this inequality holds trivially if bi = 1 because ε > 0. Now this fact, the
definition of δj , and our choice of 0 < ε < τ, δ1 ≥ 0 and ai = bi for all i ∈ C, yield for all
i ∈ C,

uiai(x) < uiai(y)− τ
= uibi(y)− τ
= vibi + zbi − (zbi − ybi)− τ
= uibi(z)− δbi − τ

19Note that for all i ∈ C, ûiai (y)= ε and ûij(y)= 0 for j �= ai.
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≤ uibi(z)− δ1 − (τ− ε)
< uibi(z)�

where the first inequality follows from uiai(y) > uiai(x)+τ, the first equality follows from
ai = bi for i ∈ C, the second inequality follows from −δbi ≤ −(δ1 − ε), and the last in-
equality follows from δ1 ≥ 0 and τ > ε. Hence, uiai(x) < uibi(z) for all i ∈ C, which is the
desired conclusion. �

The second result shows that the agent k-preferred fair allocation rule cannot be ma-
nipulated by any coalition containing agent k. The intuition is as follows. If agent k can
successfully manipulate the allocation rule, then by fairness, agent k must be assigned
a consumption bundle where the monetary compensation increases. Since each agent
is linked to agent k, then each agent must be assigned a consumption bundle where
the monetary compensation increases, because if this is not the case, then fairness is
violated at the new allocation. But then the budget must be exceeded. Hence, agent k
cannot manipulate. The same intuition holds for any fair allocation rule choosing agent
k-preferred fair allocations for some profile.

Lemma 7. Let ϕ be a fair and budget-balanced allocation rule, k ∈ N , and u ∈ U . If
ϕ(u) ⊆ ψk(u), then no coalition C ⊆ N containing agent k can manipulate ϕ at profile
u ∈ U .

Proof. Let C ⊆N be such that k ∈ C. Suppose that ϕ is manipulable at profile u ∈ U by
coalition C. Then there is a profile (ûC�u−C) ∈ U and two allocations (a�x) ∈ ϕ(u) and
(b� y) ∈ ϕ(ûC�u−C) such that uibi(y) > uiai(x) for all i ∈ C. Note that ϕ(u) ⊆ ψk(u) and
(a�x) ∈ψk(u). Thus, by Theorem 6, (a�x) is agent k-linked.

By fairness, uiai(x) ≥ uibi(x) for all i ∈ C. Hence, for all i ∈ C, uibi(y) > uibi(x) and
ybi > xbi . Because (b� y) satisfies budget balance, we must have C �N . We distinguish
two cases.

First, suppose {bi : i ∈ C} = {ai : i ∈ C}. Since k ∈ C and (a�x) is an agent k-linked fair
allocation, there exist i ∈N − C and j ∈ C such that i→(a�x) j. By j ∈ C and {bi : i ∈ C} =
{ai : i ∈ C}, we have yaj > xaj . Now uiai(x)= uiaj (x), fairness, and monotonicity in money
imply

uibi(y)≥ uiaj (y) > uiaj (x)= uiai(x)≥ uibi(x)�

Hence, ybi > xbi . Let C1 = C ∪ {i ∈N : i→(a�x) j for some j ∈ C}. Thus, we have ybi > xbi
for all i ∈ C1 (and C � C1).

Second, suppose {bi : i ∈ C} �= {ai : i ∈ C}. Let i ∈ N − C be such that ai ∈ {bi : i ∈ C}.
Then yai > xai , fairness, and monotonicity in money imply

uibi(y)≥ uiai(y) > uiai(x)≥ uibi(x)�

Hence, ybi > xbi . Let C1 = C ∪ {i ∈N −C :ai ∈ {bi : i ∈ C}}. Thus, we have ybi > xbi for all
i ∈ C1 (and C � C1).
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Using the same arguments, it follows for any l that (i) if {bi : i ∈ Cl} = {ai : i ∈ Cl}, then
for each i ∈N such that i→(a�x) j for some j ∈ Cl, we have ybi > xbi . Let Cl+1 = Cl ∪ {i ∈
N : i→(a�x) j for some j ∈ Cl}; and (ii) if {bi : i ∈ Cl} �= {ai : i ∈ Cl}, then for each i ∈N −Cl
such that ai ∈ {bi : i ∈ Cl}, we have ybi > xbi . Let Cl+1 =Cl ∪ {i ∈N −Cl :ai ∈ {bi : i ∈ Cl}}.

Because N is finite and (a�x) is agent k-linked, for some t, we obtain Ct = N and
ybi > xbi for all i ∈ Ct , which is a contradiction to budget balance of (b� y). Hence, C
cannot manipulate ϕ at profile u ∈ U . �

The following theorem identifies all preference profiles u ∈ U at which any fair and
budget-balanced allocation rule is (coalitionally) nonmanipulable.

Theorem 7. A fair and budget-balanced allocation rule ϕ is (coalitionally) nonmanipu-
lable at profile u ∈ U if and only ifN is the unique indifference component at profile u ∈ U
(i.e., G(u)= {N}).

Proof. The “only if” part follows directly from Lemma 6 since there always is an iso-
lated group unless N is the unique indifference component by Lemma 5. To prove the
“if” part, note that if N is the unique indifference component, any (a�x) ∈ F(u) is agent
i-linked for any i ∈N by Lemma 4. Sinceϕ(u)⊆ F(u), Lemma 7 implies that no coalition
containing i ∈N can manipulate ϕ at profile u ∈ U . Hence, ϕ is both nonmanipulable at
profile u ∈ U and coalitionally nonmanipulable at profile u ∈ U . �

Lemma 4 and Theorem 7 imply our first main result, Theorem 1: a fair and budget-
balanced allocation rule is nonmanipulable at a profile if and only if all fair and budget-
balanced allocation rules are nonmanipulable at this profile. Furthermore, the same
equivalence holds when considering coalitional nonmanipulability instead of individ-
ual nonmanipulability.

Theorem 1. Let ϕ and ψ be two arbitrary fair and budget-balanced allocation rules.
Then ϕ is (coalitionally) nonmanipulable at profile u ∈ U if and only ifψ is (coalitionally)
nonmanipulable at profile u ∈ U .

The proof follows directly from Lemma 4 and Theorem 7.
Note that for any i ∈ N , there is a unique (indifference) component G ∈ G(u) such

that i ∈ G (where G = {i} is possible), i.e., any agent is included in exactly one indif-
ference component at any profile u ∈ U . Given this observation, we determine for any
profile the precise number of agents and coalitions who can manipulate the agent k-
linked fair allocation rule. Specifically, we demonstrate that ψk can be manipulated by
less than 50% of all coalitions at any profile.

Theorem 8. Let k ∈N and u ∈ U .

(i) If k ∈ S ∈ G(u), then ψk is manipulable by exactly |N| − |S| agents and exactly
2|N|−|S| − 1 coalitions at profile u ∈ U .

(ii) ψk is manipulable by less than 50% of all coalitions at any profile u ∈ U .
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Proof. To prove (i), note that since S is an indifference component, for all i ∈ S and
all (a�x) ∈ ψk(u), allocation (a�x) is agent i-linked. Thus, by Theorem 6, (a�x) ∈ ψi(u)
and ψk(u) = ψi(u). From Lemma 7, it then follows that no coalition containing agent
i ∈ S can manipulate ψk at profile u ∈ U . Thus, at most 2|N|−|S| − 1 coalitions can ma-
nipulate ψk at profile u ∈ U . Lemma 6 guarantees that this bound is tight, i.e., that ex-
actly 2|N|−|S| − 1 coalitions can manipulate ψk at profile u ∈ U . Because there are exactly
|N|− |S| nonempty singleton coalitions in the class of coalitions that can gain by manip-
ulation, it follows that exactly |N| − |S| agents can manipulate ψk at profile u ∈ U .

To prove (ii), note that |S| ≥ 1. Because 2|N|−|S| ≤ 2|N|−1 for any |S| ≥ 1, it follows from
(i) that ψk can be manipulated at profile u ∈ U by at most 2|N|−1 − 1 coalitions. Since
there are 2|N| − 1 nonempty coalitions of N and 2|N| − 1 = 2(2|N|−1 − 1) + 1, less than
50% of all coalitions can manipulate ψk at profile u ∈ U . �

Therefore, if the agent k-preferred fair allocation rule is adopted, then to calculate
the exact number of manipulating agents and coalitions at a given profile, one only
needs to know the number of agents that are included in the (indifference) compo-
nent containing agent k. Because indifference components are invariant with respect to
the chosen fair allocation (Lemma 4), it is sufficient to find an arbitrary agent k-linked
fair allocation at the given preference profile to find the exact number of manipulating
agents and coalitions. This task can be achieved, for example, by using the algorithm in
Klijn (2000). Because this algorithm is polynomially bounded, this is not even compu-
tationally hard. An algorithm (inspired by Klijn 2000) for calculating agent k-linked fair
allocations is provided in Andersson et al. (2010a).

The corollary below follows from the above results.

Corollary 1. (i) ψk cannot be manipulated by agent k at any profile u ∈ U .

(ii) For any two distinct agents i� j ∈N , there exists no fair and budget-balanced allo-
cation rule ϕ such that neither i nor j can manipulate ϕ at any profile u ∈ U .

Note that Lemma 7 implies that the agent k-linked fair allocation rule cannot be
manipulated by any coalition containing k at any profile. In particular, the agent k-
linked fair allocation rule is not manipulable by agent k at any profile u ∈ U , which is the
first part of Corollary 1. The second part of Corollary 1 is easy to verify and is left to the
reader.

Remark 1. In a paper subsequent to this, Fujinaka and Wakayama (2011) report similar
results as ours regarding individual manipulation (possibilities): (a) Proposition 1 and
Proposition 2 in Fujinaka and Wakayama (2011) are identical with Theorem 6, (b) The-
orem 2 of Fujinaka and Wakayama (2011) is equivalent to (restricting attention to indi-
vidual manipulation) Theorem 7 (using Theorem 6), and (c) Corollary 2 of Fujinaka and
Wakayama (2011) is equivalent to Corollary 1 (using Lemma 6). There are two important
differences between our paper and Fujinaka and Wakayama (2011): on the one hand, we
allow for multivalued allocation rules whereas they only consider single-valued alloca-
tion rules; on the other hand, we consider only quasi-linear utility functions whereas
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they consider general utility functions satisfying (i) monotonicity in money, i.e., for any
x� y ∈ RM , if xj > yj , then uij(x) > uij(y), and (ii) no infinite desirability in terms of money,
i.e., for any j�k ∈M and any x ∈RM , there exists y ∈RM such that uij(x)= uik(y).

A.3 Minimal manipulability

Theorem 3 follows from the result below.

Theorem 9. Let ϕ be an arbitrary fair and budget-balanced allocation rule and let φκ

be a maximally preferred fair allocation rule. Then the following hold:

(i) ϕ is agents-counting-more manipulable than φκ.

(ii) If φκ is agents-counting-more manipulable than ϕ, then ϕ is a maximally pre-
ferred fair allocation rule.

Proof. First, we show (i). Let u ∈ U . Suppose that (a�x) ∈ ϕ(u) and (b� y) ∈φκ(u), and
let N −G be a (possibly empty) isolated group with maximal cardinality at allocation
(a�x) ∈ ϕ(u). Then G is an indifference component at allocations (a�x) and (b� y) by
Lemmas 4 and 5.

Note first that all agents in the isolated coalition N − G can manipulate ϕ by
Lemma 6. Consequently, at least |N −G| agents can manipulate ϕ. Hence, to conclude
the proof for (i), we need to show that at most |N −G| agents can manipulate φκ.

Suppose that κ(u) belongs to the indifference component Ĝ ⊆ Ḡ(u) and note that
|Ĝ| ≥ |G| by construction of φκ. Since φκ(u) = ψk(u) for all k ∈ Ĝ, it now follows from
Lemma 7 that no agent k ∈ Ĝ can manipulate φκ at profile u ∈ U . Thus, at most |N − Ĝ|
agents can manipulate φκ. The conclusion of (i) then follows directly from the observa-
tion that |Ĝ| ≥ |G| implies |N − Ĝ| ≤ |N −G|.

For (ii), note that then we have to have |N − G| ≤ |N − Ĝ| and |G| ≥ |Ĝ|. Then
G⊆ Ḡ(u). Since u ∈ U was arbitrary, now ϕ is a maximally preferred fair allocation
rule. �

Theorem 4 follows from the result below.

Theorem 10. Let ϕ be a fair and budget-balanced allocation rule and let φκ be a maxi-
mally preferred fair allocation rule. Then the following hold:

(i) ϕ is coalitions-counting-more manipulable than φκ.

(ii) Ifφκ is coalitions-counting-more manipulable thanϕ, thenϕ is a maximally pre-
ferred fair allocation rule.

Proof. First, we show (i). Let u ∈ U . Suppose that (a�x) ∈ ϕ(u) and (b� y) ∈φκ(u), and
let N −G be the (possibly empty) isolated group with maximal cardinality at allocation
(a�x) ∈ ϕ(u). Then G is an indifference component at allocations (a�x) and (b� y) by
Lemmas 4 and 5.
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Note first that all coalitions in the isolated group N − G can manipulate ϕ by
Lemma 6. Consequently, at least 2|N−G| − 1 coalitions can manipulate ϕ. Hence, to
conclude the proof, we need to show that at most 2|N−G| − 1 coalitions can manipulate
φκ. Suppose now that κ(u) belongs to the indifference component Ĝ⊆ Ḡ(u) and note
that |Ĝ| ≥ |G| by construction of φκ. It now follows from Lemma 7 and the construction

of φκ that at most 2|N−Ĝ| − 1 coalitions can manipulate φκ. The conclusion of (i) then

follows directly from the observation that |Ĝ| ≥ |G| implies 2|N−Ĝ| − 1 ≤ 2|N−G| − 1.

For (ii), note that then we have to have 2|N−Ĝ| − 1 ≥ 2|N−G| − 1 and |G| ≥ |Ĝ|. Then
G ⊆ Ḡ(u). Since u ∈ U was arbitrary, now ϕ is a maximally preferred fair allocation
rule. �

Theorem 5 follows from the result below.

Theorem 11. Let ϕ be an arbitrary fair and budget-balanced allocation rule. Then the
following hold:

(i) There exists a selection κ :U →N such that ϕ is agents-inclusion-more manipu-
lable than φκ.

(ii) If φκ is agents-inclusion-more manipulable than ϕ, then ϕ=φκ.

Proof. We construct κ :U →N as follows: for all u ∈ U , if for some k ∈N , ϕ(u)=ψk(u),
then we set κ(u)= k; otherwise κ(u) can be arbitrary.

First we show (i). Let u ∈ U . If for all k ∈ N , ϕ(u) � ψk(u), then any agent i ∈ N
belongs to an isolated group. Now by Lemma 6, Pϕ(u) = N . Since φκ(u) ⊆ ψκ(u)(u),
now by Lemma 7, Pφ

κ
(u)⊆N − {κ(u)}. Hence, Pϕ(u)⊇ Pφκ(u).

If for some k ∈ N , ϕ(u) = ψk(u), then by construction of κ, we also have φκ(u) =
ψk(u). But now we have Pϕ(u)⊇ Pφκ(u).

Hence, for all u ∈ U , Pϕ(u) ⊇ Pφ
κ
(u) and ϕ is agents-inclusion-more manipulable

than φκ, the desired conclusion for (i).
For (ii), note that then we have to have Pφ

κ
(u)⊇ Pϕ(u). Then for k= κ(u), we have

φκ(u)=ψk(u) and, by k /∈ Pφκ(u), ϕ(u)=ψk(u), the desired conclusion. �
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