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As multi-hospital kidney exchange has grown, the set of players has grown from
patients and surgeons to include hospitals. Hospitals can choose to enroll only
their hard-to-match patient–donor pairs, while conducting easily arranged ex-
changes internally. This behavior has already been observed.

We show that as the population of hospitals and patients grows, the cost of mak-
ing it individually rational for hospitals to participate fully becomes low in almost
every large exchange pool (although the worst-case cost is very high), while the
cost of failing to guarantee individual rationality is high—in lost transplants. We
identify a mechanism that gives hospitals incentives to reveal all patient–donor
pairs. We observe that if such a mechanism were to be implemented and hospitals
enrolled all their pairs, the resulting patient pools would allow efficient matchings
that could be implemented with two- and three-way exchanges.
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1. Introduction

A marketplace is similar to a public good: it provides opportunities to every potential
trader. As the market becomes larger, the trades it offers become more numerous and
varied. However, when it is costly to bring goods to market, and when some goods are
easier to trade than others, a kind of free riding can occur. Traders may be tempted
to bring only their hard-to-trade goods to market and to trade their easy-to-trade goods
elsewhere (e.g., nearer home). When this leads to loss of efficiency, the task of the market
designer is to make the marketplace attractive enough for even the easy-to-trade goods.1
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We are today seeing this in kidney exchange, in a way that allows the free riding and
the consequent loss of efficiency to be clearly understood. When kidney exchange was
just beginning, most exchanges were conducted in single hospitals or in closely con-
nected networks of hospitals like the 14 New England transplant centers organized by
the New England Program for Kidney Exchange (Roth et al. 2005b). But today exchanges
often involve multiple hospitals that may have relatively little repeated interaction out-
side of kidney exchange. The present paper establishes a theoretical framework to study
the kinds of problems that have developed as the United States moves toward nationally
organized exchange, as it has begun to do since the passage of facilitating legislation in
2007.2

We study the growing problem of giving hospitals incentives to participate fully, to
achieve the gains that kidney exchange on a large scale makes possible. We characterize
the efficient exchanges that would arise in large markets if hospitals participated fully
and how this efficiency can be lost if hospitals withhold easy-to-match pairs. Our re-
sults suggest that if care is taken in how kidney exchange mechanisms are organized,
the problems of participation may be less troubling in large exchange programs than
they are starting to be in multi-hospital exchanges as presently organized. We propose
a “bonus mechanism,” similar in spirit to frequent flyer programs, and show that it pro-
vides incentives for hospitals to enroll their easy- as well as their hard-to-match patient–
donor pairs.

1.1 Background

Kidney transplantation is the treatment of choice for end stage renal disease, but there
are many more people in need of kidneys than there are kidneys available. Kidneys for
transplantation can come from deceased donors or from live donors (since healthy peo-
ple have two kidneys and can remain healthy with one). However, not everyone who is
healthy enough to donate a kidney and wishes to do so can donate a kidney to his or
her intended recipient, since a successful transplant requires that donor and recipient
be compatible in blood and tissue types. This raises the possibility of kidney exchange,
in which two or more incompatible patient–donor pairs exchange kidneys, with each
patient in the exchange receiving a compatible kidney from another patient’s donor.3

Note that it is illegal for organs for transplantation to be bought or sold in the United
States and throughout much of the world (see Roth 2007 and Leider and Roth 2010).

this market and reestablish a national marketplace, it was necessary to make changes in the market rules;
see McKinney et al. (2005), Niederle and Roth (2005), Niederle et al. (2006, 2008). While the efficiency losses
could not be quantified in those markets, one of the contributions of the present paper is that we can
show the size of the efficiency losses from withholding easy transactions in the markets we consider here.
(Related issues arose in the market for college football championship games, in which a variety of market
designs were deployed to create a thicker market; see Roth and Xing 1994 and Fréchette et al. 2007.)

2110th Congress, Public Law 110–144, Charlie W. Norwood Living Organ Donation Act, Dec. 21, 2007.
3In addition to such cyclic exchanges, chains are also possible, which involve not only incompatible

patient–donor pairs, and begin with a deceased donor or an undirected donor (one without a particular
intended recipient) and end with a patient with high priority on the deceased donor waiting list or with a
donor who will donate at a future time.
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Kidney exchange thus represents an attempt to organize a barter economy on a large
scale, with the aid of a computer-assisted clearinghouse.4

The first kidney exchange in the United States was carried out in 2000 at the Rhode
Island Hospital, between two of the hospital’s own incompatible patient–donor pairs.5  

Roth et al. (2004) made an initial proposal for organizing kidney exchange on a large
scale, which included the ability to integrate cycles and chains, and considered the in-
centives that well designed allocation mechanisms would give to participating patients
and their surgeons to reveal relevant information about patients. The surgical infras-
tructure available in 2004 meant that only pairwise exchanges (between exactly two in-
compatible patient–donor pairs) could initially be considered, and Roth et al. (2005a)
proposed a mechanism for accomplishing this, again paying close attention to the in-
centives for patients and their surgeons to participate straightforwardly. As kidney ex-
changes organized around these principles gained experience, Saidman et al. (2006) and
Roth et al. (2007) showed that efficiency gains could be achieved by incorporating chains
and larger exchanges that required only relatively modest additional surgical infrastruc-
ture, and today there is growing use of larger exchanges and longer chains, particularly
following the publication of Rees et al. (2009).

Roth et al. (2005b) describe the formation of the New England Program for Kidney
Exchange (NEPKE) under the direction of Dr. Frank Delmonico, which initially orga-
nized the 14 transplant centers in New England. Those proposals were also instrumen-
tal in helping to organize the Alliance for Paired Donation (APD) under the direction of
Dr. Mike Rees.6 In 2010, a National Kidney Paired Donation Pilot Program organized by
the United Network for Organ Sharing (UNOS) became operational, still on a very small
scale.7

Kidney exchange is growing fast, but it still accomplishes well under a thousand
transplants a year.8 54 hospitals participate (actively) in the privately organized National
Kidney Registry (NKR), for example, and 49 hospitals participate in APD. In the last year,
the number of incompatible pairs that join these programs is between 30–40 pairs per
month (these numbers are growing). 20% of the centers provide more than 50% of the
pairs and are roughly the same size. These large centers currently enter just a few pairs
every month.

During the initial startup period, attention to the incentives of patients and their
surgeons to reveal information was important. But as infrastructure has developed,

4Recall that Jevons (1876) proposed that precisely the difficulties of organizing barter economies—in
particular, the difficulty of satisfying the “double coincidence” of wants involved in simultaneous exchange
without money—had led to the invention of money.

5For an account of this and other early events in kidney exchange, see Roth (2010).
6Today, in addition to those two large kidney exchange clearinghouses, kidney exchange is practiced by a

growing number of hospitals and formal and informal consortia (see Roth 2008). Computer scientists have
become involved, and an algorithm of Abraham et al. (2007) designed to handle large populations is used
in the national pilot program.

7The national pilot program ran two initial pilot matches in October and December of 2010. Under its
initial guidelines, only exchanges were considered, not chains. In December 2011 NEPKE formally ceased
operation to merge its efforts with the national pilot program.

8Massie et al. (2013) report that 93 kidney exchange transplants were conducted in 2006, and between
500 and 600 in each of 2010 and 2011.
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the information contained in blood tests has come to be conducted and reported in
a more standard manner (sometimes at a centralized testing facility), reducing some of
the choice about what information to report and with what accuracy. So some strategic
issues have become less important over time (and indeed current practice does not deal
with the provision of information that derives from blood tests as an incentive issue).

However, as kidney exchange has become more widespread, and as multi-hospital
exchange consortia have been formed and a national exchange is being explored, the
“players” are not just (and perhaps not even) patients and their surgeons, but hospi-
tals (or directors of transplant centers). And as kidney exchange is practiced on a wider
scale, a new phenomenon has emerged. Free riding has become possible, with hospitals
having the option of participating in one or more kidney exchange networks but also of
withholding some of their patient–donor pairs or some of their nondirected donors, and
enrolling those of their patient–donor pairs who are hardest to match, while conducting
more easily arranged exchanges internally. Some of this behavior is already observable.

The present paper considers the “kidney exchange game,” with hospitals as the play-
ers, to clarify the issues currently facing hospitals in existing multi-hospital exchange
consortia and those that would face hospitals in a large-scale national kidney exchange
program.9

While we concentrate on the incentives created by the matching algorithms, the fact
that presently used algorithms do not make it individually rational for hospitals to fully
participate in kidney exchange is not the only reason that hospitals withhold patients.
Other reasons include lack of standardization in compatibility tests, and bureaucratic
and other difficulties in registering pairs to the various kidney exchange systems. For
example, not all hospitals collect all the medical data that some programs require. Fi-
nancing is another obstacle; for example, hospitals may have difficulty recovering the
costs of testing a donor who will eventually donate to a patient at another hospital (Rees
et al. 2012).

1.2 Free riding

Hospitals participate in a multi-center exchange by reporting a list of incompatible
patient–donor pairs to a central clearinghouse, and a matching mechanism chooses
which exchanges to carry out. At the same time, some hospitals conduct exchanges only
internally among their own patients, and even hospitals participating in multi-center
exchange programs may conduct some internal exchanges and may participate in more
than one exchange program.

9One referee asks why, if hospital participation is a problem, kidney exchange cannot be designed with-
out hospitals, with patients registering directly (or through dialysis centers). A second referee proposes that
the problem of hospital participation could be “simply” solved by legislation requiring hospitals to par-
ticipate. It seems to us that these suggestions make more sense in the abstract than in connection with
practical market design. It is difficult to pass legislation mandating how hospitals treat patients, since hos-
pitals need to exercise a good deal of discretion about individual cases. And patients in need of transplants
presently get most of their advice from surgeons associated with hospitals, and it would be difficult and not
obviously desirable to bypass this process. And each transplant adds revenues to hospitals and subtracts it
from dialysis centers, so it is far from clear that dialysis centers are natural partners for promoting kidney
exchange.
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Centralized kidney exchange programs substantially increase the number of matches
found and also the chance for highly sensitized patients to be matched compared to
decentralized matching within individual hospitals. The efficiency gains from central-
ization grow as the number of (moderate-sized) hospitals increases.10

However, when kidney exchange clearinghouses try to maximize the (weighted)
number of transplants without attention to whether those transplants are internal to
a hospital, it may not be individually rational for a hospital to contribute those pairs it
can match internally (cf. Roth 2008).11 For example, consider a hospital a with two pairs,
a1 and a2, that it can match internally. Suppose it enters those two pairs in a centralized
exchange. It may be that the weighted number of transplants is maximized by includ-
ing a1 in an exchange but not a2, in which case only one of hospital a’s patients will be
transplanted, when it could have performed two transplants on its own.

This is becoming a first-order problem, as membership in a kidney exchange net-
work does not mean that a hospital does not also do some internal exchanges.12 Mike
Rees, the director of the APD, writes (personal communication)

. . . competing matches at home centers is becoming a real problem. Unless it is mandated,
I’m not sure we will be able to create a national system. I think we need to model this
concept to convince people of the value of playing together.

This paper attempts to understand the problem raised by the APD director. We will
see that when the number of hospitals and incompatible pairs is small, it may be costly
(in terms of lost transplants) for a centralized clearinghouse to guarantee hospitals indi-
vidual rationality, compared to how many transplants could be accomplished if all pairs
were submitted to a centralized exchange despite no guarantee of individual rationality.
However, in large markets we will show that this cost becomes very low. In the market
we study, the number of hospitals grows large and each hospital satisfies a regularity as-
sumption, which implicitly requires that its number of patient–donor pairs is not “too
big,” yet not zero. In particular, we show that there is an individually rational alloca-
tion that is almost efficient. We further begin to explore incentive compatible mecha-
nisms for achieving full participation by hospitals as efficiently as possible; We intro-
duce an (almost) efficient mechanism under which full participation (not withholding
pairs) is an approximated Bayes Nash equilibrium under a slightly stronger regularity
assumption.

1.3 Related literature

Roth et al. (2007) studied efficiency in large markets without considering incentives or
directly modeling tissue-type incompatibilities. They showed that exchanges of size

10See Toulis and Parkes (2011), who quantify the benefit from a centralized clearinghouse for organizing
two-way exchange.

11Some weighted matching algorithms currently in use put some weight on internal exchanges, but this
does not solve the problem, since it neither guarantees a hospital the exchanges it could conduct internally
nor does it guarantee that the pairs that could be internally exchanged will be used efficiently if submitted
to the central clearinghouse.

12The national pilot program has to date completed very few transplants, in part because of this problem.
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more than 4 are not needed for efficiency. In this paper, we model tissue-type incom-
patibilities using a random graph framework (and show that even four-way exchanges
are not needed for efficiency), but more importantly, we study the hospitals’ incentives.
In unpublished notes from 2007, Roth, Sönmez, and Ünver introduced the problem of
withholding internal matches by hospitals and showed that there is no efficient strat-
egyproof mechanism for kidney exchange.13 Our work extends that negative result for
small markets to show that efficient mechanisms cannot even be individually rational,
but, more importantly, we provide positive results in large random markets.

Toulis and Parkes (2011) also adopt a random graph model to study mechanisms
for kidney exchange and provide useful quantitative welfare results. Their results are
close to ours, but with a very different model of how the market grows large. While we
model a growing number of “small” hospitals, they let a fixed number of hospitals each
become very large. We further discuss the differences throughout the paper. In another
paper, Ashlagi et al. (forthcoming(b)) also analyze hospitals’ incentives, but worst case
rather than in a Bayesian (random graph) environment. Finally, Ünver (2010) analyzes
an efficient algorithm for a dynamic environment in which full participation is assumed.

2. Kidney exchange and individual rationality

2.1 Exchange pools

An exchange pool consists of a set of patient–donor pairs. A patient p and a donor d are
compatible if patient p can receive the kidney of donor d and are incompatible other-
wise. It is assumed that every pair in the pool is incompatible.14 Thus, a pair is a tuple
v = (p�d) in which donor d is willing to donate his kidney to patient p, but p and d are
incompatible. We assume for simplicity that each donor and each patient belong to a
single pair.

An exchange pool V induces a compatibility graphD(V )=D(V �E(V )) that captures
the compatibilities between donors and patients as follows: the set of nodes is V , and
for every pair of nodes u�v ∈ V , (u�v) is an edge in the graph if and only if the donor of
node u is compatible with the patient of node v. We will use the terms nodes and pairs
interchangeably.15

An exchange can now be described through a cycle in the graph. Thus, an exchange
in V is a cycle in D(V ), i.e., a list v1� v2� � � � � vk for some k ≥ 2 such that for every i,
1 ≤ i < k, (vi� vi+1) ∈ E(V ) and (vk� v1) ∈ E(V ). The size of an exchange is the number
of nodes in the cycle. An allocation in V is a set of distinct exchanges in D(V ) such that
each node belongs to at most one exchange. Since, in practice, the size of an exchange

13This result appears in the survey by Sönmez and Ünver (2013).
14Pairs that are compatible would presently go directly to transplantation and not join the exchange pool

(but see, e.g., Roth et al. 2005b and Sönmez and Ünver 2014 on the advantages of changing this policy).
15In practice, a patient may have more than one incompatible donor. In this case, the model can be

naturally extended by adding outgoing edges from the patient’s node to pairs such that at least one of her
incompatible donors is compatible with the patient at that node.
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is limited (mostly due to logistical constraints), we assume there is an exogenous maxi-
mum size limit k> 0 for any exchange. Thus, if k= 3, only exchanges of size 2 and 3 can
be conducted.16

Let M be an allocation in V . We say that node v is matched by M if there exists an
exchange in M that includes v. For any set of nodes V ′ ⊆ V , let M(V ′) be the set of all
nodes in V ′ that are matched (or “covered”) byM .

We will be interested in finding efficient allocations that have as many transplants as
possible. Two types of efficiency will be considered. M is called k-efficient if it matches
the maximum number of transplants possible for exchanges of size no more than k,
i.e., there exists no other allocation M ′ consisting of exchanges of size no more than k
such that |M ′(V )| > |M(V )|.17 M is called k-maximal if there exists no such allocation
M ′ such that M ′(V ) �M(V ). A matching will be called efficient (or maximal) if it is k-
efficient (or k-maximal) for unbounded k, i.e., for no limit on how many transplants can
be included in an exchange. Note that every k-efficient allocation is also k-maximal.
The converse is not true. However, for k= 2, both types of efficiency coincide, since the
collection of sets of simultaneously matched nodes in allocations forms a matroid (see
Edmonds 1971).

A kidney exchange program (or simply a kidney exchange) consists of a set of n hospi-
talsHn = {h1� � � � �hn} and a set of incompatible pairs Vh for each hospital h ∈Hn. We let
VHn = ⋃

h∈Hn Vh. The compatibility graph induced by VHn is called the underlying graph.
We will take the hospitals (e.g., the director of transplantation at each hospital) as the
active decision makers in the kidney exchange, whose choices are which incompatible
pairs to reveal to the exchange. We will approximate the preferences of hospitals as being
concerned only with their own patients. Mostly we will assume hospitals are concerned
only with the number of their patients who receive transplants, although we do not rule
out hospitals having preferences over which of their patients are transplanted.

An exchange that matches only pairs from the same hospital is called internal. Hos-
pital h can match a set of pairs Bh ⊆ Vh internally if there exists an allocation in Vh such
that all nodes in Bh are matched.

2.2 Participation constraints: Individual rationality for hospitals

The kidney exchange setting invites discussions of various types of individual rational-
ity (IR). In this paper, an allocation is not individually rational if some hospital can in-
ternally match more pairs than the number of its pairs matched in the allocation. For-
mally, an allocation M in VHn is not individually rational if there exists a hospital h and
an allocationMh in Vh such that |M(Vh)|< |Mh(Vh)|.

To illustrate this, consider the compatibility graph in Figure 1, where nodes a1 and a2
belong to hospital a, and b1 and b2 belong to hospital b. The only individually rational
allocation is the one that matches a1 and a2.

16In the APD and NEPKE, kwas originally set to 2, was increased to 3, and now optimization is conducted
over even larger exchanges and chains, and the pilot national program considers exchanges up to size 3.
Exchanges are generally conducted simultaneously, so an exchange of size k requires 2k operating rooms
and surgical teams for the k nephrectomies (kidney removals) and k transplants.

17In graph theory, a 2-efficient allocation is referred to as a maximum matching.
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Figure 1. No 3-efficient allocation is individually rational.

Remark. Throughout this paper, undirected edges represent two directed edges, one in
each direction.

Other formulations of individual rationality may sometimes be appropriate, such as
requiring not merely that a hospital be allocated the same number of transplants it can
achieve on its own, but that it be guaranteed a set of transplants that includes all the
individuals it could match on its own. It is worth mentioning that all our positive results
hold even with this stronger individual rationality.

In the next section, we study worst-case efficiency loss from choosing IR allocations.

3. IR and efficiency: Worst-case results for compatibility graphs

By choosing the individually rational allocation in Figure 1, we obtain two transplants
whereas the efficient allocation provides three. The next result, proved in the Appendix,
shows that a maximum individually rational allocation can be very costly in the worst
case.18

Theorem 1. Let k ≥ 3. In every compatibility graph the size of a k-maximal allocation
is at least 1/(k− 1) times the size of a k-efficient allocation. This bound is tight: there
exists a compatibility graph such that no k-maximal allocation that is also individually
rational matches more than 1/(k− 1) of the number of nodes matched by a k-efficient
allocation.19

Thus there is a very high potential cost of individual rationality, but it gives a worst-
case result. However, it appears that the expected efficiency loss from requiring individ-
ual rationality can be very small. Indeed, our simulations show that if all incompatible
pairs are in the same exchange pool, the average number of patients who do not get a
kidney due to requiring IR is less than 1 (see Table 1). But as we shall see in Section 8,
the cost of failing to guarantee individual rationality could be large if that causes hos-
pitals to match their own internal pairs. In Section 9, we explain how we conduct the
simulations and provide further simulation results.

In the next sections, we will prove that the efficiency loss from choosing an IR alloca-
tion of maximum size is small in large compatibility graphs, supporting the simulation
results.

18Note that in every compatibility graph, one can find a k-maximal allocation that is also individually
rational: first choose a k-efficient allocation in Vh for every hospital h and then repeatedly search for an al-
location that increases the total number of matched pairs without unmatching any pair that was previously
matched (although possibly rematching such pairs using different edges).

19If hospitals can conduct only two-way exchanges, then there is always a 2-efficient allocation that is
individually rational since every 2-maximal allocation is 2-efficient.
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No. of hospitals IR, k= 3 Efficient, k= 3

2 6�91 7�07
4 17�02 17�42
6 27�31 27�92
8 39�35 40�04

10 51�72 52�44
12 63�44 64�19
14 75�89 76�72
16 88�08 88�81

Table 1. Number of transplants achieved using maximum-size individually rational allocations

versus using efficient (and not necessarily individually rational) allocations. Each hospital has,

on average, 10 pairs.

4. Random exchange pools

To discuss the Bayesian setting, it is useful to consider random compatibility graphs.
Each person in the population has one of four blood types A, B, AB, and O, according to
whether her blood contains the proteins A, B, both A and B, or neither. The probability
that a random person’s blood type is X is given by μX > 0. We will assume that μO >

μA >μB >μAB (as in the U.S. population).20 For any two blood types X and Y , a donor
of blood typeY and a patient with blood typeX are blood-type compatible ifX includes
whatever blood proteins A and B are contained in Y .21

A patient–donor pair has pair type (or just type, whenever it is clear from the context)
X-Y if the patient has blood typeX and the donor has blood typeY . The set of pair types
will be denoted by P . For a donor and a patient to be compatible, they need to be both
blood-type compatible and tissue-type compatible. To test tissue type compatibility, a
cross-match test is performed. Each patient has a level of percentage reactive antibodies
(PRA) that determines the likelihood that the patient will be compatible with a random
donor. The lower the PRA of a patient, the more likely the patient is compatible with
a random donor. For simplicity, we assume that there exist two levels of PRA, γL and
γH (γL < γH ); the probability that a patient p with PRA γ and a donor are tissue-type
incompatible is given by γ. Furthermore, the probability that a random patient has PRA
γL is given by υ > 0. Let γ̄ denote the expected PRA level of a random patient, that is,
γ̄ = υγL + (1 − υ)γH .22

20In practice, μO = 0�48, μA = 0�34, μB = 0�14, and μAB = 0�04.
21Thus type O patients can receive kidneys only from type O donors, while type O donors can give kid-

neys to patients of any blood type. Note that since only incompatible pairs are present in the kidney ex-
change pool, donors of blood type O will be underrepresented, since most such donors will be compatible
with their intended recipients; the only incompatible pairs with an O donor will be tissue-type incompat-
ible. (Roth et al. 2005b showed that a significant increase in the number of kidney exchanges could be
achieved by allowing compatible pairs to participate, but this has not become common practice.)

22Our results hold for any number of different PRA levels as long as the probabilities for compatibility
are constant.
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Definition 1 (Random compatibility graph). A random (directed) compatibility graph
of order m, denoted D(m), consists of m incompatible patient–donor pairs and is gen-
erated as follows:

Nodes. A patient p and a potential donor d are generated using the blood type and
PRA distribution, and (p�d) forms a new node if and only if they are incom-
patible with each other.

Edges. Between every two pairs v1 and v2, a directed edge is generated if the donor of
v1 is compatible with the patient of v2.

We will often denote a random compatibility graph by D(Hn); thus D(Hn)=D(m),
where m is the total number of pairs in all hospitals belonging to Hn. We also denote by
μX-Y the posterior probability that an incompatible pair (p�d) is of typeX-Y .

We will derive results for large random compatibility graphs (with many hospitals),
and use results and methods from random graph theory. We adopt the following formal-
ism from this literature: if the probability that a given propertyQ is satisfied in a random
graphG tends to 1 whenm tends to ∞, we say thatQ holds in almost every (large)G.

The relative number of pairs of various types will be useful in studying large com-
patibility graphs.

Lemma 1. In almost every largeD(m), the following statements hold:

1. For all X ∈ {A�B�AB}, the number of O-X pairs is larger than the number of X-O
pairs.

2. For all X ∈ {A�B}, the number of X-AB pairs is larger than the number of AB-X
pairs.

3. The absolute difference between the number of A-B pairs and B-A pairs is o(m).
Consequently, this difference is smaller than the number of pairs of any other pair
type.23

Toulis and Parkes (2011) prove a similar lemma, and use the blood-type and tissue-
type distributions to characterize the size of each set of pairs in the graph.

Lemma 1, whose proof appears in the Appendix, motivates the following partition of
patient–donor pair types P (see also Roth et al. 2007 and Ünver 2010). Let

O = {A-O�B-O�AB-O�AB-A�AB-B}
be the set of overdemanded types.

Let

U = {O-A�O-B�O-AB�A-AB�B-AB}
be the set of underdemanded types.

23Terasaki et al. (1998) claim that the frequency of A-B pairs (0�05) is larger than B-A pairs (0�03), but they
do not give any data or other explanation to support their claim. Our result just asserts that the absolute
difference is small.
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Let

S = {O-O�A-A�B-B�AB-AB}
be the set of self-demanded types and, finally, let R be the set of reciprocally demanded
types that consists of types A-B and B-A.

Intuitively, an overdemanded pair is offering a kidney in greater demand than the
one being sought. For example, a patient whose blood type is A and a donor whose blood
type is O form an overdemanded pair. Underdemanded types have the reverse property:
they are seeking a kidney that is in greater demand than the one they are offering in
exchange. A donor and patient in a pair with a self-demanded type have the same blood
type.

The following notations will be useful in later sections and proofs. For any type t ∈ P
and set of pairs S, we denote by τ(S� t) the set of pairs with type t in S and for a set of
types T ⊆ P , let τ(S�T) = ⋃

t∈T τ(S� t) and let μT = ∑
t∈T μt . For any set of pairs V , let

MV
T be a (random) allocation in the graph induced by the set of pairs V that maximizes

the number of matches with type belonging to T .
In the next section, we study efficiency in large random compatibility graphs. We let

γL and γH (the probability of tissue type incompatibility for patients with low or high
PRA) be nondecreasing functions of m, with the important special case in which both
are constants.

5. Efficient allocations in large random compatibility graphs

We construct here an efficient allocation in a large random compatibility graph. We
make the following assumptions, which are compatible with blood-type frequencies and
with observed tissue-type sensitivity frequencies. Zenios et al. (2001) reported that for
nonrelated blood-type donors and recipients, γ̄ = 0�11.

Assumption A (Non-highly-sensitized patients). γ̄ < 1
2 .24

Assumption B (Blood type frequencies). μO < 1�5μA.25

Proposition 1. Almost every large D(m) has an efficient allocation that requires ex-
changes of no more than size 3 with the following properties:

1. Every self-demanded pair X-X is matched in a two-way or a three-way exchange
with other self-demanded pairs (no more than one three-way exchange is needed, in
the case of an odd number ofX-X pairs).

24This assumption is also used for avoiding case-by-case analysis; one can provide similar results for the
opposite inequality. However, the limit results we obtain here for large compatibility graphs are less of a
good approximation to the situation facing very high PRA patients in the finite graphs we see in practical
applications than they are for the situation facing the large majority of patients who are not extremely highly
sensitized. We will return to this, and the open questions it raises, in the conclusion.

25We will use this assumption to construct the efficient allocation. However, even if this assumption
does not hold, using a similar method of proof, one can construct a very similar allocation. The details of
the efficient allocation would slightly change, but not our results about individually rational allocations.
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Figure 2. The structure of an efficient allocation in the graph D(m) (excluding all self-
demanded pairs). The shaded region is the set of overdemanded pairs, none of which remains
unmatched after an efficient matching. All B-A pairs are matched to A-B (assuming there are
more B-A than A-B); the remainder of the A-B pairs (VA-B) are matched in three-way exchanges
using O-A’s and B-O’s. AB-O are matched in three ways each using two overdemanded pairs, and
every other overdemanded pair is matched to a corresponding underdemanded pair.

2. Either every B-A pair is matched in a two-way exchange with an A-B pair or every
A-B pair is matched in a two-way exchange with a B-A pair.

3. Let X�Y ∈ {A�B} and X �= Y . If there are more Y -X than X-Y , then every Y -X pair
that is not matched to anX-Y pair is matched in a three-way exchange with an O-Y
pair and anX-O pair.

4. Every AB-O pair is matched in a three-way exchange with an O-A pair and an A-AB
pair.

5. Every overdemanded pairX-Y that is not matched as above is matched to an under-
demanded Y -X pair.

The structure of the efficient allocation described in the proposition is given Fig-
ure 2. The proof of the proposition is deferred to the Appendix.

Roth et al. (2007) showed that exchanges of size at most 4 are sufficient for efficiency
and assumed compatibilities are determined merely by blood types. Interestingly, they
used the four-way exchanges (AB-O, O-A, A-B, B-AB) whenever there were many more
A-B pairs than B-A pairs. Our random model assures that this difference is small enough
to avoid the need for such four-way exchanges (note from Figure 2 that such a four-way
exchange becomes inefficient, since it uses an AB-O pair that could instead have been
used in a three-way exchange and an A-B pair that could have been used in either a
two-way or a three-way exchange, for a total of more than four transplants). Toulis and
Parkes (2011) prove a similar result to ours.

Similarly to Proposition 1, one can show that the size of a 2-efficient allocation is
at most μAB-Om+ o(m) smaller than the size of an efficient allocation.26 One possibly

26In particular, AB-O pairs can be matched to O-AB pairs using two-way allocations rather than being
matched in a three-way allocation as described in Proposition 1, and the three-way exchanges that use A-B
pairs (or B-A pairs) can be ignored.



Theoretical Economics 9 (2014) Free riding 829

undesirable feature of the efficient allocation is that underdemanded pairs of type O-AB
will all be left unmatched. While it is inevitable that many underdemanded pairs will be
left unmatched, there is sometimes discomfort in medical settings having a priori iden-
tifiable pairs seemingly singled out. A natural outcome would be that hospitals would
seek to match such pairs internally, a point to which we will return later when we ob-
serve that precisely these internal matches account for most of the efficiency cost of
individual rationality.

Until this point, nothing has been said about individual rationality in the Bayesian
setting. In the next section, we study the efficiency cost of requiring an allocation to be
individually rational in large exchange pools.

6. Individual rationality is not very costly in large random

compatibility graphs

One way in which individual rationality might conflict with efficiency is if hospitals’ in-
ternal exchanges make inefficient use of overdemanded pairs, e.g., if an overdemanded
A-O pair were matched internally in a two-way exchange with a B-A, an A-A, or an AB-A
pair, in each case resulting in two transplants instead of four. In Section 3, we proved
tight worst-case bounds on the efficiency loss from having to honor hospitals’ internal
exchanges to guarantee individual rationality. We derive here a much smaller upper
bound on this loss for large random compatibility graphs.

One way to bound the efficiency loss is by attempting to construct an efficient al-
location as in Proposition 1 that matches the pairs each hospital can internally match.
Unfortunately such an allocation is not always feasible.

Consider, for example, the following two unbalanced three-way exchanges (B-O,
O-A, A-B) and (A-O, O-B, B-A). Too many three-way internal exchanges of the second
type, for example, as well as other internal exchanges that include O-B pairs but not B-O
pairs, could lead to a situation in which, to satisfy individual rationality, more O-B pairs
would potentially need to be matched than the total number of B-O pairs. This can harm
efficiency since, as Theorem 1 suggests, more transplants are obtained by choosing the
two two-way exchanges rather than the three-way exchange in Figure 3.

Individual rationality, however, does not require the clearinghouse to match a spe-
cific maximum set of pairs that each hospital can internally match, but only to guarantee
to match at least the number of pairs each hospital can internally match. For example,
if a hospital has an internal unbalanced exchange A-O, O-B, B-A and an internally un-
matched O-A pair, then to satisfy individual rationality, it is sufficient to match the A-O,
B-A, and O-A pairs.

As the above discussion suggests, individually rational allocations may contain
(many) more underdemanded pairs of a specific type than its reciprocally overde-
manded type. However, if each hospital is not “too big,” this is very unlikely. We will
use the following definition that implicitly bounds the size of a hospital by not letting it
match internally too many underdemanded pairs.
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Figure 3. A three-way (internal) exchange that matches an O-B pair for which there may not be
a corresponding B-O pair.

We say that a size c of a hospital is regular if in a random internal allocation that max-
imizes the number of matched underdemanded pairs and any underdemanded type
X-Y , the expected number of X-Y matched pairs is less than the expected number of
overdemanded Y -X pairs in its pool.

A formal definition is given in Appendix A.4. We further motivate this definition.
Note that if each hospital is large enough, it can internally match with high probability
the same set of pairs that are matched in the efficient allocation described in Proposi-
tion 1 and illustrated in Figure 2 (this can be shown using the Erdos–Renyi theorem (see
Theorem 4) and using the fact that the probability for each edge is a constant). There-
fore, if hospitals were large enough, centralized kidney exchange would not yield more
matches than a decentralized system. And, in fact, American transplant centers have
grown in numbers more than in size. Today there are over 200 centers that perform kid-
ney transplants, and the largest do fewer transplants they did when there were only a
handful of centers (see Massie et al. 2013, who compile data from 207 American trans-
plant centers).

Using simulations with distributions from clinical data (see Ashlagi et al. 2011a,
2011b), we find that hospitals of size up to at least c = 70 are regular.27

This allows us to state our first main result.

Theorem 2. Suppose every hospital size is regular and bounded by some c̄ > 0, and let
ε > 0. In almost every large graph D(Hn), there exists an individually rational allocation
using exchanges of size at most 3, which is at most μAB-Om + εμA-Bm smaller than the
efficient allocation, wherem is the number of pairs in the graph.

As suggested in the theorem (and as shown in the proof), most of the efficiency loss
comes from matching of (otherwise unmatched) underdemanded O-AB pairs in two-
way exchanges to AB-O pairs. This means that the efficiency loss is only about 1%, which
is the (simulated) frequency of the AB-O pairs. Note also that, as remarked earlier, it
is hard to regret this small decrease in the total number of matched pairs, since no

27In practice, hospitals indeed withhold, but in a given month, no hospital has ever enrolled more than
10 pairs to either the National Kidney Registry or the Alliance for Paired Donation.
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O-AB pairs would have been matched had the goal been to maximize the number of
transplants.28,29

Theorem 2 is a limit theorem, but Table 1 showed simulation results that demon-
strate that the cost of individual rationality is very low even for sizes of exchange pools
observed in present-day clinical settings.

The proof is deferred to the Appendix. The key step is to match for each hospital
as many underdemanded pairs it can internally match (since these are the pairs that
compete to be matched). In particular, we show that with high probability there exists a
satisfiable set of underdemanded pairs that can be matched, where a satisfiable set is a
set in which (i) for each hospital, the set contains at least the number of underdemanded
pairs the hospital can internally match and (ii) for each underdemanded type X-Y , the
number of pairs in the set is the same number as the total number of overdemanded
Y -X pairs in the entire pool.

Remarks. 1. Toulis and Parkes (2011) provide an algorithm that finds an efficient indi-
vidually rational allocation. However, there is a major difference in their model; in
contrast to our regularity assumption, they assume each hospital is large enough
so that it contains an efficient allocation with the structure provided in Figure 5,
which they term a canonical allocation. Note that for a hospital to contain a canon-
ical allocation, it cannot be regular by definition (recall that the condition that our
simulations provide regularity is only violated for hospitals of size more than 70,
much larger than hospitals enroll in a “reasonable” time period). Also, Ashlagi and
Roth (2012) observed that there are many very highly sensitized patients, making it
very unlikely that hospitals contain a canonical internal allocation.

Finally, as we mentioned, if every hospital has an internal allocation with a
canonical structure, there is almost no need for a centralized mechanism.

2. The proof of Theorem 2 is by construction and thus defines an algorithm that finds
an individually rational allocation (in almost every large graph). Interestingly, our
algorithm runs in polynomial time. The algorithm first finds within each hospital
internal allocations, a step that runs in linear time (in the number of hospitals)
since each hospital is of a constant size. This step identifies the set of pairs S that
will be matched in the final allocation.

In the second step, we identify an allocation that matches all pairs in S, and even
when using only two-way exchanges in this step, we achieve the same bound for the
efficiency loss. As our proof shows in almost every large graph, such an allocation
exists. Using this fact, our final step runs in polynomial time; it is equivalent to the
following simplified problem: we are given a graph and a set of nodes S in the graph
that can be matched in a maximum matching, and the task is to find a maximum

28We conjecture that the requirement that every hospital size be regular can be relaxed (to a weaker
definition of regular) or eliminated entirely.

29The allocation constructed in the proof can fail to be individually rational with low probability. How-
ever, using similar ideas as in the proof of Proposition 1, one can construct in every graph an individually
rational allocation and show that in almost every graph the construction will be within the indicated effi-
ciency bound.
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matching that indeed matches all nodes in S. Since finding a maximum matching
in a graph can be done using linear programming in polynomial time, one can add
a linear constraint so that each node in S is indeed matched.30,31

7. Kidney exchange mechanisms

We have seen that a mechanism that is individually rational for hospitals need not be
costly in terms of lost transplants, and individual rationality can be seen as a necessary
condition for full participation in a world in which a hospital can withdraw participation
after seeing the allocation proposed by the centralized mechanism. But a mechanism
that makes it individually rational for hospitals to participate may still not be sufficient
to elicit full participation if it does not also make it a dominant strategy, or a Bayesian
equilibrium, for hospitals to reveal all their patient–donor pairs. We next begin the ex-
ploration of the incentive properties of exchange mechanisms, starting (as in the case of
individual rationality) with some negative worst-case results.

A kidney exchange mechanism, ϕ, maps a profile of incompatible pairs V =
(V1� V2� � � � � Vn) to an allocation, denoted by ϕ((Vh)h∈Hn). A mechanism ϕ is IR if for
every profile V , ϕ(V ) is IR. Efficient and maximal mechanisms are defined similarly.

Every kidney exchange mechanism ϕ induces a game of incomplete information
	(ϕ) in which the players are the hospitals. The type of each hospital h is its set of in-
compatible pairs. The realized type will be denoted by Vh and at this point we assume no
prior over the set of types. At strategy σh, hospital h reports a subset of its incompatible
pairs σh(Vh). For any strategy profile σ , let σ(V ) = (σ1(V1)� � � � �σn(Vn)) be the profile
of subsets of pairs each hospital submits under σ given V . Therefore, for any profile
V = (V1� � � � � Vn), at strategy profile σ , mechanism ϕ chooses the allocation ϕ(σ(V )).

A kidney exchange mechanism does not necessarily match all pairs in VHn =⋃
h∈Hn Vh, either because it did not match all reported pairs or because hospitals did

not report all pairs. Therefore, we assume that each hospital also chooses an allocation
in the set of its pairs that are not matched by the mechanism. Formally, let ϕ be a kidney
exchange mechanism, and let σ be a strategy profile and Vh be the type of each hospital.
After the mechanism chooses ϕ(σ(V )), h finds an allocation in Vh \ϕ(σ(V ))(Vh), where
ϕ(σ(V ))(Vh) is the set of all pairs in Vh that are matched by the allocation ϕ(σ(V )). In
particular, every hospital h ∈Hn has an allocation function ϕh that maps any set of pairs
Xh to an allocation ϕh(Xh).

Since each hospital wishes to maximize the number of its own matched pairs, the
utility of hospital h, uh, at profile V and strategy profile σ , is defined by the number of
pairs in Vh that are matched by the centralized match plus the number of its remaining
pairs that h can match using internal exchanges:

uh(σh(Vh)�σ−h(V−h))= |ϕ(σ(V ))(Vh)| +
∣∣ϕh(Vh \ϕ(σ(V ))(Vh)

)
(Vh)

∣∣� (1)

30If the second step uses also three-way exchanges, finding a maximum allocation is well known to be
an NP-hard problem as Abraham et al. (2007) showed.

31There is also a computational difference with the algorithm Toulis and Parkes (2011) provide; their
algorithm selects an efficient allocation repeatedly from the compatibility graph until they find one that is
individually rational, which is computationally inefficient.
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In the next section we study incentives of hospitals in the games induced by kidney
exchange mechanisms.

8. Incentives

Loosely speaking, most of the kidney exchange mechanisms presently employed choose
an efficient allocation in the (reported) exchange pool.32 As already emphasized, maxi-
mizing the number (or the weighted number) of transplants in the pool of patient–donor
pairs reported by hospitals is not the same as maximizing the number of transplants in
the whole pool unless the whole pool is reported. We next consider the tensions be-
tween achieving efficiency and making reporting of the whole pool a dominant strategy
for each hospital.

8.1 Strategyproofness: Negative results for compatibility graphs

Section 3 showed that for any largest feasible exchange size k > 2, no individually ra-
tional mechanism can be efficient and obtained discouraging worst-case bounds (al-
though efficiency can be achieved for k= 2). Here we show that for k≥ 2, no mechanism
that always produces a k-maximal allocation (even if not efficient) can be individually
rational and strategyproof, again with discouraging worst-case bounds.

A mechanism ϕ is strategyproof if it makes it a dominant strategy for every hospital
to report all of its incompatible pairs in the game 	(ϕ). Formally, ϕ is strategyproof if for
every hospital h, every Vh, every strategy σ ′

h, and every V−h,

uh(ϕ(Vh�V−h))≥ uh(ϕ(σ ′
h(Vh)�V−h))�

In unpublished notes from 2007, Roth, Sönmez, and Ünver showed that (even for a
maximum exchange size k= 2) the following proposition holds.

Proposition 2 (Roth, Sönmez, and Ünver). No IR mechanism is both maximal and
strategyproof.

Strategyproof mechanisms do exist, e.g., a mechanism that chooses allocations that
maximize the number of matched nodes using only internal exchanges. By allowing
randomization between allocations (in particular, allowing inefficient allocations to be
chosen with positive probability), one can hope to obtain outcomes that are close to
efficient in expectation. Unfortunately, building on the proof of Proposition 2, both de-
terministic and randomized mechanisms are not close to being efficient (again even for
k= 2).33

Proposition 3. Fork≥ 2, (i) no IR strategyproof mechanism can always guarantee more
than 1

2 of the efficient allocation and (ii) no IR strategyproof (in expectation) randomized
mechanism can always guarantee more than 7

8 of the efficient allocation.

32The mechanisms often maximize a weighted sum of transplants, rather than a simple sum, to imple-
ment priorities, such as for children and for how difficult it is to match a patient (due to high PRA levels).

33Strategyproofness in the randomized case means that for any reports of other hospitals, no hospital h
is better off in expectation by reporting anything other than its type Vh.
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Ashlagi et al. (forthcoming(b)) study dominant strategy mechanisms for k = 2 and
provide a strategyproof (in expectation) randomized mechanism that guarantees 0�5 of
the 2-efficient allocation.34 But it remains an open question whether the bounds estab-
lished in this section can be achieved.

Strategyproofness is independent of any probability distribution of the underly-
ing compatibility graphs. As in the case for individual rationality, using information
about the (approximate) distribution of compatibility graphs might be useful for find-
ing mechanisms that can achieve (almost) efficient allocations as Bayesian equilibria.35

We proceed by studying the Bayesian setting in a large random kidney exchange pro-
gram, in the spirit of recent advances in the study of two-sided matching in large mar-
kets (cf. Immorlica and Mahdian 2005, Kojima and Pathak 2009, Kojima et al. 2013, and
Ashlagi et al. forthcoming(a)).

8.2 The Bayesian setting

To study hospitals’ incentives in a given mechanism, we consider a Bayesian game in
which hospitals strategically report a subset of their set of incompatible pairs and the
mechanism chooses an allocation. Thus a kidney exchange game is now a Bayesian
game 	(ϕ)= (H� (Th)h∈H� (uh)h∈H), whereH is the set of hospitals, uh is the utility func-
tion for hospital h, and Th is the set of possible private types for each hospital, drawn
independently from a known distribution. The type for each hospital is the subgraph in-
duced by its pairs in the random compatibility graph. In particular, the random compat-
ibility graph is drawn and then the nodes of the graph are partitioned randomly among
the hospitals. The set of feasible partitions is determined by the possible hospitals’ sizes.

The expected utility for hospital h at strategy profile σ given Vh is

EV−h[uh(σh(Vh)�σ−h(V−h))]�
where the utility function uh is defined as in (1). In words, the hospitals wishes to maxi-
mize the expected number of its own matched pairs either by the mechanism or by itself.
Let σ be a strategy profile and let ε > 0. Strategy σh is an ε-best response against σ−h if
for every σ ′

h and every Vh,

EV−h [u(σh(Vh)�σ−h(V−h))] ≥EV−h [u(σ ′
h(Vh)�σ−h(V−h))] − ε�

σ is an ε-Bayes Nash equilibrium if for every hospital h, σh is an ε-best response
against σ−h. For ε= 0, σ is the standard Bayes Nash equilibrium.

A particular strategy of interest is the truth-telling strategy: a hospital always re-
ports its entire set of incompatible pairs. To analyze mechanisms for large random ex-
change pools, it will be useful to consider a sequence of random kidney exchange games
(	1(ϕ)�	2(ϕ)� � � �), where 	n(ϕ) = (Hn� (Th)h∈Hn� (uh)h∈Hn) denotes a random kidney
exchange game with |Hn| = n hospitals.

34The model in Ashlagi et al. (forthcoming(b)) does not allow hospitals to choose an internal allocation
after the mechanism has chosen an allocation. However, their algorithm works in our model.

35An efficiency approximation gap between the Bayesian approach and prior free approach has been
shown, for example, by Babaioff et al. (2010) in an online supply problem.
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Figure 4. Withholding internal matches versus reporting truthfully in the status quo mecha-
nism (k= 3). Hospitals have, on average, 10 pairs.

No. of hospitals Reporting truthfully Withholding

10 52�44 44�79
12 64�19 55�26
14 76�72 66�18
16 88�81 76�89

Table 2. Number of transplants achieved in the status quo (random efficient) mechanism

under two different strategies: (i) each hospital withholds an efficient internal allocation and

(ii) each hospital reports truthfully. Each hospital has, on average, 10 pairs. k is set to 3.

8.2.1 Toward a new mechanism A stylized version of status quo kidney exchange
mechanisms is to choose (randomly) an efficient allocation. We observed that such a
mechanism can violate individual rationality. Moreover, it is often the case that a hos-
pital will benefit (nonnegligibly) from withholding pairs. For example, if a hospital has
two pairs, A-O and O-A, it can internally match, it is better off withholding them, since
only a fraction of the underdemanded O-A pairs in the pool will be matched.

We simulated such a (status quo) mechanism and examined two types of behavior
for hospitals: truth-telling, in which a hospital reports all its incompatible pairs, and a
naive strategy called withhold internal matches, in which a hospital withholds a maxi-
mum set of pairs it can match internally. As Figure 4 shows, withholding provides more
transplants, on average, than truth-telling for an arbitrary hospital given that all other
hospitals are truth-telling. The benefit from withholding becomes even larger when all
other hospitals also withhold internal matches.

If all hospitals use the withhold internal matches strategy under the status quo
mechanism, the total number of transplants achieved (by the mechanism and the inter-
nal matches) results in more than 12% efficiency loss as shown in Table 2. See Section 9
for further simulations.

The underdemanded pairs are the ones that “compete” to be matched; an attempt
to solve this problem is by guaranteeing each hospital to match at least as many under-
demanded pairs as it can internally match (and randomly choose maximum allocations
under this constraint). Unfortunately, hospitals will often still benefit from withholding.
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Figure 5. Hospital a has one overdemanded A-O pair and two O-A pairs, and it can internally
match either one.

To see this, suppose all hospitals but a report truthfully and suppose a has the com-
patibility graph in Figure 5. Using the fact that any O-A pair in the graph is likely to be
chosen with probability p < 1

2 , one can show that withholding only the overdemanded
A-O pair a1 makes a strictly better off, since it can then match one O-A pair internally
if either of them is not matched by the mechanism. That is, hospitals will sometimes
have an incentive to hold in reserve their overdemanded pairs to be matched ex post to
underdemanded pairs left unmatched by the centralized mechanism.

8.2.2 A new mechanism One way to prevent hospitals from withholding overde-
manded pairs is to give priority to underdemanded pairs from hospitals that contribute
overdemanded pairs that could be part of internal matches. To do this, we propose
an “underdemanded lottery” that will determine which underdemanded pairs will be
matched. We first give a sketch of the lottery for a setting with only A-O and O-A pairs,
and illustrate it with a simple example.

The underdemanded lottery consists of the following two main steps that output a
set of O-A pairs S, which contains the same number of O-A pairs as there are reported
A-O pairs:

1. For each hospital, select randomly a maximum set of O-A pairs it can internally
match and add them to S.

2. Consider a bin that contains for each hospital the same number of balls as the num-
ber of its reported underdemanded O-A pairs. Until S reaches the target size,36 it-
eratively draw balls without replacement and after each draw, if the ball belongs to
hospital h, add one of h’s O-A pairs that has not yet been chosen (if any still exist)
to S.

Note that in the beginning of the second step, each hospital begins with the same
number of balls as its O-A pairs even if some of its O-A pairs have already been chosen in
the first step.

Example 1. Consider a hospital h that has three pairs a1, a2, and a3, and its compatibil-
ity graph can internally match a1 to a2 and to a3 as in Figure 6(a). For simplicity, assume
that no other two pairs belong to the same hospital. We show that the O-A pairs are

36One should think of this size as the number of reported A-O pairs.
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(a) Hospital a reports a1 (b) Hospital awithholds a1

Figure 6. Hospital a has one overdemanded pair, a1, and two underdemanded pairs, a2 and
a3, and can match internally a1 to a2 and to a3.

chosen by the underdemanded lottery and reporting a1 (Figure 6(a)) results in a higher
utility for h than withholding a1 (Figure 6(b)).37 In the former case, the lottery will select
three O-A pairs (to be matched to the A-O pairs) and in the latter case, the lottery will
select two O-A pairs.

If hwithholds a1, the underdemanded lottery will choose randomly without replace-
ment two O-A pairs (so as to match them to the two A-O) pairs. In this case, the prob-
ability that none of a’s O-A pairs will be chosen is

(4
2

)
/
(6

2

) = 12
30 ; the probability that one

of its O-A pairs will be chosen is 2
6 · 4

5 + 4
6 · 2

5 = 16
30 (choosing one of a2 or a3 in the first

or second round of the second step of the lottery); the probability that both of its O-A
pairs will be chosen is 2

6 · 15 = 2
30 . Since h can internally match a1 to one of its O-A pairs

if it has not been selected by the lottery, its expected utility (expected total number of
transplants) is 2 · 12

30 + 3 · 16
30 + 2 · 2

30 = 2 8
15 .

If h reports a1, either a2 or a3 is chosen in the first step of the lottery, say a2. The
probability that a3 will not be chosen in the second step of the lottery is 4

6 · 3
5 = 12

30 and,
therefore, the probability that a3 will be chosen in that step is 18

30 . Therefore, a’s expected
utility in this case is 2 · 12

30 + 3 · 18
30 = 2 9

15 . Note the incentive to report a1: it is that, after a2
is chosen, the probability that a3 will also be chosen is the same as the probability that
either one of a2 or a3 would have been chosen if a1 had not been reported. ♦

In this section, we present a mechanism for kidney exchange that uses this kind of
lottery to make truth-telling an approximate Bayes Nash equilibrium, assuming that
hospitals satisfy a stronger regularity condition. This stronger regularity condition,
which now deals with each underdemanded type and its reciprocal overdemanded type
separately, will allow us to separate the reporting problem for each type of overde-
manded pair. This will allow a mechanism in which there is no incentive to withhold
an overdemanded pair of some type so as to influence the match probability of an un-
derdemanded pair that is not of its reciprocal type.

We say that a size c > 0 of a hospital is strongly regular if for every underdemanded
typeX-Y , the expected maximum number ofX-Y pairs with which it can be internally
matched is less than the expected number of overdemanded Y -X pairs in its pool.

37An implicit assumption in this example is that there exists a perfect matching between the A-O pairs
and the chosen O-A pairs.
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A formal definition is given in Appendix A.6. Using simulations, we find that hospi-
tals of size up to at least c = 30 are strongly regular.

Throughout this section, we assume hospitals’ sizes are strongly regular and
bounded. The mechanism we introduce provides an allocation that uses only two-way
exchanges with similar properties to the one constructed in the proof of Theorem 2. The
following is a high level description of the new mechanism:

1. Find a maximum allocation in the graph induced by all self-demanded pairs.

2. Find a maximum allocation in the graph induced by all A-B and B-A pairs.

3. Choose which underdemanded X-Y pairs to match and match them to overde-
manded Y -X pairs.

The missing key part is how to choose the underdemanded pairs that will be
matched in part 3. We will use a lottery like the one described in the example, called
the underdemanded lottery, to determine for each underdemanded type X-Y ∈ U a set
of X-Y pairs, denoted by Sh(X-Y), that will be matched for each hospital h (ideally we
want to match all overdemanded pairs, so the total number of X-Y pairs that will be
matched equals the total number of Y -X pairs in the pool).

We now formally describe the underdemanded lottery for a given underdemanded
type X-Y ∈ U . For each h, Sh(X-Y) will be initialized to be a set of X-Y pairs with
maximum cardinality that h can match internally, and the lottery will output for each
hospital a set of pairs that are chosen to be matched. We need the following notation:
let MV

T be the set of allocations in V that maximize the number of matched pairs in V
whose type belongs to T (whenever T = {t} singleton, we will just write MV

t ).

Underdemanded lottery. 1. Input. A set of hospitalsHn, a profile of subsets of pairs
(B1� � � � �Bn), an underdemanded type X-Y , and an integer 0< θ < |τ(BHn�X-Y)|,
which is interpreted as the number ofX-Y pairs that we want to choose in total.38

2. Initialization. For each hospital h, letQh(X-Y)= |τ(Bh�X-Y)| and let Sh(X-Y) be
an arbitrary maximum set ofX-Y pairs h can internally match in Bh.39

3. Main Step. Let J be a bin containing Qh(X-Y) balls for each hospital h. As long as∑
h∈Hn |Sh(X-Y)|< θ, the following choice holds:

(a) Choose uniformly at random a ball from J without replacement. If the ball
belongs to hospital h, then add an arbitrary X-Y pair to Sh(X-Y) from
Bh \ Sh(X-Y) if such exists.

In Example 1, Sa(O-A) is initialized to be either {a2} or {a3}, say Sa(O-A)= {a2}. How-
ever, two balls are initially placed in the bin J for hospital a, and if either one of them is

38The parameter θ is not set here to be the number of Y -X pairs in BHn since, as we shall see later, the

mechanism will apply the lottery twice, each time with a different set of 1
2n hospitals and θ will be the

number of Y -X pairs in the set of other 1
2n hospitals. This will be further discussed below.

39Formally, Sh(X-Y)= τ(MBh
X-Y (Bh)�X-Y) for someMBh

X-Y ∈ MBh
X-Y .
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drawn, a3 is added to Sa(O-A). Therefore, the fact that the hospital can internally match
one of its underdemanded pairs increases the probability that another of its underde-
manded pairs of the same type will be matched.

We are now ready to state the mechanism formally. For simplicity of exposition, we
assume throughout this section that n is even. All results hold when n is odd (see also
footnote 41 below).

The Bonus Mechanism. 1. Input. A set of hospitals Hn = {1� � � � � n} and a profile of
incompatible pairs (B1�B2� � � � �Bn), each of a strongly regular size.

2. Step 1 (Match self-demanded pairs). Find a maximum allocation, MS , in the graph
induced by all self-demanded pairs BHn .

3. Step 2 (Match A-B and B-A pairs). For each hospital h, choose randomly an al-
location Mh ∈ MBh

R .40 Find a maximum allocation, MR, in the graph induced by
A-B and B-A pairs among those that maximize the number of matched pairs in⋃
h∈Hn τ(Mh(Bh)�R).

4. Step 3 (Match overdemanded and underdemanded pairs). Partition the set of hos-
pitals into two sets H1

n = {1� � � � � 1
2n} and H2

n = { 1
2n + 1� � � � � n}. For each underde-

manded type,X-Y ∈ U and for each j = 1�2, perform the following substeps.41

Step 3(a) Set θj(Y -X) = |τ(BH
n3−j �Y -X)| to be the number of Y -X pairs in the

set B3−j
Hn

. Then, using the underdemanded lottery procedure with the
inputs (Bh)h∈H

nj
, θj(Y -X), and X-Y , construct one subset Sh(X-Y)

for each hospital in h ∈Hj
n.

Step 3(b) Find a maximum allocation Mj
X-Y in the subgraph induced by the sets

of pairs
⋃
h∈Hj

n
Sh(X-Y) and τ(B

H
3−j
n
�Y -X).42

5. Step 4 (Output). LetMU = ⋃
j=1�2

⋃
X-Y∈UM

j
X-Y . OutputMS ∪MR ∪MU .

We can now state our second main result.

Theorem 3. Let Hn be a set of hospitals. If every hospital size is strongly regular, the
truth-telling strategy profile is an ε(n) Bayes Nash equilibrium in the game induced by
the Bonus Mechanism, where ε(n) = o(1). Furthermore, for any ε > 0, the efficiency loss

40Recall that R = {A-B�B-A}.
41So as to choose the sets of underdemanded pairs of each type that will be matched, we partition the

set of hospitals into sets, each with 1
2n hospitals (if n is odd, one set will have one more hospital than the

other). For each set in the partition, we will match the overdemanded pairs of the hospitals in one set to the
chosen underdemanded pairs of the hospitals in the other set so as to avoid lack of independence (see also
the proof of Theorem 2).

42The size of |⋃
h∈Hj

n
Sh(X-Y)| will equal |τ(B

H
3−j
n
�Y -X)| with high probability and, therefore, the maxi-

mum allocation in this subgraph will match with high probability all pairs in
⋃
h∈Hj

n
Sh(X-Y).
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under the truth-telling strategy profile in almost everyD(Hn) is at mostμAB-Om+εμA-Bm,
wherem is the number of pairs in the pool.

We conjecture that, here too, the strong regularity assumption can be relaxed and
even entirely eliminated. In the next section, we provide simulations that demonstrate
the effectiveness of our mechanism.

Remarks. 1. Toulis and Parkes (2011) show a similar result only under their assump-
tion that each hospital has a canonical structure (see the first remark at the end
of Section 6). Another important difference is that they do not allow hospitals to
withhold a single pair (only internal allocations). As Example 1 illustrates, a hospi-
tal will have an incentive to withhold only an overdemanded pair (and these pairs
are exactly the ones we wish to incentivize hospitals to report).

2. The Bonus Mechanism algorithm can be adapted so that in each step it allows the
output allocation to use only two-way exchanges and Theorem 3 will still hold (the
internal allocations in the algorithm still use two- and three-way exchanges). This
implies that with the adaptation, the Bonus Mechanism algorithm runs in poly-
nomial time (assuming it indeed finds an allocation with the desired properties,
which we show to exist in almost every graph). The arguments are similar to the ar-
guments for the complexity of the construction of an almost efficient individually
rational allocation (see the second remark in Section 6).

3. When the compatibility graph is not too large, there is often the knowledge about
which pairs are “hard” and which pairs are “easy” to match (see, e.g., Ashlagi et al.
2012). The idea of the underdemanded lottery, which is the key part in our mech-
anism, can be adapted so that hospitals will indeed be incentivized to enroll their
easy-to-match pairs.

9. Simulations

Simulations are useful to evaluate whether the conclusions of limit theorems apply even
in relatively small finite settings. We first explain the Monte Carlo simulations we have
conducted. To generate incompatible pairs, we follow our definition of a random com-
patibility graph, which is also consistent with the method used in Saidman et al. (2006).
First we create a patient and donor with blood types drawn from the national distribu-
tions as reported by Roth et al. (2007). Each patient is also assigned a percentage reactive
antibody (PRA) level also drawn from a distribution as described in Roth et al. (2007).
The patient PRA is interpreted as the probability of a positive cross-match (tissue-type
incompatibility) with a random donor. If the generated pair is compatible, i.e., if they are
both blood-type compatible and have a negative cross-match, they are discarded (this
captures the fact that compatible pairs go directly to transplantation). Otherwise, the
population generation continues until each hospital accumulates a certain number of
incompatible pairs. In all simulations, we have bounded the number of pairs in total by
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Figure 7. Withholding internal matches versus reporting truthfully in the status quo mecha-
nism (k= 3).

Figure 8. Withholding versus not withholding under the Bonus Mechanism. Each hospital has
an average of 10 pairs.

180 per iteration (thus, for some scenarios there are fewer hospitals than others).43 For
each random population, we ran 500 trials.

Figure 7 provides, for various average-sized hospitals, the gain from withholding un-
der a current status quo-like mechanism that randomly chooses an allocation that max-
imizes the number of transplants.

We also simulated the gains from withholding under the Bonus Mechanism. Figure 8
provides the results for the gains when hospitals average 10 incompatible pairs. Notice
that hospitals never gain from withholding. We obtained very similar results for different
average-sized hospitals.

To further test the Bonus Mechanism, we let the average size of hospitals vary. Fig-
ure 9 shows, for different average-sized hospitals, that withholding is not beneficial un-
der the Bonus Mechanism. These results not only support Theorem 3, but also our con-
jecture that the theorem holds without the strong regularity assumption.

We further simulated the efficiency gains under the Bonus Mechanism by comparing
to a status quo-like mechanism, and assuming that in the Bonus Mechanism, hospitals

43In practice, the current popular exchange programs receive fewer than 50 pairs per period. When
allowing three-way exchanges, finding an allocation that maximizes the number of matches is an NP-hard
problem (see Abraham et al. 2007 and Biro et al. 2009). The compatibility graph is generally sparse enough,
however, that the problem is tractable in reasonably sized populations.
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Figure 9. Withholding versus not withholding under the Bonus Mechanism.

(a) Percentage of lost matches (b) Percentage of lost highly sensitized matches

Figure 10. Ratio between the number of matches achieved under an “efficient” mechanism to
the number of matches achieved under the Bonus Mechanism.

report truthfully, and under the status quo-like mechanism, hospitals withhold an inter-
nal maximum allocation. Figures 10(a) and 10(b) provide the percentage of number of
lost matches and the percentage of lost high PRA (highly sensitized) matches.

Finally, we compared the number of matches obtained under the Bonus Mechanism
to the number of transplants obtained under a mechanism that randomly chooses the
maximum number of matches, assuming that under both mechanisms hospitals report
truthfully. The results are give in Figure 11. The results also support our conjecture that
even with “larger-sized” hospitals, i.e., without the regularity assumption, there is an
individually rational allocation that is almost efficient.

10. Conclusions and open questions

There are a number of ways in which barter may be inefficient. Jevons (1876) famously
pointed to the double coincidences needed to make pairwise exchanges (a difficulty that
is only partially eased by allowing larger exchanges and further relieved when chains
are possible). A second difficulty is that profitable but inefficient transactions may take
place that prevent efficient ones from occurring (cf. Roth and Postlewaite 1977).44 A well

44Roth and Postlewaite look at the model proposed by Shapley and Scarf (1974) in which traders each
have only a single indivisible good, and observe that there are inefficient transactions of this sort in the
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Figure 11. The cost from using IR and not an efficient mechanism assuming hospitals fully
participate.

designed centralized clearinghouse can address not only the first problem (by making
a thick market), but also the second, by guaranteeing hospitals that they will not suffer
by foregoing potentially inefficient internal exchanges and, instead, reporting all their
patient–donor pairs.

The problem of inefficient exchanges has come to the fore as kidney exchange in
the United States has grown from being carried out rarely in only a few hospitals to be-
ing carried out regularly in a variety of kidney exchange networks of hospitals, and is
presently being explored at the national level. The National Kidney Paired Donation
Pilot Program was approved by the OPTN/UNOS Board of Directors in June 2008, and
ran its first two match runs in October and December 2010, with 43 patient–donor pairs
in October and 62 in December, registered by kidney exchange consortia representing
77 transplant programs. For the purposes of the present paper, it is notable that only
a small fraction of the patient–donor pairs registered in the participating hospitals were
enrolled in the national pilot program.45 So the problem of full participation by hospitals
is both real and timely. It has also begun to be observed in the active kidney exchange
networks that are fully operational.

core of the game that are not supported by any market-clearing prices. Consider three traders {1�2�3}, with
endowments w = (w1�w2�w3) and preferences such that each trader can get his first choice via a three-
way exchange that yields the allocation x= (w3�w1�w2). There can, nevertheless, be a profitable two-way
exchange that yields, e.g., y = (w2�w1�w3) via a trade between 1 and 2, and that gives 1 his second choice
and 2 his first choice. This is in the core of the game when the initial endowments are w, but not after
the trade has taken place and the (new) endowment is y (since, from y , 1 and 3 could trade w2 and w3).
Kidneys of course cannot be reexchanged after being transplanted. But a centralized clearinghouse can
take into account the potential trade between 1 and 2, and make it rational for them to enter the centralized
mechanism, knowing that it will produce an allocation x that must be at least as good for them as y (cf. Roth
1982).

45We hasten to note that there are many reasons other than the incentive problems discussed here that
contribute to this initial very low participation rate. These include the new bureaucratic procedures for
enrolling patients, the novelty and lack of track record of the national program, the desire to start small and
see what happens, the exclusion of chains and nondirected donors, etc. See http://optn.transplant.hrsa.
gov/resources/KPDPP.asp.

http://optn.transplant.hrsa.gov/resources/KPDPP.asp
http://optn.transplant.hrsa.gov/resources/KPDPP.asp
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One way to solve this problem is by forcing hospitals to disclose all their pairs and,
thus, have incompatible living donors be a national resource as happens with cadaver
organs. This will be very difficult with private hospitals that act independently from one
another.46

The present paper observes that one contributory cause of the lack of full partici-
pation is that the matching algorithms currently employed in practice do not make it
individually rational for hospitals to always contribute all their patient–donor pairs. We
show that, in worst cases, this could be very costly, but we prove that in large markets, it
is possible to redesign the matching mechanisms to guarantee individually rational al-
locations to hospitals at very modest cost in terms of “lost” transplants. Note that these
lost transplants are not really lost if, instead, hospitals would have withheld patient–
donor pairs; on the contrary, we show that individually rational allocations produce a
big gain in transplants compared to having hospitals withhold pairs.

To obtain analytical results about large markets, we approximate them as large ran-
dom graphs whose properties we can study with limit theorems based on the classical
results of Erdos and Renyi. But we also show by simulation with clinically relevant dis-
tributions of patients and donors that these main results apply on the scale of exchange
we are presently seeing. The fast convergence we see in simulations suggests that these
limit theorems from random graph theory may have much wider application than if
convergence were slow.

The highly interconnected compatibility graphs that we see in the limit theorems do
not approximate well the much sparser compatibility graphs we see in practice, which
contain many very highly sensitized patients. One of several causes of the high percent-
age of highly sensitized patients is that many transplant centers are withholding their
easy-to-match patient–donor pairs and only enrolling their hard-to-match pairs. This
raises a number of open questions that are likely to arise in practice regarding this most
vulnerable class of patients.

The first of these questions is how to model the situation facing highly sensitized
patients, who will be only sparsely connected in the compatibility graph, because they
may be compatible with a very small number of donors, even in a large graph of finite
size. This is closely related to the second question, which is how to effectively integrate
nondirected donors and chains with the cyclic exchanges that have been used initially
in the national pilot program and that are the subject of the present paper. In addition
to cycles of length k, there has been growing use of various kinds of chains in kidney
exchange, and it remains an open question how the relative importance of chains and
cyclic exchanges will change as the size of the pool (and the number of nondirected
donors) grows large. It seems likely that even in large markets, chains will be especially
helpful to the most highly sensitized patients (Ashlagi et al. 2012). A related question is
how the composition of the patient pool changes dynamically, as easier-to-match pairs
are matched and removed. Like the withholding of easy-to-match pairs studied here,

46Even if such a law exists, hospitals can still enroll all their pairs while specifying that only the inter-
nal matches are acceptable by, for example, specifying the acceptable travel distance for pairs involved in
internal matches to be 0.
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this will also impact the composition of kidney exchange pairs in ways that make the
compatibility graphs relatively sparse.

A fourth open question is under what conditions individually rational and incentive
compatible mechanisms exist that are as efficient as we have shown them to be un-
der regularity conditions on the size of hospitals. We conjecture that these regularity
conditions can be relaxed. In any case, such mechanisms could be useful in eliciting
full participation in a full scale national exchange, as it appears from simulations that
hospitals are, in fact, of regular size (although the largest hospitals may not be strongly
regular). However, our results suggest that the benefits of a national exchange could
also be realized if there was sufficient regulatory power to require transplant centers to
either participate fully or not at all, since that would reduce the strategy space so that
individual rationality would be the primary consideration.47

The final open question we raise here is how these strategic concerns would be dif-
ferent in a world in which the players are not only hospitals and a (single) centralized
exchange, but in which there are multiple kidney exchange networks, some with strate-
gic concerns of their own. This is, of course, the situation that is currently in place.

In conclusion, as kidney exchange has grown, the strategy sets, the strategic players,
and, hence, the incentive constraints have changed. The new incentive issues, concern-
ing full participation by hospitals, arise out of the growth of kidney exchange and are
potential obstacles to further growth. These are problems shared with barter exchange
generally and by marketplaces with money as long as there are both easy- and hard-to-
trade goods (such as the markets for gastroenterologists mentioned in the Introduction).
However, the results of this paper strongly suggest that these new barriers can also be
overcome.

Appendix

A.1 Preliminaries

We briefly describe here some results that will provide intuition and be building blocks
in our proofs. A random graph G(m�p) is a graph with m nodes and between each two
different nodes, an undirected edge exists with probability p (p is a nonincreasing func-
tion ofm). A bipartite random graphG(m�m�p) consists of two disjoint sets of nodes V
andW , each of sizem, and an undirected edge between any two nodes v ∈ V and w ∈W
exists with probability p (no two nodes within the same set V or W have an edge be-
tween them). It will be useful to think of an undirected edge as two directed edges, one
in each direction.

Throughout the paper, by saying just a “random graph,” we will not refer to a specific
type, but a graph that is generated by any of the graph generating processes defined in
this paper (e.g.,D(m),G(m�p), andG(m�m�p)).

47It might be possible for a single kidney exchange network to institute such a rule as a condition of par-
ticipation, since the fact that hospitals could exercise discretion over whether or not to participate at all
might not present too great a challenge to the discretion that hospitals and surgeons demand over treat-
ment decisions.
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For any graph theoretic property Q, there is a probability that a random graph G
satisfiesQ, denoted by Pr(G |
Q).

A matching in an undirected graph is a set of edges for which no two edges have a
node in common. A matching is nearly perfect if it matches (contains) all but at most
one node in the graph and is perfect if it matches all nodes.

Erdos and Renyi provided a threshold function f (m) = (lnm)/m such that for
p(m)� f (m), a perfect matching exist in G(m�p(m)). We state here a corollary of their
result (see, e.g., Janson et al. 2000).

Theorem 4 (Erdos–Renyi theorem). Let Q be the property that there exists a nearly per-
fect matching. For any constant p, the following equalities hold.

1. Pr(G(m�p) |
Q)= 1 − o(1).48,49

2. Pr(G(m�m�p) |
Q)= 1 − o(1).

Remark on the convergence rate. The probability of a perfect matching inG(m�p)
andG(m�m�p) converges to 1 at an exponential rate for any constant p. More precisely,
as shown in Janson et al. (2000),

Pr(G(m�m�p) |
Q)= 1 −O(me−mp)= 1 − o(2−mp)�

and clearly a perfect matching inG(m�p) exists with at least the same convergence rate.
From now on, whenever we write 1 − o(1), it can be replaced with a rate of 1 − o(2−αmp)
for some constant α, where α will be the linear coefficient of the least probable pairs of
blood types in the compatibility graph. So the convergence rate in all our large graph
results is exponential.

A.2 Proof of Theorem 1

Let V be a set of nodes, and let M be a k-efficient allocation and M ′ be a k-maximal
individually rational allocation in V . Since M ′ is k-maximal, every exchange in M must
intersect an exchange in M ′ (otherwise a disjoint exchange could be added to M ′, con-
tradicting maximality). Fix an exchange c with size 2 ≤ l ≤ k inM ′. The maximum num-
ber of nodes that might be covered by M and not M ′ would be achieved if for each such
exchange c, M contains l− 1 exchanges each of size k, which each intersect exactly one
node of c (and M ′). (Note that if all l nodes of c were in such exchanges, then M ′ would
not be maximal.) For each such exchange c, M matches (l− 1)k nodes and M ′ matches
l nodes, so the ratio is l/(l− 1)k, which is minimized at 1/(k− 1) when l = k, giving the
desired bound.

48For any two functions f and g, we write f = o(g) if the limit of the ratio f (n)/g(n) tends to zero when n
tends to infinity.

49The Erdos–Renyi theorem showed stronger results, which assert that r(m) = (lnm)/m is a threshold
function for the existence of a perfect matching; that is, if p= p(m) is such that r(m)= o(p(m)), then the
probability a nearly perfect matching exists converges to 1, and if p(m)= o(r(m)), the probability a nearly
perfect matching exists converges to 0.
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Figure 12. Worst-case efficiency loss from choosing an individually rational allocation (k= 3).

To see that the bound is tight, observe that the construction used to find the bound
achieves it: fix some hospital a with k vertices and suppose that a has a single internal
exchange consisting of all of its pairs (see Figure 12 for an illustration for k = 3). The
bound 1/(k− 1) is obtained by letting the k-efficient allocation in the underlying graph
consist of exactly k − 1 exchanges, each of size k, at which a single pair of a is part of
each such exchange. That is, the efficient allocation matches all but one of hospital a’s
pairs, each in exchanges of size k with k− 1 pairs from other hospitals.

A.2.1 Proof of Lemma 1 For each pair type X-Y , let ZX-Y (m) be the random variable
that indicates the number ofX-Y pairs inD(m).

Claim 1. Let 0 < δ < 1 and D(m) be a random compatibility graph and consider the
event

Bδ(m)= {∀X-Y ∈ P� (1 − δ)μX-Ym<ZX-Y (m) < (1 + δ)μX-Ym}� (5)

Then Pr[Bδ(m)] = 1 − o(m−1).

Proof. Let D(m) be a random compatibility graph and let δ > 0. By Hoeffding’s bound
(see, e.g., Alon and Spencer 2008), for every typeX-Y ,

Pr
[
ZX-Y (m) /∈ ((1 − δ)mμX-Y � (1 + δ)mμX-Y )

]
< e−mμX-Y δ

2/4 + e−mμX-Y δ
2/2 = o(m−1)�

Therefore,

Pr[Bδ(m)] = 1 − Pr
[
for someX-Y ∈ P :ZX-Y (m) /∈ ((1 − δ)mμX-Y � (1 + δ)mμX-Y )

]
≥ 1 −

∑
X-Y∈P

Pr
[
ZX-Y (m) /∈ ((1 − δ)mμX-Y � (1 + δ)mμX-Y )

]

= 1 − o(m−1)�

where the last inequality follows since there are a finite number of pair types. �

Claim 2. Let 0< δ< 1
2 and let D(m) be a random compatibility graph, and consider the

event

Sδ(m)= {|ZA-B(m)−ZB-A(m)|<m1/2+δ}� (6)

Then Pr[Sδ(m)] = 1 − o(m−1).



848 Ashlagi and Roth Theoretical Economics 9 (2014)

Proof. By Hoeffding’s bound,

Pr
(
ZA-B(m)≥E[ZA-B(m)] +m1/2+δ) ≤ e−m2δ/2�

Applying the same argument for B-A pairs, we obtain the result. �

Proof of Lemma 1. Let Sδ(m) and Bδ(m) be as in Claims 2 and 1. By these claims, we
obtain that the probability that either Sδ(m) or Bδ(m) does not hold is o(m−1). �

A.2.2 Bounded directed random graphs: Definitions and Erdos–Renyi extensions In a
random compatibility graph, the number of pairs of each type is not fixed. We will need
Erdos–Renyi type results for random graphs in which the number of nodes as well as the
number of edges are random.

We start by defining a vector that will represent bounds on the number of nodes of
each pair type in a given subset of the compatibility graphs. For example, to represent
the subgraph induced by all A-O pairs and all O-A pairs, by Lemma 1 and the event
Bδ(m), we can use the vector ((1−δ)μA-O� (1+δ)μA-O� (1−δ)μO-A� (1+δ)μO-A) for some
δ < 1; in particular, this vector is a tuple of coefficients for bounding from below and
above the number of A-O pairs and the number of O-A pairs in this subgraph.

For any r > 0, a quasi-ordered vector is a vector ᾱr = (α0�1�α0�2�α1�1�α1�2� � � � �αr−1�1�

αr−1�2), where αj�1 ≤ αj�2 for all 0 ≤ j < r and α0�1 ≤ α1�1 ≤ · · · ≤ αr−1�1.50

The vector ᾱr is called feasible if at most one pair type could have zero number of
nodes, that is, α0�2 > 0 and for every j ≥ 1, αj�1 > 0. Let ᾱr be a feasible vector. We say
that a tuple of r sets of nodes (W0� � � � �Wr−1) are (ᾱr�m)-feasible if for each 0 ≤ j < r,
the interval [αj�1m�αj�2m] contains at least one integer and if the sizes of these sets
are drawn from some distribution over all possible r-tuples of integers that belong to
[α0�1m�α0�2m] × · · · × [αr−1�1m�αr−1�2m]. Note that for every sufficiently large m, the in-
terval [αj�1m�αj�2m] contains at least one integer if an only if αj�1 < αj�2 or αj�1 = αj�2 is
an integer.

Definition 2 (Bounded directed random graphs). A graph is called a bounded directed
random graph, denoted by D(ᾱ1�m�p), if it is generated as follows. A (ᾱ1�m)-feasible
set of nodes is generated and between each two nodes v, w, a directed edge is generated
from v to w with probability at least p.51

A graph is called a r-bounded directed random graph, denoted by D(ᾱr�m�p), if it is
generated as follows: first, r ≥ 2 distinct sets of nodes W0�W1� � � � �Wr−1 that are (ᾱr�m)-
feasible are generated. Then for each i = 0�1� � � � � r − 1 and for each two nodes v ∈ Wi,
w ∈Wi+1 (i is taken modulo r), a directed edge is generated from v to w with probability
at least p.

The definition of a bipartite graph can naturally be extended to an r-partite graph
that contains r sets of nodes, each of size exactly m, and edges are generated as in Def-
inition 2. Whenever there is no confusion, we will refer also to an r-bounded directed

50The vector is called quasi-ordered since only the lower bounds are ordered.
51Note that for α0�1 = α0�2 = 1, the number of nodes ism.
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random graph as an r-partite graph. Note that in any r-partite graph, only exchanges of
size k = qr for positive integers q are feasible. (When r = 1, we think about subgraphs
induced by self-demanded pairs of some given type. When r = 2, we think about sub-
graphs with potential two-way exchanges such as O-A, A-O, and when r = 3, we think
about subgraphs with potential three-way exchanges such as AB-O, O-A, A-AB.)

Lemma 2. Let 0<p< 1.

1. For any feasible vector ᾱ1, almost every large D(ᾱ1�m�p) has a nearly perfect allo-
cation using exchanges of size 2 (i.e., an allocation that matches all nodes but at
most one) and a perfect allocation for any k≥ 3 (i.e., an allocation that matches all
nodes).

2. Let ᾱr be a feasible vector with r > 1. Almost every large D(ᾱr�m�p) contains a
perfect allocation, i.e., an allocation that matches all nodes in some set Wi. Con-
sequently, if j′ ≤ r − 1 is the least index for which αj′�2 < αj′+1�1, then every perfect
allocation matches all nodes in some setWi for some i≤ j′.

Proof. Observe that it is sufficient to prove the lemma for exact p, since by increasing
p for some edges can only increase the probability for the existence of a (nearly) per-
fect allocation. Throughout the proof, we denote by 1r the positive vector with 2r 1’s
(1�1� � � � �1).

We begin with the first part. Denote by Q the nearly perfect allocation property. Fix
some feasible vector ᾱ1. The proof for both k= 2 and k≥ 3 will follow from applying the
Erdos–Renyi theorem to nondirected random graphs.

First consider k= 2. Let pm be the probability that a nearly perfect allocation exists
in the nondirected random graph G(m�p2) (recall that this graph has exactly m nodes
and each edge is generated with probability p2). That is,

pm = Pr[G(m�p2) |
Q]�
Consider the graphD(11�m�p). Since a cycle of length 2 has probability p2,

Pr[D(11�m�p) |
Q] = pm�
Letm(ᾱ1) be such that [α0�1m�α1�1m] contains an integer for everym≥m(ᾱ1). We define
a sequence (xm)m≥m(ᾱ1) by choosing arbitrarily the integer

xm ∈ arg min
x∈N∩[α0�1m�α1�1m]

Pr[D(11�x�p) |
Q]�

Note that the minimum is attained at some value, since it is taken over a finite set that
includes an integer. Therefore,

Pr[D(ᾱ1�m�p) |
Q] ≥ Pr[D(11�xm�p) |
Q] = pxm�
By the Erdos–Renyi theorem, since p is a constant, pxm → 1 as m→ ∞, completing the
proof for k= 2.

We proceed with k ≥ 3. If m is even, a perfect allocation exists using only two-way
exchanges with probability 1 − o(1). If m is odd, we pick arbitrarily m − 1 nodes. In
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the graph induced by these nodes, we find a perfect allocation, say M , using two-way
exchanges (again, this can be found with probability 1 −o(1)). Given that suchM exists,
it is sufficient to find a couple of nodes v, w that are matched to each other in M so
that the single unmatched node can form a three-way exchange with v and w. Such two
nodes v andw cannot be found with probability at most (1−p2)m/2, completing the first
part.

We sketch the second part of the proof, which follows by applying multiple times the
Erdos–Renyi theorem. We sketch the proof for r = 3 (the proof for r > 3 is similar). Con-
sider the 3-partite graph with realized sets of nodesW0�W1�W2 and assume without loss
of generality (w.l.o.g.) that W0 is the smallest of those sets. Consider the directed graph
induced by the nodes in W0 and W1. By the Erdos–Renyi theorem, with high probability
there exists a disjoint set of edges Ē that covers all nodes inW0 (since one can change ev-
ery edge to a nondirected one and apply directly the theorem for nondirected bipartite
graphs).

We next construct a bipartite directed graph Ḡ as follows. LetW0 be the set of nodes
on one side and let W2 be the set of nodes on the other side. We construct the set of
edges as follows. For any edge e = (w0�w1) ∈ Ē, where w0 ∈ W0 and w1 ∈ W1, and any
edge (w1�w2), where w2 ∈ W2 in the original graph, we construct an edge between w0

and w2 in Ḡ. In addition, for any two nodes w2 ∈W2 and w0 ∈W0, an edge Ḡ exists if and
only if it exists in the original graph. By the Erdos–Renyi theorem, there exists a perfect
allocation Ḡ (this is just a 2-bipartite directed random graph). Finally, observe that by
construction, a perfect allocation in Ḡ implies the existence of a perfect allocation in the
original graph, which completes the proof. �

A.3 Proof of Proposition 1

The proof is by construction. Let D(m) be a random compatibility graph. We
need to show that an allocation with the properties described in the proposition
exists in D(m) with probability 1 − o(1). Let δ be a constant such that 0 < δ <

min{(1 − 2�5γ̄)/(1 + 2�5γ̄)�0�01� 1
100 γ̄}.

Let Bδ(m) and Sδ(m) be the events defined in (5) and (6), respectively. Since
Pr[Bδ(m)] = 1 − o(m−1), we will assume throughout the proof that the events Bδ(m)
and Sδ(m) occur (we will assume the probability that either one of these events does not
occur toward nonexistence of a desired allocation). Let V be the set of realized pairs in
D(m). While we assume that the type of pair is realized, we assume that the edges are
yet to be realized.

Claim 3. 1. With probability 1 − o(1), there exists a perfect allocation using only two-
way or three-way exchanges in the subgraph induced by only self-demanded pairs.

2. With probability 1 − o(1), there exists a perfect allocation in the subgraph induced
by only A-B and B-A pairs. In particular, either all A-B pairs or all B-A pairs are
matched under such an allocation.
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Proof. Since Bδ(m) occurs, for every self-demanded typeX-X , the subgraph induced
by only X-X pairs is a bounded directed graph, D(((1 − δ)μX-X� (1 + δ)μX-X)�m�γH).
Therefore, the first part follows by the first part of Lemma 2.

Similarly the graph induced by only A-B and B-A pairs is a 2-bounded directed graph,
D(((1 − δ)μA-B� (1 + δ)μA-B� (1 − δ)μB-A� (1 + δ)μB-A)�m�γH). Hence the second part
follows by the second part of Lemma 2. �

LetM1 be an allocation in V that satisfies both parts of Claim 3. We will assume that
such M1 exists, and count the low probability that it does not toward failure of the de-
sired allocation to exist. Further assume thatM1 matches all B-A pairs and, in particular,
ZA-B(m)≥ZB-A(m) (the proof proceeds similarly if all B-A pairs are matched).

Let V ′ be the set of pairs that are not matched by M1 in V . In particular, V ′ con-
tains all overdemanded pairs, underdemanded pairs, and the A-B pairs that are not
matched by M1. The next claim shows that all A-B pairs that are not matched by M1
can be matched as in the hypothesis. Recall that for a set of pairs S and type t, τ(S� t)
denotes the set of pairs in S whose type is t.

Claim 4. With probability 1 − o(1) there exists a perfect allocation in the subgraph in-
duced by the sets of pairs τ(V ′�A-B), τ(V ′�B-O), and τ(V ′�O-A), which matches all pairs
in τ(V ′�A-B).

Proof. Let ᾱ3 = (0�2δμA-B� (1 − δ)μB-O� (1 + δ)μB-O� (1 − δ)μO-A� (1 + δ)μO-A). Since
both Bδ(m) and Sδ(m) occur, the subgraph induced by the pairs in the statement is a
3-bounded directed random graph D(ᾱ3�m�γH), and the result follows by the second
part of Lemma 2. �

Let M2 be a perfect allocation as in Claim 4 (again assuming it exists). By Lemma 1,
the size of this allocation is o(m).

As the hypothesis suggests we wish to match every AB-O pair in a three-way ex-
change using one O-A pair and one A-AB pair (see Figure 3). Furthermore, we need
to match every other overdemanded pairX-Y in a two-way exchange to a Y -X pair. Al-
though we have already used some O-A pairs inM2, the following claim shows that there
are sufficiently many O-A pairs that are not matched by M2 that can be used so as to
match all A-O and AB-O pairs as we have just described. Similarly, there are sufficiently
many A-AB pairs to match all AB-A and AB-O pairs.

Claim 5. 1. ZO-A(m)≥ (1 + δ)m(μA-O +μAB-O)+ λm for some λ > 0.

2. ZA-AB(m)≥ (1 + δ)m(μAB-A +μAB-O).

Proof. Let 1/ρ be the probability that a random patient and a random donor are in-
compatible.52 Since Bδ(m) occurs,

ZO-A(m)≥ μO-A(1 − δ)m= ρμOμA(1 − δ)m> ρμOγ̄(μA +μAB)(1 + δ)m�
52Thus if Y and X are blood types such that a donor of blood type Y is blood type compatible with a

patient of blood typeX , then μX-Y = ρμXμY γ̄ and otherwise μX-Y = ρμXμY .
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where the last inequality follows since μAB < μA and δ < (1 − 2�5γ̄)/(1 + 2�5γ̄) <
(1 − 2γ̄)/(1 + 2γ̄), completing the first part. To see that the second part follows, note
that

ZA-AB(m)≥ μA-AB(1 − δ)m= ρμAμAB(1 − δ)m> ρμABγ̄(μO +μA)(1 + δ)m�
where the last inequality follows because μO +μA < 2�5μA (see Assumption B and foot-
note 21) and δ < (1 − 2�5γ̄)/(1 + 2�5γ̄). �

LetM ′ =M1 ∪M2 and let V ′′ be the set of all pairs that are not matched by M ′. Con-
sider the subgraph induced by the sets of pairs τ(V ′�AB-O), τ(V ′�O-A), and τ(V ′�A-AB).
Observe that this graph is a 3-bounded directed random graph; indeed by Claim 5, there
exist constants c1 and c2 such that the number of pairs in τ(V ′�A-AB) and τ(V ′�AB-O) is
at least c1m and c2m. Therefore, by Lemma 2, with high probability there exists a perfect
allocation that all AB-O pairs will be matched.

To complete the construction, it remains to show that for every overdemanded type
X-Y except AB-O, the graph induced by allX-Y and Y -X pairs that are not yet matched
contains a perfect allocation exchanges of size 2. This follows from similar arguments as
above.

It remains to show that one cannot obtain more transplants by allowing exchanges
of size more than 3. Let e be an exchange of any size and let τ(e�X-Y) be the set of pairs
in e whose type isX-Y . It is enough to show that

∑
t∈U

|τ(e� t)| ≤ 2|τ(e�AB-O)| +
∑

t∈O\{AB-O}
|τ(e� t)|�

We say that a pair v helps pair y if the there is either a directed edge from v to w or
there is a directed path v� z1� z2� � � � � zr�w, where each zi, i ≥ r is a self-demanded pair.
Observe that every underdemanded O-X pair must be helped by some overdemanded
Y -O pair. Similarly, any underdemanded pair X-AB must help an overdemanded AB-Y
pair. Finally, since an O-X underdemanded pair can help an underdemanded pairY -AB
but not vice versa, we obtain the bound.

A.4 Individual rationality and the proof of Theorem 2

Before we prove Theorem 2, we need some preliminaries. First, it will be useful to write
Claims 1 and 2 with respect to D(Hn) rather than D(m). We will need to rewrite the
events (5) and (6) accordingly.

Lemma 3. Let 0< δ < 1
2 and let Hn = {1� � � � � n}. Moreover, let χHn be a random variable

that denotes the size of all hospitals, that is, χHn = ∑
h∈Hn |Vh|. Consider the events

Wδ(Hn)= {∀X-Y ∈ P� (1 − δ)μX-YχHn < |τ(VHn�X-Y)|< (1 + δ)μX-YχHn
}

(7)

and

Sδ(Hn)= {∣∣|τ(VHn�A-B)| − |τ(VHn�B-A)|∣∣ = o(n)}� (8)
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If every hospital h ∈Hn is of a positive and bounded size, then

Pr[Wδ(Hn)�Sδ(Hn)] = 1 − o(1)� (9)

Definition 3 (Regularity). We say that c > 0 is a regular size if for every underde-
manded typeX-Y ∈ U ,

EV

[∫
|τ(MV

U (V )�X-Y)|dF(V )|#V = c
]
<μY -Xc� (10)

where F(V ) is any distribution over all allocations that maximize the number of
matched underdemanded pairs in a given set of pairs V .

A.4.1 Proof of Theorem 2 Let D(Hn) be a random compatibility graph with the set of
hospitalsHn. We will prove the theorem for the case in which each hospital has the same
regular size c ≤ c̄. The proof for the general case is similar (using the fact that the size of
each hospital is bounded).

Let RHS(10) and LHS(10) be the right hand side and left hand side of inequal-
ity (10), respectively (see Definition 4). Fix δ > 0 such that δ < min(RHS(10) −
LHS(10)�0�01� 1

100 γ̄).
We assume that both events Wδ(Hn) and Sδ(Hn) as defined in (7) and (8), respec-

tively, occur with low probability and count toward failure for the existence of an alloca-
tion with the properties described in the theorem.

The next lemma is a key step. Before we proceed, we require some definitions first.
For every h ∈Hn, let Vh be the set of pairs of hospital h. For a hospital h ∈Hn and a set
of pairs S ⊆ VHn , denote by α(S�h)= Vh ∩ S the set of pairs in S belonging to h. Note that

τ(M
Vh
U (Vh)�U) is a maximum set of underdemanded pairs h can internally match. We

let UHn = τ(VHn�U) and OHn = τ(VHn�O) be the set of all underdemanded and overde-
manded pairs inHn, respectively.

Definition 4. A set of underdemanded pairs S ⊆ τ(VHn�U) is called a satisfiable set if

1. |α(S�h)| ≥ |τ(MVh
U (Vh)�U)| for all h ∈Hn

2. |τ(S�X-Y)| = |τ(VHn�Y -X)| for allX-Y ∈ U .

Note that the first part can be thought of as individual rationality with respect to
underdemanded pairs.53

Lemma 4 (Underdemanded rationality lemma). Suppose every hospital size is regular
and bounded by some c̄ > 0. With probability 1 − o(1), there exists a satisfiable set Sn in
D(Hn) and a perfect allocation in the bipartite subgraph induced by Sn and τ(VHn�O).

53Even if a hospital can internally match more pairs using fewer underdemanded pairs, it is reasonable
to consider this condition since pairs of other types will be “easy” to match as suggested by Proposition 1.
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Proof. One way to construct a satisfiable set Sn would be to first (i) choose randomly
for each hospital a maximum set of underdemanded pairs it can internally match (by
regularity and the law of large numbers this will satisfy the first property of Definition 4),
and (ii) add arbitrary pairs of each underdemanded type so that the second property of
Definition 4 is satisfied.

Suppose Sn is constructed as above. We want to show that with high probability
for each underdemanded type X-Y ∈ U , a perfect allocation exists in the subgraph
induced by τ(Sn�X-Y) and the overdemanded pairs in τ(VHn�Y -X). Unfortunately,
Lemma 2 cannot be directly applied since these graphs are not 2-bounded directed ran-
dom graphs due to lack of independence of each edge in the graph (recall that we al-
ready have partial information on internal edges after phase (i) of the process above).
Although it is true that with high probability such a perfect allocation exists, we use a
slightly more subtle construction for a satisfiable set.

Instead, we will partition the set of hospitals into two sets H1
n and H2

n, each with 1
2n

hospitals, and find a satisfiable set Sn such that (i) the number of underdemanded pairs
of each typeX-Y in Sn belonging toH1

n (H2
n) equals the number of overdemanded pairs

Y -X belonging to H2
n (H1

n). Then we will match overdemanded pairs of type Y -X , H1
n

(H2
n), to X-Y underdemanded pairs in Sn belonging to H2

n (H1
n), using the observation

that these subgraphs are 2-uniform directed random graphs.
For every hospital h ∈Hn, letMh be a random allocation that maximizes the number

of underdemanded pairs in the subgraph induced by its set of pairs Vh. For simplicity,
we will assume throughout the proof that n is even. We partition the set of hospitals into
two setsH1

n = {1� � � � � 1
2n} andH2

n = { 1
2n+ 1� � � � � n}. Define for each j = 1�2,

S
j
n =

⋃
h∈Hj

n

τ(Mh(Vh)�U)�

and let S = S1
n∪S2

n. By construction, S satisfies the first property in Definition 4. Consider
the following events for j = 1�2:

Q
j
n =

{
∀X-Y ∈ U� |τ(Sjn�X-Y)|< (1 − δ)μY -X

1
2nc

}
�

By the regularity assumption and the law of large numbers, Pr[Qjn] = 1 − o(1) for both
j = 1�2, and, therefore, Pr[Q1

n�Q
2
n] = 1 − o(1).

Consider the eventsWδ(H
j
n) for each j = 1�2, whereWδ(H

j
n) is defined as in (7). Since

the size of each Hj
n is 1

2n, from Lemma 9 and the fact that there are only two sets in the
partition with probability 1 − o(1), bothWδ(H1

n) andWδ(H2
n) occur.

Therefore, with probability 1 − o(1) for each j = 1�2,

|τ(Sjn�X-Y)|< |τ(V
H

3−j
n
�Y -X)|� (11)

Finally, for each j = 1�2, we add to Sjn arbitrary underdemanded pairs belonging to Hj
n

such that (11) becomes an equality for every X-Y ∈ U . Observe that this is feasible by
applying Lemma 1 for 1

2n hospitals. By construction, Sn = S1
n ∪ S2

n is a satisfiable set.



Theoretical Economics 9 (2014) Free riding 855

Let X-Y ∈ U be an arbitrary type, and consider the subgraph induced by the sets
of pairs τ(S1

n�X-Y) and τ(VH2
n
�X-Y). Note that this is a 2-bounded directed random

graph (the realization of each edge is independent of the internal allocations Mh for
each h since all potential edges in this graph are not internal). Therefore, there is perfect
matching in this graph with probability 1−o(1). Similarly, a perfect allocation exists with
high probability in the graph induced by the sets of pairs τ(S2

n�X-Y) and τ(VH1
n
�X-Y).

Finally, since there are a finite number of types, the proof follows. �

We continue with the proof of the theorem. Let M1 be a perfect allocation as in
Lemma 4. We assume that such M1 exists, again assuming that with the failure proba-
bility, no allocation with the desired properties exists.

So far,M1 matches twice the number of overdemanded pairs in the graph, including
for each hospital h the number of underdemanded pairs each h can internally match.
As in the proof of Proposition 1, there exists a perfect allocation in the subgraph induced
by all self-demanded pairs with probability 1 − o(1), sayM2.

Finally, we will show that there exists a perfect allocation in the subgraph induced
by all A-B and B-A pairs that matches for each hospital at least the same number of A-B
and B-A pairs it can internally match.

For each hospital, there exist probabilities εA-B > 0 and εB-A > 0 not depending on n
for not matching all their A-B and B-A pairs, respectively. Therefore, there exists ε > 0
not depending on n such that with probability 1 − o(1), the number of A-B pairs that
cannot be internally matched is at least εn and the expected number of B-A pairs that
cannot be internally matched is at least εn, i.e., linear in n.

However, by Lemma 1, the difference between the number of A-B and B-A pairs is
sublinear with high probability, that is, with probability 1 − o(1),

∣∣|τ(VHn�A-B)| − |τ(VHn�B-A)|∣∣ = o(n)� (12)

Suppose that |τ(VHn�A-B)| > |τ(VHn�B-A)| (the proof proceeds similarly if the con-
verse inequality holds). By (12), with probability 1 − o(1) there exists W ⊆ τ(VHn�A-B)
such that (i) |W | = |τ(VHn�B-A)| and (ii) for each hospital h,W contains at least the num-
ber of A-B pairs it can internally match.

Using similar arguments as in the proof of Lemma 4, there exists with high proba-
bility a perfect allocation in the graph induced by the sets of pairs W and τ(VHn�B-A),
sayM3.

It remains to bound the efficiency loss, which will follow from Proposition 1. We
consider an efficient allocation M ′ as in Proposition 1 and let M = M1 ∪M2 ∪M3. In
both M and M ′, all self-demanded pairs are matched. M matches each AB-O pair in
a two-way exchange to an O-AB pair rather than carrying out a three-way exchange as
inM ′. In both allocationsM andM ′, after excluding all exchanges of which an AB-O pair
is a part, all overdemanded pairs are matched and the same number of underdemanded
pairs are matched. Finally, by (12), M leaves o(n) A-B or B-A pairs unmatched, whereas
M ′ matches all A-B and B-A pairs.
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Figure 13. No 2-way mechanism is strategyproof.

A.5 Proofs of Propositions 2 and 3

We begin by proving Proposition 2. Consider a setting with two hospitals H2 = {a�b}
such that Va = {a1� a2� a3� a4} and Vb = {b1� b2� b3}. Further assume the compatibility
graph induced by VH2 is given in Figure 13.

Note that every maximal allocation leaves exactly one node unmatched. Suppose
ϕ is both maximal and IR. We show that if a and b submit Va and Vb, respectively, at
least one hospital strictly benefits from withholding a subset of its nodes. Let v ∈ VH2 be
unmatched in ϕ(Va�Vb). If v ∈ Va, then ua(ϕ(Va�Vb)) = 3. However, by withholding a1

and a2, a’s utility is 4, since the maximal allocation in V \{a1� a2} matches both a3 and a4,
and a can match both a1 and a2 via an internal exchange. If v ∈ Vb, then by a symmetric
argument, hospital b would benefit by withholding b2 and b3.

We continue with the proof for the first part of Proposition 3. Consider the same set-
ting as in the proof of Proposition 2 (see Figure 13) and suppose ϕ is an IR strategyproof
mechanism that always guarantees more than 1

2 of the efficient allocation. Note that ei-
ther ua(ϕ(Va�Vb))≤ 3 or ub(ϕ(Va�Vb))≤ 2. Suppose ua(ϕ(Va�Vb))≤ 3. As in the proof of
Proposition 2, for it not to be beneficial for a to withhold a1 and a2, the mechanism can-
not match all pairs in {a3� a4} ∪Vb. Thus ϕ can choose at most a single exchange of size 2
in {a3� a4} ∪ Vb, which is only half of the maximum (efficient) number, and not more, as
required by assumption. The case in which ub(ϕ(Va�Vb))≤ 2 is similar.

The proof of the second part of Proposition 3 is similar: Consider again the same set-
ting as in the proof of Proposition 2 (see Figure 13) and assume there exists a randomized
IR strategyproof mechanism ϕ that guarantees more than 7

8 of the efficient allocation in
every possible V . Any allocation leaves at least one node unmatched. Therefore, either
E[ua(ϕ(Va�Vb))] ≤ 3�5 or E[ub(ϕ(Va�Vb))] ≤ 2�5. Suppose E[ua(ϕ(Va�Vb))] ≤ 3�5. We ar-
gue that under the mechanism ϕ, hospital a benefits from withholding a1 and a2. Since
ϕ guarantees more than 7

8 of the efficient allocation in {a3� a4� b1� b2� b3}, ϕ will choose
the allocation containing exchanges a3, b2 and b3, a4 with probability more than 3

4 .
Therefore, a’s expected utility from reserving two transplants to do internally will be 2+c
for some c > 1�5. A similar argument holds if E[ub(ϕ(Va�Vb))] ≤ 2�5.

A.6 Proof of Theorem 3

We first provide a formal definition for a strongly regular size.
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Definition 5. We say that c > 0 is a strongly regular size if for every underdemanded
typeX-Y ∈ U ,

EV
[
#τ(MV

X-Y (V )�X-Y)|#V = c]<μY -Xc� (13)

whereMV
X-Y is an arbitrary allocation in MV

X-Y .

Let Hn be a set of bounded and strongly regular-sized hospitals, and let H1
n and H2

n

be as in the theorem, i.e., a partition of Hn to two sets of hospitals each of size 1
2n. For

simplicity, we will assume that all hospitals have the same size c > 0.54 Fix some hospital
h̄ ∈Hn and fix Vh̄ to be the set of pairs (type) of hospital h̄. Without loss of generality,
assume that h̄ ∈ H1

n. We assume that all hospitals but h̄ report truthfully their set of
incompatible pairs.

Denote by ϕ the Bonus Mechanism. We need to show that for any subset of pairs
Bh̄ ⊆ Vh̄,

EV−h [u(ϕ(Vh̄�V−h))] ≥EV−h[u(ϕ(Bh̄�V−h))] − o(1)� (14)

Let RHS(13) and LHS(13) be the right hand side and left hand side of inequality (13),
respectively (see Definition 5). Fix δ > 0 such that δ <min(RHS(13) − LHS(13)�0�01). We
assume that the events Wδ(H1

n), Wδ(H
2
n), Wδ(Hn), and Sδ(Hn) as defined in (7) and (8)

occur, and as usual count the low probability they do not toward failure of the existence
of an allocation as constructed in the Bonus Mechanism.55

The following claim will imply that the strategic problem of each hospital roughly
comes down to maximizing its expected number of matched underdemanded pairs.

Claim 6. If h̄ reports truthfully Vh̄, all its non-underdemanded pairs that can be inter-
nally matched will be matched by ϕwith probability 1 − o(1).

Proof. We first claim that in Step 1, the mechanism ϕ will find a perfect allocation in
the graph induced by the set of self-demanded pairs with probability 1−o(1). By the first
part of Lemma 2 and its proof, in almost every subgraph induced by all self-demanded
pairs except pairs of h̄, there exists a perfect allocationM using two-way exchanges and
at most one three-way exchange. Let v be a self-demanded pair belonging to h̄. Using a
similar argument to the proof of part 1 of Lemma 2, with high probability, v can form a
three-way exchange with one of the two-way exchanges in M . Since h̄ is bounded by a
constant size, repeating this argument for each node of h̄ proves the claim.

Similarly, as well as using the same arguments as in the proof of Theorem 2 to match
A-B and B-A pairs, we obtain in Step 2 of the Bonus Mechanism that, with probability
1−o(1), a perfect allocation will be found in the graph induced by A-B and B-A pairs that
matches all A-B and B-A that can be internally matched. Finally, similarly to Lemma 4,

54Again, since all hospitals are of bounded size, a similar proof follows (one needs ca neglect sizes appear
a finite number of times).

55Note that the internal graph of hospital h̄ is not a random variable since it is fixed. However, Lemma 9

still holds since the size of h̄ is bounded and does not affect the number of pairs in the limit. We skip here
the formal details.
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all overdemanded pairs will be matched in Step 3 (to underdemanded pairs) with prob-
ability 1 − o(1). Since there are only three steps and they are all independent of one
another, the result follows. �

For any Bh̄ ⊆ Vh̄ and any underdemanded type X-Y ∈ U , denote by ψX-Y (Bh̄) the
expected number of X-Y pairs in Vh̄ that will be matched when h̄ reports Bh̄ (both by
the mechanism ϕ and, in the second stage, by h̄).

Fix an arbitrary subset Bh̄ ⊆ Vh̄ and an arbitrary underdemanded type X-Y ∈ U . To
see that (14) holds, by Claim 6 it is sufficient to show that

ψX-Y (Bh̄)≤ψX-Y (Vh̄)+ o(1)� (15)

The following lemma allow us to assume that all X-Y pairs belonging to h̄ that are
chosen in the underdemanded lottery will be matched.

Claim 7. AllX-Y pairs chosen by the underdemanded lottery will be matched by ϕwith
probability 1 − o(1), regardless of whether Bh̄ or Vh̄ is reported.

Proof. Suppose h̄ reports Bh̄ (since Bh̄ is arbitrary, all arguments in the proof hold also
if h̄ reports Vh̄). Recall that Sh(X-Y) is the set ofX-Y pairs belonging to h that are chosen
in the underdemanded lottery and recall that θj(Y -X) = |τ(B

H
3−j
n
�Y -X)| for each j =

1�2 (see Step 3(a) in the Bonus Mechanism).
By our assumption, every hospital is strongly regular (see Definition 4). Therefore,

by the law of large numbers and since h̄ is of bounded size, with probability 1 − o(1) for
each j = 1�2, ∑

h∈Hj
n

|Sh(X-Y)|< θj(Y -X)�56

Therefore, with high probability, the underdemanded lottery will enter the Main Step
of the underdemanded lottery.57

Since Wδ(H
1
n) and Wδ(H

2
n) occur, θj(Y -X) < |τ(B

H
3−j
n
�X-Y)| and θ3−j(Y -X) <

|τ(B
H

3−j
n
�X-Y)| for each j = 1�2. Hence, for each j = 1�2, the size of

⋃
h∈Hj

n
Sh(X-Y)

at the end of the underdemanded lottery is the same size as the number of reported
Y -X pairs by all hospitals inH3−j

n .
In particular, each of the two subgraphs containing X-Y and Y -X pairs considered

in Step 3(b) of the Bonus Mechanism is a 2-bounded directed random graph (here we
used that nodes on each side of a graph cannot belong to the same hospital and, there-
fore, we still have independence of each edge). Therefore, by Lemma 2, both these sub-
graphs contain a perfect allocation with probability 1 − o(1) and by construction, all
X-Y pairs in these graph will be matched with probability 1 − o(1). �

56We do not know if |Bh̄| is a strongly regular size, but since it is only one bounded hospital, the inequality
holds.

57Again, we neglect formalizing that hospital h̄’s set is fixed and not a random variable.
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From this point on we will assume that allX-Y pairs chosen by the underdemanded
lottery all end up matched (again counting the failure probability toward failing to
match all underdemanded pairs of hospital h̄ that are chosen in the underdemanded
lottery).

By the Main Step of the underdemanded lottery, adding imaginary X-Y pairs to Bh̄
(i.e., not from Vh̄ \ Bh̄) can only increase ψX-Y (Bh̄). We will add g new X-Y pairs to the
set Bh̄, assuming that each of these new pairs cannot be internally matched by h̄, where

g= |τ(Vh̄�X-Y)| − |τ(Bh̄�X-Y)|�
Note that g ≥ 0 and, with a slight abuse of notation, we refer from now on to Bh̄ as the
extended set containing the imaginary pairs. We need to show that (15) holds.

Let q and q̃ be the number of X-Y pairs h̄ can match internally in Vh̄ and Bh̄, re-
spectively. Observe that q̃ ≤ q ≤ |τ(Vh̄�X-Y)|. We will assume that q < |τ(Vh̄�X-Y)|;
otherwise (15) is satisfied since all pairs in τ(Vh̄�X-Y) will be matched by ϕ.

Consider the Main Step in the underdemanded lottery. When h̄ reports Vh̄, each ball
in J belonging to h̄ is drawn with some identical probability p > 0. Similarly, when h̄
reports Bh̄, each ball in J belonging to h̄ is drawn with some identical probability p̃ > 0.
Since the number ofX-Y pairs and Y -X belonging to h̄ is bounded, and the total num-
ber ofX-Y and Y -X pairs in the pool approaches infinity,

p̃= p+ o(1)� (16)

We set z = |τ(Vh̄�X-Y)| and consider the case that h̄ reports Vh̄. In the initialization
step of the underdemanded lottery, Sh̄(X-Y) is initialized to contain exactly q X-Y pairs
of h̄, and in the Main step of the lottery, for each one of h̄’s that is drawn, an additional
X-Y pair belonging to h̄ is added to Sh̄(X-Y) as long as there are remaining X-Y pairs
in Vh̄. Therefore, since h̄ has at most z− q additionalX-Y pairs (to the initial q ones),

ψX-Y (Vh̄)= q+
z−q−1∑
j=1

j

(
z

j

)
pj(1 −p)z−j + (z− q)

z∑
j=z−q

(
z

j

)
pj(1 −p)z−j� (17)

Consider now the case that h̄ reports Bh̄. Again, the initialized set Sh̄(X-Y) contains q̃
X-Y pairs, and for each of h̄’s balls that is drawn in the Main Step, an additional X-Y
pair is added to Sh̄(X-Y) (as long as it has such remaining inBh̄). Recall that we assumed
that all pairs Sh̄(X-Y) at the end of the lottery will be matched by the mechanism ϕ.

Since h̄ has not reported all its pairs, it can still use pairs in Vh̄ \ Bh̄ in exchanges to
match X-Y pairs in τ(Vh̄�X-Y) \ Sh̄(X-Y). By definition of q and the initialization of
Sh̄(X-Y), h̄ cannot match more than an additional q− q̃ X-Y pairs that the mechanism
has not matched. Therefore,

ψX-Y (Bh̄)≤ q̃+
z−q̃−1∑
j=1

min(j + q− q̃� z− q̃)
(
z

j

)
p̃j(1 − p̃)z−j

+ (z− q̃)
z∑

j=z−q̃

(
z

j

)
p̃j(1 − p̃)z−j�

(18)
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where the second term on the right hand side follows since if j balls are drawn from J,
h̄ can match at most an additional q− q̃ X-Y pairs and altogether not more than z − q̃
additionalX-Y pairs to the first q̃ pairs.

Since z, p and q̃ are all bounded, by (16) we can replace p̃ with p in the right hand
side of (18) and add o(1). Therefore,

ψX-Y (Bh̄)≤ q̃+
z−q̃−1∑
j=1

(
z

j

)
pj(1 −p)z−j min(j + q− q̃� z− q̃)

+ (z− q̃)
z∑

j=z−q̃

(
z

j

)
pj(1 −p)z−j + o(1)�

Since z− q̃≥ z− q,

ψX-Y (Bh̄)≤ q̃+
z−q−1∑
j=1

(
z

j

)
pj(1 −p)z−j(j + q− q̃)

+ (z− q̃)
z∑

j=z−q

(
z

j

)
pj(1 −p)z−j + o(1)

= q̃+
z−q−1∑
j=1

j

(
z

j

)
pj(1 −p)z−j + (q− q̃)

z−q−1∑
j=1

(
z

j

)
pj(1 −p)z−j

+ (z− q+ q− q̃)
z∑

j=z−q

(
z

j

)
pj(1 −p)z−j + o(1)

≤ψX-Y (Vh̄)+ o(1)�

where the last inequality follows by (17) and since (q− q̃)∑z
j=1

(z
j

)
pj(1 − p)z−j ≤ q− q̃.

We have shown that inequality (15) is satisfied.
To see that the bound on the efficiency loss holds under the truth-telling strategy

profile, note that the allocation constructed by ϕ has the same size/properties as the
one constructed in the proof of Theorem 2, implying the result.
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