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Dynamic contracts when the agent’s quality is unknown
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We solve a long-term contracting problem with symmetric uncertainty about the
agent’s quality and a hidden action of the agent. As information about quality ac-
cumulates, incentives become easier to provide because the agent has less room
to manipulate the principal’s beliefs. This result is opposite to that in the literature
on “career concerns” in which incentives via short-term contracts become harder
to provide as the agent’s quality is revealed over time.

Keywords. Principal–agent model, optimal contract, learning, private informa-
tion, reputation, career.
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1. Introduction

In an agency problem, the agent may have not just a hidden action, but also an un-
known quality. Many relationships between firms and workers, between shareholders
and CEOs, or between lenders and borrowers are of this kind. Yet, little is known about
the optimal design of multiperiod contracts in such situations. For example, the ques-
tion remains open as to whether quality uncertainty is a motivating factor.

When risk-neutral principals and agents deal in spot markets and quality is fixed
over time, Holmström (1999) provides a clear answer: Quality uncertainty is good for in-
centives because it creates a reputational concern. Gibbons and Murphy (1992) confirm
this result for one-period incentive contracts and risk-averse agents.

We find that the opposite is true under full commitment: Quality uncertainty harms
incentives. Our conclusion differs from Holmström’s because markets reward talent,
whereas contracts are designed to extract effort; once committed to the relationship, it is
never in the interest of the principal to discourage the agent by punishing him for having
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a low productivity. This creates an incentive for the agent to manipulate the principal’s
beliefs about quality.

An agent who has provided less effort than expected knows that output would have
been higher had he taken the recommended action. Such private information drives a
persistent wedge between the principal’s and the agent’s posteriors: A shirker remains
more optimistic about quality than the principal. This motivates the manipulation an
agent might undertake: By inducing the principal to underestimate his productivity, a
shirker anticipates that he will benefit from overestimated inferences about his effort
in future periods and thus higher rewards. Hence, of two agents with identical perfor-
mance histories, the shirker will enjoy a higher expected future utility.

The benefits of manipulating the principal’s belief downward is reminiscent of the
“ratchet effect” discussed in Laffont and Tirole (1988).1 To prevent such belief manipu-
lation, contracts under quality uncertainty must link pay more tightly to performance,
which lowers the welfare of the risk-averse agent. Since true quality is constant in our
model, belief manipulation is more effective early on, as posteriors put more weight on
new information, and the sensitivity of pay to performance declines over time.

We use a first-order approach to characterize the optimal contract. We focus on
the necessary conditions for recommended effort to be incentive compatible and derive
sufficient conditions under which the agent’s problem is globally concave.

To circumvent the difficulties associated with the persistence of private informa-
tion,2 we impose a series of parametric restrictions. First, we cast our model in con-
tinuous time so as to use the optimization techniques originally introduced by Schättler
and Sung (1993) and, in particular, to analytically verify whether incentive-compatible
constraints are indeed sufficient. Second, we ensure that ability is drawn from the con-
jugate prior of the likelihood function by assuming that both noise and ability are nor-
mally distributed. It is common in Bayesian models to consider problems where priors
and posteriors are conjugate distributions so as to avoid relying on numerical methods.
Since posteriors are normal, the set of sufficient statistics boils down to the first two mo-
ments of beliefs. Third, we restrict our attention to linear technologies so that effort,
ability, and noise affect output additively. This separability ensures that the value of pri-
vate information does not directly depend on the posterior, and that we only need to
keep track of cumulative output and effort to compute it.

1In contrast to Laffont and Tirole (1988), our model features no adverse selection from the outset. In-
stead, we model a pure moral hazard problem where the principal and agent share the same prior. Asym-
metric information can arise only off the equilibrium path through the persistent influence of past actions
on posteriors.

2Establishing incentive compatibility when private information is fully persistent entails the following
technical issue: As the duration of the relationship increases, the state space becomes unbounded because
the entire history of actions matters for evaluating the agent’s options off the equilibrium path. A recursive
approach to the problem quickly becomes intractable since, as originally explained by Fernandes and Phe-
lan (2000), it takes the beliefs of the agent and of the principal as separate states. The first-order approach
bypasses this difficulty by focusing on the equilibrium path. Then the challenge consists in deriving suf-
ficient conditions. To the best of our knowledge, the only proof in discrete time is by Kapicka (2006) and
is rather specific to the reporting problem analyzed in his paper. One remedy is to numerically check the
incentive compatibility of the contract, as in Abraham and Pavoni (2008).
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Under these three premises, we can derive necessary and sufficient conditions for
general time-separable preferences. Their analysis reveals that uncertainty about the
agent’s ability decreases the power of incentives. Having established the generality of
our main finding, we investigate the model’s implications when agents have constant
absolute risk aversion. This specification neutralizes the wealth effect, making it possi-
ble to solve for the optimal contract in closed form.

Given the parametric approach, one may be inclined to think that our insights
are driven by the choice of functional forms. To dispel this impression, we include
in Appendix C a stylized two-period model that confirms that welfare rises when pri-
ors become more precise. We intentionally use parametric assumptions different from
those in the main model to show that our prediction holds across a variety of envi-
ronments. It is true, however, that dynamic contracts with more than two periods
quickly become intractable when any of the restrictions discussed above is relaxed.
Hence, the specific design of our setup should not be seen as a drawback detracting
from the generality of its predictions, but instead as a contribution for its ability to
produce an explicit solution to the otherwise intractable problem of contracting with
learning. Its advantages are illustrated in the recent paper of He et al. (2012). They
extend our framework by introducing hidden savings and effort costs that are con-
vex instead of linear. They also restrict their attention to stationary learning, whereas
we let posteriors’ precision increase over time. Whether any of these assumptions
should be interpreted as more judicious depends on the economic interpretation of
the model. Given that our objective is to analyze the interactions between commit-
ment and career concerns, we focus on nonstationary learning so as to capture the
mechanism through which reputations are established. By contrast, He et al. (2012)
are interested in characterizing the impact that learning has on effort in the canonical
model of Hölmstrom and Milgrom (1987). Using optimality conditions similar to ours,
He et al. (2012) show that, on average, recommended effort decreases over time.3 An-
other closely related paper is DeMarzo and Sannikov (2011). They study a problem that
is similar in structure, but assume that agents are risk-neutral.

Our paper seems to be the first to study commitment in a repeated agency prob-
lem when the agent’s quality is unknown and constant, and where the principal makes
transfers to the risk-averse agent in each period. A few other papers have analyzed the
interactions between quality and moral hazard, but under different assumptions about
the structure of payments or the timing of actions. Giat et al. (2010) add initial private
information to Hölmstrom and Milgrom (1987) so that there is a single transfer at the
end of the contracting horizon. Conversely, Hopenhayn and Jarque (2007) analyze per-
sistent unknown quality when the effort decision occurs solely in the first period. Adrian
and Westerfield (2009) assume that principal and agent disagree about the resolution of
uncertainty, knowing that the agent is dogmatic and, as such, never updates his prior.
This eliminates the belief manipulation channel since the two parties agree to disagree.

3By contrast, in our model, effort is deterministic and equal to either zero or its first-best level. We reach
different predictions because disutility is linear in effort, whereas He et al. (2012) consider losses that are
convex in effort.
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Our methodology borrows from Williams (2011), whose work extends the continu-
ous time approach of Sannikov (2008) to a contracting environment with persistent pri-
vate information. There are several differences between our paper and that of Williams:
he assumes that the agent observes his productivity and that it evolves stochastically,
whereas we keep productivity fixed but neither the agent nor the principal know its ac-
tual value. Second, Williams assumes that the initial ability is common knowledge. It,
therefore, remains commonly known when the agent reports truthfully and the equilib-
rium features no learning. By contrast, we have a common learning process along the
equilibrium path. Modeling it requires that we introduce contract duration as an addi-
tional state. Third, we use a proof strategy that does not rely on the stochastic maximum
principle. We follow instead the approach proposed by Cvitanić et al. (2009), who use a
variational argument to derive the first-order conditions.

Finally, our model is connected to the canonical work of Hölmstrom and Milgrom
(1987). They also study a long-term contracting problem where information arrives con-
tinuously and agents have constant absolute risk aversion (CARA) preferences. Their
approach differs in two important dimensions. First, they consider that all transfers are
paid at the end of the contract. Their framework is, therefore, not amenable to com-
parison with the career concerns literature where agents are offered a sequence of spot
payments. Moreover, ability is known in Hölmstrom and Milgrom (1987). We show that
ability risk has a different impact on total surplus than does transitory risk. If optimal
contracts treated ability risk in the same way as transitory output risk, the model’s pre-
diction would depend only on the time-path that total risk follows over the duration of
the relationship. It turns out, however, that the two types of uncertainty cannot, in gen-
eral, be so bundled because actions have a lasting effect solely when the agent can in-
fluence beliefs.4 As the history of play gradually reveals the agent’s ability, the principal
can lower the sensitivity of pay to performance over time and still maintain incentives.5

The paper proceeds as follows. Section 2 lays out the model. The agent’s necessary
and sufficient conditions are derived in Section 3. Section 4 displays the contract under
exponential utility that is optimal for the principal. It characterizes the set of parameters
and initial beliefs under which the agent’s first-order conditions represent a global opti-
mum. Section 5 discusses the properties of the optimal contract and equilibrium wage
schedule. Section 6 contrasts our full-commitment contract with the no-commitment
model of Holmström (1999). Section 7 sums up our findings, whereas the proofs of the
main propositions and corollaries are in Appendix A. We relegate the proof of a tan-
gential claim to Appendix B. Finally, we analyze in Appendix C a stylized two-period
contract with learning.

4We establish this by means of a proposition in Section 4, simulation in Section 5, and, finally, in Ap-
pendix C, where we use a stylized model to show that quality and output uncertainty are isomorphic only
when there is a single transfer.

5He et al. (2012) thoroughly investigate how learning affects the contracting problem of Hölmstrom and
Milgrom (1987). They find that, as opposed to Hölmstrom and Milgrom (1987), whose contract can be
implemented by a constant equity share, the optimal contract under learning exhibits option-like features.
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2. The problem

Production process. Let {Bt}t≥0 be a standard Brownian motion on a probability space
(��F�P). The cumulative output Yt of a match of duration t is observed by both parties
and satisfies the stochastic integral equation

Yt =
∫ t

0
(η+ as)ds+

∫ t
0
σ dBs� (1)

The time-invariant productivity is denoted byη, whereas at ∈ [0�1] is the effort provided
by the agent. The agent’s action shifts average output without affecting its volatility.

Learning. No one knows η at the outset, and common priors are normal with mean
m0 and precision h0. Posteriors over η depend on Yt and on cumulative effort At �∫ t

0 as ds. Conditional on (Yt�At� t), they are also normal with mean

η̂(Yt −At� t)� Et[η|Yt�At] = h0m0 + σ−2(Yt −At)
ht

(2)

and with precision

ht � h0 + σ−2t� (3)

Focusing on normal priors over the mean of a normally distributed process lets one
summarize all the statistically significant information with three variables: cumulative
output Y , cumulative effort A, and elapsed time t. Especially useful for the characteri-
zation of optimal contracts is the fact that beliefs depend on the history of a through A
alone. Hence it is sufficient to keep track of cumulative effort instead of the whole effort
path.6

Beliefs. The principal does not observe the agent’s effort and so has to assume that
he takes his equilibrium action a∗

t . His beliefs are governed by (2) in which A=A∗ and
by (3). By contrast, the agent’s beliefs incorporate the actual level of effort a that only
he knows. Thus his beliefs are governed by (2) in which A and not A∗ enter. Let Fat �
σ(Ys�as;0 ≤ s ≤ t) denote the filtration generated by (Y�a) and let Fa � {Fat }t≥0 denote
the P-augmentation of this natural filtration. Denote by Zt the cumulative surprise of
someone who believes that Yt was accompanied by the effort sequence {as;0 ≤ s ≤ t}.
The filtering theorem of Fujisaki et al. (1972) implies that the innovation process

dZt �
1
σ

[
dYt − (η̂(Yt −At� t)+ at)dt

]
(4)

6This is why most of the literature on career concerns, Holmström’s (1999) model included, focuses on
the additive normal case. Dewatripont et al. (1999, p. 186) discuss in their remark the complications that
arise when more general production functions are considered.
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is a standard Brownian motion on the probability space (��Fa�P).7 Moreover, η̂ is a
P-martingale with decreasing variance:8

dη̂(Yt −At� t)= σ−1

ht
dZt� (5)

The agent is restricted to the class of control processes A � {a : [0�T ] ×�→ [0�1]} that
are F

a-predictable.9 Given that the principal does not observe actual effort, the infor-
mation available to him is restricted to the filtration FYt � σ(Ys;0 ≤ s ≤ t) generated by
Y , whose augmentation we denote by F

Y � {FYt }t≥0. An effort path is an equilibrium
path when recommended and equilibrium effort coincide, i.e., if at = a∗

t for all (t�ω).10

Contract. We assume that parties are able to commit to a long-term contract that
lasts until date T and whose payments can depend on realized history in an arbitrary
way. We follow the usual practice of adding recommended effort a∗ to the contract def-
inition. Accordingly, since a given output path is a random element of the space �, a
contract is a mapping (w�a∗) : [0�T ]×�→ R×[0�1] that associates, to any eventω ∈�,
a wage–effort pair that is F

Y -predictable as well as a terminal payment WT :�→ R that
is FYT -measurable. The mapping must be measurable based on information that the
principal has and so can depend on past output but not on past effort. Otherwise con-
tracts remain general since they can depend on the entire past and present {Ys;0 ≤ s ≤ t}
of the output process.11

Preferences. The agent’s preferences are time additive with discount rate ρ > 0.
Flow utility is a concave and twice continuously differentiable function u(w�a) ∈
C2�2(R×[0�1]), while the terminal utility is U(W ) ∈ C1(R). Thus the agent’s preferences
as of time 0 read

U0 �
∫ T

0
e−ρtu(wt(ω)�at(ω))dt + e−ρTU(WT (ω))� (6)

7As shown in Section 10.2 of Kallianpur (1980), the linearity of the filtering problem implies that
the filtrations generated by the output and innovation processes coincide. More formally, for FZ

t �
σ(Zs;0 ≤ s ≤ t), we have Fa

t = FZ
t .

8Equation (5) follows directly from Ito’s lemma. LetXt � Yt −At denote cumulative output net of cumu-
lative effort so that

dη̂(Xt� t)= ∂η̂(Xt� t)

∂t
dt + ∂η̂(Xt� t)

∂Xt
dXt = −σ

−2

ht
η̂(Xt� t)dt + σ−2

ht
(η̂(Xt� t)dt + σ dZt)= σ−1

ht
dZt �

9A mapping is predictable when it is P-measurable, with P denoting the σ-algebra of predictable subsets
of the product space R

+ ×�, i.e., the smallest σ-algebra on R
+ ×� making measurable all left-continuous

and adapted processes.
10Since a∗ is F

Y -predictable, the two filtrations Fa
t and FY

t will coincide in equilibrium. This captures
the fact that the principal and the agent share the same information sets when recommended effort is im-
plemented. However, we have to consider out-of-equilibrium strategies so as to establish incentive com-
patibility. This is why we need to allow for the possibility that the filtrations Fa

t differ from FY
t .

11Given the diffusion property of the output process, one should think of � = C([0�T ];R) as the space
of continuous functions ω : [0�T ] → R and of the process defined in (4), Zt(ω) = ω(t), 0 ≤ t ≤ T , as the
coordinate mapping process with Wiener measure P on (��FY

t ). Accordingly, a contract is a mapping
(w�a∗) :R+ ×C([0�T ];R)→R× [0�1].
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The principal is risk-neutral, also discounts at the rate ρ, and seeks to maximize the
discounted flow of output net of wages and net of the terminal payment

π0 �
∫ T

0
e−ρt dYt −

∫ T
0
e−ρtwt(ω)dt − e−ρTWT (ω)� (7)

3. Incentive-compatible contracts

This section focuses on the agent’s problem. We derive the necessary conditions for a
given action to be optimal and then establish a restriction under which they are also
sufficient. We impose a terminal date T on the contracting horizon. Until then, both
principal and agent are fully committed to the relationship. The agent’s continuation
value at time t reads

vt � max
a∈A

E

[∫ T
t
e−ρ(s−t)u(w(Y s)�a)ds+ e−ρ(T−t)U(W (YT ))

∣∣∣Fat
]
� (8)

where Yt � {Ys;0 ≤ s ≤ t} is the output history. The agent computes his continuation
value by taking a conditional expectation under the filtration Fat , which varies with the
level of cumulative effort. The principal, on the other hand, does not observe actual
actions. Thus he needs to keep track of continuation values for any potential level of
cumulative effort. We shall simplify the problem by adopting a first-order approach: We
focus on the continuation value along the equilibrium path and then establish condi-
tions under which our solution is indeed globally optimal for the agent.

3.1 Necessary conditions

The optimization problem (8) cannot be analyzed with standard methods because the
objective function depends on the processwt , which is non-Markovian since it depends
on the whole output path Yt . We instead use a martingale approach. Faced with a con-
tract (w�a∗), the agent controls the distribution of wages through his choice of effort.
Under this interpretation, the agent chooses the probability measure over realizations
of wt . This approach renders our optimization problem treatable with optimal control
techniques because the Radon–Nikodym derivative associated with any effort path is a
Markovian process.12

12More precisely, fix a probability measure Q such that cumulative output follows a martingale under Q
and letZ0 denote a standard Brownian motion underQ. By definition ofQ, we have dYt = σ dZ0

t . A change
in effort can be interpreted as a choice of probability measure. We explain in the Appendix that the proba-
bility measureQa associated to any arbitrary effort policy a is equivalent toQwith Radon–Nikodym deriva-
tive dQa/dQ = �a0�T (see (32) in Appendix A for a formal definition of �a). We can use �a to relate the

expectation operator Ea[·] under the probability measureQa to the expectation operator E0[·] underQ as

V (a� t)=Eat
[∫ T
t
e−ρ(s−t)us ds+ e−ρ(T−t)UT

]
=E0

t

[∫ T
t
�as�T e

−ρ(s−t)us ds+�aT�T e−ρ(T−t)UT
]
�

Given that the construction of the measure Qa ensures that the expectations Et [·|Fa
t ] and Eat [·] coincide,

the agent’s problem consists in maximizing V (a� t) subject to the laws of motion of �a and Y . The key
advantage of the weak formulation is that under our reference probability measure Q, the output process
does not depend on a. Hence, we can treat it as fixed, which enables us to solve the optimization problem
in spite of its non-Markovian structure.
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The idea of using distributions as controls to solve principal–agent models goes back
to Mirrlees (1974). The learning process complicates our problem, as past efforts affect
not only current wages, but also future expectations. We show in the Appendix how this
difficulty can be handled through an extension of the proof by Cvitanić et al. (2009),
which leads to the necessary condition stated below.

Proposition 1 (Necessary conditions). There exists a unique decomposition for the
agent’s continuation value,

dvt = [ρvt − u(wt�at)]dt + γtσ dZt (9)

vT = U(WT )�

where γ is a square integrable predictable process. The necessary condition for a∗
t to be an

optimal control reads[
γt +Et

[
−
∫ T
t
e−ρ(s−t)γs

σ−2

hs
ds

]
+ ua(wt�a∗

t )

]
(a− a∗

t )≤ 0 (10)

for all a ∈ [0�1].

An increase in current effort has two effects: it raises the promised value along the
equilibrium path and increases cumulative effort. The first effect is proportional to the
process γ, which measures the sensitivity of the agent’s value to output surprises. The
second effect is captured by the expectation term in (10). This term vanishes when η
is known, since then σ−2/hs = 0 for all s ≥ t. As a special case of our model, we then
get the necessary condition in Sannikov (2008), which says that an optimal control must
maximize γa+ u(w�a).

Quality uncertainty leads to the addition of the expectation term on the left hand
side of (10). To understand why, observe first that an increase in cumulative effort to-
day lowers date-s posteriors over η by ∂η̂(Ys −As� s)/∂As = −σ−2/hs . In other words,
an upward deviation from recommended effort A∗

t creates a negative output surprise
of −σ−2/hs at all future dates s > t. The impact in utils is obtained by multiplying the
output surprise −σ−2/hs by the expected value of the sensitivity coefficient γs . Sum-
ming and discounting all these marginal effects yields the expected marginal returns of
manipulating beliefs.

It is more convenient to rewrite condition (10) as[
σ−2

ht
pt + γt + ua(wt�a∗

t )

]
(a− a∗

t )≤ 0 for all a ∈ [0�1]� (11)

where

pt � htE
[
−
∫ T
t
e−ρ(s−t)γs

1
hs
ds
∣∣∣Fat
]

(12)

is a stochastic process capturing the value of private information. Since p is negative, it
follows from (11) that for any recommended level of effort a∗

t and any given wagewt , the
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volatility, γt , of the agent’s promised value must be higher with quality uncertainty than
without it. The implication does not hinge on any particular specification for the utility
function: An uncertain environment makes it harder to motivate the agent and so leads
to greater exposure to risk.

The reformulated necessary condition (11) involves two stochastic variables, γ
and p. This is a usual result for dynamic contracts with private information.13 First, we
recover the now standard technique of using the promised value to encode past history.
A related interpretation can be inferred for p by noticing that the incentive constraint
(11) implies that

γt ≥ −ua(wt�a∗
t )− σ−2

ht
pt whenever a∗

t > 0� (13)

Given that the agent is risk-averse, it is natural to conjecture that the principal will min-
imize the volatility parameter γ. Hence, as long as a∗

s > 0 for all s ∈ [t�T ], the necessary
condition (13) will hold with equality almost everywhere on the equilibrium path. We
show below that this is indeed true when the agent has exponential utility and precision
exceeds a deterministic threshold. We, therefore, replace γ by its expression when (13)
binds and, as shown in Appendix B, obtain the solution

pt =E
[∫ T
t
e−ρ(s−t)ua(ws�as)ds

∣∣∣Fat
]
� (14)

It follows that whenever a∗
s > 0 for all s ∈ [t�T ], the law of motion for p reads

dpt = [ρpt − ua(wt�at)]dt +ϑtσ dZt (15)

pT = 0�

Along with γ, the coefficients ϑ is chosen by the principal so as to maximize expected
returns.

Intuition behind p. The second state variable p is equal to the expected discounted
marginal cost of future efforts. Multiplying it by the ratio σ−2/ht yields the marginal
effect of cumulative effort on the continuation value. The intuition for this result can be
laid out by considering mimicking strategies. Fix Yt and decrease cumulative effort by
δ > 0. Then define a strategy enabling the agent to reproduce the payoffs of an agent
with the reference levelA∗

t of past effort. Let a∗
t denote the optimal effort at time t of the

13This feature was originally noticed by Werning (2001), who considered principal–agent problems with
hidden savings. He proved that one has to introduce both continuation value and expected marginal utility
from consumption. A general approach has been recently proposed by Pavan et al. (2010). They establish
an envelope formula for the derivative of an agent’s equilibrium payoff. When applied to adverse selection
problems with Markovian types, the envelope formula leads to the definition of an additional recursive
variable. To the best of our knowledge, Williams (2008) was the first to introduce two separate stochastic
processes so as to solve dynamic incentive problems in continuous time. He also explains how one of
them can be dispensed with when the utility function is exponential. We show in Section 4 that a similar
simplification holds in our setup.
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reference policy with cumulative effortA∗
t . By providing aδt = a∗

t − δσ−2/ht ,14 the agent
with cumulative effortA∗

t −δ ensures that cumulative output will have the same drift as
along the reference path; that is,

η̂(Yt − (A∗
t − δ)� t)+ aδt = h0m0 + σ−2(Yt − (A∗

t − δ))
ht

+ a∗
t − σ−2

ht
δ

= η̂(Yt −A∗
t � t)+ a∗

t �

Assume now that a similar strategy is employed afterward, so that aδs = a∗
s − (σ−2/ht)δ

for all s ≥ t. Cumulative effort will be Aδs =A∗
s − [1 + (σ−2/ht)(s − t)]δ, leading to the

output drift

η̂(Ys −Aδs � s)+ aδs = h0m0 + σ−2(A∗
s − [1 + (σ−2/ht)(s− t)]δ)

hs
+ a∗

s − σ−2

ht
δ

= η̂(Ys −A∗
s � s)+ a∗

s − σ−2

hths

[
(ht + σ−2(s− t))︸ ︷︷ ︸

=hs
−hs
]

= η̂(Ys −A∗
s � s)+ a∗

s �

As desired, the mimicking strategy reproduces the distribution of Ys for all s ≥ t and the
product −(σ−2/ht)pt measures its expected discounted return in utils.15 It is positive
because it took the agent with cumulative effort A∗

t more work to produce Yt , implying
that his productivity is likely to be lower. Returns decrease as t increases because the
influence of output on beliefs is lower when η is known more precisely. This suggests
that incentives become easier to provide over time, a result that we will discuss at length
in Section 5.

3.2 Sufficient conditions

First-order conditions rely on the premise that the agent’s objective is globally concave.
Unfortunately, principal–agent problems do not always fulfill such a requirement. In our
case, establishing concavity is complicated by the persistence of private information:
Excluding one-shot deviation does not necessary rule out multiple deviations, because
any departure from recommended effort drives a permanent wedge between the beliefs
of the agent and those of the principal. Thus we have to verify the sufficiency of our
necessary conditions. Only then can we be sure that the agent finds it indeed optimal
to provide recommended effort when assigned the wage function satisfying the local
incentive constraint (11).

14Such strategies are not feasible when the reference control is at the lower bound, i.e., when a∗
t = 0. One

should, therefore, interpret our discussion of mimicking strategies as heuristic, the rigorous interpretation

being that of the expectation term E[− ∫ Tt γs σ−2

hs
ds|Fa

t ] laid out in the paragraphs above.
15The correction term σ−2/ht required to mimic the output distribution remains constant over time be-

cause of two countervailing mechanisms. One the one hand, as hs increases, the impact of past deviations
on posteriors decreases over time. On the other hand, the mimicking strategy involves repeated deviations
so that the gap between A∗

s and Aδs widens over time. When the output distribution is normal, these two
opposite forces offset each other.
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How to establish incentive compatibility for discrete time contracts with persistent
information remains an open question.16 By contrast, when the model is cast in con-
tinuous time, the sufficiency of the necessary conditions and thus the incentive com-
patibility of the effort path can be established from the concavity of the agent’s Hamil-
tonian. This general mathematical result is summarized in Theorem 3.5.2 of Yong and
Zhou (1999), and the next proposition is an application of that result to our model.17

Proposition 2 (Sufficient conditions). A control a∗ is incentive compatible if (10) and

−2uaa(wt�a∗
t )≥ eρtξtσ2ht (16)

are true for almost all t, where ξ is the predictable process defined uniquely by

E

[
−
∫ T

0
e−ρsγs

σ−2

hs
ds
∣∣∣Fa∗
t

]
−E
[
−
∫ T

0
e−ρsγs

σ−2

hs
ds
∣∣∣Fa∗

0

]
=
∫ t

0
ξsσ dZs (17)

for all t ∈ [0�T ].

According to (14), the process ξt is the random fluctuation in the discounted sum of
marginal utilities as evaluated from time 0. Proposition 2 imposes stronger restrictions
on ξt than required so that a control might violate them and nevertheless be incentive
compatible. Moreover, (16) and (17) are stated in terms of (wt�γt), which are endoge-
nous, implying that they have to be verified ex post for any given contract. In some
cases, however, one can translate (16) and (17) into a requirement on the parameters of
the model. Indeed, when the agent’s utility function is exponential, as in (18), Corollary 2
shows that the conditions of Proposition 2 are fulfilled if (24) holds.

Some general results about local incentive constraints and their sufficiency have
been established in this section. We have derived qualitative results on the interaction
between quality uncertainty and incentive compatibility. It is difficult to make further
progress without being more specific about the agent’s preferences. This is why we here-
after restrict our attention to a particular class of utility functions.

4. Optimal contract under exponential utility

We now explain how one can solve for the principal’s problem and derive the optimal
contract in closed form when the agent’s utility is exponential. The main idea is to sim-
plify the optimization program by eliminating two states: The first state is a component
of the sufficient statistics for beliefs, η̂; the second state is the value of private informa-
tion, p. We now describe how each of these is dealt with.

16The difficulties arising in discrete time settings are thoroughly discussed by Abraham and Pavoni
(2008). To circumvent them, they propose a numerical procedure verifying ex post the implementability
of contracts with hidden effort and savings. See also Kocherlakota (2004) for a discussion of the problem
and an analytical example.

17A similar approach has already been used in principal–agent settings by Schättler and Sung (1993),
and more recently by Williams (2008). The sufficient condition is too stringent for some of the contracting
problems considered in Williams (2008) because the agent’s Hamiltonian is not concave. Corollary 2 below
shows that this is not the case in our model when posterior precision ht exceeds a deterministic threshold.
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Eliminating η̂ from the list of states. For a given contract (w�a∗), the principal ex-
pected utility reads

�Tt (w�a
∗) � E

[∫ T
t
e−ρ(s−t)[η̂(Ys −A∗

s � s)+ a∗
s −ws]ds− e−ρ(T−t)WT

∣∣∣FYt
]

= 1 − e−ρ(T−t)

ρ
η̂(Yt −A∗

t � t)+E
[∫ T
t
e−ρ(s−t)(a∗

s −ws)ds− e−ρ(T−t)WT
∣∣∣FYt
]
�

The second equality follows because the principal is risk-neutral and beliefs follow a
martingale. Assuming that Proposition 2 holds, so that the necessary condition is also
sufficient, the principal’s problem consists in solving for sup(w�a∗) �

T
t (w�a

∗) subject to
the two promise-keeping constraints (9) and (15), and to the incentive constraint (13).
Given that the posterior mean η̂ does not enter directly into any of the constraints, it can
be dispensed with as a state, leaving only precision as a belief state. Furthermore, since
ht is deterministic, we may index precision by t. The fact that the expected value of η is
immaterial to the principal’s objective illustrates that incentives are designed to reward
effort and not ability.

Eliminating p from the list of states. We now restrict our attention to exponential
utility functions18 of the form

u(w�a)= −exp(−θ(w− λa)) with λ ∈ (0�1)�θ > 0� (18)

and a ∈ [0�1]. Imposing λ < 1 ensures that a = 1 is the first-best action because the
marginal utility of an additional unit of output exceeds the marginal cost of effort re-
gardless of η.19 Our specification rules out agents with limited liability because util-
ity is defined even for negative consumption, which occurs with positive probability in
equilibrium.

When u(a�w) is given by (18), the problem greatly simplifies because ua(w�a) =
θλu(w�a).20 Reinserting this identity into (8) and (14) shows that whenever the incen-
tive constraint binds for almost all s ∈ [t�T ], pt = θλ(vt − e−ρ(T−t)Et[vT ]). Given that the
promised value is a one dimensional diffusion process, we can infer pt from vt . Fur-
thermore, as the contracting horizon goes to infinity and the transversality condition
limT→∞ e−ρT vT = 0 holds, we have pt = θλvt . This proportionality of v and p means
that keeping track of one of the two states is sufficient.

18Even though the full characterization of the contract will hold only for utilities of the form (18), the
optimality conditions derived in Section 3 are true independently of this parametric restriction. One of its
implications is that there is no wealth effect on leisure because Uw(·)/Ua(·)= −λ−1 is equal to a constant
that does not depend on w.

19Accordingly, one could interpret our model as resulting from a situation where the agent is able to
divert cash flows 1 − a at the rate λ. As in DeMarzo and Sannikov (2011), setting λ below 1 ensures that
cash diversion entails linear losses. Our problems differ because DeMarzo and Sannikov (2011) focus on
risk-neutral agents, whereas we introduce risk aversion by taking a concave transformation of the agent’s
income net of his opportunity cost λa.

20One can dispense with p as a state whenever the marginal disutility of effort is proportional to the flow
utility. Thus the parametric restriction in (18) could be enlarged to encompass utility functions of the form
u(w�a)= −f (w)exp(−θ(g(w)− λa)) for some positive functions f (·) and g(·).
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Termination utility. We now specify the termination utility. We assume that it lies on
the Pareto frontier under zero effort in the future, i.e.,

U(W )= −exp(−θρW )
ρ

� (19)

This expression captures a situation in which an infinitely lived agent retires at the ter-
mination date T of the contract and thereafter consumes the perpetual annuity derived
from W while providing zero effort.21 In any case, we shall concentrate on problems
where the contracting horizon goes to infinity, so that the specification of the terminal
utility becomes immaterial to our results.22 Assuming this tractable form for U enables
us to easily identify a sequence of finite horizon problems whose value functions con-
verge to the infinite horizon solution described in Proposition 4.

Incentives providing contracts. We focus on contracts whose recommended effort re-
mains positive at all future dates. We call such contracts incentives-providing or, more
concisely, incentive contracts. We will show in Proposition 5 that they are indeed opti-
mal when precision is high enough and preferences are described by (18) and (19). As
explained above, we can omit the posterior mean η̂ and recast the principal’s optimiza-
tion problem as

JTt � max
{a�w�γ�ϑ}

E

[∫ T
t
e−ρ(s−t)(as −ws)ds− e−ρ(T−t)WT

∣∣∣FYt
]
�

subject to

dvt = [ρvt − u(wt�at)]dt + γtσ dZt with vT =U(WT )
dpt = [ρpt − ua(wt�at)]dt +ϑtσ dZt with pT = 0 (20)

γt = −ua(wt�at)− σ−2

ht
pt�

i.e., the two promise-keeping constraints with their associated terminal conditions and
the necessary condition under which income volatility is minimized. Since the state

21Formal justifications for the Pareto-frontier assumption (6), in general, and for (19), in particular, are
the following:

(i) Parties commit to a long-term contract that last forever.

(ii) Preferences of principal and agent are π0 = ∫∞0 e−ρt dYt − ∫∞0 e−ρtwt(ω)dt and U0 =∫∞
0 e−ρtu(wt(ω)�at(ω))dt, respectively.

(iii) A contract is constrained to be a fixed payment from T onward so that wt(ω)= wT (ω) for t ≥ T . If
WT �wT /ρ, this leads to (7). The absence of incentives for the agent means that he exerts no effort
beyond T , which leads to (6) and (19) with U(W )= ∫∞0 e−ρtu(ρW �0)dt = u(ρW �0)/ρ, i.e., U(W ) is
on the Pareto frontier. Notice that there does not exists a mapping between cumulative output YT
and the termination valueW because the latter is history dependent.

22The irrelevance in the limit is best illustrated by the observation that, as in Williams (2011), imposing
standard transversality conditions allows one to discard the terminal utility and to nonetheless derive the
same closed-form solution as in Proposition 4.
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variables v and p are Markovian, we can use an Hamilton–Jacobi–Bellman (HJB here-
after) equation to analyze the principal’s optimal control problem.23 The necessary con-
dition (20) allows us to express the coefficient γ as a function of t, p, w, and a. Thus, if
we had to keep all three states (t� v�p), the dynamic programming equation would read

ρJTt = max
{a�w�ϑ}

{
a−w+ ∂JTt

∂t
+ ∂JTt
∂v
(ρv− u(w�a))+ ∂JTt

∂p
(ρp− ua(w�a))

+ 1
2σ

2
[
∂2JTt
∂v2 γ(t�p�w�a)

2 + ∂2JTt
∂p2 ϑ

2 + 2
∂2JTt
∂v ∂p

γ(t�p�w�a)ϑ

]}
�

Instead of solving this equation, we use our parametric assumption (18) to reduce the
dimensionality of the state space. As explained above, the fact that ua(·)/u(·) = θλ en-
sures that there exists a mapping between p and v as long as effort remains positive.24

Thus we can drop p from the HJB equation to obtain

ρJTt = max{a�w}

{
a−w+ ∂JTt

∂t
+ ∂JTt
∂v
(ρv− u(w�a))+ ∂2JTt

∂v2

(
1
2σ

2
)
γ(t� v�w�a)2

}
� (21)

The first-order conditions associated to (21) show that it cannot be profitable to rec-
ommend an interior action a ∈ (0�1). Due to the linear disutility of effort, corner solu-
tions are optimal. Thus we can focus our attention on paths where a∗

t is equal to either
0 or 1, even though intermediate levels of effort remain feasible but not optimal.25

Claim 1. If the necessary condition (20) holds for almost all s ≥ t, then recommended
effort is set equal to its first-best level, i.e., a∗

t = 1.

4.1 Contracts when η is known

To build intuition, we start by analyzing incentives providing contracts when the princi-
pal observes the ability of the agent. In this subsection only, we assume that η is known,
but that volatility varies over time, i.e., that σ = σt . The time variation in σt will be useful
when we discuss the dynamic of wages in Section 5.1 in which we distinguish the effect
of learning from the effect of exogenous variations in uncertainty. Since there is no room
for belief manipulation when η is known, the value of private information p is equal to
0 and the necessary condition (13) reads γt = −ua(wt�at). This optimal control problem
is closely related to the one analyzed by Sannikov (2008), who shows that when there is
no persistent private information, the necessary condition is also sufficient.

23We use a strong formulation for the principal’s problem even though we have used a weak formulation
to solve for the agent’s problem. This change of solution method is usual for principal–agent models. Yet,
as discussed in Cvitanić et al. (2009), it may lead to measurability issues if the optimal action directly de-
pends on the Brownian motion. In our case, however, a∗ turns out to be a function of time alone so that
measurability of the optimal control will not be problematic.

24In particular, when the horizon T is infinite, pt = θλvt and J(t� v�p)= J(t� v�θλv).
25He et al. (2012) study a closely related problem with CARA utility. They introduce convex disutility so

as to obtain effort levels that are interior with history dependent paths.
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Proposition 3 (Incentive contracts when η is known). Assume that (i) quality is
known, i.e., ht = ∞ for all t, (ii) u(w�a) and U(W ) are as specified in (18) and (19), and
(iii) a∗

t > 0 for all t, so that the incentive constraint (13) binds for almost all t ∈ [0�T ]. Then
recommended effort is set at its first-best level a∗

t = 1 and the principal’s value function
reads

ρJTN(t� v)= FT (t)+ ln(−ρv)
θ

�

The function FT is given by

FT (t)= −
∫ T
t
e−ρ(s−t)

[
ρ

(
1 − λ+ ln(Ks/ρ)

θ

)
+ 1

2θ(λσsKs)
2
]
ds�

whereKt
�=K(σt) is the positive root of the quadratic equation forK,

(θλσt)
2K2 +K − ρ= 0�

The value function derived in Proposition 3 holds even when the variance of output
σ evolves over time in a deterministic fashion. The expression for JTN greatly simplifies
when σt is constant over time: If σt = σ for all t ∈ [0�T ], the coefficient Kt is also equal
to the constantK and

FT (t)

1 − e−ρ(T−t) = F �= 1 − λ+ ln(K/ρ)
θ

+ θ(λσK)2

2ρ
� (22)

Let us compare the expression of JTN to its counterpart if effort were contractible. Ob-
serving actions allows the principal to elicit full effort while perfectly insuring the agent.
The cost of delivering value v through a constant income stream is equal to − ln(−ρv)/θ.
The principal must add λ to the baseline remuneration so as to compensate the agent
for his effort. Accordingly, first-best wages are wFB(v) = λ − ln(−ρv)/θ and the value
function is ρJTFB(t� v)= (1−λ)(1−e−ρ(T−t))+ ln(−ρv)/θ. Comparing JTN under constant
σ to JTFB, it is apparent that 1 − λ − F measures the per-period loss due to the action
being hidden.26

4.2 Contracts when η is unknown

4.2.1 Incentive contracts when η is unknown We turn our attention to cases where be-
liefs about η are imprecise. We first focus on incentive contracts so that, as shown in
Claim 1, effort remains equal to its first-best level. We derive later a precision threshold
such that it is indeed optimal to recommend this level of effort.

26Since the value function cannot exceed its first-best level, it must hold true that

1 − λ− F = − ln(K/ρ)
θ

− θ(λσK)2

2ρ
> 0�

To see this, observe first that ln(K/ρ) < 0. One still has to establish that its absolute value is higher than
that of the second term on the right hand side (RHS). A Taylor approximation around 1 yields ln(K/ρ) <
(K− ρ)/ρ. Reinserting this inequality and using the definition ofK, one finds that F is indeed smaller than
1 − λ.
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We solve in the Appendix for contracts with a finite horizon. Proposition 4 focuses
on the limit of the principal’s value function as the retirement date diverges to infinity.27

Proposition 4 (Incentive contracts when η is unknown). Assume that (i) u(w�a) and
U(W ) are as specified in (18) and (19), and (ii) a∗

t > 0 for all t, so that the incentive con-
straint (13) binds for almost all s ≥ t. Then the recommended effort is set equal to the
first-best level a∗

t = 1 and the sequence of the principal’s value functions JTL converges
pointwise to

ρJL(t� v)= lim
T→∞

ρJTL(t� v)= f (t)+ ln(−ρv)
θ

�

The function f (t) is given by

f (t)= −
∫ ∞

t
e−ρ(s−t)

[
ρ

(
1 − λ+ ln(ks/ρ)

θ

)
− 1

2(σλ)
2θ

((
σ−2

hs

)2

− k2
s

)]
ds�

where kt is the positive root of the quadratic equation for k,

(θλσ)2k2 + (1 + (θλ)2h−1
t )k− ρ= 0� (23)

As discussed above for contracts when η is known, the term 1 − λ− f (t) measures
the per-period loss due to both hidden effort and quality uncertainty. The following
corollary shows that this loss decreases over time as quality uncertainty becomes less of
a concern.

Corollary 1. The function f (t) is increasing over time and converges to the constant F
defined in (22). The principal’s expected profit as a function of the promised value v is
therefore increasing in belief precision ht .

We still have to check whether the contract is incentive compatible, i.e., that the
contract meets the conditions in Proposition 2. Applying conditions (16) and (17) to the
exponential-utility case (18) yields the following requirement:

Corollary 2. First-best effort is incentive compatible (i.e., meets conditions (10) and
(16)) when

ρσ2 >
1
ht

+ 2
(
θλ

ht

)2

� (24)

Since precision ht is increasing in t, the condition holds at all subsequent dates s ≥ t.
27Proposition 4 does not assert that directly solving the infinite horizon problem yields JL(t� v). Instead,

it shows that by increasing T sufficiently, one can make the difference between the finite horizon solutions
JTL(t� v) and JL(t� v) arbitrarily small. By restricting our attention to finite horizon problems, our approach
circumvents the technical difficulties due to the fact that probability measures arising from different effort
paths are mutually absolutely continuous for every finite T but not in the limit. In particular, the measures
Qa and Q defined in Section 3.1 do not share the same sets of measure 0 events as T diverges to infinity.
See Chapter 3 in Jacod and Shiryaev (1987) for an in-depth discussion of these issues and of the Novikov
condition, which allows one to establish absolute continuity in the limit but which is unfortunately not
satisfied in our setup.
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The sufficient condition (24) is more likely to hold when both parties are impatient,
output noise is high, the marginal cost of effort λ is low, the coefficient of absolute risk
aversion θ is small, or precision is high. Indeed, (24) always holds in the limit case,
h0 = ∞, where quality is known because multiple deviations are no longer relevant.

We shall henceforth assume that our parameters satisfy (24). The condition is suf-
ficient and not necessary, however, and our comparative statics results hold indepen-
dently of it, showing that they are robust over a wider region of the parameter space.

4.2.2 Optimal contracts when η is unknown The derivation of the value function
JL(t� v) was based on the premise that the incentive constraint always binds; see part
(ii) of Proposition 4. But the principal has the option to perfectly insure the agent while
recommending zero effort. As explained in the discussion of first-best contracts, imple-
menting such a policy has a cost of − ln(−ρv)/θ. By contrast, its return is 0 because the
agent does not exert any effort. This suggests that the principal would rather insure the
agent when f (t) is negative and offer him an incentives-providing contract when f (t)
is positive. But this conclusion is misleading because it is based on a comparison be-
tween contracts that recommend full or zero effort at every point in the future. It may,
instead, be optimal to insure the agent for a certain length of time and then to provide
him with incentives to exert effort. In other words, the principal has the valuable option
of delaying incentives provision.

Due to the absence of wealth effect, the value of the full-insurance option does not
depend on the current belief about η but is instead deterministic. The marginal gains
from delaying incentives are equal to f ′(t), while the costs due to discounting are given
by −ρf(t). Hence, when ψ(t) � ρf(t) − f ′(t) < 0, the principal perfectly insures the
agent. Conversely, when ψ(t)≥ 0, he offers the incentives-providing contract described
in the previous subsection. Since ψ(t) is increasing over time,28 there is at most one
precision level above which incentives provision is optimal, as illustrated in Figure 1 for
the parameter values in Table 1. If quality is uncertain enough at the beginning of the
relationship, the effort path starts at 0 and switches to 1 exactly at the time where ψ(t)
crosses the zero axis. Depending on the parameter constellation, it may also happen
that f (t), and consequentlyψ(t), remain negative at all t. In such cases, it is always opti-
mal to perfectly insure the agent. Thus insurance is not always increasing as information
about quality becomes more precise.

Proposition 5 (Optimal contracts when η is unknown). Let F be as defined in (22).
(i) If F > 0, a∗ is a step function, there exists a unique precision h̃ such that recommended
effort a∗

t = 0 whenever ht < h̃, and a∗
t = 1 otherwise. The principal’s value function J∗ is

given by

ρJ∗(t� v)=
{
e−ρ(τ−t)f (τ)+ ln(−ρv)

θ when ht < h(τ)= h̃
f (t)+ ln(−ρv)

θ when ht ≥ h̃.

28See the proof of Proposition 4.
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Figure 1. Recommended effort as a function of precision ht . Parameters are as in Table 1.

ρ σ2 θ λ h0

0�5 0�5 1 0�7 4�81

Table 1. Baseline parameters.

(ii) If F ≤ 0, recommended effort a∗
t = 0 for all t and the principal’s value function

reads

ρJ∗(v)= ln(−ρv)
θ

�

This proposition completes our description of the optimal contract. Its properties
and implications for wage dynamics are explored in the next section.

5. Characterization of the optimal contract

5.1 Wage dynamics

To isolate the impact that learning has on wages, it is useful to first analyze contracts
when quality is observable and σ is constant. Optimal wages under incentives provision
and known η are given by29

w∗(v)= − ln(−K(σ)v)
θ

+ λ�

29See the proof of Proposition 3.
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Thus the evolution of wages mirrors that of the promised value. The law of motion of v
follows by reinserting the optimal volatility γt(v)= −θλKv derived in the proof of Propo-
sition 3 into the stochastic differential equation (SDE) (9) to obtain

dvt = vt
[
(ρ−K(σ))dt − θλK(σ)σ dZt

]
� (25)

The sign of the deterministic trend vt(ρ−K(σ)) indicates how utility is allocated over
time. Given that ρ > K(σ) and v < 0, the trend is negative.30 Discounted expected util-
ity drifts downward. To understand why it is in the interest of the principal to front
load payments, consider the derivative of the incentive constraint (13) with respect to
w: ∂γt/∂w = −uaw(w∗

t � a
∗
t ) < 0. For our choice of utility function, the marginal cost of

effort is decreasing in income. This is why raising transfers today enables the princi-
pal to lower the volatility of the promised value and, consequently, to reduce transfers
tomorrow.

The agent’s immiserization is implied by the inverse Euler equation that can be es-
tablished in the infinite-precision limit using Ito’s lemma,

duw(w
∗
t � a

∗
t )

−1 = −λσ
v
dZt when σ−2/ht = 0�

Under (18), uw(wt�at)−1 = exp(θ[w − λ])/θ is convex in w; hence the immiserization.
However, if we had solved the problem using preferences for which the inverse marginal
utility of income is concave,31 the inverse Euler equation would imply that wages exhibit
a positive trend. Immiserization is, therefore, specific to the exponential parametriza-
tion of the utility function.

5.1.1 Distinguishing the effects of learning and of decreasing output volatility As ht
rises, the precision of the agents’ beliefs over dYt also rises over time even though σ
is constant. A similar reduction in output volatility could be imposed not through learn-
ing, but simply by assuming an exogenous decline in σ . What does learning add over
and above a model in which η is known but σ = σt declines over time deterministically?
To answer this question, before analyzing wages under learning, we shall study this case
first, and will then be able to distinguish the effect of transitory output risks from that of
learning.

Wage dynamics when η is known and output volatility decreases. In contrast to con-
tracts under constant σ , suppose now that fluctuations in wages are driven not only by
changes in the promised value, but also by the evolution of the coefficientK(σt) as

dw∗
t = 1

θ

[
−K

′(σt)σ̇t
K(σt)

dt − d ln(−vt)
]
� (26)

30The inequality ρ−K > 0 is always satisfied becauseK is the positive solution of (Kσθλ)2 +K − ρ= 0.
31An example of such a utility function could be U(w�a)= c(a)w1−φ/(1 −φ) with φ< 1 and c′(a) < 0.
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Reinserting (25) into (26) and applying Ito’s lemma to the logarithmic transformation of
v yields the “reduced form” for wage growth

dw∗
t = 1

θ

[
− 1

2(K(σt)θλσt)
2︸ ︷︷ ︸

Immiserization

−K
′(σt)σ̇t
K(σt)︸ ︷︷ ︸

Insurance

]
dt + λK(σt)σt dZt�

Since K′(σt) < 0,32 a decrease in output variance adds a second negative component to
the deterministic trend. As output becomes less volatile, the signal–noise ratio improves.
The principal can extract full effort with less risk exposure and so trades lower wages in
exchange for better insurance. Income stabilization is illustrated by the decrease of the
volatility term λK(σt)σt .

Wage dynamics when η is unknown. When quality is gradually revealed, optimal
wages under incentives provision are given by

w∗
t (v)= − ln(−ktv)

θ
+ λ� (27)

while the promised value satisfies the law of motion33

dvt = vt
[
(ρ− kt)dt − θλ

(
kt + σ−2

ht

)
σ dZt

]
� (28)

As in the case where η is known, utility is front loaded since the deterministic trend
vt(ρ− kt) is negative. Given that kt increases over time, the principal resorts more in-
tensively to front loading early in the relationship. Combining (27) with (28) and apply-
ing Ito’s lemma leads to a stochastic differential equation that neatly sums up the three
mechanisms that drive income dynamics:

dw∗
t = 1

θ

(
− 1

2(ktθλσ)
2︸ ︷︷ ︸

Immiserization

− k̇t
kt︸︷︷︸

Insurance

+ 1
2(θλ)

2
(
σ−1

ht

)2

︸ ︷︷ ︸
Information Rent

)
dt + λ
(
kt + σ−2

ht

)
σ dZt� (29)

We recover the insurance and immiserization channels: (i) For a constant promised
value, wages decrease over time due to better insurance and (ii) wages are driven down-
ward by the agent’s immiserization. Thus, of the three channels, only the last one is spe-
cific to learning. It measures the principal’s effort to minimize the agent’s information
rent. Since the value of private information is equal to the expected discounted marginal
cost of future efforts,34 the principal can take advantage of the positive cross-derivative
between income and effort. An increase in future transfers lowers the value of p and
thus strengthens the agent’s incentives in the current period. This is why the informa-
tion rent channel is positive, which partially offsets the insurance and immiserization
mechanisms.

32The sign of the derivative follows from the quadratic equation (K(σ)σθλ)2 +K(σ)− ρ= 0.
33The relations (27) and (28) are derived in the proof of Proposition 4.
34See (14).
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Figure 2. Wage dynamics as a function of time. Parameters are as in Table 1.

Williams (2011) proves qualitatively similar results in a reporting problem with per-
sistent income shocks: Efficiency losses due to private information increase with the
persistence of the endowment and, parallel to our result that the principal back loads
payments more when ht is lower, Williams also finds that persistence of shocks leads
to a tendency to back load payments that is absent in reporting problems with inde-
pendent and identically distributed (i.i.d.) shocks. He et al. (2012) analyze the effect of
the information rent in a setup closely related to ours but with interior levels of optimal
effort. This gives an additional margin of adjustment to the principal who decides to rec-
ommend decreasing efforts so as to minimize the information rent enjoyed by the agent.
As in Williams’s model, persistence is stationary and, as a result, time is not a state, and
contractual arrangements do not directly depend on the seniority of the worker as they
do in our model.

It is also insightful to consider first-best contracts. If the principal could observe ef-
fort, he would totally insure the agent and wages would be constant whatever the actual
ability. By contrast, when effort is hidden, output and rewards have to be positively cor-
related so as to provide incentives. Hence, although the contract does not directly condi-
tion on the posterior η̂, an increase in cumulative output leads to higher wages. In other
words, higher ability elicits greater transfers. This can be seen from (29), whose loading
λ(kt +σ−2/ht) on dZt is positive, meaning that wages are increasing in the posterior η̂t
since dη̂t = (σ−1/ht)dZt .

The trend and volatility terms in (29) are both deterministic. We plot them in the
second and third panels of Figure 2. The assumed parameter values are shown in Table 1.
They are used as baseline values for all the simulations reported in the paper. The value
h0 = 4�81 is the smallest precision that satisfies the second-order condition (24) given
the assumed values of the other parameters.
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Figure 3. Trend and volatility of wages as a function of time. Parameters are as in Table 1.

The top panel of Figure 2 plots the mean wage and the 1-standard-deviation bands
for the parameter values in Table 1. The stochastic term σdZ is the output surprise de-
fined in (4), which means that the solution wt to the SDE (29) is a normally distributed
random variable. The distribution of wages at date t is the frequency distribution of
wages among age-t workers with abilities randomly drawn from η∼N(0�h−1

0 ). By nor-
mality, the bands are equidistant from the mean and, hence, are symmetric. Further-
more kt has a strictly positive limitK, implying that the volatility of the wage increments
does not die off as limt→∞(kt +σ−2/ht)=K > 0. Since increments are independent, the
cross-sectional variance of wages diverges to infinity. We sum up our findings in the
corollary below, whereas Figure 2 illustrates them.

Corollary 3. The volatility of the wage increments decreases to a positive limit, K, so
that the cross-sectional variance of wages grows without bound. Provided that the suffi-
cient condition (16) is satisfied, wages exhibit a negative trend.

Comparison. We now compare contracts with learning to their counterparts when
η is known. To make the comparison meaningful, we set σ2

t = σ2 + h−1
t so that output

variance is the same in both models. The simulations reported in Figure 3 highlight how
the effect of transitory output risks differs from that of learning.

Consider first the simplest case where η is observable and σ is constant. Then both
deterministic trend and volatility remain stable over time. As expected, their values are
the limits of the model with decreasing σt as well as with learning. However, they con-
verge at different rates: Wages are much more volatile and front loading is less signifi-
cant under learning. The difference is due to the persistence of private information: To
discourage the agent from manipulating his belief, the principal raises the agent’s expo-
sure to risk, hence the higher volatility. This adjustment is combined with an increase
in the deterministic trend, which shrinks the differences between earnings today and
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Figure 4. Surplus as a function of time. Parameters are as in Table 1.

tomorrow so as to lower the information rent. Figure 4, which compares the surpluses
F , F(t), and f (t) of the three contracts, shows that welfare is substantially reduced by
the increase in volatility needed to offset the belief manipulation channel.

Equations (23) and (29) summarize the implications for the wage data. They show
that the vector of parameters (ρ�λ�θ�σ , h0) is identified. Thus data sets that match
employees and employers could provide one with estimates for the parameters vector,
making it possible to identify the absolute and relative importance of the three channels
described above.

5.2 Surplus

Instead of focusing on wage dynamics within a given match, we can use the model to
compare the surplus associated with commitment across different environments. As
stated in Corollary 2, the surplus is higher when priors are more accurate. The intuition
for this result directly follows from Corollary 3: A tighter prior over η enables the prin-
cipal to better stabilize income. As contracts get closer to the second best, the principal
can deliver the promised value v at a lower expected cost.

Figure 5 plots the agent’s value as a function of the prior variance 1/h0 and of the
marginal cost of effort parameter λ, holding the principal’s value constant at zero. The
other parameters are as given in Table 1. We report on the horizontal plane a line that
separates the regions where recommended effort is either 0 or 1.

We also include in Figure 5 a solid black line labeled “sufficient condition,” which
identifies the maximal prior variance 1/h0 and λ above which incentive compatibility
holds surely. In particular, (24) (which involves both λ and h) holds to the left of the line.
For the parameter values used in the plot, (24) reads 1/4 > h−1

0 + 2(λh−1
0 )2, and so the
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Figure 5. Agent’s value as a function of 1/h0 and λ. Other parameters are as in Table 1.

maximal λ as a function of h0 is given by

λ=
√

1
2h0

(
1
4h0 − 1

)
� (30)

The RHS of this equation is positive only if h0 ≥ 4. In other words, (24) can be met only
if h−1

0 < 0�25, and then more easily if λ is low enough. However, the RHS of (30) exceeds

unity once h−1
0 ≤ 0�1830. Then (24) holds for all λ ∈ (0�1).

As expected, the agent’s value is decreasing in the prior variance 1/h0. Figure 5 also
illustrates how an increase in λ lowers the surplus. This is what one should expect be-
cause the higher λ is, the more costly it is to provide effort. Hence an increase in λ inten-
sifies the severity of the moral hazard problem, making it more costly for the principal
to deliver a given utility.

6. Commitment versus spot market

We now relate our model to the literature on reputations that typically adopts the inter-
pretation that η is general ability. We focus on the canonical model of Holmström (1999;
“H” hereafter), which assumes spot-market wages that may reflect the worker’s history
but cannot reflect current output.

In both Holmström’s model and ours, the principal is risk-neutral. The agents’ utility
functions, however, differ because Holmström assumes that agents are risk-neutral. To
make our analysis of commitment comparable to his analysis, we shall derive the spot-
market equilibria of H for the case where the agent has period utility (18).

Holmström imposes zero expected profits for the principal after every history and
at each date. In our model, the principal has full commitment and his profits will not
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be zero at an arbitrary date. To compare our solution to H, it is natural to impose zero
expected lifetime profits on the principal at the outset. Thus we shall assume that at
date zero, the agent gets all the rents from the relationship.

We first show that the equilibrium behavior of spot-market wages and effort under
risk aversion is essentially the same as in H: Reputational concerns are the only reason
why the agent exerts any effort, and when information aboutη accumulates and as these
concerns disappear, his effort converges to zero, just as in the risk-neutral case. Of itself
this is not surprising. Rather, the result is useful because it enables us to isolate the
role that full commitment plays in generating economic outcomes for the parties to the
contract.

Employers cannot commit to paying wages that depend on performance, and com-
petition among employers bids wages up to expected output. Denoting, as before, equi-
librium actions by an asterisk, expected productivity reads

wSt =E[η+ at |FYt ] = η̂(Yt −A∗
t � t)+ a∗

t � (31)

where we have added an S superscript for spot wages. Effort is sustained by the market’s
imprecise knowledge of η and the agent’s attempts to raise the market’s expectation.

Definition of spot market equilibria. An equilibrium corresponds to a feasible strat-
egy a∗ that is F

Y -predictable and a wage process wS such that (i) given a∗
t , the market

sets a wage of the form given in equation (31); (ii) the continuation strategy a∗
s , for all

s ≥ t, maximizes the worker expected utility given the wage process in (31).

The solution concept is that of perfect Bayesian equilibrium since the strategy a∗
is optimal given the law of motion of beliefs, and beliefs satisfy Bayes rule given the
equilibrium action. We are restricting our attention to strategies that are adapted to the
public signal Y . We do not prove that there always exists an equilibrium of this type or
that it is unique.35 But we can show that for any such equilibrium, the sequence of effort
a∗
t eventually converges to zero.

Proposition 6. Assume that (i) u(w�a) is as specified in (18) and (ii) the model admits
at least one spot-market equilibrium. Then there exists a unique precision h̄, whose value
does not depend on the equilibrium strategy, and such that a∗

t = 0 whenever ht > h̄.

Proposition 6 shows that although equilibrium strategies are not uniquely pinned
down when precision is below h̄, as soon as enough information is accumulated to reach
this threshold, all equilibrium paths converge to zero and remain there thereafter.36

Thus there is no feasible Pareto improvement over step profiles where effort is at its first-
best level a∗

t = 1 whenever ht < h̄. Since the contracts described in the previous section

35See Cisternas (2012) for a derivation of the conditions under which there exists a deterministic perfect
public equilibrium when agents are risk-neutral.

36Uniqueness is not ensured in our setup because the utility function (18) implies that the marginal cost
of effort is decreasing in current income. As usual, this complementarity can be a source of equilibrium
multiplicity.
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Figure 6. Effort as a function of parameter precision ht . Parameters are as in Table 1.

lie on the Pareto frontier, it is natural to compare them to Pareto outcomes in the spot
market. This ensures that we are not exaggerating the benefits of optimal contracting,
but instead reporting its lower bound.

Figure 6 contains the effort path as a function of ht when wages are set on the spot
market along with its counterpart in the commitment scenario. It illustrates how uncer-
tainty about general ability affects incentives in opposite directions. Spot markets elicit
full effort when beliefs are imprecise because reputations have not yet been established.
By contrast, under commitment, incentives are more costly to provide when precision
is low. This is why the effort paths are almost mirror images of each other: It switches
from 1 to 0 in the spot market and from 0 to 1 under commitment.37 Their profiles are
not smooth because the marginal cost of effort is decreasing in consumption. Hence,
full effort can always be sustained through a less than proportional increase in wages
whenever interior levels of effort are incentive compatible. Such a deviation is Pareto
optimal and so dominates any equilibrium path with intermediate action.

Figure 6 does not accurately represent the distribution of lifetime gains that full com-
mitment offers. That would be the distribution of the random variable U0 defined in (6),
which we report in Figure 7.38 While wages themselves are normally distributed, utilities
are nonlinear and bounded above. This is why the distributions of U0 are skewed to the

37Full effort in the spot market is incentive compatible for ht < h̄ since the function Rt defined in the
proof of Proposition 6 is decreasing in ht .

38The distribution of lifetime utilities is obtained through Monte Carlo simulations. We simulate 10,000
sample paths and compute the resulting kernel densities. We verify the accuracy of the procedure by com-
paring the simulated and theoretical average utilities. The approximation error turns out to be around 10−3

in relative difference.
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Figure 7. Distribution of lifetime utilities. Parameters are as in Table 1.

left with their means—as represented by the vertical lines—to the left of the modes. Fig-
ure 7 illustrates that commitment results in a noticeably higher expected lifetime utility
E0[U0]: Long-term contracts raise the agent’s utility by 17�1%, a gain that is equivalent to
a compensating variation of 26�4% in wages across first-best allocations.39 Even though
utilities derived from contracts exhibit more dispersion, they dominate from a stochas-
tic point of view. In other words, not only the average worker, but most workers do
benefit from contracting.

η as a match-specific ability. If, instead of denoting general ability, η were match-
specific, then neither the optimal contract nor the Pareto frontier would change under
full commitment. By contrast, spot markets would work poorly. The agent now has
no reputational concern, implying that effort would remain constant at zero. The wage
would equal Et[η] at all dates. The value of commitment is then even larger than in the
case where ability is transferable.

Participation constraints. We have described two separate economies, each with its
own wage-setting protocol. Our commitment solution is for a contract that would yield
the principal zero expected profit at the outset, but after some histories his expected
profit falls below zero. Similarly, the agent’s continuation value may fall below the spot-
market solution. An extension would add participation constraints as Rudanko (2009)
and Lustig et al. (2011) have done for multi-agent environments without learning. We
expect the risk of being fired to render belief manipulation less attractive.

39The welfare gain is obtained by dividing the difference between the two expected utilities E0[U0] by
the expected utility when wages are set on the spot market. To obtain the compensating variation, we first
derive the wage such that U(w�1)/r =E0[U0], which yields wCom under commitment and wSpot under spot
market. The compensating variation follows by taking the difference between the two wages and dividing
it by wSpot.
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In partial equilibrium settings without learning, there are more papers with limited
commitment. Closely related to ours is the principal–agent model of Sannikov (2008),
which, under some adjustments to the parametric form of the utility function, is en-
compassed in our framework as ht → ∞, i.e., when posteriors have converged to the
true value of η. More precisely, Sannikov considers a utility function that is (i) defined
over the positive real line, (ii) bounded from below, and (iii) separable in income and
effort. By contrast, our utility function (18) is not bounded from below and, as a result,
we do not have a low retirement point. Observe, however, that our characterization of
the agent’s necessary condition (10) does not depend on the parametric assumption (18)
and so coincides with Sannikov’s when precision becomes infinite.

Broader implications. Data show that early on in a career, a worker tends to engage in
a job shopping phase, following which he settles down into a more permanent job. The
model suggests an explanation for such behavior: as h grows, the gain to commitment
rises, whereas incentives in the spot market decline.

Commitment should also raise incentives to accumulate human capital. Becker
(1964) had argued that without commitment, a firm would not pay for general train-
ing. Cisternas (2012) modifies (1) and shows that in a spot market where human capital
is general as in Holmström (1999), the worker’s accumulation of skills is inefficiently low;
our paper suggests that contracts with commitment could raise the level of accumula-
tion, bringing it closer to the social optimum.40

7. Conclusion

We have solved a contracting problem with quality uncertainty and explained why it
worsens the trade-off between incentives and insurance. We developed an approach
that works for any utility function when quality and noise are normally distributed. We
found that the agent faces two opposite effects when considering a downward deviation
from recommended effort. On the one hand, he will be punished by a lower promised
value because of the decrease in observable output. On the other hand, he will bene-
fit from higher expectations than the principal about the unknown productivity of the
match. This second channel, which we label belief manipulation, is specific to prob-
lems under quality uncertainty. The extent to which it influences incentive provisions
depends on the remaining length of the relationship. This is why it is not relevant in
markets based on spot agreements.

Although the prospect of belief manipulation reduces the gains from commitment,
our simulation shows that it does not eliminate them altogether. We found, in partic-
ular, that quality uncertainty makes it harder to reward effort under full commitment,
in direct contrast to its tendency to stimulate effort in spot markets. Spot and full com-
mitment settings are both highly stylized depictions of how markets operate in reality.

40A positive deviation of effort in our model causes the principal to overestimate the agent’s ability. The
opposite is true in the case where effort raises accumulation of human capital: Here a positive deviation
raises actual productivity and causes the principal to underestimate the agent’s true level of human capital.
This means that the value of private information, p, for human capital is not negative but positive, which
encourages skill accumulation.
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Thus a promising task would be to combine both environments in a model with limited
commitment so as to evaluate how the two incentive channels interact.

Appendix A: Proofs of propositions and corollaries

Proof of Proposition 1. Consider the Brownian motion Z0 under some probability
space with probability measure Q and F

Z0 � {FZ0
t }0≤t≤T the suitably augmented filtra-

tion generated by Z0. Let

Yt =
∫ t

0
σ dZ0

s �

so that Yt is also a Brownian motion under Q. Since expected output is linear in cumu-
lative output,41 the exponential local martingale

�at�τ � exp
(∫ τ

t

(
η̂(Ys −As� s)+ as

σ

)
dZ0

s − 1
2

∫ τ
t

∣∣∣∣ η̂(Ys −As� s)+ as
σ

∣∣∣∣2 ds
)

(32)

for t ≤ τ ≤ T , is a martingale, i.e., Et[�at�T ] = 1. Hence the Girsanov theorem holds and
ensures that

Zat �Z0
t −
∫ t

0

(
η̂(Ys −As� s)+ as

σ

)
ds

is a Brownian motion under the new probability measure dQa/dQ � �a0�T . Given that
both measures are equivalent, the triple (Y�Za�Qa) is a weak solution of the SDE

Yt =
∫ t

0
(η̂(Ys −As� s)+ as)ds+

∫ t
0
σ dZas �

Adopting a weak formulation allows us to view the choice of control a as determining
the probability measure Qa. So as to define the agent’s optimization problem, let Ra(t)
denote the reward from time t onward so that

Ra(t)� eρt
[∫ T
t
u(s�Y s�as)ds+U(T�YT )

]
�

where, with a slight abuse of notation, u(s�Y s�as) � e−ρsu(w(Y s)�as) and U(T�YT ) �
e−ρTU(YT ) are utilities at time t discounted from time 0. The agent’s objective is to find
an admissible control process that maximizes the expected reward Ea[Ra(0)] over all
admissible controls a ∈ A. In other words, the agent solves the problem

vt = sup
a∈A

V a(t)� sup
a∈A

Eat [Ra(t)] for all 0 ≤ t ≤ T�

41More formally, the martingale property holds true because

|η̂(Yt −At� t)+ at | ≤ C(1 + ‖Z0‖t ) for all t ∈ [0�T ]�
with C = σ−1/h0 + 1 and ‖Z0‖t � max0≤s≤t |Z0(s)|.
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The objective function can be recast as

V a(t)=Eat [Ra(t)] =E0
t [�at�TRa(t)]� (33)

where the operators Ea[·] and E0[·] are expectations under the probability measure Qa

and Q, respectively. One can see from (33) that varying a is indeed equivalent to chang-
ing the probability measure.

Our derivation of the necessary conditions builds on the variational argument in
Cvitanić et al. (2009). Define the control perturbation

aε � a+ ε�a�
We assume that there exists an ε0 > 0 for which any ε ∈ [0� ε0) satisfy |aε|4, |uaε |4, |uaεa |4,
|�aεt�τ|4, (Uaεt�τ)2, and (∂aUa

ε

t�τ)
2 being uniformly integrable in L1(Q), where

Uat�τ �
∫ τ
t
u(s�Y s�as)ds�

We introduce the following shorthand notations for “variations”:

∇Uat�τ �
∫ τ
t
ua(s�Y s�as)�as ds (34)

∇At �
∫ t

0
�as ds (35)

∇�at�τ � �at�τ
(

1
σ

)[∫ τ
t

(
−σ

−2

hs
∇As +�as

)
dZ0

s

−
∫ τ
t
(η̂s + as)

(
−σ

−2

hs
∇As +�as

)
ds

]
(36)

= �at�τ

(
1
σ

)∫ τ
t

(
−σ

−2

hs
∇As +�as

)
dZas �

Step 1. We first characterize the variations of the agent’s objective with respect to ε:

V a
ε
(t)− V a(t)
ε

= E0
t

[(
�a

ε

t�T −�at�T
ε

)
Ra

ε
(t)+�at�T

(
Ra

ε
(t)−Ra(t)
ε

)]

= E0
t

[
∇�aεt�TRa

ε
(t)+�at�T

(
Ra

ε
(t)−Ra(t)
ε

)]
�

To obtain the limit of the first term as ε goes to zero, observe that

∇�aεt�TRa
ε
(t)− ∇�at�TRa(t)= [∇�aεt�T − ∇�t�T ]Ra(t)+ ∇�aεt�T [Raε(t)−Ra(t)]�

As shown in Cvitanić et al. (2009), for any ε ∈ [0� ε0), this expression is integrable uni-
formly with respect to ε and so

lim
ε→0

E0
t [∇�a

ε

t�TR
aε(t)] =E0

t [∇�at�TRa(t)]�
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The limit of the second term reads

lim
ε→0

Ra
ε
(t)−Ra(t)
ε

= eρt∇Uat�T �

Due to the uniform integrability of �at�T (R
aε(t) − Ra(t))/ε, the expectation is also well

defined. Combining the two expressions above, we finally obtain

lim
ε→0

V a
ε
(t)− V a(t)
ε

=E0
t [∇�at�TRa(t)+�at�T eρt∇Uat�T ]� ∇V a(t)� (37)

Step 2. We are now in a position to derive the necessary condition. Consider total
earnings as of date 0:

Ia(t)�Eat
[∫ T

0
u(s�Y s�as)ds+U(T�YT )

]
=
∫ t

0
u(s�Y s�as)ds+ e−ρtV a(t)� (38)

By definition, it is a Qa-martingale. According to the extended martingale representa-
tion theorem42 of Fujisaki et al. (1972), all square integrableQa-martingales are stochas-
tic integrals of {Zat } and there exists a unique process ζ in L2(Qa) such that

Ia(T)= Ia(t)+
∫ T
t
ζsσ dZ

a
s � (39)

This decomposition allows us to solve for ∇V a(t). Reinserting (34), (35), and (36) into
(37) yields43

∇V a(t) = E0
t

[
�at�TR

a(t)σ−1
∫ T
t

(
−σ

−2

hs
∇As +�as

)
dZas +�at�T eρt

(∫ T
t
ua�as ds

)]

= eρtEat

[
Ia(T)σ−1

∫ T
t

(
−σ

−2

hs
∇As +�as

)
dZas +

∫ T
t
ua�as ds

]
�

where subscripts denote derivatives and arguments are omitted for brevity. Given the
law of motion (39), applying Ito’s rule to the first term yields

d

(
Ia(τ)

∫ τ
t

(
−σ

−2

hs
∇As +�as

)
dZas

)

=
[
ζτσ

(
−
(
σ−2

hτ

)
∇Aτ +�aτ

)]
dτ

+
[
ζτσ

∫ τ
t

(
−σ

−2

hs
∇As +�as

)
dZas + Ia(τ)

(
−
(
σ−2

hτ

)
∇Aτ +�aτ

)]
dZaτ �

42We cannot directly apply the standard martingale representation theorem because we are considering
weak solutions, so that {Zat } does not necessarily generate {FY

t }.
43The additional expectation term vanishes because both (hε/hs)∇As and �as are bounded, and so(∫ t

0
U(τ�Yτ�aτ)dτ

)
Eat

[∫ T
t

(
−
(
hε

hs

)
∇As +�as

)
dZas

]
= 0�
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Hence ∇V a(t) can be represented as

e−ρt∇V a(t)=Eat
[∫ T
t
�1
s ds+
∫ T
t
�2
s dZ

a
s

]
�

where

�1
s � ζs
[
−σ

−2

hs

∫ s
0
�aτ dτ+�as

]
+ ua(s�Y s�as)�as

�2
s � ζs
[∫ s
t

(
−σ

−2

hτ

∫ τ
0
�ar dr +�aτ

)
dZaτ

]
+ Ia(s)

(
−σ

−2

hs

∫ s
0
�aτ dτ+�as

)
�

Given that �2
s is square integrable,44 we have

Eat

[∫ T
t
�2
s dZ

a
s

]
= 0�

As for the deterministic term, collecting the effect of each perturbation �as yields

e−ρt∇V a(t)=Eat
[∫ T
t

(
−
∫ T
s
ζτ

(
σ−2

hτ

)
dτ+ ζs + ua(s�Y s�as)

)
�as ds

]
�

Finally, noticing that �as was arbitrary leads to(
Eat

[
−
∫ T
t
ζs
σ−2

hs
ds

]
+ ζt + ua(t�Y t� a∗

t )

)
(at − a∗

t )≤ 0� (40)

Step 3. We now rewrite our solution as a function of the promised value vt . Differen-
tiating (38) with respect to time yields

e−ρt dvt − ρe−ρtvt + u(t�Y t� at)= dIa(t)= ζtσ dZat �
so that

dvt = (ρvt − u(Y t�at))dt + γtσ dZat �
with γt � ζteρt . Collecting the exponential terms in (40) leads to (10). �

Proof of Proposition 2. The sufficient conditions are established by comparing the
equilibrium path {a∗

t }Tt=0 with an arbitrary effort path {at}Tt=0. We define δt � at − a∗
t and

�t �
∫ t

0 δs ds =At −A∗
t as the differences in current and cumulative effort between the

arbitrary and recommended paths. We also attach an asterisk to denote the value of the
F
Y -measurable stochastic processes along the equilibrium path. The Brownian motions

generated by the two effort policies are related by

σ dZa
∗
t = σ dZat + [η̂(Yt −At� t)+ at − η̂(Yt −A∗

t � t)− a∗
t ]dt

= σ dZat +
[
δt − σ−2

ht
�t

]
dt�

44Square integrability of �2
s can be established for any ε ∈ [0� ε0) following the same steps as in Lemma 7.3

of Cvitanić et al. (2009).
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By definition, the total reward from the optimal policy reads

Ia
∗
(T) =
∫ T

0
u(t�Y t� a

∗
t ) dt +U(T�YT )= V a∗

(0)+
∫ T

0
ζ∗
t σ dZ

a∗
t

= V a
∗
(0)+
∫ T

0
ζ∗
t

[
δt − σ−2

ht
�t

]
dt +
∫ T

0
ζ∗
t σ dZ

a
t �

Hence, the total reward from the arbitrary policy is given by

Ia(T) =
∫ T

0
[u(t�Y t� at)− u(t�Y t� a∗

t )]dt + Ia
∗
(T)

=
∫ T

0
[u(t�Y t� at)− u(t�Y t� a∗

t )]dt + V a
∗
(0)

+
∫ T

0
ζ∗
t

[
δt − σ−2

ht
�t

]
dt +
∫ T

0
ζ∗
t σ dZ

a
t �

Let us focus on the third term on the right hand side,

−
∫ T

0
ζ∗
t

σ−2

ht
�t dt = −

∫ T
0
ζ∗
t

σ−2

ht

(∫ t
0
δs ds

)
dt =
∫ T

0
δt

(
−
∫ T
t
ζ∗
s

σ−2

hs
ds

)
dt

=
∫ T

0
δt

(
e−ρt σ

−2

ht
p∗
t +
∫ T
t
ξ∗
s σ dZ

a∗
s

)
dt�

where the last equality follows from the definition of p and ξ.45 Changing the Brownian
motion and taking expectation yields

V a(0)− V a∗
(0)=Ea0 [Ia(T)] − V a∗

(0)

=Ea0
[∫ T

0

(
u(t�Y t� at)− u(t�Y t� a∗

t )+ δt
(
ζ∗
t + e−ρt σ

−2

ht
p∗
t

))
dt

]

+Ea0
[∫ T

0
δt

(∫ T
t
ξ∗
s

(
δs − σ−2

hs
�s

)
ds

)
dt

]

=Ea0
[∫ T

0
e−ρt
(
u(wt�at)− u(wt�a∗

t )+ δt
(
γ∗
t + σ−2

ht
p∗
t

))
dt

]

+Ea0
[∫ T

0
ξ∗
t �t

(
δt − σ−2

ht
�t

)
dt

]
�

We know from the optimization property of a∗
t that the first expectation term is at most

equal to zero. On the other hand, the sign of the second expectation term is ambiguous.

45Observe that this additional step is linked to the introduction of private information. Then the volatility
ζ of the continuation value will differ on and off the equilibrium path. To the contrary, in problems without
private information, the volatility remains constant because it only depends on observable output and not
on past actions. This is why sufficiency holds without any restriction in, e.g., Schättler and Sung (1993) or
Sannikov (2008).
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To bound it, we introduce the predictable process46 χ∗
t � γ∗

t − eρtξ∗
t A

∗
t and define the

function47

H(t�a�A;χ∗� ξ∗�p∗)� u(w�a)+ (χ∗ + eρtξ∗A)a− eρtξ∗σ−2

ht
A2 + σ−2

ht
p∗a�

Taking a linear approximation ofH(·) aroundA∗ yields

Ht(at�At)−Ht(a∗
t �A

∗
t )− ∂Ht(a

∗
t �A

∗
t )

∂A
�t

= u(wt�at)− u(wt�a∗
t )+ δt

(
χ∗
t + eρtξ∗

t A
∗
t︸ ︷︷ ︸

=γ∗
t

+σ
−2

ht
p∗
t

)
+ eρtξ∗

t �t

(
δt − σ−2

ht
�t

)
�

so that

V a(0)− V a∗
(0)=Ea0

[∫ T
0
e−ρt
(
Ht(at�At)−Ht(a∗

t �A
∗
t )− ∂Ht(a

∗
t �A

∗
t )

∂A
�t

)
dt

]

is negative when H(·) is jointly concave. Given that the agent seeks to maximize ex-
pected returns, imposing concavity ensures that a∗ dominates any alternative effort
path. Concavity is established by considering the Hessian matrix ofH(·),

H(t� a�A)=
(
uaa(wt�at) eρtξt
eρtξt −2eρtξt σ

−2

ht

)
�

which is negative semidefinite when −2(σ−2/ht)uaa(wt�at)≥ eρtξt , as stated in (16). �

Proof of Claim 1. If a∗ = 0, there is no need to provide any incentives and so satisfying
the necessary condition (20) cannot be optimal. Thus recommended effort is necessarily
positive under the premise that (20) holds for all s ≥ t. Given that effort levels lie in a
compact set, the following relationship holds for all positive a∗:

1 − ∂JT (t� v)

∂v
ua(w�a

∗)+ σ2 ∂
2JT (t� v)

∂v2 γ(t� v�w�a∗)∂γ(t� v�w�a
∗)

∂a
≥ 0�

By contrast, wages take value over the real line and so fulfill the optimality condition

−1 − ∂JT (t� v)

∂v
uw(w�a

∗)+ σ2 ∂
2JT (t� v)

∂v2 γ(t� v�w�a∗)∂γ(t� v�w�a
∗)

∂w
= 0� (41)

Under our premise that the incentive constraint (13) holds with equality, we obtain
∂γ/∂w = −λ∂γ/∂a > −∂γ/∂a, which implies, in turn, that when the optimality condi-
tion for wages binds, the one for effort is slack. It follows that optimal effort is constant
and set equal to the upper bound a∗ = 1. �

46χ∗ is predictable since both ξ∗ andA∗ are F
Y -predictable.

47We use H(·) to denote the function because it is equivalent to the Hamiltonian of the optimal con-
trol problem that can be derived following Williams’s (2008) method based on the stochastic maximum
principle.
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Proof of Proposition 3. We seek a solution of the form

ρjT (t� v)= FTt + ln(−ρv)
θ

and guess that the associated wage schedule is given by

w(v)= − ln(−Ktv)
θ

+ λ ⇒ u(w(v)�1)=Ktv�

where FTt andKt are continuously differentiable functions that depend solely on time t.
Given that we are focusing on cases where ability η is known, we can set the value of
private informationp equal to zero. This means that the incentive constraint boils down
to

γt = −ua(wt�at)= −θλKtvt �
The condition is similar to the one derived by Sannikov (2008). Since private informa-
tion is not persistent, both parties share common expectations about changes in the
promised value, even when the agent’s promised value has deviated in the past. This
implies that the necessary conditions are also sufficient.

The first-order condition (FOC) (41) for wages reads

−1 + ∂jT (t� v)

∂v
θKtv− σ2

t

∂2jT (t� v)

∂v2 θ3(Ktλv)
2 = 1

ρ
[−ρ+Kt + (Ktσtθλ)2] = 0�

Thus it is satisfied when

Kt =
√

1 + 4ρ(σtθλ)2 − 1
2(σtθλ)2

> 0�

whereas the HJB equation

ρjT (t� v) = 1 −w+ ∂jT (t� v)

∂t
+ ∂jT (t� v)

∂v

(
ρv− u(w(v)�1)

)+ ∂2jT (t� v)

∂v2

(
1
2σ

2
t

)
γ2

= 1 + ln(−Ktv)
θ

− λ+ 1
ρ

dFT (t)

dt
+ ρ−Kt

ρθ
− θ

ρ

(
1
2(σtλKt)

2
)
�

is satisfied when48

dFT (t)

dt
− ρFT (t)= −ρ

(
1 − λ+ ln(Kt/ρ)

θ

)
− 1

2θ(σtλKt)
2�

The function FT (t) is, therefore, given by

FT (t)= −
∫ T
t
e−ρ(s−t)

[
ρ

(
1 − λ+ ln(Ks/ρ)

θ

)
+ 1

2θ(σsλKs)
2
]
ds�

48The equality follows by replacing the identity (Ktσθλ)2 = ρ−Kt .
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As desired, our guess jT ∈ C1�2([0�T [×R)∩ C([0�T ] ×R) is a solution of the dynamic
programming equation

ρjT (t� v)= ∂jT (t� v)

∂t
+ sup
(w�a)∈A

{
a−w+ ∂jT (t� v)

∂v

(
ρv− u(w(v)�a))

+ ∂2jT (t� v)

∂v2

(
1
2σ

2
t

)
γ(t� v�w�a)2

}
�

where A = R× (0�1] denote the set of admissible controls (w�a),49 with boundary con-
dition

ρjT (T�v)= −ρU−1(v)= ln(−ρv)
θ

�

Furthermore, for each fixed v ∈R, the supremum in the expression

sup
(w�a)∈A

{
a−w+ ∂jT (t� v)

∂v

(
ρv− u(w(v)�a))+ ∂2jT (t� v)

∂v2

(
1
2σ

2
t

)
γ(t� v�w�a)2

}

is attained by w∗
t (v)= − ln(−Ktv)/θ+ λ and a∗(v)= 1.50 Thus the verification theorem

holds and the value function for the control problem JTN(t� v)= jT (t� v) while w∗(v) and
a∗(v) are optimal Markovian controls. �

Proof of Proposition 4. We break down the derivation of the principal’s value into
six steps:

Step 1. Initial guess. We seek a solution to the HJB equation of the form

ρjT (t� v)= f Tt + ln(−ρv)
θ

�

and guess that the associated wage schedule and value of private information are given
by

w(t� v) = − ln(−kTt v)
θ

+ λ ⇒ u(w(t� v)�1)= kTt v

pt(v) = θλϕTt v�

where f Tt , kTt , and ϕTt are continuously differentiable functions that depend solely on
time t. We impose the boundary condition

ρjT (T�v)= ln(−ρv)
θ

�

Step 2. Incentive constraint. According to our guess, the incentive constraint reads

γt = −ua(w(t� v)�at)− σ−2

ht
pt = −θλ

(
kTt + σ−2

ht
ϕTt

)
vt �

49We exclude a= 0 from the set of admissible controls because we are focusing on incentive-providing
contracts.

50See the proof of Claim 1 for the optimality of full effort.
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Differentiating it with respect to wages yields

∂γ(t� v�w�a)

∂w
= −uaw(w(t� v)�at)= −θγ(t� v�w�a)− θ2λ

σ−2

ht
ϕTt vt �

The FOC (41) for wages is, therefore, equivalent to

−1 + ∂jT (·)
∂v

θvkTt − σ2 ∂
2jT (·)
∂v2 θ3(λv)2

[(
kTt + σ−2

ht
ϕTt

)2

−
(
kTt + σ−2

ht
ϕTt

)
σ−2

ht
ϕTt

]

= 1
ρ

(
−ρ+ kTt + (θλσ)2

[
kTt

(
kTt + σ−2

ht
ϕTt

)])
= 0�

implying the quadratic equation for kTt ,

(kTt θλσ)
2 + kTt
(

1 + (θλ)2ϕ
T
t

ht

)
− ρ= 0� (42)

The relevant solution is given by the positive root because wages are not defined when
kTt is negative.

Step 3. HJB equation. We now verify that the dynamic programming equation is
indeed satisfied:

ρjT (t� v) = 1 −w+ ∂jT (t� v)

∂t
+ ∂jT (t� v)

∂v

(
ρv− u(w(t� v)�1)

)+ ∂2jT (t� v)

∂v2

(
1
2σ

2
)
γ2

= 1 + ln(−v)
θ

+ ln(kTt )
θ

− λ+ 1
ρ

dfT (t)

dt
+ ρ− kTt

ρθ
− (σλ)2θ

2ρ

(
kTt + σ−2

ht
ϕTt

)2

�

Replacing our guess for jT (t� v) on the left hand side, one sees that the HJB equation
holds true for all promised value v as long as51

dfT (t)

dt
− ρfT (t)= −ρ

(
1 − λ+ ln(kTt /ρ)

θ

)
+ 1

2(σλ)
2θ

((
σ−2

ht
ϕTt

)2

− (kTt )2
)

(43)

or

f T (t)= −
∫ T
t
e−ρ(s−t)

[
ρ

(
1 − λ+ ln(kTs /ρ)

θ

)
− 1

2(σλ)
2θ

((
σ−2

hs
ϕTs

)2

− (kTs )2
)]

︸ ︷︷ ︸
�ψTs

ds�

Step 4. Verification of the guess for pt . To derive the value of private information, we
first have to characterize the law of motion of the promised value. Since

γt(v)= �Tt v� −θλ
(
kTt + σ−2

ht
ϕTt

)
v�

51Equation (43) is obtained by reinserting

ρ− kTt = 1
2 (σθλ)

2
[(
kTt + σ−2

ht
ϕTt

)2

−
((

σ−2

ht
ϕTt

)2

− (kTt )2
)]

into the HJB equation.
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reinserting its expression along with that of wages into the SDE for vt yields

dvt = [ρvt − u(wt�at)]dt + γtσ dZt = vt[(ρ− kTt )dt + �Tt σ dZt]�
Whenever �Tt is bounded (a conjecture that will be justified below), we have Et[vT ] =
vt exp(

∫ T
t (ρ− kTs )ds) and so

pt = θλ(vt − e−ρ(T−t)Et[vT ])= θλ(1 − e−
∫ T
t k

T
s ds)︸ ︷︷ ︸

�ϕTt

vt �

Since kTt is always positive, we have ϕTt ∈ (0�1) for all t < T . This and the fact that
kTt ∈ (0�K) implies that, as desired, �Tt is bounded. Hence, we have verified our con-
jecture for the functional form of pt . Notice that pT = ϕTT = 0, quality is revealed at time
T , and there is no remaining informational rent derived from belief manipulation. In
other words, the power of incentives increases as the horizon T approaches.

Step 5. Verification theorem. Our guess for the value function jT ∈ C1�2([0�T [×R) ∩
C([0�T ] ×R) is a solution of the dynamic programming equation

ρjT (t� v)= ∂jT (t� v)

∂t
+ sup
(w�a)∈A

{
a−w+ ∂jT (t� v)

∂v
(ρv− u(w�a))

+ ∂2jT (t� v)

∂v2

(
1
2σ

2
)
γ(t� v�w�a)2

}
�

where A = R × (0�1] denote the set of admissible controls (w�a),52 with boundary
condition

ρjT (T�v)= ln(−ρv)
θ

�

Furthermore, for each fixed (t� v) ∈ [0�T [×R, the supremum in the expression

sup
(w�a)∈A

{
a−w+ ∂jT (t� v)

∂v
(ρv− u(w�a))+ ∂2jT (t� v)

∂v2
σ2

2
γ(t� v�w�a)2

}

is attained by w∗(t� v)= − ln(−kTt v)/θ+ λ and a∗(t� v)= 1.53 Thus the verification the-
orem holds and the value function for the control problem JTL(t� v) = jT (t� v) while
w∗(t� v) and a∗(t� v) are optimal Markovian controls.

Step 6. Convergence as T goes to infinity. The solutions for kTt and ϕTt are found by
backward induction using the terminal condition ϕTT = 0 and reinserting the expression
for pt into the quadratic equation (42), which defines kTt . Differentiating the explicit
solution for kTt with respect to ϕTt yields

dkTt
dϕTt

= 1
2σ2ht

[
1 + (θλ)2(ϕTt /ht)√

(1 + (θλ)2(ϕTt /ht))2 + 4ρ(θλσ)2
− 1

]
< 0�

52Remember that we are focusing on incentive-providing contracts. This is why a= 0 is excluded from
the set of admissible controls.

53See the proof of Claim 1 and Step 3 above.
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Given that kTt > 0 and ϕTt ∈ (0�1) for all t < T , we have the bound

kTt >

√
(1 + (θλ)2/ht)2 + 4ρ(θλσ)2 − 1 − (θλ)2/ht

2(θλσ)2
� kt�

Furthermore, differentiating kt with respect to time shows that dkt/dt > 0. Hence, it fol-
lows that

∫ T
t k

T
s ds >

∫ T
t ks ds > kt(T − t), which implies, in turn, that limT→∞

∫ T
t k

T
s ds =

∞ and so

ϕt � lim
T→∞

ϕTt = lim
T→∞

(1 − e−
∫ T
t k

T
s ds)= 1�

Reinserting this limit into (42), we find that limT→∞ kTt = kt . The pointwise convergence
of kTt to kt and ϕTt to 1 ensures that ψTt converges pointwise to

ψt � lim
T→∞

ψTt = ρ
(

1 − λ+ ln(kt/ρ)
θ

)
− 1

2(σλ)
2θ

((
σ−2

ht

)2

− k2
t

)
� (44)

The convention that ψTt = 0 for all t > T preserves its convergence property and enables
us to rewrite the definition of the sequence of functions f Tt as f Tt = −∫∞t e−ρ(s−t)ψTs ds.
Given that |ψTt | is bounded, e−ρ(s−t)ψTs is dominated by some integrable function and
we can apply the dominated convergence theorem to conclude that limT→∞ f Tt = ft =
− ∫∞t e−ρ(s−t)ψs ds. �

Proof of Corollary 1. Differentiating the expression of ψ(t) in (44) with respect to
time yields54

ψ′(t)=
(
ρ

θ

)
k̇t

kt
− (σλ)2θ

(
−σ

−2

h3
t

− k̇tkt
)
> 0�

Observe that ψ(t) has been defined so as to satisfy the differential equation f ′(t) =
ρf(t) − ψ(t). To reach a contradiction, assume that ρf(t) < ψ(t). Then f ′(t) < 0
and so ρf(s) < ψ(t) < ψ(s) for all s ≥ t. But this contradicts the boundary condition
lims→∞ ρf(s) = lims→∞ψ(s) > 0. We can, therefore, conclude that ρf(t) > ψ(t), which
implies, in turn, that f ′(t) > 0. �

Proof of Corollary 2. Letting the horizon T go to infinity allows us to replace the
backward stochastic differential equations for the co-states by standard stochastic dif-
ferential equations. To derive the law of motion of pt , we introduce the auxiliary process

bt �E
[
−
∫ T

0
e−ρsγs

(
hε

hs

)
ds
∣∣∣Fat
]

= b0 +
∫ t

0
ξsσ dZs for all t ∈ [0�T ]�

where the second equality follows from (17). Then the definition of pt in (14) implies
that

pt = eρtσ2ht

[
bt +
∫ t

0
e−ρsγs

σ−2

hs
ds

]
�

54Remember that both k̇t and kt are negative.
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and so as T → ∞, pt solves the SDE55

dpt =
[
ρpt + d(σ2ht)

dt

σ−2

ht
pt + γt

]
dt + eρtσ2ht dbt =

[
pt

(
ρ+ σ−2

ht

)
+ γt
]
dt +ϑtσ dZt�

with ϑt � eρtσ2htξt .
Given that we are focusing on cases where a∗

t = 1, then uaa(wt�a∗
t ) = (θλ)2vkt and

ϑ∗
t = θλγ∗

t (v)= −(θλ)2v(kt + σ−2/ht), so that the sufficient conditions of Proposition 2
are satisfied when

−2ktv+ v
(
kt + σ−2

ht

)
= v
(
σ−2

ht
− kt
)
> 0 ⇔ kt >

σ−2

ht
� (45)

Differentiating the explicit solution of the quadratic equation for kt yields

dk(t)

dt
= 1

2

[
1/(θλσ)2 + σ−2/ht√

(1/(θλσ)2 + σ−2/ht)2 + 4ρ/(θλσ)2
− 1

]
d(σ−2h−1

t )

dt︸ ︷︷ ︸
<0

> 0�

Since σ−2/ht is decreasing in t, condition (45) is satisfied for all s ≥ t provided that
kt > σ

−2/ht , i.e.,

− 1
(θλσ)2

− 3
(
σ−2

ht

)
+
√(

1
(θλσ)2

+
(
σ−2

ht

))2

+ 4ρ
(θλσ)2

> 0�

which, after some straightforward simplifications, leads to requirement (24). �

Proof of Proposition 5. Consider an arbitrary strategy such that (13) does not hold
over some time interval [t� t + ε] with ε > 0.56 This implies that recommended effort
a∗
τ = 0 for all τ ∈ [t� t+ε] and so there is no gain in letting wages fluctuate, as this reduces

the agent’s welfare without extracting any additional effort. It is, therefore, efficient for
the principal to fully stabilize wages within the time frame [t� t+ε]. Letw�(v) be defined
as

w�(v)� − ln(−ρ(v+�))
θ

⇒ u(w�(v)�0)= ρ(v+�)�
so that the promise-keeping constraint holds when∫ t+ε

t
e−ρ(t−s)u(w�(vt)�0)dt + e−ρεvt+ε = v�

55The change with respect to time of σ−2/ht is given by

d(σ−2/ht)

dt
= d(σ−2(h0 + tσ−2)−1)

dt
= −σ−4(h0 + tσ−2)−2 = −

(
σ−2

ht

)2

< 0�

56The proof easily extends to arbitrary strategies where the incentive constraint does not hold over a
finite number of time intervals [ti� ti + εi] with εi > 0, ti+1 > ti + εi , and 0 < i ≤ I <∞. One simply has to
consider the last interval [tI � tI + εI ] and follow the logic of the proof to reach a contradiction.
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that is, if

vt+ε = eρεvt − (eρε − 1)(vt +�)= vt − (eρε − 1)��

The parameter � measures by how much wages differ from the certainty equivalent
w(v) = − ln(−ρv)/θ. We now show that it is optimal to set � = 0 whenever the agent
provides positive effort at every point in time following t + ε. Let i(��ε; t� v) denote the
expected profits of the principal for arbitrary values of �. It is equal to

i(��ε; t� v) =
∫ t+ε
t

e−ρ(s−t)w�(v)ds+ e−ρεJ(t + ε�v− (eρε − 1)�)

= 1
ρ

[
(1 − e−ρε) ln(−ρ(v+�))

θ
+ e−ρεf (t + ε)+ e−ρε ln(−ρ(v− (eρε − 1)�))

θ

]
�

Totally differentiating this expression with respect to � shows that it is concave in � and
that it reaches its maximum when �= 0. We can, therefore, focus on i(0� ε; t� v). Differ-
entiating its expression with respect to the length ε of the interval where the worker is
perfectly insured yields

∂i(0� ε; t� v)
∂ε

= ∂

∂ε

(
1
ρ

[
e−ρεf (t + ε)+ ln(−ρv)

θ

])

= 1
ρ

[
e−ρε(f ′(t + ε)− ρf(t + ε))]= −e

−ρε

ρ
ψ(t + ε)�

where ψ(t) is defined in (44). Let us now consider the cases identified in the
proposition.

(i) F > 0: The boundary condition limt→∞ f ′(t) = 0 implies that limh→∞ψ(h) = ρF .
Furthermore, it follows from limh→0 k(h)= 0 that limh→0ψ(h)= −∞. Hence ψ(h)
must switch sign at least once when F is positive. However, there can only be one
precision such that ψ(h)= 0 since we have shown in the proof of Corollary 1 that
ψ′(h) > 0. We can, therefore, conclude from the equation above that it is optimal
to insure workers when ht < h̃ as ∂i(0� ε; t� v)/∂ε > 0. Conversely, when ht > h̃,
∂i(0� ε; t� v)/∂ε < 0, showing that it cannot be optimal to insure workers within
any time interval of positive finite measure. We still have to consider cases where
ε→ ∞ so that workers are perfectly insured after a given date t. But this is clearly
suboptimal since f (t) > ψ(t) > 0 and so

ρi(0�∞; t� v)= ln(−ρv)
θ

< f(t)+ ln(−ρv)
θ

= ρJ(t� v)�

(ii) F ≤ 0: Thenψ(h) < limh→0ψ(h)= F ≤ 0, implying that ∂i(0� ε; t� v)/∂ε > 0 for all t.
In other words, provision of full insurance always maximizes profits. �

Proof of Corollary 3. Reinserting the law of motion (28) for v into (27) and applying
Ito’s lemma yields

dw∗
t = −
(

1
θ

)[((
1
kt

)
dkt

dt
− 1

2(θλσ)
2
((

σ−2

ht

)2

− k2
t

))
dt − θλ

(
kt + σ−2

ht

)
σ dZt

]
�
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The statement for the volatility term is established by reinserting dk(σ−2/ht)/d(σ
−2/ht)

into

d(k(t)+ σ−2/ht)

dt
=
[
dk(σ−2/ht)

d(σ−2/ht)︸ ︷︷ ︸
∈(−1/2�0)

+1

]
d(σ−2/ht)

dt︸ ︷︷ ︸
<0

< 0�

The sign of the deterministic trend is established by remembering that the sufficient
condition (16) holds if and only if kt > σ−2/ht . Hence, (σ−2/ht)

2 − k2
t < 0, and so the

trend is negative. �

Proof of Proposition 6. The proof proceeds in two steps.
Step 1. First, we shall establish that the necessary condition (10) for incentive com-

patibility is equivalent to

[
Rt − λexp(−θ(1 − λ)a∗

t )
]
(a− a∗

t )≤ 0 for all a ∈ [0�1]� (46)

where

Rt �
∫ ∞

t
e−ρ(s−t) σ

−2

hs
exp
(

1
2θ

2(h−1
t − h−1

s )− θ(1 − λ)a∗
s

)
ds�

Notice that our focus on equilibrium paths whose recommended actions a∗ depend on
time alone allows us to treat Rt as a deterministic integral. By definition, the continua-
tion value along the equilibrium path U(t� η̂t) is given by

U(t� η̂t)=
∫ +∞

t
e−ρ(s−t)Et[u(wS(η̂s� a∗

s )� a
∗
s )]ds� (47)

To solve for U(t� η̂t), we have to evaluate expected utilities. The market posterior η̂ satis-
fies the law of motion dη̂t = (σ−1/ht)dZt . Hence η̂s is normally distributed with mean
η̂t and variance Vart (η̂s)=Et[(dη̂s)2] = h−1

t − h−1
s , which implies, in turn, that

Et[u(wS(η̂s� a∗
s )� a

∗
s )] = −Et[exp(−θη̂s)]exp(−θ(1 − λ)a∗

s )

= −exp
(
−θη̂t + 1

2θ
2(h−1

t − h−1
s )− θ(1 − λ)a∗

s

)
�

Reinserting this expression into (47) yields

U(t� η̂t)= −exp(−θη̂t)
∫ ∞

t
e−ρ(s−t) exp

(
1
2θ

2(h−1
t − h−1

s )− θ(1 − λ)a∗
s

)
ds� (48)

Since dη̂t = (σ−1/ht)dZt , Ito’s lemma implies that

dU(t� η̂t)= U(t� η̂t)
[(
ρ− u(w(η̂t� a∗

t )� a
∗
t )
)
dt − θσ−1

ht
dZt

]
�
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Hence the volatility of the continuation value as defined in (9) is equal to γt =
−U(t� η̂t)θσ−2/ht , and the value of private information reads57

σ−2

ht
pt = −σ−2Et

[∫ ∞

t
e−ρ(s−t) γs

hs
ds

]
=Et
[∫ ∞

t
e−ρ(s−t)U(s� η̂s)θ

(
σ−2

hs

)2

ds

]
= −θexp(−θη̂t)

×
∫ ∞

t
e−ρ(s−t) exp

(
1
2θ

2(h−1
t − h−1

s )− θ(1 − λ)a∗
s

)[∫ s
t

(
σ−2

hτ

)2

dτ

]
ds

= −θexp(−θη̂t)

×
∫ ∞

t
e−ρ(s−t) exp

(
1
2θ

2(h−1
t − h−1

s )− θ(1 − λ)a∗
s

)(σ−2

ht
− σ−2

hs

)
ds�

Reinserting this expression into the necessary condition (10) for incentive compatibility
yields [

θexp(−θη̂t)Rt + ua(w(η̂t� a∗
t )� a

∗
t )
]
(a− a∗

t )≤ 0 for all a ∈ [0�1]�
The expression of ua(w(η̂t� a∗

t )� a
∗
t ) allows us to factor out exp(−θη̂t) and thus to ob-

tain (46). The deterministic nature of effort follows because Rt is independent of the
equilibrium belief η̂t .

Step 2. We now prove that there exists a precision h̄ such that a∗
t = 0 if ht ≥ h̄. Let R0

t

be defined as

R0
t �
∫ ∞

t
e−ρ(s−t) σ

−2

hs
exp
(

1
2θ

2(h−1
t − h−1

s )
)
ds�

so that Rt =R0
t if a∗

s = 0 for all s > t or

∂U(t� η̂t)
∂at

= −θexp(−θη̂t)
[
λexp(−θ(1 − λ)a∗

t )−R0
t

]
if a∗

s = 0 for all s > t�

We wish to establish that R0
t is a decreasing function of time. Differentiating its expres-

sion with respect to t yields

dR0
t

dt
=R0

t

[
ρ− 1

2

(
θσ−1

ht

)2]
− σ−2

ht
� (49)

When ρ < 1
2(θσ

−1/ht)
2, the derivative is obviously negative. To show that this is also

true when ρ > 1
2(θσ

−1/ht)
2, we observe that

R0
t <

σ−2

ht

∫ ∞

t
e−ρ(s−t) exp

(
1
2θ

2(h−1
t − h−1

s )
)
ds= σ−2

ht

[
ρ− 1

2

(
θσ−1

ht

)2]−1

whenever ρ − 1
2(θσ

−1/ht)
2 > 0. Reinserting this inequality into (49) shows that

dR0
t /dt < 0 with limt→∞R0

t = 0. Hence there exists a unique precision h̄ where

57The third equality is obtained by inserting the expression of U(s� η̂s) given in (48), using the value of

the expectation Et [exp(−θη̂s)] = exp(−θη̂t + 1
2θ

2(h−1
t − h−1

s )), and interchanging the order of integration.
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R0
t ≶ λexp(−θ(1 − λ)) if ht ≷ h̄. But then the fact that Rt ≤ R0

t for all possible equi-
librium paths and (46) imply, in turn, that a∗

t = 0 is the only incentive compatible level
of effort for all t such that ht ≥ h̄. In other words, no positive level effort can be sustained
in equilibrium whenever ht ≥ h̄. �

Appendix B: Additional result

Derivation of (14). We first change variables and define p̃t � (σ−2/ht)pt . Then p̃t =
E[− ∫ Tt e−ρ(s−t)γs(σ−2/hs)ds], so that differentiating with respect to time leads to

dp̃t

dt
= ρp̃t + σ−2

ht
γt = ρp̃t − σ−2

ht
(ua(wt�at)+ p̃t)�

where the second equality follows after substitution of γt = −ua(wt�a)− p̃t . Integrating
this expression, we obtain

p̃t =Ea
[∫ T
t
e[−ρ(s−t)+

∫ s
t (σ

−2/hτ)dτ]σ
−2

hs
ua(ws�as)ds

]
�

To simplify the integral in the exponent, we observe that

σ−2

hτ
= σ−2

h0 + τσ−2 = d lnht
dτ

�⇒ exp
(∫ s

t

σ−2

hτ
dτ

)
= exp(lnhs − lnht)= hs

ht
�

Therefore,

p̃t =Ea
[∫ T
t
e−ρ(s−t)

(
hs

ht

)(
σ−2

hs

)
ua(ws�as)ds

]
= σ−2

ht
Ea

[∫ T
t
e−ρ(s−t)ua(ws�as)ds

]
�

which, given the definition of p̃t , is equivalent to (14). Observe, however, that when
at = 0 for some t, then (12) is not representable as (14).

Appendix C: Two-period example

This section focuses on two-period contracts. Shortening the horizon enables us to clar-
ify how parameter uncertainty affects incentive provision. Given that the two-period
model is mostly illustrative, we set it up in the most parsimonious fashion and restrict
our attention to contracts that elicit full or maximal effort in both periods.58 We use
the model to establish the following three points. First, quality uncertainty modifies the
nature of the contracting problem solely when the relationship is repeated over time.

58Many of the assumptions below can easily be generalized without modifying the model’s main mes-
sage. For example, our findings are robust to the introduction of a general distribution for output such that
y = 1 with probability g(a�θ). Similarly, the cost function for effort does not have to be linear, but could,
instead, be convex. This may lead to optimal effort being interior so that one would have to solve the model
using compensating variations. This significantly complicates the analysis, so we restrict our attention to
linear cost functions and full effort along the equilibrium path.
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Second, the strategy space is increasing in the number of periods because the principal
has to discourage multiple deviations. Third, the more uncertain is the environment, the
more costly it is to motivate the agent; see Claim 2 below. Finally, the two-period model
features a multiplicative form between η and a, showing that our finding that quality
uncertainty harms incentives under commitment does not depend on the additive form
η+ a used in the body of the paper

Setup. Both parties have the ability to commit. The principal is risk-neutral. The
agent cannot borrow or lend and so consumes his wage in each period. He is risk-averse
with utility function u(w)−Ca, where w denotes wages and a ∈ [0�1] is effort. Output y
is observed by both parties at the end of each period. Wages are paid at the beginning of
the next period and can be contingent on realizations. Output is either high or low with
the probabilities

y =
{

1 with probability aη
0 with probability 1 − aη.

(50)

The parameterη ∈ [0�1] is the productivity of the relationship, which is unknown to both
parties. This is the counterpart of η in the body of the paper.

Notation on beliefs. Let μ1(η) denote the common prior over η. Output is observed
by both parties. Let the one-step-ahead Bayes map conditional on {a� y} be μ2(η) =
ba(y�μ1), so that

ba(y�μ)(η)= (aη)y(1 − aη)1−yμ(η)∫
�(xη)

y(1 − xη)1−y dμ(x)
=
{
( 1−aη

1−aημ )μ(η) when y = 0
( ηημ )μ(η) when y = 1�

(51)

where ημ �
∫
�ηdμ(η) is the expected value of η. Observe that b is independent of

a when y = 1 because a raises the log likelihood of observing y = 1 equally for any
value of η. This feature is specific to the log-linear form of the probability distribution
(aη)y(1 − aη)1−y . Finally we let π(y|a�μ) denote the probability of y given a and μ, i.e.,
π(1|a�μ)� ∫� aηdμ(η)= aημ and π(0|a�μ)= 1 −π(1|a�μ).

One-period contract. We first show that quality uncertainty does not fundamentally
modify the problem when the relationship is not repeated. In one-period contracts, the
agent’s incentive constraint is satisfied when

β
∑
y∈{0�1}

π(y|1�μ1)u(w(y))−C ≥ β
∑
y∈{0�1}

π(y|a�μ1)u(w(y))−Ca� ∀a ∈ [0�1]�

where β ∈ (0�1) is the agent’s discount rate.59 It is easily verified that, due to the linear-
ity of the cost function, the incentive constraint holds everywhere if it holds comparing
a = 1 to a = 0.60 The participation constraint, for an exogenously given reservation

59Remember that wages are paid at the beginning of the following period.
60More precisely, a= 1 is incentive compatible whenever ημ1 [U(w(1))−U(w(0))] ≥ C/β.
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value V , reads

β
∑
y∈{0�1}

π(y|1�μ)u(w(y))≥ V +C�

Solving the Lagrangian with λIC attached to the incentive constraint and λPC attached
to the participation constraint yields

1
u′(w(y))

= λPC + λIC

[
1 − π(y|0�μ1)

π(y|1�μ1)

]
�

which is equivalent to the standard first-order condition in problems without parameter
uncertainty. One would simply replace (50) by

y =
{

1 with probability aημ
0 with probability 1 − aημ.

In other words, parameter uncertainty can be bundled with effort uncertainty when de-
signing optimal contracts in single period settings.

Two-period contract and multiple deviations. We use a recursive formulation. The
agent’s value function in the second and the first periods are

V 2(μ2) � max
a2∈[0�1]

{
−Ca2 +β

∑
y2∈{0�1}

π(y2|a2�μ2)u(w
2(y1� y2))

}

V 1(μ1) � max
a1∈[0�1]

{
−Ca1 +β

∑
y1∈{0�1}

π(y1|a1�μ1)
[
u(w1(y1))+ V 2(ba1(y1�μ1))

]}
�

The second-period value function depends on past effort through the Bayesian op-
erator ba1(y1�μ1): Conditional on the same output y1, agents with diverging actions en-
tertain different beliefs about η. As a result, they may find it optimal to provide different
levels of effort in the second period. To deal with such multiple deviations, Fernandes
and Phelan (2000) propose attaching an additional threat-keeping constraint to each
off-the-equilibrium path. In our problem, however, effort takes value over a continuum
and so their methodology cannot be applied. We show, instead, that multiple deviations
are not a concern because the relationship ends after the second period. To see this,
notice that a2 = 1 is incentive compatible when

ηba1 (y1�μ1)

[
u(w2(1� y1))− u(w2(0� y1))

]≥ C/β� (52)

It is easily verified from (51) that ηba1 (y1�μ1) ≥ ηb1(y0�μ1)
for all a1 ∈ [0�1], y1 ∈ {0�1}, and

initial prior μ1. It follows that the incentive constraint (52) holds for any a1 ∈ [0�1] as
long as it holds when a1 = 1. It is, therefore, sufficient to exclude one-shot deviations so
as to establish the incentive compatibility of the equilibrium path with full effort in both
periods.

In other words, multiple deviations are not a concern because shirkers are more op-
timistic about their probability of success: They have provided less effort while observ-
ing the same output realization y1. Given that the relationship lasts until the end of the
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second period, they face similar costs but higher returns and so are also inclined to pro-
vide full effort. This result is specific to our setup and, in particular, to the two-period
horizon. If further periods were added to the contract, workers might find it attractive
to deviate several times before reaching termination.

Incentive constraint in the first period. When the contract implements full effort, i.e.,
a1 = 1, the value function is equivalent to

V 1(μ1)= −C +β[γ(μ1)+ u(w1(0))+ V 2(b1(0�μ1))
]
�

where

γ(μ)� ημ
[
u(w1(1))+ V 2(b1(1�μ))− u(w1(0))− V 2(b1(0�μ))

]
�

Thus γ(μ0)measures the volatility in expected utilities as of date 0. The following claim
shows that the minimum degree of risk exposure that implements full effort is higher
when the prior is more dispersed.

Claim 2. The incentive constraint for full effort in the first period a1 = 1 is satisfied when

γ(μ1)≥ C

β

[
1 +β−1

(
Varμ1[η]

ημ1 −Eμ1[η2]
)]
� (53)

Proof. The set of incentive constraints reads

ημ1

[
u(w1(1))+ V 2(b1(1�μ1))

]+ (1 −ημ1)
[
u(w1(0))+ V 2(b1(0�μ1))

]− C

β

≥ aημ1

[
u(w1(1))+ V 2(ba(1�μ1))

]+ (1 − aημ1)
[
u(w1(0))+ V 2(ba(0�μ1))

]− Ca

β

for all a ∈ [0�1]. It can be simplified by noticing that (i) ba(1�μ1) is independent of a and
(ii) any given IC is equivalent to

(1 − a)γ(μ1)− (1 − aημ1)
(
V 2(ba(0�μ1))− V 2(b1(0�μ1))

)≥ C(1 − a)/β� (54)

We have shown before that all agents find it optimal to provide full effort in the second
period so that

V 2(ba(0�μ1))= −C +β−1[u(w2(0�0))+ηba(0�μ1)

(
u(w2(1�0))− u(w2(0�0))

)]
�

Using the second-period incentive constraint (IC)

ηb1(0�μ1)

[
u(w2(1�0))− u(w2(0�0))

]≥C/β
and the expression of ηba(0�μ1), we obtain

β
[
V 2(ba(0�μ1))− V 2(b1(0�μ1))

] = (ηba(0�μ1) −ηb1(0�μ1)
)
[
u(w2(1�0))− u(w2(0�0))

]
= (1 − a)

(
Varμ1[η]
1 − aημ1

)
C

β(ημ1 −Eμ1[η2]) �



912 Prat and Jovanovic Theoretical Economics 9 (2014)

Replacing this solution into (54) and simplifying yields

γ(μ1)≥ β−1
[
C +
(

Varμ1[η]
ημ1 −Eμ1[η2]

)
C

β

]
�

Hence, if the IC binds at a = 1, it binds at any a ∈ (0�1), which establishes condi-
tion (53). �

If η is known, the IC reads γ(μ1) ≥ C/β, which is lower than the expression in (53).
Since γ(μ1)measures the volatility in expected utility, Claim 2 illustrates that parameter
uncertainty raises risk exposure. To understand why, compare expected utilities at the
beginning of the second period. Under our parametric assumptions, we have seen that
following a positive output realization, y1 = 1, posteriors do not depend on effort. On
the other hand, following a low realization, y1 = 0, shirkers have higher expectations
about η. As shown in the proof of Claim 2, they enjoy a higher expected utility,61

V 2(ba(0�μ1))− V 2(b1(0�μ1))= (1 − a)
(

Varμ1[η]
ημ1 −Eμ1[η2]

)
C

β2(1 − aημ1)
> 0�

This implies that agents find it more attractive to deviate in the first period because
they will face higher continuation values. When designing the contract, the principal
takes into account this additional channel and discourages shirking by raising income
volatility.

This result can also be interpreted from the agent’s standpoint. A shirker’s expected
income in the second period is higher than that of a complying agent because he is more
optimistic about η and so can at least mimic the equilibrium payoffs while putting in
less effort. This motivates the manipulation he might undertake: If the principal thinks
η is low due to low output in the first period, he attributes high output in the second
period to hard work and rewards it more generously. We refer to this mechanism as
belief manipulation. This channel is, by definition, shut down in the last period of the
contract. More insurance can then be provided, making it cheaper to deliver utils and,
consequently, optimal to back load payments.
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