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Unraveling in a repeated moral hazard model
with multiple agents

Madhav Chandrasekher
Department of Economics, Arizona State University

This paper studies an infinite-horizon repeated moral hazard problem where a
single principal employs several agents. We assume that the principal cannot ob-
serve the agents’ effort choices; however, agents can observe each other and can
be contractually required to make observation reports to the principal. Obser-
vation reports, if truthful, can serve as a monitoring instrument to discipline the
agents. However, reports are cheap talk so that it is also possible for agents to
collude, i.e., where they shirk, earn rents, and report otherwise to the principal.
The main result of the paper constructs a class of collusion-proof contracts with
two properties. First, equilibrium payoffs to both the principal and the agents ap-
proach their first-best benchmarks as the discount factor tends to unity. These
payoff bounds apply to all subgame perfect equilibria in the game induced by the
contract. Second, while equilibria themselves depend on the discount factor, the
contract that induces these equilibria is independent of the discount factor.
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1. Introduction

This paper studies a moral hazard in teams problem, where a principal hires several
agents over an infinite time horizon. The information structure has the following fea-
tures. Effort is unobservable to the principal, but agents can observe each other. Agents’
effort choices generate a single public observable, e.g., output. We add a communi-
cation phase between the time when effort is taken and output is realized in which
each agent can be required to make a publicly verifiable report of his co-workers’ effort
choices. Wages in any period are contingent only on the principal’s information, viz. the
history of output data and observation reports. The main result of this paper constructs
a class of infinite-horizon contracts with the property that in any subgame perfect equi-
librium of the induced game, payoffs to the agents and the principal converge to their
respective first-best benchmarks as the discount factor tends to unity.

To put the dynamic problem in context, let us revisit (some of) the results devel-
oped for the static model. Variations of our contracting environment have been studied
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in a series of papers, e.g., Holmstrom (1982), Mookherjee (1984), Ma (1988), Ma et al.
(1988), and Miller (1997), among others. The model closest to ours is that in Ma (1988).
The following mechanism—which is a sibling of the Ma contract—solves the static op-
timal contract problem. The contract has two components: insurance and a stochastic
bonus (reward). Each player is assigned a monitor and is, in turn, assigned to be some
other player’s monitor. Moreover, between the time when effort is chosen and output
is realized, each monitor is asked to issue a report on the effort choice of the player he
monitors. Wages are determined as follows. A player receives insurance as long as his
monitor issues a positive report. Moreover, if he receives a positive report, he can re-
ceive a stochastic bonus by issuing a negative report on the player he monitors. On the
other hand, if he receives a negative report, he is ineligible for insurance and gets his
reservation wage less an epsilon. Since wages and bonuses are contingent only on the
principal’s information, under standard assumptions on the conditional output distri-
butions (e.g., stochastic dominance), one can construct stochastic bonus payments that
induce truth-telling in equilibrium. Using this construction, it turns out that in the static
setting, the game induced by this contract uniquely implements the first-best outcome.
Hence, by introducing a communication phase, the principal can circumvent the moral
hazard problem when there are multiple agents.

A typical consequence of allowing for communication between players in games is
that the equilibrium payoff set is enlarged. In our case, this is detrimental since obser-
vation reports are cheap talk, so that by making wage payments depend on reports, we
introduce opportunities for collusion, by which we mean agents shirk, earn insurance,
and report otherwise. Consequently, a contract with observation reports has a dual re-
sponsibility to induce an efficient equilibrium without allowing for alternative equilibria
in which agents collude; that is, it must implement the efficient outcome. The Ma con-
tract has this property,1 but a problem arises when we want to extend the scope of this
contract to cover longer (and possibly infinite) time horizons. Consider a long, but finite,
contracting horizon in which the principal offers a Ma-style contract in each period. The
analysis from the one-shot game immediately yields a collusion-proof implementation
of the efficient outcome for a facile reason: collusion cannot be sustained in the last
period of a putative equilibrium path along which it allegedly occurs. Consequently,
there is no last period of collusion, which implies that there could not have been any
collusion at all. The existence of a deterministic end to the employment relationship
is a critical feature of this argument. This assumption has the effect of choking off any
incentives to collude in the final period of the contract and arms the principal with a de
facto incentive instrument. Thus, by imposing a deterministic end to the contract hori-
zon, we assume away a part of the problem.2 The objective of this paper is to provide

1This is not quite accurate as stated since our environment has only a single public signal, which implies
(see Lemma 1 in Section 2) that any symmetric mechanism (of which the modified Ma contract is an ex-
ample) can, at best, weakly implement the efficient outcome. However, we get exact implementation if we
adjoin a small participation fee to the contract.

2This discussion is unfair to Ma (1988) since the stated question, while relevant to the static or finite-
horizon problem, is not the question of his paper. Ma’s paper is primarily concerned with unique imple-
mentation of the constrained efficient outcome, which had been an open question in the literature.
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a collusion-proof implementation of the efficient stage outcome in the infinite-horizon
problem.

We construct an infinite-horizon contract that exhibits (for large δ) the following
approximate implementation3 features. First, payoffs to agents in any equilibrium are
arbitrarily close to the first-best benchmark, so that the contract prevents rents from
collusion. Second, it maintains an efficient equilibrium, where agents choose, say, high
effort and report truthfully. Third, the principal’s payoff is nearly first-best in all equi-
libria of the game induced by the contract.4 The contracts that have these features are
composed of two incentive instruments: (i) a spot contract (which is essentially the Ma
contract) and (ii) an auditing mechanism. Let us briefly describe these features. The
principal starts off period 0 with the null hypothesis that agents will be working hard
and reporting each others’ effort choices truthfully whenever asked. In anticipation of
this, he offers all agents a version of the contract in Ma (1988) for a fixed period of time;
call this a review phase. At the end of this period, he conducts an audit on output qual-
ity, and decides whether the output data confirm or reject his null hypothesis. If the data
confirm his null, then a new review phase is started and he continues to offer the mod-
ified Ma (1988) contract. On the other hand, if the data reject the null, then this triggers
a permanent punishment phase, where agents receive in each subsequent period the
reservation wage less a small participation fee.

The auditing mechanism in the contract takes the form of a statistical test. The prin-
cipal holds a hypothesis on the level of effort that has been chosen, and either accepts
or rejects by comparing the empirical distribution of output to its hypothesized distri-
bution. This idea of statistical testing in contracts has its origin in Radner (1985). Our
contract melds the static multiple-agent contract with a variant of the single-agent con-
tract in Radner (1985). In contrast to Radner (1985), it contains two incentive instru-
ments: (i) the monitoring mechanism in the stage contract and (ii) the statistical review
mechanism from which the principal infers effort choice from output data. These two
instruments are both necessary to obtain our result. If one merely repeats the stage con-
tract, then the infinite-horizon game inherits the efficient equilibrium. However, there
are now also undesirable equilibria where collusion persists in every period. These equi-
libria seem at least as plausible as the efficient outcome; hence, we are not content with
merely repeating the stage contract. To remove these equilibria, we arm the principal
with the Radner-style statistical reviews. However, this then raises a secondary ques-
tion. Since we introduce the possibility of colluding on reports by requiring an otherwise
elective communication phase, can the whole problem be solved by using just statisti-
cal reviews or, more simply, Radner’s review contracts alone? The primary reason the
Radner (1985) approach is insufficient is that it does not provide a good bound on the
principal’s payoff for the teams problem.

3Terminology borrowed from Renou and Tomala (2013).
4We show in the text that, for our contracting environment, any anonymous contract that (i) induces

an efficient equilibrium and (ii) precludes collusive equilibria must also admit an inefficient (i.e., Pareto
dominated) equilibrium. Hence, modulo the anonymity hypothesis, we cannot strengthen our result from
approximate implementation to exact implementation.
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For instance, since there are multiple agents and, typically, multiple equilibria, we
require a lower bound taken across all equilibrium outcomes, as opposed to the opti-
mal cooperative outcome. The Radner approach would give us a good payoff bound on
the latter, but not on the former. This issue does not come up with a single agent since
team incentives and agent incentives are (vacuously) aligned when there is only one
agent. But with multiple agents, the principal’s payoff from a planner’s problem (where
we impute payoffs for agents and maximize the principal’s welfare subject to this re-
striction) and those from the equilibrium problem need not agree. Second and related,
there can be some equilibria in which the principal’s payoff is high and others in which
it is low. Absent a selection argument, this makes evaluation of the principal’s welfare a
priori ambiguous.5 Third, Radner’s arguments rely on a reduction to stationary strate-
gies (viz. strategies exhibit temporal dependence within reviews but not across reviews).
Insofar as payoff bounds are concerned, this is without loss of generality with a single
agent, but it does involve formal loss of generality with a team. Moreover, nonstationary
behavior is plausible in team problems. If agents carry out a schedule to split the cost
of avoiding detection by the test, following histories (which span more than one review)
where some have borne more of the costs, continuation play might shift the burden to
others. Hence, it is important to obtain a bound on the principal’s payoff that applies to
all equilibria.6

To address these issues, we use a different approach than Radner (1985) and directly
analyze the set of admissible (i.e., equilibrium) probability distributions on histories.
The main formal change is that our statistical reviews are becoming more precise over
time, but do not change with the discount factor. By contrast, the review lengths in
Radner (1985) increase with the discount factor, but do not change length over the time
horizon. This change of structure allows a bound on the frequency with which collusion
occurs during review phases (in equilibrium). The bound implies that the frequency
of collusion vanishes over the time horizon as we move from one review to the next.
Moreover, as a consequence of the review structure being independent of δ, the bound
holds uniformly across discount factors. This is the key technical result from which the
payoff bounds are derived; hence, we now give an intuition that helps explain why col-
lusion dissipates over time. Punishment is prohibitive in our contracts, so that when
reviews are small relative to punishment length, prospects for collusion are small and

5Since our contracts also induce multiple equilibria, we need to take a stand on how to evaluate the prin-
cipal’s welfare from any given contract. We apply a max–min criterion. The principal evaluates a contract
with the worst (from the viewpoint of his payoff) equilibrium outcome in mind and designs a contract that
is least worst. A virtue of this particular criterion is that it requires no equilibrium selection, hence produces
payoff bounds that are robust to predictions about agents’ strategies. However, another natural criterion in
this regard is Pareto optimality, i.e., agents avoid strategies that are worse for everyone. If these two criteria
were to yield separate bounds, then welfare analysis would be ambiguous. However, the payoff bound us-
ing the max–min criterion turns out to be approximately equal to that obtained using the Pareto selection.
There is also a formal equivalence in the sense that one bound approaches the first-best benchmark for the
principal if and only if the other does.

6This, by itself, is not necessarily a call for abandonment of the Radner approach. For example, still using
Radner’s contracts verbatim, one could try to prove bounds in the class of Markov perfect equilibria for a
suitably rich state space that captures the strategic considerations relevant to team play. We comment on
this possibility at the end of Section 4.
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punishment is, by comparison, large. Thus, players do not collude during short review
lengths.

Over time the reviews get longer, so there is some review phase down the horizon
where prospects for cooperation are large relative to the magnitude of any prospec-
tive punishment. Ceteris paribus, agents would start colluding once this review begins.
However, the stage-monitoring incentives in the contract now restrict the scope of col-
lusion. First, because the reviews are long, the statistical test is quite accurate. Thus, if
players collude frequently, they will be caught with high probability. Moreover, they will
know that they will fail the test well before the end of the review. Once this happens, the
reporting mechanism takes effect, effectively switching the game into a finite-horizon
model. No collusion can take place once it is known that punishment is coming be-
cause in the last period in which collusion allegedly occurs, all agreements to collude
come unraveled. Hence, the scope for collusion is small both when reviews are small
and when reviews are large. Is there a nontrivial middle ground in which agents can
sustain some collusion and yet escape detection by the test? This middle ground exists
when δ is small, but it shrinks as we pass to the limit.

The reason is that since reviews are becoming refined over time, for large δ, the only
reviews that are long enough that collusion is even worth the risk of detection are si-
multaneously those in which the test detects collusion precisely. Since punishment is
prohibitive and collusion stops (on account of monitoring reports) the moment it is de-
tected, the threat of failing the review then dominates any potential rewards from collu-
sion. Thus, for large δ, the combination of monitoring reports and increasingly precise
reviews restricts the scope for collusion in any review. Note that unlike the finite-horizon
problem, there are paths in the infinite-horizon game along which collusion occurs in-
finitely often, since there is a small but nonzero probability that agents pass even as they
collude. Consequently, there is no definitive last period of collusion. Nevertheless, our
bounds on equilibrium behavior imply that the continuation probability of these paths
(viewed from the beginning of a review) becomes vanishingly small as we move along
the time horizon. Hence, even with the extended contract horizon there is a sense in
which we can think of unraveling as being at the root of the (approximate) implementa-
tion result.

1.1 Related literature

This paper is related to the static moral hazard in teams literature and to the literature in
repeated games that uses review strategies as an ingredient in equilibrium constructions
that can support target feasible payoffs, e.g., toward folk theorems. There is a rich litera-
ture on static contracting problems with multiple agents, initiated by Holmstrom (1982)
and Mookherjee (1984), and subsequently developed in, e.g., Ma (1988), Itoh (1991), and
Ishiguro and Itoh (2001). By comparison, there has been less work on dynamic exten-
sions of these contracts to the infinite horizon. Some recent exceptions are Che and Yoo
(2001) and Bonatti and Hörner (2011), who also study repeated teams problems. See
also Abdulkadiroğlu and Chung (2003). There is also a related literature on experimen-
tation in teams that we are not mentioning here, although the Bonatti and Hörner (2011)



16 Madhav Chandrasekher Theoretical Economics 10 (2015)

paper can also be considered an example of this. The principal objective of the Che and
Yoo (2001) paper is to provide a simpler (and stationary) incentive mechanism (joint-
performance evaluation contracts) that in many cases dominates more commonly used
mechanisms. Bonatti and Hörner (2011) study a repeated teams problem where agents
must work together and exert costly and unobservable effort into a project of unknown
value. Higher effort induces quicker discovery of the value of the project. Project value
is realized only when discovery occurs and, moreover, when this happens the game ter-
minates. The authors carry out a comprehensive analysis of this problem, among other
things obtaining closed form solutions for equilibrium effort choice (when agents them-
selves value discovery) and solving for the optimal wage scheme when a principal owns
the project.

Statistical testing in repeated games seems to have its roots in Radner (1985) and has
since been further developed in the literature on both repeated games with imperfect
monitoring (e.g., Sugaya 2012, 2013) and repeated games with incomplete information
(e.g., Escobar and Toikka 2013, Renault et al. 2013, and Renou and Tomala 2013). The
preceding five papers also sharpen Radner’s review strategy technique by using station-
ary review lengths that are invariant to δ. Moreover, the latter trio of papers is method-
ologically related to this paper in that they all solve an implementation problem by using
review strategies in combination with a stage reporting mechanism to obtain uniform
bounds on equilibrium payoffs.

This paper is also related to the literature on uniform (equivalently, Blackwell opti-
mal) equilibria, viz. strategy profiles that are equilibria for all large discount factors, e.g.,
Sobel (1971), Vrieze and Thuijsman (1989), Thuijsman and Raghavan (1997), Neyman
and Sorin (1998), Solan (1999), Vieille (2000), Rosenberg et al. (2002), and Solan and
Vieille (2010). Several papers in this literature also use review strategies with increasing
review lengths to prove the existence of uniform equilibria or, more generally, uniform
ε-equilibria.7 Since our contracts do not depend on the discount factor, our result im-
plicitly constructs a uniform ε-equilibrium, where the principal’s date-0 contract choice
and (unspecified, but implicit) strategies of the agents are approximate best responses.

2. The stage contract

A risk neutral principal must hire I agents to complete a task. Output assumes a finite set
of values and is a function of collective effort choice. These choices are unobservable to
the principal, but are observable to the agents. Between the time when effort is chosen
and output is realized, each agent makes an observation report to the principal. These
reports are contractible and are made publicly, so that all agents know what other agents
have reported.8 As is standard, we also assume output is contractible, so that in sum
there are two contractible variables: (i) output value and (ii) observation reports.

7I thank the co-editor for alerting me to these references, correcting an error of omission in a previous
draft.

8We can allow private reports and/or imperfect observability of effort choice without changing the main
result (Theorem 1). For a technical reason (relating to our method of proof), the “finite punishments” corol-
lary (Corollary 1) is sensitive to this assumption.
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The set of possible effort choices for each agent is {eH�eL}, i.e., each agent just
chooses (if he takes a pure action) between high and low effort. Let e ∈ {eH�eL}I denote
a vector of effort choices for the labor force. There is a single output variable x that takes
values in some finite subset {x1� � � � � xk} ⊆ R+. Let f (xj|e) be the probability of output xj
conditional on this choice. Last, let c(ei) denote each agent’s (utility) cost of choosing ei
and let the utility index over a pair (w�e) be given by U(w�e) = u(w) − c(e), where u(·)
and c(·) are increasing, and u(·) is weakly concave and C2. The argument w denotes the
wage paid by the principal to the agent and can be any positive real number. We also as-
sume von Neumann–Morgenstern (vNM) preferences over wage lotteries (with money
kernel u(·)). Finally, we assume all agents have (i) identical vNM preferences over wage
lotteries with a common utility kernel U(w�e) given above and (ii) a common outside
option, equivalently reservation wage, denoted as u0 := u(w0).9

To this setup we add the following assumptions. For e ∈ {eH�eL}I , say that e ≤ e′ if
at least as many agents select eH under e′ as under e. Let the acronym FOSD denote the
first-order stochastic dominance relation.

Assumptions on primitives. 1. If e ≤ e′, then F(·|e′) FOSD F(·|e).

2. High effort, e∗ := (eH�eH� � � � � eH), is first-best.

Definition 1 (Definition of collusion). An outcome is said to be collusive if aggregate
effort choice is less than first-best, yet some agent is earning better than his reservation
wage.

Intuitively, we would say that agents are colluding if they are shirking and collect-
ing insurance, and, nevertheless, lying to the principal about the effort choices of their
peers. The definition above includes this possibility and more. For example, it also
counts as collusion the situation where someone is shirking and someone else (who is
not shirking) is earning insurance. Using a broader definition of collusion strengthens
our desired conclusion since our goal is to design a contract that rules out manifestly
collusive behavior without ruling out the efficient equilibrium. It suffices, then, to rule
out collusive outcomes using the definition given above.10 The following proposition
was previously established in Ma (1988). However, the contract given in Ma’s paper is
slightly different than the one we present. For this reason only, a proof is also provided
in this paper (in the Appendix). The contractible variables are output and observation
reports (for the proposition, the report space is taken to be, without loss of generality
(w.l.o.g.), the set of effort choices), so that a contract is formally a map from report–
output pairs to wage lotteries.

9Comments on these assumptions. First, the symmetry hypothesis on preferences is again just to ab-
stract from complications; they do not change the results. With asymmetric preferences, we need to keep
the vNM assumption on wage lotteries and separability between (w�e), i.e., U(w�e) = u(w) − c(e), with a
possibly different u, c across agents. Second, we need that support of effort is finite, but the binary assump-
tion is just for economy of notation.

10Note that the efficient outcome (i.e., all agents putting in high effort and receiving insurance) is not
collusive under the definition.
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m1�2 = + m1�2 = −

m2�1 = + wFB wFB + (R1�R2)

m2�1 = − w0 − ε w0

Table 1. A sample contract.

Proposition 1 (Ma 1988). Assume players cannot make interpersonal transfers (i.e., side
contracts). There exists a contract that attains the first-best effort choice at the first-best
cost. Moreover, in the extensive form game induced by the contract, there is no collusion
in equilibrium.

We first give a sketch of the argument for the illustrative case where there are two
agents, two effort choices, and two values of output (Brusco (1997) refers to this as the
2 × 2 × 2 model). Consider the contract represented by the matrix of payoffs in Table 1.
Label the players {1�2}. The entries in the last two columns denote player 1’s payoff. The
term m1�2 denotes player 1’s report on player 2, and similarly for m2�1. A plus (+) denotes
a good report and a minus (−) is a bad report. Thus, if both players issue good reports
on each other, they both get the first-best wage (i.e., full insurance). If 1 gives 2 a minus
and 2 gives 1 a plus, then 1 additionally obtains a stochastic reward (R1�R2). The reward
pays out R1 < 0 if output is high and R2 > 0 if output is low. The idea behind the sign
convention is that if 1 reports a minus on 2 and is telling the truth (i.e., player 2 is shirk-
ing), then low output should be more likely than high output. Thus, the reward should
have positive expected value. If neither player is shirking and player 1 is untruthfully
giving player 2 a thumbs down, then high output should be more likely than low so that
the reward should have negative expected value. Analogously defining the payoff matrix
for player 2, one can verify that there is no collusion in equilibrium under this contract.
Moreover, both players putting in high effort and truth-telling is an equilibrium.

The principal difference between the mechanism we use to prove the proposition
and the one constructed in Ma (1988) is that the equilibrium outcome is not unique
in our setup, whereas it is unique in Ma’s contract. The reason for this is that the en-
vironment in our paper, while related to the one in Ma (1988), is formally distinct. In
Ma (1988), the principal’s information consists of a bivariate public signal—implicitly,
one for each agent’s action choice. In contrast, in our environment there is a sin-
gle public signal for the principal with values that are correlated with the joint effort
choices of the agents. The following lemma shows that (for the 2 × 2 × 2 model) any
symmetric contract that is collusion-proof and maintains an efficient subgame per-
fect Nash equilibrium (SPNE) must also admit an inefficient SPNE outcome. Let E de-
note the economic environment. This consists of (i) two agents, two effort choices,
and two output values, (ii) a single public signal taken to be the value of output, and
(iii) with a view to the infinite-horizon problem, agents are assumed to have nonneg-
ligible (but arbitrarily small) liability. Consider contracts, C(E), that satisfy symmetry,
i.e., w1(·� (m1�m2)) = w2(·� (m2�m1)), so that wage is not intrinsic to the sender (mi is
agent i’s message and message spaces are defined by the ambient game form G). The
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timing structure for both this lemma and the preceding proposition is such that (i) the
principal offers the contract, (ii) agents either sign or do not sign, and (iii) the induced
effort/report choice game played between agents ensues (if all agents sign).

Lemma 1. For any symmetric contract C(E), let G denote the game form induced by the
contract, where the players are the agents, and let �(G) be the set of SPNE. If the efficient
outcome (i.e., high effort and full insurance) is an outcome of some equilibrium in �(G)
and no equilibrium outcomes exhibit collusion, then there must be an inefficient equilib-
rium outcome.

Thus, modulo the symmetry hypothesis on C(E), the existence of an inefficient stage
equilibrium is endemic to our single signal environment. This has important implica-
tions for the infinite-horizon problem. First, to implement the efficient stage outcome,
either by contract selection or equilibrium selection, we must eliminate the equilibrium
where the inefficient stage SPNE is played in every period. Second, if we offer a contract
C(E) in every period, then a profile where players switch to the inefficient equilibrium in
the distant future is an SPNE of the repeated game; call these eventually shirk equilibria.
If the principal is allowed to be arbitrarily more patient than the agents, then, on account
of the eventually shirk SPNE, his payoff will be bounded away from first-best. We deal
with the second issue by (i) assuming a common discount factor between agents and
the principal,11 and deal with the first by (ii) introducing (small) participation fees into
the contract. The fees must be small as we assume agents do not have unlimited liability
(else, the infinite-horizon problem can be solved by a trivial extension of the stage con-
tract). These two modifications are enough to get us an almost efficient bound on the
principal’s payoff that holds across all SPNE induced by the infinite-horizon contract.

3. The infinite-horizon contract

Now consider the infinite-horizon setting. If the principal were to unconditionally of-
fer the stage contract in every period, then the following trigger strategy constitutes an
equilibrium: everyone shirks and covers for one another until a period when someone
reports otherwise. After this happens, everyone shirks and reports truthfully in every
period. It is easy to see that when players employ this strategy profile, collusion occurs
in every period on the equilibrium path (for large δ). To break this equilibrium, the prin-
cipal needs to offer large rewards for reporting. However, unless liability is unbounded,
the only way to make the rewards large (in expectation) when agents shirk is to make
the output-contingent payment large in reward states, e.g., when output is low in the
2 × 2 × 2 model. But this means that the reward has large positive expected value even
when nobody shirks, which destroys the efficient equilibrium. Hence, in the absence of

11Note that this departs from Radner (1985), where the principal and single agent can have distinct dis-
count factors as long as they both surpass some threshold. The reason this is sufficient for the principal’s
bound in Radner (1985) is that the perfection requirement on the (lone) agent’s strategy is sufficient to kill
eventually shirk outcomes, whereas it is—via the lemma—insufficient in the multiple-agent framework.
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unbounded liability, the Ma contract alone cannot yield dynamic collusion-proof imple-
mentation of the efficient outcome. We now design an infinite-horizon collusion-proof
contract that is insensitive to the liability bound.

By offering the stage contract unconditionally, the principal is ignoring the informa-
tion about effort choice contained in the stream of output data. With a large enough
stream of data the principal should be able to infer whether agents were indeed imple-
menting the first-best if that is what they were reporting. Hence, the infinite-horizon
contract uses an additional incentive instrument that takes the form of a statistical test
on the hypothesis that the agents are implementing the first-best effort level. Now we
describe the primitives of our infinite-horizon problem. We then describe the principal’s
contract choice problem before moving on to describe the contracts themselves and the
induced histories and strategies.

• A1 (Date-0 commitment). The principal offers a take-it-or-leave-it contract at
date 0. If any of the agents refuses the contract, all agents receive their reservation
utility. These rules cannot be renegotiated once the contract is signed.

• A2 (Preferences). Agents and the principal are assumed to have a common dis-
count factor δ ∈ (0�1) and payoffs in the infinite-horizon game are evaluated using
the δ-discounted sum of stage-game payoffs.

• A3 (Limited liability). Agents can accept an arbitrarily small, but positive, amount
of per-period liability, denoted ε̂. Moreover, the liability bound is insensitive to
the discount factor, δ.

The first two assumptions are, more or less, standard. Let us comment on assump-
tion A3. Note that the stage contract (see Table 1 for an example) requires A3 since the
reward incentives assess a small amount of punishment when high output is realized.
Since we want the infinite-horizon contract to inherit the efficient equilibrium, we need
to be able to punish agents an arbitrarily small amount in each period; hence the per-
period liability assumption. The liability bound can be arbitrarily small, but we assume
it does not change with the discount factor. In this sense, we consider it a primitive of
the contracting environment.

There is no canonical objective function for the principal on account of the multiple
equilibrium problem. We take a robustness-motivated approach and set the principal’s
welfare from a contract equal to the minimum payoff from any SPNE in the game in-
duced by the contract. Formally, let C denote a contract and let �C(δ) denote the SPNE
in the game induced by the contract, when all contractual parties have discount factor δ.
Since agents must all sign the contract for the ensuing game to exist, there is an im-
plicit individual rationality (IR) constraint built into agents’ payoffs along any ρ ∈ �C(δ).
Namely, in any ρ, an agent’s payoff must be bounded below by the (normalized, dis-
counted) value of his/her outside option. Let Wδ(ρ) denote the principal’s discounted
(normalized) payoff along SPNE ρ and let WC(δ) denote the principal’s “welfare” from
the contract, where we put (n.b.: to be precise, max/min should be sup/inf, but we will
approximate the objective, so the distinction is irrelevant for our results)

WC(δ) := min
ρ∈�C(δ)

Wδ(ρ)�
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This is not the only measure of welfare. For instance, a commonly used criterion in the
presence of multiple equilibria is the Pareto criterion. Were these two criteria to yield
very different answers, then a notion of the principal’s welfare would be ambiguous.
However, we will show that all (subgame perfect) equilibria yield the principal a payoff
within a preselected ε of the first-best benchmark (for large δ). Concretely, fix a (to be
specified) class of contracts 	 as the principal’s choice space. The principal’s problem
under the max–min criterion is to choose C ∈	 to maximize WC(δ):

Principal’s problem: max
C∈	

WC(δ) = max
C∈	

min
ρ∈�C(δ)

Wδ(ρ)�

Fixing the space of contracts 	, as we vary δ, we obtain a value function for the principal.
We do not compute this value function explicitly, but show that there is a class 	 such
that the associated value function converges to the first-best benchmark as δ tends to
unity. We now describe this class 	.

3.1 Statistical testing

We introduce some of the statistical tools and notation that are used in the description of
our contracts. Let E be the set of aggregate effort choice vectors and denote the first-best
choice as e∗. For a given e ∈ E, output X is distributed as F(·|e). Let X1� � � � �XT denote
the output random variables (r.v.’s) in periods t = 1� � � � �T . The empirical cumulative
distribution function (c.d.f.) corresponding to X1� � � � �XT is defined by the formula

FT (x|e) :=
T∑
i=1

1(Xi≤x)

/
T�

We now use the formula for the empirical c.d.f. to define a statistic. For X ∼ μe∗ (i.e., X is
distributed as μe∗ ), put K = l · maxx Var(1(X≤x)), where l is the cardinality of the support
of output. Define the parameters of the hypothesis test,

γn := 1/
√
n� εn := K/n3� tn := n4�

where n denotes a positive integer. These parameters serve the following roles:

• Margin of error. The quantity γn determines the allowable margin of error that
determines the rejection region for our hypothesis test.

• Type I error bound. The term εn is an upper bound on the probability of a type I
error (this follows by a simple application of Chebyshev’s inequality; see the proof
of Proposition 3).

• Sample size. The quantity tn is the sample size of the hypothesis test.

The functions γn, εn, and tn are fixed for the rest of the paper. The nth review phase, of
length Tn := n · tn, is partitioned into n samples of output data, {(i−1) · tn+1� � � � � i · tn}ni=1.
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Define the empirical c.d.f. for each sample:

Fi�Tn(x) :=
itn∑

j=(i−1)tn+1

1(Xj≤x)

/
tn for i ∈ {1�2� � � � � n}�

Definition 2 (Statistical test). The Kolmogorov–Smirnov test statistic is given by the
formula

STn := max
i

{
sup
x

|Fi�Tn(x)− F(x|e∗)|
}
�

where F(·|e∗) is the c.d.f. of the r.v. X ∼ μe∗ .

Note that we are really taking the maximum of several Kolmogorov–Smirnov (KS)
statistics and referring to this composite statistic as a KS test as well. The idea behind the
statistical test is that the principal breaks up the nth work (equivalently, review) phase
into n data gathering (sub)phases. During the entire work phase, the null hypothesis is
that agents are working the first-best and truth-telling in every period. For each of the n

batches of output data, the principal uses a KS test to match the empirical c.d.f. of output
with the hypothesized c.d.f. If the deviation from any of the n samples (weakly) exceeds
the margin of error (γn defined above), then the null is rejected and a punishment phase
follows. To get a good bound on the principal’s payoff, we will want to control type I
errors, which means that the first review length will start at some point far along the
sequence {γn� εn� tn}. Hence, the nth review phase will have samples of size tn+N for
some N large, margin of error γn+N , and so on. We obscure this distinction with the
understanding that, implicitly, parameters of the nth review in the contract can involve
a shift of the sequence (γn� εn� tn). The choice of a particular shift N is required when we
select appropriate participation fees.

3.2 Contract description

We now define a class of contracts 	, with generic element denoted C. Each contract is
described by three ingredients: (i) a state space, (ii) a transition function (mapping from
states to states), and (iii) a state-dependent payoff rule.

State space The state space is divided into two classes: work (i.e., review) states and a
single (absorbing) punishment state.

1. Work states are identified by a pair (Wn� i), where Wn is of length Tn = n · tn and i

denotes the current period within the given work state Wn.

2. There is a single, absorbing punishment state, denoted ∅.

Transition rules Transitions between work states and the punishment state are deter-
mined as follows:

1. Initial state: (W1�1).

2. If in state (Wn� i), where i < Tn, proceed to state (Wn� i+ 1).
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3. If in state (Wn�Tn), consider the value of the KS statistic STn . If STn ≥ γn, then pro-
ceed to the unemployment state ∅; otherwise, proceed to state (Wn+1�1).

4. If in state ∅, then remain in state ∅.

Payment rules Payment alternates between two types of spot contract. To concisely
describe the switching rule, we cheat and define the rule using histories, even though,
strictly speaking, histories are induced by the date-0 contract, not the other way around.
There is no circularity here and everything can be written, albeit less cleanly, in terms of
states.12 In any given period, either the Ma contract or the punishment contract (where
everyone earns, in utils, u0 − tε) is in place. Denote the Ma contract by C(ε′

1�R1�R2�w
FB
ε1
)

with the following arguments: (i) the punishment quantity (ε′
1), (ii) the negative reward

when high output values are realized (R1), (iii) the positive reward when low values are
realized (R2), and (iv) the insurance payoff wFB

ε1
, which equals the cost of high effort plus

another ε1. Let s denote a generic state and let T denote the stopping time associated
to the KS statistic, i.e., T(h) is the first time (along history h) where it becomes known
that the next state is the punishment state. The notation st(h) denotes the state of the
contract along history h and time t, and C(w0) denotes the spot contract that uncondi-
tionally pays every agent the reservation wage. The spot contract function is formally
described as

Ct(h) =

⎧⎪⎨⎪⎩
C(ε′

1�R1�R2�w
FB
ε )− tε2 if t ≤ T(h)� st(h) 
=∅

C(ε′
1�R1�R2�w

FB
0 )− tε2 if t > T(h)� st(h) 
=∅

C(w0)− tε2 if st(h)= ∅.

This completes the description of the infinite-horizon contract.13 The choice parame-
ters of the contract are

• the stage contract parameters (i.e., ε′
1�R1�R2�w

FB
ε1

)

• the KS test statistic (consisting of choice parameters εn�γn� tn)

• the per-period participation fee tε2 .

Note that none of these parameters depends on the discount factor.
We choose the fee tε plus the (negative) reward R1 to sum to less than the liability

bound ε̂ (given by A3). The fee can simply be absorbed into the wage function of the
work state spot contract, C(ε′

1�R1�R2�w
FB
ε1
), in which case one could take the reduced

surplus during review phases, relative to the fee during punishments, as a surplus net of
an implicit participation fee. We choose to write it this way since it is more transparent.
The contract just described induces an infinite-horizon game between agents. We now
describe its histories and associated strategies.

12If we insist on defining the transition rule this way, then we need states to keep track of output, e.g.,
rather than state (Wn� i), we would augment to state (Wn� i�xin), where xin denotes realized output in phase
n, period i.

13In the definition, wFB
0 denotes the insurance level where agents are insured an amount exactly equal to

the cost of high effort.
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Histories. Let h0 := ∅ be the null history. Let ht denote the history of the game up
through period t. The contribution to ht in period t itself consists of (i) the effort choices
taken by agents in period t, (ii) the agents’ reports, and (iii) the realized output level. In
a period in which the game is in a punishment state, we denote that period’s contribu-
tion to the history with the empty-set symbol, ∅. Let Ht denote the set of histories up
through period t and put H :=⋃t H

t .

Consider the history ht , where, in period t, the game is in a punishment state. Think-
ing of ht as a string of outputs, reports, and effort choices, the period t component of
this string is denoted with the empty-set symbol. All contracts we consider will have the
property that there is a unique absorbing punishment state and that the factory “shuts
down” in this state. Hence, once this state is entered, all players’ action sets are null and
payoffs are constant. Since there is no new history to add to the preexisting one, once the
punishment state is entered, we denote all such contributions to ht with an empty-set
symbol (more precisely, a string of empty set symbols if the punishment state is entered
at time t1 and we look at ht for t ≥ t1).

Strategies. Let Ri : E → �({0�1}) denote agent i’s observation report strategy (i.e., 0 =
a shirk report, 1 = no shirk). Let �i denote the set of such Ri and let {eH�eL} denote the
set of available effort choices. Then agent i’s strategy space, S(i), in a work period can be
described as �({eH�eL})×�i. A (behavioral) strategy for player i (in the stochastic game)
is a function ρi :H → S(i) that prescribes a (possibly mixed) action pair in period t+1 as
a function of ht ∈ H. If ht is such that the spot contract in period t + 1 is the reservation
wage contract, then set ρi(ht) = ∅.14 We also only consider strategy profiles ρ that are
measurable with respect to the (Borel) σ-algebra generated by the cylinder sets of finite
period histories {ht} (i.e., all infinite histories that agree with ht up to time t).

Notice that each agent sees the same history at time t, consisting of the history of
output, effort choices, and reports. Accordingly, the solution concept employed in this
paper is subgame perfect Nash equilibrium (SPNE).

3.3 Equilibrium behavior

Let �C(δ) denote the set of (measurable) SPNE strategy profiles in the game induced by
a contract C. For a given equilibrium ρ ∈ �C(δ), let Pρ(·) denote the conditional distri-
bution on work phase n, where we condition on the set of histories that reach the nth
work phase. Let C(Tn) denote the r.v. that counts the number of periods in phase n in
which collusion occurs.

Proposition 2. Assume that lim supPρ(C(Tn)/Tn > α) > 0 for some α > 0. Then
lim supPρ(supx |FTn(x)− F(x|e∗)| > r) > 0 for some r ∈ (0�1).

14Reporting strategies in our stage contracts are richer than described here, since we use sequential re-
ports. However, beyond formality, there is little conceptual content to the more elaborate definition of
reporting strategies. Hence, we obscure the distinction here.
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Proposition 2 says that if agents are shirking frequently and reporting that they are
working first-best, the statistical test will eventually catch on. Moreover, it tells us that
when they collude often, they not only fail the test, but the failure probability is bounded
away from zero. Hence, whenever the conclusion of the proposition holds, it must be
the case that (for large n) the null hypothesis is violated in more than one subphase of
the review phase. The following fact, which we dub unraveling, just acknowledges that
once it becomes known that the next phase is a punishment phase, continuation play
behaves as it would in a finite-horizon game induced by a Ma (1988) contract.

Observation 1 (Unraveling). On-path play reverts to an idiosyncratic repetition of one
of the two-stage-game SPNE once agents are caught.

To justify this observation, let ρ ∈ �(δ) and assume that there is a history h such
that STn(h) falls into the rejection region prior to the start of the nth subphase. Take the
earliest of the subphases for which this happens, say subphase k, where k < n. What
can equilibrium play look like from the start of subphase k + 1 until the end of work
phase n? We claim no collusion can occur from the start of phase k + 1 until the end
of work phase n. This follows from an unraveling argument. If there is collusion, there
is a last period in which it occurs. Since punishment states are absorbing and players
receive subsistence wages after the review, the present value of reporting exceeds the
continuation value from not reporting. Thus, collusive agreements are impossible to
sustain once everyone knows that a punishment phase is forthcoming. Consequently,
once players have completed a subphase of work and know that the next state is a pun-
ishment state, then play in each period until the termination of the work state reduces to
one of the stage SPNE. Insofar as agents’ payoffs are concerned, we can w.l.o.g. assume
that play reverts to the efficient SPNE. Refer to a profile ρ with this property as a rectified
strategy. The preceding observation places restrictions on the average long-run values
of the variables C(Tn) (in equilibrium).

Proposition 3 (Equilibrium behavior). Let ρ be any SPNE (in the game induced by C).
Then, for any ε > 0 we have Pρ(C(Tn)/Tn ≥ ε)→ 0 as n → ∞.15

The statement applies only to phases that are reached with positive probability on
the equilibrium path. For the “finite punishments” version of C (see Corollary 1), all
phases are reached with positive probability, so that the conditional distributions are al-
ways defined. The statement of the proposition does not invoke any restrictions on the
SPNE, but we prove the proposition by reducing to rectified equilibria. By the preced-
ing discussion, this reduction entails no loss of generality insofar as the distribution of
C(Tn)/Tn is concerned. In the next section, we sharpen this result by showing that the
rate at which the frequencies C(Tn)/Tn vanish can be bounded independently of both
the SPNE strategy ρ that induces the distribution on C(Tn)/Tn and the discount fac-
tor. To bound the principal’s payoff, we also need a companion result for the frequency
E(Tn)/Tn, where E(Tn) counts the number of periods in phase n in which players are

15I am grateful to the anonymous referee who suggested this result.
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taking an inefficient effort choice, even if they are not colluding. While these are largely
technical extensions of the preceding proposition, the rate bounds are critical to the
proof of the main theorem.

4. Main result

For each fixed δ, consider the set of payoff vectors attainable through SPNE in the game
induced by a contract C ∈ 	. Our main result produces a pair of equilibrium payoff
bounds. The first is an upper bound on agents’ payoffs. It says that as δ increases to 1,
the equilibrium payoff set converges (in the Hausdorff metric) to a point mass on the
vector (u(wFB) − c(eH)� � � � � u(wFB) − c(eH)), i.e., where every agent is earning the pay-
off under the first-best, perfect-information benchmark. Moreover, since sufficiently
patient players can obtain close to this payoff by playing the efficient SPNE, this payoff
vector is attained in the limit. The second half of the theorem provides a lower bound
on the principal’s equilibrium payoff. Let us introduce some notation. Let �FB denote
the first-best principal’s payoff, viz. �FB := EX∗ −w∗, where X∗ ∼ μe∗ and w∗ is the total
insurance payment, and let (resp.) W (ρ) and V (ρ) denote the principal’s and any given
agent’s discounted payoff under SPNE ρ. Fixing any ε > 0, as δ ↑ 1, the lower bound re-
sult says that the principal’s worst payoff taken across all SPNE in the game is at least
�FB − ε. Note that any element C ∈ 	 is defined independently of the discount factor.
However, the SPNE set of the game induced by C will typically depend on the discount
factor.

Theorem 1. Let �C(δ) denote the set of all SPNE in the infinite-horizon game induced
by a contract C, where δ denotes the common discount factor.16 Given any ε�ε′ > 0, there
exists a contract C(ε�ε′) ∈	 that yields the following bounds on equilibrium payoffs:

1. limδ↑1(1 − δ)V(δ) ≤ u(wFB
ε′ )− c(eH), where V(δ) := supρ∈�C(ε�ε′) (δ)

V (ρ).

2. limδ↑1(1 − δ)W(δ)≥�FB − ε, where W(δ) := infρ∈�C(ε�ε′) (δ)
W (ρ).

The two approximation parameters, ε and ε′ can be chosen (independently) to be
arbitrarily small: ε′ denotes surplus insurance over the cost of high effort and ε denotes
the fraction of this surplus the agent keeps net of the participation fee.17 The contracts
in the class 	 all have an absorbing punishment state. Since agents are required to hand
over an (arbitrarily small) participation fee in each period, it might seem unrealistic that
they would agree up front to this sort of liability. All the more so since a punishment
phase can be triggered (albeit with very small probability) even when everyone pursues
the efficient equilibrium. The following corollary shows that we recover the same result
as Theorem 1 even if we require punishments to be “memoryless,”18 so that punishment

16Recall that we assume this discount factor is common to the principal and the agents.
17More precisely, we show the lower bound �FB −ε, where ε= �FB ·ε2 and ε2 is the fraction of the surplus

agents keep net of the participation fee.
18By this we mean that, as in Radner (1985), punishments are of finite length and agents get a fresh start

with a new review phase at the conclusion of a punishment phase.
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phases are finite and of identical length. Let C(δ) be identical to a contract C chosen from
	, with the only difference being that the punishment lengths are of some finite length
L(δ). The state space, payoff functions, and transition rules admit obvious adjustments;
hence, we omit the formal (re)definition for C(δ).

Corollary 1. Fix ε�ε′ > 0. Then ∃δ(ε�ε′) > 0 such that for each δ ≥ δ(ε�ε′) we can find
a finite punishment contract C(ε�ε′)(δ) such that the bounds in Theorem 1 hold.

To derive these bounds, we require a strengthening of Proposition 3.

Proposition 4. Fix any C ∈ 	. Given any ε > 0 and ε′ > 0, there is an index I(ε� ε′) such
that whenever i ≥ I(ε� ε′), we have Pρ(C(Ti)/Ti ≥ ε)≤ ε′ ∀ρ ∈ �C(δ), ∀δ.

When play does not reach the ith review phase, the conditional distributions are not
defined. Hence, we add, as in Proposition 3, the qualification that the bound of the
proposition applies whenever i ≥ I(ε� ε′) and the ith phase is reached. The key is that
the bound I(ε� ε′) applies across all profiles ρ ∈ �(δ) and across all discount factors.
This is the sense in which we are strengthening the previous proposition, which, at first
blush, suggests that the bound is dependent on the given profile.

Note that to generate a folk theorem with discounting, we require a rich enough set
of “delayed reward sequences,” i.e., we need to have the ability to bring sticks to the
present and push carrots into the future. As the discount factor increases, to incen-
tivize sophisticated patterns of on-path play, we require access to a rich set of payoff
sequences where rewards are (possibly) delayed further and further. These sequences
exist as long as the feasible set of the stage game is sufficiently rich. The proposition
points out the obstacle to applying this heuristic to our (stochastic) game. Put the pay-
off from an episode of collusion at 1 and the efficient stage outcome at 0 (any other
outcome yields less than these). The proposition says that, with probability close to 1, a
payoff stream in review phases far along the time horizon is proportioned with at most
ε 1’s and at least 1−ε 0’s. These are the only delayed reward sequences available through
SPNE play. Hence, as we push the discount factor to unity, it might be possible to gen-
erate a folk theorem in a vanishingly small neighborhood of the efficient stage-game
payoff—but that is all. This is the intuition for how the proposition implies an anti-folk
result in our game.

For the principal’s payoff, we require a sharper version of the proposition. We ap-
ply the bounds to the variable E(Ti)/Ti, where E(Ti) denotes the number of periods in
phase i in which effort choice is not first-best. Notice that C(Ti) ⊆E(Ti). While the vari-
able C(Ti) is more informative about agents’ payoffs, the variable E(Ti) is more informa-
tive about the principal’s payoff. The proposition stated below makes two changes from
Proposition 4. First, it switches the variable of interest from C(Ti) to E(Ti). Second, the
bound applies only to rectified SPNE. Let �rec

C (δ) denote the set of such (rectified) SPNE
induced by the contract C.

Proposition 5. Fix any C ∈ 	. Given any ε > 0 and ε′ > 0, there is an index I(ε� ε′) such
that whenever i ≥ I(ε� ε′), we have Pρ(E(Ti)/Ti ≥ ε)≤ ε′ ∀ρ ∈ �rec

C (δ), ∀δ.
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The proof of the proposition is nearly identical to that of Proposition 4. The modi-
fication to the proof required to address the change from C(Ti) to E(Ti) is described in
remarks (see the Appendix) following the argument for Proposition 4.

4.1 Proof of Theorem 1

Upper bound Choosing an affine transformation of stage-game payoffs, we assume
that u(wFB) − c(eH) = 0 (the extra ε on the insurance wage is irrelevant for the upper
bound, so we suppress it). We proceed in two steps. First, we use Proposition 4 to con-
struct a stream of utility payoffs that forms an upper bound on agents’ payoffs. Second,
we compute that the limiting (in δ) value of these streams can be brought as close to 0
as we like.

Take any sequence of profiles ρδn with (1 − δn)V (ρδn) converging to limδ↑1(1 − δ) ×
V(δ). By Proposition 4, given any ε and ε′, we can find an index I(ε� ε′) such that
∀ρ ∈ �(δ), ∀δ we have

Pρ(C(Ti)/Ti > ε)≤ ε′ ∀i ≥ I(ε� ε′)� (∗)

Define a payoff sequence ut (resp. uδt ) (when k= 1, the sum below is, by fiat, zero):

ut =

⎧⎪⎨⎪⎩
1 if t ∈ (

∑k−1
i=1 Ti�

∑k
i=1 Ti]�k < I(ε� ε′)

1 if t ∈ (
∑k−1

i=1 Ti�
∑k−1

i=1 Ti + ε · Tk]�k≥ I(ε� ε′)
0 if t ∈ (

∑k−1
i=1 Ti + ε · Tk�

∑k
i=1 Ti]�k≥ I(ε� ε′).

We ignore integer issues in defining the sequence ut . Define uδt by multiplying each case
by (1 − δ)δt . Using Proposition 4, this is an upper bound stream of expected payoffs,
since, within each phase, we have front-loaded the agent’s payoffs. For brevity, let Ei

Pu
δ
t

be shorthand for the sum of the expected values of payoffs summed over times during
the ith work phase, i.e., Ei

Pu
δ
t := EP

∑
t∈�(i) u

δ
t , where �(i) denotes the set of times cov-

ering review phase i. Also let H∗ denote the space of infinite histories in the game and
put uδ(h) equal to the discounted sum of payoffs along the (infinite) history h. We have∫

H∗
uδ(h)dPρδ =

∞∑
t=1

EPρδ
uδt =
∑
i

Ei
Pρδ

uδt �

The above equality involves an interchange of an integral with a summation, which can
be justified as follows: truncate the normalized discounted payoff at some large T . The
interchange of sum and integral is obviously justified for the truncation. Take arbitrar-
ily large truncations to obtain equality. Now we use (∗) to bound the terms Ei

Pρδ
uδt for

i ≥ I(ε� ε′),

Ei
Pρδ

uδt ≤φi

[
(1 − ε′)

∑
t∈�(i)

uδt + ε′ ∑
t∈�(i)

1δt

]
�

where φi denotes the probability of reaching this phase (we suppress the dependence
on the underlying measure Pρδ as we will be using a trivial bound on φi that applies
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regardless of the measure). Finally, put 1δt := (1 − δ)δt · 1, where 1 is the normalized
stage payoff from collusion. Summing over phases i, we obtain,∫

H∗
uδ(h)dPρδ =

∑
t

EPρδ
uδt =
∑
i

Ei
Pρδ

uδt

≤
I(ε�ε′)−1∑

i=1

∑
t∈�(i)

1δt +
∑

i≥I(ε�ε′)
φi

[
(1 − ε′)

∑
t∈�(i)

uδt + ε′ ∑
t∈�(i)

1δt

]
�

Use the trivial bound φi ≤ 1 to obtain∫
H∗

uδ(h)dPρδ ≤ ε1 + (1 − ε′) ·
∑

i≥I(ε�ε′)

∑
t∈�(i)

uδt + ε′�

where ε1 is the bound on the sum over phases up until I(ε� ε′). By choosing δ large, we
can make ε1 as small as needed, since I(ε� ε′) is independent of δ for all large δ. Similarly,
by choosing ε and ε′ to be small at the outset, we can make the final term above as small
as we like.19 Hence, to show that the limiting value as δ tends to unity is close to 0, it
suffices to check that

∑
i

∑
t∈�(i) u

δ
t (=∑t u

δ
t ) can be made (by making ε and ε′ small)

arbitrarily close to 0 as δ gets large.

Observation 2. Let uδt (h) denote the (normalized) discounted time-t payoff for an
agent. Then we have (up to the ε1 and ε′ terms) limδ↑1

∫
H∗ uδt (h)dPρδ ≤ limT

∑T
t=1 ut/T .

Proof. We have already verified that (up to the ε′ and ε1 terms, which we ignore here)
lim
∫
H∗ uδt (h)dPρδ ≤∑t u

δ
t . It suffices to check that

∑
t u

δ
t = limT

∑T
t=1 ut/T . We com-

pute the limit of this latter term along a subsequence of times of the form T =∑i Ti

and find that it can be pushed arbitrarily close to 0. However, we first check that taking
any other sequence of times, we obtain the same limit. By Abel’s theorem (Radner 1985,
p. 1175), this proves that limδ↑1

∑
t u

δ
t = limT

∑T
t=1 ut/T . To prove the latter limit exists,

take any T and put T(k) =∑k
i=1 Ti. Find k such that T(k) < T ≤ T(k + 1). Notice that

we have

T∑
t=1

ut
/
T =

I︷ ︸︸ ︷
T(k)∑
t=1

ut
/
T +

T∑
t=T(k)+1

ut
/
T

︸ ︷︷ ︸
II

�

We check that by the selection of sample sizes Tk, term II tends to 0 as T is large. Recall
that we selected Tk := k5. Notice that

T∑
t=T(k)+1

ut
/
T ≤ Tk+1/(T(k)+ 1)�

19This may require a larger I(ε� ε′), but once this is done, we then take limits on δ, hence making the first
and third terms as small as we like.
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Now use the fact that the function n �→ f (n) = n5 is convex and increasing. Us-
ing right-endpoint Riemann sums (with rectangles of partition length 1 and of height
f (1)� f (2)� � � � � f (k)), we obtain

T(k)+ 1 =
k∑
i=1

Ti + 1 ≥
∫ k

0
x5 dx+ 1 = k6/6 + 1�

Since Tk+1 = (k+ 1)5, we clearly obtain

Tk+1/(T(k)+ 1)→ 0

as k → ∞. Similar reasoning applies to show that

T(k)/T → 1

as k → ∞. Hence, term I determines the limit and, itself, possesses a limit along the
subsequence T(k). To see the latter claim, note that limk

∑T(k)
t=1 ut/T(k) = ε so that

limδ↑1
∑

t u
δ
t = ε. Note that the sequences uδt are functions of the pair (ε� ε′), which pro-

vide bounds on, respectively, C(Ti)/Ti and Pρ(C(Ti)/Ti ≥ ε). Hence, by choosing ε and
ε′ small, we can make the quantity limδ↑1

∑
t u

δ
t arbitrarily small. �

Lower bound Now for the principal’s payoff. Since the argument is lengthy, we give
a sketch before proceeding to formalities. The argument first restricts to the class of
rectified equilibria and shows that the principal’s worst payoff on the set of rectified
SPNE is close to first-best (for large δ). The principal’s bound (for rectified equilibria)
is obtained in two main steps. First, we tie the results on equilibrium behavior, namely
Proposition 5, to the principal’s payoff. Applying an iterated expectations identity (see
(�) below), we can express the principal’s (expected) payoff within each review phase k

as a function of two terms: (i) the probability φk
P with which this phase is reached and

(ii) the frequency of inefficient effort choice, measured by E(Ti)/Ti. Since Proposition 5
bounds these frequencies, we can use this to show that, conditional on entrance, the
principal’s payoff in these reviews is close to first-best.

We then turn to controlling the success probabilities, φk
P . This is where the partici-

pation fee enters the argument. One could equivalently take the same contract without
participation fees and employ a Pareto selection criterion. We show in the argument be-
low that the two approaches are formally equivalent and, hence, yield the same bound
on the principal’s payoff. Now, if there is a k such that φk

P drops below some thresh-
old, then—since punishment is absorbing—this leads to a permanent drop in φk

P . Since
agents are still contractually bound to participation fees during punishment, this means
that for IR to have been met, the date-0 cost of this event must be small, viz. the k such
that φk

P incurs a discrete drop must be far into the future. Combining the bounds on
within-review payoffs and success probabilities, we obtain that, conditional on entrance
into any (large) phase k, the principal’s (time-0) within-review payoff is close to first-
best. Moreover, any ε drop in the probability of entrance into a review must occur—if
at all—well into future, so that the time-0 discounted payoff from these “anomalous”
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phases is negligible. This is where we use the assumption that the agents and the princi-
pal have a common discount factor. Having shown this, the final step extends the lower
bound from rectified equilibria to all SPNE. Break this argument into the following four
formal steps.

Step 1. Connecting Proposition 5 to the principal’s payoff. Take a sequence ρδn with
(1 − δn)W (ρδn) converging to lim(1 − δ)W(δ). Since we will (in Step 2) define partici-
pation fees as a fraction of the agent’s first-best stage surplus, choose a normalization
(different from the upper bound proof) of agents’ payoffs such that u0 = 0. Let wδ

t (h)

denote the (normalized discounted) principal’s payoff at time t along history h and put
wδ(h) :=∑t w

δ
t (h). We have∫

H∗
wδ(h)dPρδ =

∑
t

EPρδ
wδ
t =
∑
i

∑
t∈�(i)

EPρδ
wδ
t �

where EPw
δ
t is the expected time-t discounted payoff (we are interchanging sum and

integral as before). The term
∑

t∈�(i) EPw
δ
t denotes the discounted expected value of

output summed over the ith work phase. To find a lower bound on this sum, we find a
stream of (expected) per-period payoffs that (i) yields a lower bound and (ii) possesses
a time average close to the first-best principal’s payoff. Let w∗ denote the (aggregate)
insurance wage, and let EX∗ and EX∗, respectively, denote the expected value of output
conditional on the first-best effort choice and the lowest aggregate effort choice. Define
a stream of (expected) payoffs, wt , as

wt =

⎧⎪⎨⎪⎩
EX∗ −w∗ if t ∈ (

∑k−1
i=1 Ti�

∑k
i=1 Ti]�k < I(ε� ε′)

EX∗ −w∗ if t ∈ (
∑k−1

i=1 Ti�
∑k−1

i=1 Ti + εTk]�k≥ I(ε� ε′)
EX∗ −w∗ if t ∈ (

∑k−1
i=1 Ti + εTk�

∑k
i=1 Ti]�k≥ I(ε� ε′).

We use the result of Proposition 5 to motivate the definition of the stream. Ignore integer
issues (as before) and obtain wδ

t by premultiplying by (1 − δ)δt . This is a lower bound
of (expected) payoffs, where we back-load the principal’s payoff within each phase. Put
wt := EX∗−w∗ in every period t and similarly define wδ

t . Let Xt denote output in period t

and let Xδ
t denote the normalized discounted counterpart. Also let ei ∈ {eL�eH}I denote

realized effort choice in period i and let EX(ei) denote the expected value of output
conditional on effort choice ei. Let P denote the conditional measure (induced by the
underlying strategy ρ) on histories that reach the given review phase. This pushes out to
a measure on T -tuples of random vectors (e1� � � � �eT ), which we also denote with P . We
have the iterated expectations identity

EP(X1 +X2 +· · ·+XT)=
∑

(e1�����eT )

[EX(e1)+EX(e2)+· · ·+EX(eT )] ·P(e1� � � � �eT )� (�)

Replacing with normalized discounted r.v.’s, we obtain∑
t∈�(k)

EPX
δ
t =

∑
(e1�����eTk)

φk
P [EXδ(e1)+EXδ(e2)+ · · · +EXδ(eTk)]

(��)
· P(e1�e2� � � � �eTk)�
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Using Proposition 5, for k≥ I(ε� ε′), we have

P(E(Tk)/Tk ≥ ε) ≤ ε′�

We apply the pessimistic streams to (��) to bound (from below) the terms [EXδ(e1)+
EXδ(e2) + · · · + EXδ(eTk)]. Let 1t∈�k

(h) denote the indicator that the time-t compo-
nent of history h is in a work state (i.e., no punishment has been incurred leading up to
the start of phase k). Using the previous bound and the fact that EPw

δ
t ≥ EP1t∈�(k) ×

(Xδ
t − (1 − δ)δtw∗), we obtain

∑
t∈�(k)

EPρδ
wδ
t ≥
∑

t∈�(k)

EPρδ
(Xδ

t − (1 − δ)δtw∗) ≥φk
Pρδ

[
(1 − ε′)

∑
t∈�(k)

wδ
t + ε′ ∑

t∈�(k)

wδ
t

]
�

Now sum over all phases k≥ I(ε� ε′) (we ignore the contribution k< I(ε� ε′), which van-
ishes for large δ):∫

H∗
wδ(h)dPρδ ≥

∑
k

φk
Pρδ

[
(1 − ε′)

∑
t∈�(k)

wδ
t + ε′ ∑

t∈�(k)

wδ
t

]
� (1)

Step 2. Implications of the IR constraint. We bound the term on the RHS of (1) from
below by using the participation constraint to obtain a bound on the normalized present
discounted value (PDV) of the stream of (foregone) payoffs starting from the first failure
time (i.e., the first phase in which players know they will enter the absorbing punish-
ment state). To avoid confusion, we denote the participation fee with p and time is
indexed with t. Let 1t∈�(k)(h) denote the indicator function defined in Step 1. Implic-
itly, we will only define indicators for times t such that work phase k covers time t, i.e.,
T(k − 1) < t ≤ T(k). Hence, 1t /∈�(k) is the indicator that along history h, the game is in
a punishment state at time t, even though work state k is feasible at time t. Now select
an appropriate participation fee (defined in utils). Let πFB := u(wFB

ε1
)− c(eH) denote the

first-best surplus and define

tε2 := (1 − ε2)π
FB�

Let φFB denote the probability of never incurring a type I error under the contract
C(ε1�ε2). We will want to select review lengths (implicitly φFB) and ε2 such that the
inequality

φFB · ε2 ≥ (1 −φFB) · (1 − ε2)

holds. The (nonempty) inequality ensures that there are (for large δ) equilibria that sat-
isfy the IR constraint. Multiplying by πFB, the right-hand side is an upper bound on the
expected cost of participation along histories where punishment occurs, and the left-
hand side is a lower bound on the expected benefit from reviews under repetition of
the efficient stage SPNE. We have the following upper bound on equilibrium utility (for
brevity, hereafter replace EPρδ

with Eρδ ):

(πFB −p)Eρδ

(∑
t

1t∈�(k)(1 − δ)δt
)

−p ·Eρδ

(∑
t

1t /∈�k
(1 − δ)δt

)
≥ 0� (2)
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By the IR constraint, the left-hand side (which is an upper bound20 on equilibrium utility
for any agent) must be at least the value of the outside option (for any equilibrium ρ),
which was normalized to 0.

Inequality (2) is the precise step of the argument where participation fees are in-
voked. What happens if we use a Pareto selection instead and eschew participation
fees? The Pareto criterion selects only those ρδ that deliver a utility of at least p (to some
agent), which yields the inequality

πFB ·Eρδ

(∑
t

1t∈�(k)(1 − δ)δt
)

≥ p� (∗∗)

Now write p =∑t p · 1δt and use p · 1δt = p · (1t∈�(k)(1 −δ)δt + 1t /∈�(k)(1 −δ)δt) to rewrite
the inequality (∗∗) as

(πFB −p)Eρδ

(∑
t

1t∈�(k)(1 − δ)δt
)

−p ·Eρδ

(∑
t

1t /∈�k
(1 − δ)δt

)
≥ 0�

This is exactly inequality (2). Hence, imposing the Pareto criterion without contractual
participation fees or, alternatively, using participation fees but no equilibrium selection
are formally equivalent. Bounding utility in the work states from above, inequality (2)
becomes

p ·Eρδ

(∑
t

1t /∈�(k)1δt

)
≤ πFB −p�

which simplifies to

Eρδ

(∑
t

1t /∈�(k)1δt

)
≤ ε2/(1 − ε2)� (3)

Note that 1t∈�(k)(·) is a r.v., while 1δt denotes the constant (1 − δ)δt . Since p =
(1 − ε2) · πFB and ε2 and πFB are themselves contract choice parameters that can be
made arbitrarily close to 0, we obtain that the quantity Eρδ(

∑
t 1t /∈�k

1δt ) can be made
arbitrarily small. Note that we can write

Eρδ

(∑
t

1t /∈�k
1δt

)
=
∑
k

∑
t∈�(k)

(1 −φk
Pρδ

) · 1δt �

The fact that this term is for small ε2, e.g., ε2 < 1/2, bounded above in δ by 2ε2 has
an important implication. Assume that for each large δ, there is some distant future
phase k(δ) for which 1−φ

k(δ)
Pρδ

> κ, where κ is some constant defined independently of δ.

Then, for all k≥ k(δ), we have 1 −φk
Pρδ

> κ. Hence, since
∑

k≥k(δ)

∑
t∈�(k)(1 −φk

Pρδ
) · 1δt

20More accurately, it is an approximate upper bound. The maximum rent in a work stage is insurance
surplus plus the expected surplus from a report. But the latter is chosen to be some small ε′ = ε3 · πFB,
where ε3 < ε2. This just adds another ε2 to the argument, so we ignore this term in the computation that
follows.
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is bounded above (essentially) by 2ε2 in δ, we obtain δk(δ) is bounded above by 2ε2/κ

in δ.21

Step 3. Proposition 5 + IR ⇒ lower bound. Now return to inequality (1). Con-
sider two cases: either (i) limδ φPρδ

≥ 1 − √
ε2 or (ii) limδ φPρδ

< 1 − √
ε2, where φPρδ

:=
limk φ

k
Pρδ

. Case (i) is easy as we just replace (since φk
Pρδ

↓ φPρδ
) φk

Pρδ
by 1 − √

ε2 and

apply the bound we obtain in the forthcoming argument. Consider case (ii). Find a sub-
sequence of ρδ’s with δ ↑ 1 and with an associated collection of phases k(δ) for which
φk(δ)
Pρδ

< 1 − √
ε2. Importantly, we can find a first such k such that φk

Pρδ
< 1 − √

ε2. Put

k(δ) := min{k :φk
Pρδ

< 1 − √
ε2}�

The fact that φk(δ)
Pρδ

< 1 − √
ε2 implies that (1 −φk(δ)

Pρδ
) >

√
ε2. Hence, ∀k ≥ k(δ), we have

1 −φk
Pρδ

>
√
ε2. We apply the argument in the preceding paragraph (with κ := √

ε2) and

find that δk(δ) → 2
√
ε2 in δ. Hence, by choosing ε2 at the outset to be small, we can

ensure that the limiting values of δk(δ) are small. Now note that we have the following
inequality on the summands of the right-hand side of (1): for k ≥ max{k(δ)� I(ε� ε′)}, we
have

φk
Pρδ

[
(1 − ε′)

∑
t∈�(k)

wδ
t + ε′ ∑

t∈�(k)

wδ
t

]

≥ max{φk
Pρδ

�1 − √
ε2} ·
[
(1 − ε′)

∑
t∈�(k)

wδ
t + ε′ ∑

t∈�(k)

wδ
t

]
︸ ︷︷ ︸

(�)

−
∑

t∈�(k)

1 ·�FB1δt �

To explain the bound, note that the maximum occurs at 1 − √
ε2 and 1 is obviously an

upper bound on max{(1 − √
ε2)�φ

k
Pρδ

}, so that the increase in the first term is more than

offset by subtracting �FB for each t ∈�(k). Also note that for I(ε� ε′) ≤ k< k(δ), we have
(by definition of k(δ))

φk
Pρδ

[
(1 − ε′)

∑
t∈�(k)

wδ
t + ε′ ∑

t∈�(k)

wδ
t

]
≥ (1 − √

ε2) · (�)�

The preceding argument presumes that k(δ) ≥ I(ε� ε′). If the first k for which φk
Pρδ

< 1 −
√
ε2 is less than I(ε� ε′), then, since punishment is absorbing and the probabilities φk

Pρδ
are decreasing in k, the maximum occurs on I(ε� ε′). However, since k(δ) is unbounded
as δ tends to 1, for large δ, the maximum occurs on k(δ). Moreover, the contribution
to the principal’s payoff from phases k ≤ I(ε� ε′) vanishes for large δ. Hence, in what
follows we will ignore contributions from phases k ≤ I(ε� ε′) and assume (as we will be
taking limits on δ) that δ is large enough that the maximum occurs on k(δ). Sum across

21Since the key point is that δk(δ) is bounded above by a quantity that can be made arbitrarily small as ε2

tends to 0, we deliberately confuse the distinction between limδk(δ) and 2ε2/κ.
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all phases k≥ I(ε� ε′) to get

∑
k

φk
Pρδ

[
(1 − ε′)

∑
t∈�(k)

wδ
t + ε′ ∑

t∈�(k)

wδ
t

]

≥
∑
k

max{φk
Pρδ

�1 − √
ε2} ·
[
(1 − ε′)

∑
t∈�(k)

wδ
t + ε′ ∑

t∈�(k)

wδ
t

]
−
∑

k≥k(δ)

∑
t∈�(k)

�FB1δt

≥

I︷ ︸︸ ︷∑
k

(1 − √
ε2)

[
(1 − ε′)

∑
t∈�(k)

wδ
t + ε′ ∑

t∈�(k)

wδ
t

]
−
∑

k≥k(δ)

∑
t∈�(k)

�FB1δt︸ ︷︷ ︸
II

�

The latter term (II) simplifies to −�FBδk(δ), which limits to −�FB ·2
√
ε2 in δ (as principal

and agents have a common discount factor). The forthcoming observation verifies that
the sum involving the former term (I) has a long-run time average, and that it can be
made (by choice of ε and ε′) arbitrarily close to the first-best value, �FB. The argument
is nearly identical to the proof for Observation 2; hence, it is omitted. As before, the point
is that the sequence of sample sizes that defines the reviews is (i) increasing, (ii) convex
(i.e., f (x) is convex), and (iii) slowly varying.22

Observation 3. Put wδ := (1 − ε′)
∑

t w
δ
t + ε′∑

t w
δ
t and let wT :=∑T

t=1 w̃t/T , where
w̃t := (1 − ε′)wt + ε′wt and wt (resp. wt ) is the undiscounted time-t payoff corresponding
to wδ

t (resp. wδ
t ). Then

lim
δ↑1

wδ = lim
T→∞

wT = (1 − ε′)[(1 − ε)�FB + ε�] + ε′�� (4)

We introduce � := EX∗ −w∗ as shorthand for the principal’s worst static payoff dur-
ing a work phase. Clearly, the term on the right-hand side of (4) approaches �FB as we
make ε and ε′ small. To conclude, notice that by making ε and ε′ small, and choosing
ε2 (at the outset) small, we obtain that limδ↑1

∫
H∗ wδ(h)dPρδ can be brought arbitrarily

close to �FB.
Step 4. Extension to all SPNE. Let ρδ ∈ �(δ) and denote by ρ∗

δ its rectified companion.
Let πδ

t (h) denote the (normalized discounted) payoff to the principal in period t along
history h. For t ∈ �(k), let Et denote the event that (i) the game is currently in a work
state and (ii) it is known that the forthcoming state is an unemployment state. That is,
for every history h ∈ Et , the KS test falls into the rejection region for some first time t∗,
where tk < t∗ < t and tk is the time when the kth work phase starts. Let γ denote the
maximal (in absolute value) payoff to the principal in any period of the game. We have
the following bound on Eρδ[

∑
t π

δ
t (h)]:

Eρδ

[∑
t

πδ
t (h)

]
≥Eρ∗

δ

[∑
t

πδ
t (h)

]
−Eρ∗

δ

[∑
t

2γ · 1δEt
(h)

]
�

22Say that f (x) is slowly varying if ∀t, f (x)/f (x+ t)→ 1 as x → ∞.
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To explain the lower bound, note that (for any time-t) payoffs to the principal under ρ
and ρ∗ only disagree along histories that lie in Et . By subtracting γ, we have reduced
the principal’s payoff by the maximal possible amount along such histories (and at such
times t).23 The 1δEt

notation extends our shorthand for (1 − δ)δt to discounted values of
indicators of events.

We now verify that Eρ∗
δ
[∑t 1δEt

(h)] can be made small as δ gets large. Define E(k) to
be the histories along which work phase k is reached. Notice that, for t ∈�(k), we have

Et ⊆ E(k)∩E(k+ 1)c�

The containment can be strict since there may be histories h ∈ E(k) ∩ E(k + 1)c where
the KS statistic falls into the rejection region within the work phase, but after time t.
Hence, we obtain the bound

Pρ∗
δ
(Et) ≤ Pρ∗

δ
(E(k)∩E(k+ 1)c)� (∗∗∗)

Now apply the previous arguments. For each δ, let k(δ) denote the first phase for which
φk
Pρ∗

δ

< 1 − √
ε2. We found that δk(δ) → 2

√
ε2 as δ ↑ 1. Put

Eρ∗
δ

[∑
t

1δEt

]
=Eρ∗

δ

[∑
k

∑
t∈�(k)

1δEt

]
=

k(δ)−2∑
k=1

∑
t∈�(k)

Eρ∗
δ
1δEt

+
∞∑

k=k(δ)−1

∑
t∈�(k)

Eρ∗
δ
1δEt

�

For k≤ k(δ)− 2, we have, using (∗∗∗),

Eρ∗
δ
1δEt

= Pρ∗
δ
(Et)1δt ≤ Pρ∗

δ
(E(k+ 1)c)1δt ≤ √

ε2 · 1δt �

Note that we have used Pρ∗
δ
(E(k+ 1)c) <

√
ε2 ∀k≤ k(δ)− 2. For k ≥ k(δ)− 1, we use the

trivial bound, Pρ∗
δ
(Et) ≤ 1. Put together, we obtain

Eρ∗
δ

∑
t

1δEt
≤ √

ε2 ·
k(δ)−2∑
k=1

∑
t∈�(k)

1δt +
∞∑

k=k(δ)−1

∑
t∈�(k)

1δt ≤ √
ε2 + δk(δ)−1�

Since the right-hand side limits to 3
√
ε2, by choosing ε2 small at the outset, it follows

that (for large δ) the difference between Eρδ

∑
t π

δ
t (h) and Eρ∗

δ

∑
t π

δ
t (h) can be made

small. �

Given its ubiquity in dynamic agency papers, it is natural to ask whether there is
an alternative route to our main result by using the Radner (1985) contract. Radner’s

23There is agreement (between ρδ and ρ∗
δ) on both the principal’s payoff and the attached weight (with

respect to the two measures) up to the point where the KS test falls into this region. Beyond this point,
weights induced by ρ∗

δ are derived from independent and identically distributed (i.i.d.) repetition of X ∼ μe∗

and for ρδ, weights are induced by the (unspecified) continuation strategy. Replacing the random payoff X
(resp. X∗) by the constant γ, we get a uniform lower bound.
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analysis makes key use of stationarity, i.e., by this we mean the single agent uses the
same work–shirk decision rule in every review phase, regardless of histories in past re-
view phases. Assuming stationarity, he obtains recursive expressions for the agent’s pay-
off, which allow him to bound the (stationary) success probability and, in turn, to com-
pute a lower bound on the principal’s payoff. Since the optimal cooperative payoff is
stationary and this is an upper bound on agents’ payoffs, this assumption is without
loss of generality insofar as the agent’s payoff is concerned. However, there is loss of
generality in imposing this assumption to derive the principal’s payoff. Still using Rad-
ner contracts, one could try to characterize the set of Markov perfect equilibria (MPE’s),
e.g., taking the state space to be the set of within-review phase histories.

Let us make two comments on this proof strategy. First, it still requires an innova-
tion over the argument in Radner (1985) since MPE’s need not be stationary (i.e., here
“stationarity” would mean the reaction function is constant across the subset of states
that represent complete review histories). Second, once we fix a state space, MPE’s still
assume a sort of “memorylessness” since continuation play only depends on the fixed
history encoded in a state. With multiple players, it is reasonable to expect that con-
tinuation play exhibits pure temporal dependence (e.g., agents plan to shirk more as
time passes on since they are less sensitive ex ante to future punishment) and corre-
lation between histories in distinct review phases. To account for these possibilities
within the MPE framework, one would need to allow for a richer (e.g., infinite) state
space than the one used in Radner (1985). Rather than trying to bound value functions
via a recursive approach, we have chosen to directly analyze properties of distributions
on equilibrium histories. This approach allows us to obtain a payoff bound on all sub-
game perfect equilibria and, additionally, says something about the equilibrium behav-
ior that generates these bounds, e.g., the specific role of reports in constraining on-path
play.

5. Conclusion

This paper considers an infinite-horizon repeated moral hazard problem with multi-
ple agents. The environment is like the canonical principal–agent model except that
between the time when effort is taken and output is realized, agents can be required
to communicate their observations of co-workers’ effort choices to the principal. Our
main result constructs a class of contracts with the following two features. First, fixing
an ε, we can find a contract such that for all (SPNE) equilibria in the game induced by
this contract, payoffs for all parties are within ε of their first-best benchmarks as the
(common) discount factor gets large. Second, the contracts are defined without refer-
ence to the ambient discount factor. After the literature on uniform ε-equilibrium (see,
e.g., Maschler et al. 2013), this matters when the discount factor represents a common
payoff relevant parameter, e.g., the interest rate or the number of periods in the game
(so that the discount factor would be a continuation probability), whose precise value
is subject to uncertainty. Contracts that are less sensitive to δ are more robust to this
uncertainty.
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Appendix: Omitted proofs

A.1 Omitted proofs from Section 2

Proof of Proposition 1. We proceed in two steps. In the first step, we show the exis-
tence of incentive compatible reward schemes that are designed to elicit truthful obser-
vation reports. In the second step, using these reward schemes, we describe the contract
and characterize the equilibria of the extensive form game induced by the contract.

Step 1. Put e∗ := (eH� � � � � eH) and consider the set of effort choice vectors E \ e∗,
where we put E := {(e1� � � � � eI) :ei ∈ {eL�eH}} with generic element e. The collec-
tion {F(·|e)} is partially ordered under FOSD. Put e′ := (eH� � � � � eH�eL) and note that
F(·|e′)�FOSD F(·|e) ∀e ∈ E \ e∗. That is, F(·|e′) is (weakly) �FOSD-maximal in E \ e∗. Now
consider the c.d.f.’s F(·|e′)�F(·|e∗). By FOSD, these c.d.f.’s are distinct so that, labelling
the finitely many elements of X from smallest to greatest (on the real line), there is a
least integer m ( 
= |X|) such that F(xm|e′) > F(xm|e∗). Thus, the system

(1 − F(xm|e′))R1 + F(xm|e′)R2 = A

(1 − F(xm|e∗))R1 + F(xm|e∗)R2 = B

has a unique solution with R1 < 0, R2 > 0 for any A > 0, B < 0. Choosing A and B

to be arbitrarily small, we can make R1 and R2 arbitrarily small. As u(·) is C2, the
quadruple (wFB

ε �w0�R1�R2), where wFB
ε := u−1(u0 + c(eH) + ε), w0 := u−1(u0), and R1

and R2 are sufficiently small, solves the following system, where IC denotes incentive
compatibility:

1. IR: u(wFB)− c(eH) ≥ u0.

2. IC1: (1 − F(xm|e′))u(wFB +R1)+ F(xm|e′)u(wFB +R2) > u(wFB).

3. IC2: (1 − F(xm|e∗))u(wFB +R1)+ F(xm|e∗)u(wFB +R2) < u(wFB).

By FOSD maximality of F(·|e′), if this system holds with the given choice of R1 and R2,
then

(1 − F(xm|e))u(wFB +R1)+ F(xm|e)u(wFB +R2) > u(wFB)

for any e ∈ E\e∗. The two IC’s are truth-telling conditions. IC1 implies that agents report
shirking to the principal. IC2 ensures that it is not profitable to issue a false report.

Step 2. Give agents labels 1� � � � � I and let mi�i+1 (mod I) denote agent i’s report on
agent i + 1 (mod I). Require agents to make announcements sequentially. That is,
i makes his report on i + 1. Upon hearing this, i + 1 reports on i + 2 and so on. Let
ε′ > 0 and consider the wage contract (let w(i) = agent i’s wage)

w(i) =

⎧⎪⎪⎨⎪⎪⎩
wFB
ε if mi−1�i = eH�mi�i+1 = eH

(wFB
ε +R1)1(x>xm) + (wFB

ε +R2)1(x≤xm) if mi−1�i = eH�mi�i+1 
= eH
w0 − ε′ if mi−1�i 
= eH�mi�i+1 = eH
w0 if mi−1�i 
= eH�mi�i+1 
= eH .

Here 1(x≤xm) denotes the indicator of the output event {x ≤ xm}. Note that (i) choos-
ing eH and reporting truthfully is an equilibrium, and (ii) there is no equilibrium where
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collusion occurs on the equilibrium path. Let us verify (ii). Fix a history where effort
choice is less than first-best and consider agent I. By IC1, it is strictly dominant for him
to report on agent 1. Thus, along any equilibrium history where effort choice is not first-
best, agent I is always reporting on agent 1. Given this, along any such history, it is then a
strict best-response for agent 1 to report on agent 2, for agent 2 to report on agent 3, and
so on. Hence, along any history where aggregate effort is less than first-best, all agents
are reporting on each other and nobody is earning higher than the reservation wage. �

Proof of Lemma 1. Let C(E) denote a generic wage contract for this environment (sat-
isfying symmetry and limited liability). Normalize effort costs so that c(eL) = 0 and let
ε denote the (arbitrarily small) liability bound. There are two physical points in time:
first, the effort choice time, say t1; second, the time where output is realized, time t2.
Assume that t1 < t2. The contracts induce an (extensive form) game whose general form
G consists of the following pieces:

• A finite set of messages, Mi := {m1� � � � �mk} (w.l.o.g. the same for all agents).

• A wage contract for each agent i, wi :X ×∏iMi → R, i.e., a contract is defined by
assigning a number to each realized output value and profile of messages.

• The wage contract is symmetric: w1(·� (m1�m2)) =w2(·� (m2�m1)).

• Agents have two (pure) choice sets, at two separate points in time:
– One of these is the set of effort choices, e ∈ {eH�eL}, at time t1.

– The second (pure) choice set is the message space. There is a variable timing
structure of when messages are sent. Let tM denote this time and observe
that we have one of the three possibilities (i) tM ∈ (0� t1], (ii) tM ∈ (t1� t2], or
(iii) tM ∈ (t2�∞).

• Agents have perfect information, so that each agent’s information set at time tM
is a singleton node.

This completes the description of the abstract game form G.24 Let �(G) denote the set
of SPNE in the extensive form game induced by G. For σ ∈ �(G), let mσ denote the
profile of messages induced by σ . Abusing notation, let it also denote a distribution
over profiles if σ is mixed. We wish to find G satisfying two desiderata (u0 denotes the
common reservation utility):

• There is some σFB ∈ �(G) such that at time t1, all agents choose eH , and at time
tM, agents choose some profile {mi}i such that w(·� {mi}i) is constant and equals
(in utility space, for simplicity) u0 + c(eH)+ ε′ for some small ε′.

• There is no σ ∈ �(G) such that ei 
= eH (where ei is agent i’s, possibly random,
effort choice under σ) for some i and uj(σ) > u0 for some j, i.e., no collusion in
equilibrium.

24Note that we have left the message protocol, e.g., sequential vs. simultaneous, unspecified. The result
of the lemma does not depend on the message protocol of the game form.
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The claim of the lemma is that any game form G that satisfies these two properties must
admit multiple (SPNE) equilibrium outcomes, and, in particular, an inefficient outcome.
The easy cases are where the game forms are such that tM ∈ (t2�∞) or tM ∈ (0� t1]. It is
trivial to check that in either of these cases, there are no game forms satisfying the above
desiderata. We consider tM ∈ (t1� t2]. The analysis is the same for times tM ∈ (t1� t2) as
for tM = t2, since in the latter case, the agent evaluates expected payoffs as he would if
output is realized just after messages are chosen. Assume w(·� ·) (weakly) implements
the efficient outcome (at first-best cost) and prevents collusion. We show the existence
of another (inefficient) SPNE. For the subgames induced by (eH�eL) and (eL� eH), con-
sider the following two equilibria. Let m(eH�eL) denote the worst equilibrium for player 1
and let m(eL�eH) denote the worst equilibrium for player 2. By symmetry of w(·� ·), player
2’s (gross) expected payoff is weakly higher than player 1’s in equilibrium m(eH�eL) and,
similarly, player 1’s gross payoff is higher than player 2’s in the equilibrium m(eL�eH).25

Let m(eH�eH) denote the message profile in the first-best SPNE and let m(eL�eL) denote
any equilibrium in the subgame (eL� eL). Now use these message profiles to construct
the following extensive form profile: Each player i chooses ei = eL and sends message
mi

(e1�e2)
(player i’s component of m(e1�e2)) when (e1� e2) is observed. Denote this pro-

file as {σ1(eL� eL)�σ2(eL� eL)}. Similarly use the message profiles to construct extensive
form profiles {σ1(eH�eL)�σ2(eH�eL)} and {σ1(eL� eH)�σ2(eL� eH)}.

We claim that {σ1(eL� eL)�σ2(eL� eL)} is an SPNE. Toward contradiction, if it is not,
then player 1, say, wishes to deviate to e1 = eH . Let u1

(e1�e2)
denote his gross utility payoff

under this profile when choices (e1� e2) are observed. Plug in (eH�eL) to get (note that
ui(e1�e2)

≥ u0 − ε, where ε is the liability bound)

u1
(eH�eL)

− c(eH) > u1
(eL�eL)

�

Note that in the subgame (eH�eL), player 2 obtains u2
(eH�eL)

. Since u2
(eH�eL)

≥ u1
(eH�eL)

and

u1
(eH�eL)

> u1
(eL�eL)

+ c(eH) ≥ min(u1
(eL�eL)

�u2
(eL�eL)

)+ c(eH)�

we obtain that

u2
(eH�eL)

≥ u0 − ε+ c(eH)�

Hence, consider the profile {σ1(eH�eL)�σ2(eH�eL)}. We claim this must then be a SPNE.
We have just argued that player 1 would not want to deviate to e1 = eL. Moreover, player
2 obtains (net) payoff of at least u0 − ε + c(eH) if he plays e2 = eL. If he switches to
eH , his payoff net of c(eH) is u0 + ε′. Hence, {σ1(eH�eL)�σ2(eH�eL)} is an inefficient
SPNE where collusion occurs—contradicting the hypothesis that the initial contract
is collusion-proof. Similarly, if player 2 has a deviation from {σ1(eL� eL)�σ2(eL� eL)},
then we argue that {σ1(eL� eH)�σ2(eL� eH)} is an SPNE with collusion. It follows that

25Notice that with a bivariate signal (as in Ma 1988) we would never use such a contract, since it allows an
equilibrium where the shirker does better than the “worker,” i.e., the agent who chooses eH . We have such
an outcome in our setting because, with a sole public signal, the principal cannot statistically distinguish
the worker from the shirker.
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{(σ1(eL� eL)�σ2(eL� eL)} is an inefficient SPNE in which, by collusion-proofness of C(E)
and IR, both players obtain u0. �

Let us make three remarks about the preceding argument. First, note that the argu-
ment does not use the FOSD assumption. This is because we are assuming the existence
of a collusion-proof contract with an efficient SPNE, and taking this as given, we prove
multiplicity of SPNE. The FOSD assumption is required to actually construct such a con-
tract. Second, the only place we use the simplicity of the 2 × 2 × 2 model is in the last
step. In particular, with more than two effort choices, the set of possible deviations is
larger, so that a distinct, but otherwise straightforward, argument is required. Third, we
have not proved that the symmetry assumption is necessary for the result, but it is (in
our view) a normatively reasonable feature since there is only a single public signal and
conditional distributions satisfy symmetry, e.g., f (·|(eH�eL)) = f (·|(eL� eH)).

A.2 Omitted proofs from Section 3

Proof of Proposition 2. All probabilities and expectations are conditional in the
forthcoming proof, although we will suppress the P notation. Hence, for a given phase
n, when we write Pρ, we mean Pρ, and when we write Eρ(·), we mean EPρ

(·). Without
loss of generality, assume that α> 0 is such that limPρ(C(Tn)/Tn > α) = β> 0. Toward a
contradiction, assume that ∀r ∈ (0�1), Pρ(supx |FTn(x) − F(x|e∗)| > r) → 0. We will now
compute the limit of Eρ(X1 + X2 + · · · + XTn)/Tn in two different ways, obtaining two
different answers as a consequence of this assumption.

Method 1. Assuming that

∀r ∈ (0�1)� Pρ

(
sup
x

|FTn(x)− F(x|e∗)| > r
)

→ 0

we obtain

Eρ|FTn(x)− F(x|e∗)| ≤ 2 · Pρ
(|FTn(x)− F(x|e∗)| > r

)
+ r · Pρ

(|FTn(x)− F(x|e∗)| ≤ r
)

→ r ∀x�

Since this holds for all r ∈ (0�1), it follows that we may find ζn → 0 such that

−ζn ≤Eρ(FTn(x)− F(x|e∗)) ≤ ζn ∀x� (4)

Relabel the per-period output variables in phase n so that Xi denotes output in period i

(notation for the work phase within which it occurs is suppressed). Let Xi ∼ μi and let
μ∗(·) denote the measure that corresponds to F(·|e∗). Choose a labelling of the support
of output X := {x1� � � � � xl} such that xj < xj+1. Plugging x = xk into (4) gives

−ζn ≤
Tn∑
i=1

μi({xj}kj=1)
/
Tn − F(xk|e∗) ≤ ζn; (5)
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equivalently,

F(xk|e∗)− ζn ≤
Tn∑
i=1

μi({xj}kj=1)
/
Tn ≤ F(xk|e∗)+ ζn�

This implies (apply the preceding inequality with xk+1)

F(xk+1|e∗)− ζn −
Tn∑
i=1

μi({xj}kj=1)
/
Tn

≤
Tn∑
i=1

μi(xk+1)
/
Tn ≤ F(xk+1|e∗)+ ζn −

(
Tn∑
i=1

μi({xj}kj=1)

)/
Tn�

Using the bounds from (5), we then obtain

μ∗(xk+1)− 2ζn ≤
Tn∑
i=1

μi(xk+1)
/
Tn ≤ μ∗(xk+1)+ 2ζn�

Since this holds for every x ∈ {x1� � � � � xl}, we deduce that for each j,

μ∗(xj)xj − 2xjζn ≤
Tn∑
i=1

μi(xj)xj

/
Tn ≤ μ∗(xj)xj + 2xjζn� (6)

Now note that

Eρ(X1 +X2 + · · · +XTn)/Tn =
Tn∑
i=1

l∑
j=1

μi(xj)xj

/
Tn =

l∑
j=1

Tn∑
i=1

μi(xj)xj

/
Tn� (7)

Let X ∼ μ∗. Sum inequality (6) on j and apply (7) to obtain

EX − ζn

l∑
j=1

2xj ≤Eρ(X1 +X2 + · · · +XTn)/Tn ≤EX + ζn

l∑
j=1

2xj�

Since ζn → 0, we obtain that Eρ(X1 +X2 + · · · +XTn)/Tn →EX (as n→ ∞).
Method 2. Label the set of effort choice vectors E = {e1� � � � �em� � � � �ep}. Let X(em)

denote a r.v. with c.d.f. F(·|em). Since e∗ is first-best, we know that EX(e∗) > EX(em)
∀em 
= e∗. Put EX ′ := max{em 
=e∗} EX(em). Let Ej

i be the r.v. that denotes effort choice in

phase i, period j. For notational economy, suppress the i subscript and write Ej for Ej
i .

Note that the variable Xj is distributed as X(em) conditional on Ej = em. This allows

us to write EρXj =∑p
m=1 Pρ(Ej = em)

∑l
k=1 Pρ(Xj = xk|Ej = em)xk. Put X(em) ∼ μem .

Since Pρ(Xj = xk|Ej = em) = μem(xk), we obtain EXj =∑p
m=1 Pρ(Ej = em) · EX(em).

Let ei denote a realized value of Ei. It follows that we may write

EρX1 +EρX2 + · · · +EρXTn =
∑

(e1�e2�����eTn)

Pρ(e1�e2� � � � �eTn)[EX(e1)+ · · · +EX(eTn)]�
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By hypothesis, ∃α�β > 0 is such that Pρ(C(Tn)/Tn ≥ α) ≥ β ∀n. Taking E(Tn) to be
the number of periods in which aggregate effort choice is less than first-best, we have
E(Tn) ≥ C(Tn). Thus, {E(Tn)/Tn ≥ α} ⊇ {C(Tn)/Tn ≥ α}. Note that for each realization
(e1� � � � �eTn), either {(e1� � � � �eTn)} ⊆ {E(Tn)/Tn ≥ α} or {(e1� � � � �eTn)}∩{E(Tn)/Tn ≥ α} =
∅. Let [αTn] denote the integer part of αTn. Since Pρ(E(Tn)/Tn ≥ α) ≥ β, we have the
upper bound

EρX1 +EρX2 + · · · +EρXTn ≤ ((1 −β)Tn +β(Tn − [αTn])
)
EX +β[αTn]EX ′�

Thus,

EX −Eρ(X1 + · · · +XTn)/Tn

≥ (1 − [(1 −β)Tn +β(Tn − [αTn])
]
/Tn
)
EX − (β[αTn]/Tn)EX

′

= (β[αTn]/Tn) · (EX −EX ′)�

For large n, the right-hand side is at least (βα/2) · (EX −EX ′) > 0. This contradicts the
limit obtained by the first method. �

Proof of Proposition 3. Since an (equilibrium) strategy and its rectified compan-
ion (which is also an equilibrium, though we do not need this additional fact) have the
same C(Tn)/Tn distribution, we will assume that all strategies are rectified. Further-
more, suppress the P(·) notation—keeping in mind that all probabilities in question are
conditional probabilities, where for each work phase i we condition on the set of his-
tories that reach work phase i. Toward a contradiction, assume that C(Tn)/Tn � 0 (in
probability) and let r be the constant given by Proposition 2. Put

Bn(r) :=
{

sup
x

|FTn(x)− F(x|e∗)| ≥ r
}
�

For h ∈ Bn(r), we have

r ≤ sup
x

|FTn(x)− F(x|e∗)| ≤
n∑

i=1

sup
x

|Fi�Tn(x)− F(x|e∗)|
/
n� (8)

Introduce the following r.v.’s:

• Mn(h) := |{i : supx |Fi�Tn(x)− F(x|e∗)| ≥ γn}|
• Cn := {h :Mn(h) ≥ 2}.

Thus, Mn(h) counts the number of (sub)phases within the nth work phase in which the
margin of error is surpassed (along history h) and Cn is the set of histories for which this
happens at least twice. By inequality (8), ∃N(r) � 0 such that ∀n ≥ N(r), Mn(h) ≥ 2
whenever h ∈ Bn(r). This implies Bn(r) ⊆ Cn ∀n ≥ N(r). We claim that Pρ(Cn) → 0.
Define {hNn(h)tn} to be the set of histories that agree with h up through the first fail-
ure time along h, Nn(h)tn, and note that the sets {hNn(h)tn} are disjoint sets of histories.
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Decompose

Cn =
⊔
h

({hNn(h)tn} ∩Cn)�

Observe that

Pρ(Cn)=
∑

Pρ(Cn ∩ {hNn(h)tn}|hNn(h)tn) · Pρ({hNn(h)tn})�

Note that

Pρ(Cn|hNn(h)tn)= Pρ

({
∃i > Nn(h) s.t. sup

x
|Fi�Tn(x)− F(x|e∗)| ≥ γn

}∣∣hNn(h)tn
)
�

Since ρ is rectified (w.l.o.g., as this does not change the Pρ distribution of C(Tn)/Tn), for
histories following hNn(h)tn , the output process in every period follows the law F(·|e∗).
Let P(·) denote the product measure on the sample space

∏tn
i=1 X generated by tn i.i.d.

draws from the distribution F(·|e∗). By Chebyshev’s inequality, we have

P
(

sup
x

|Ftn(x)− F(x|e∗)| ≥ γn
)

≤K/γ2
ntn = εn�

where K = l · maxx Var(1(X≤x)) (and l is the cardinality of the range of output). Now
define

Yi =
{

1 iff supx |Fi�Tn(x)− F(x|e∗)| ≥ γn
0 else.

This gives

Pρ

({
∃i > Nn(h) s.t. sup

x
|Fi�Tn(x)− F(x|e∗)| ≥ γn

}∣∣hNn(h)tn
)

≤ P(Yi = 1 for some i�1 ≤ i ≤ n)�

Note that {Yi}ni=1 are i.i.d. and P(Yi = 1) ≤ εn by the Chebyshev bound. The fact that
nεn → 0 then implies

Pρ(Cn) =
∑

Pρ(C ∩ {hNn(h)tn}|hNn(h)tn) · Pρ(h
Nn(h)tn)

≤
∑

P(Yi = 1 for some i�1 ≤ i ≤ n) · Pρ(h
Nn(h)tn)

≤ nεn ·
∑

Pρ(h
Nn(h)tn) ≤ nεn → 0�

This contradicts that Bn(r) ⊆ Cn ∀n≥N(r) and limnPρ(Bn(r)) > 0 by Proposition 2. �

A.3 Omitted proofs from Section 4

Proof of Proposition 4. Proceed via contradiction. Fix an ε, and find a sequence of
SPNE ρi ∈ �(δi) and associated work phases ni such that

limPρi(C(Tni)/Tni ≥ ε) > 0�
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Note that we may w.l.o.g. take each ρi to be a rectified profile and this does not change
the Pρi distribution of C(Tni)/Tni . Now let N =⊔i{ni−1 + 1� � � � � ni} be the partition of
N induced by the sequence {ni} and, putting Hj equal to the space of phase j histories,
define measures Pj on Hj as follows. Put

Pj = Pρi iff j ∈ {ni−1 + 1� � � � � ni}� (∗∗∗∗)

Let Pn := ⊗n
i=1 Pi. Abusing notation, let H∗ now denote the product space H∗ =∏∞

j=1 H
j . The following observation is a straightforward application of Kolmogorov’s

extension theorem (see Chapter 6 in Kallenberg 2002).

Observation 4. There is a probability space (H∗�F∗�P∗), with σ-field F∗ ⊆ 2H
∗

and
probability measure P∗ that uniquely extends Pn to H∗.

Proof. For each j, identify each Hj with a discrete subset of [j� j + 1) (yielding an em-
bedding κ :H∗ ↪→ RN) with corresponding discrete measure Pρi , where from (∗∗∗∗) we

have j ∈ {ni−1 + 1� � � � � ni}. For brevity, denote the measure as Pj
ρ(j). Thus, we obtain a se-

quence of measures Pn =⊗n
j=1 P

j
ρ(j) (resp. on (Rn�Rn), where Rn is the Borel σ-algebra

on Rn). Moreover, note that the sequence is consistent, i.e., Pn+1(A× R) = Pn(A) for any
A ∈Rn of the form A = (A1� � � � �An), Ai ∈R. By Kolmogorov’s extension theorem, there
is a (unique) extension of the Pn, call it μ∗, to (RN�RN). Now we can define the infinite
product measure. For the domain of the measure we take

F∗ := κ−1(RN) := {A ⊆H∗ :∃B ∈RN s.t. A = κ−1(B)}
and for A ∈ F∗, we define

P∗(A) := μ∗(B)�

where B is any element of RN such that κ−1(B) = A. The key is to check that this gives
a well defined function. Let B1�B2 ∈ RN be such that A = κ−1(B1) = κ−1(B2). Note the
following properties:

• The set κ(H∗) is RN-measurable (as it is a countable intersection of sets that are
each finite unions of Gδ’s in RN).

• We have μ∗(κ(H∗)) = 1 (by the extension property and continuity of μ∗(·)).

Also note that B1 ∩ κ(H∗) = κ(A) = B2 ∩ κ(H∗). It follows that

μ∗(B1) = μ∗(B1 ∩ κ(H∗)) = μ∗(κ(A)) = μ∗(B2 ∩ κ(H∗)) = μ∗(B2)

so that P∗ is well defined. For countable additivity, let Ai ∈ F∗ be disjoint and choose any
Bi such that κ−1(Bi) = Ai. Put B∗

i := Bi \ (⋃i−1
j=1 Bj) and note that since the Ai’s are dis-

joint, κ−1(B∗
i )= Ai. It follows that P∗(

⋃
i Ai) = μ∗(

⋃
i B

∗
i )=∑i μ∗(B∗

i )=∑i P∗(Ai). �

Now apply Propositions 2 and 3 to the composite measure P∗. Note that, by con-
struction, we have limP∗(C(Tn)/Tn ≥ ε) > 0. Hence, ∃r > 0 such that

limP∗
(

sup
x

|FTn(x)− F(x|e∗)| > r
)
> 0�
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Now note that the only input of equilibrium in Proposition 3 was to be able to claim
that the profiles generating the conditional measures Pρ(·) on Hni were rectified. Recti-
fication implies that the r.v.’s |FTn(x) − F(x|e∗)| cannot be bounded above some fixed r

with probability bounded away from zero—as type I error probabilities vanish. Hence,
we have a contradiction, implying that there could not have been a sequence of alleged
counterexample SPNE’s ρi ∈ �(δi) with Pρi(C(Tni)/Tni ≥ ε) � 0. It follows that, given
ε > 0, ε′ > 0, there is some integer I(ε� ε′) such that ∀n≥ I(ε� ε′), we have

Pρ(C(Tn)/Tn ≥ ε) ≤ ε′�

where the bound holds for all ρ ∈ �(δ) and for all δ ∈ [0�1). �

Remark. The proof of Proposition 5 proceeds verbatim as in the preceding proof, re-
placing C(Tn) everywhere with E(Tn). We omit the proof and just explain here why the
result is basically a duplicate of Proposition 4. The result of Proposition 4 rests on Propo-
sitions 2 and 3, where (i) Proposition 2 only uses C(Tn) insofar as C(Tn)⊆ E(Tn) so that a
bound on C(Tn)/Tn implies a bound on E(Tn)/Tn, and (ii) Proposition 3 only uses C(Tn)

insofar as passing from a given ρ to its rectification ρ∗ does not change its C(Tn)/Tn dis-
tribution (since no collusion takes place after the KS statistic falls into the rejection re-
gion). When we restrict at the outset to rectified SPNE (as in Proposition 5), this step is
immediate, so we can switch to E(Tn) here as well.

Proof of Corollary 1. Let K denote the maximal payoff (taken across agents and the
principal) from the stage game. The idea is to find, for each δ, a punishment length L(δ)

satisfying three inequalities. The first inequality is

δL(δ)K/(1 − δ) < ε̂ (9)

for some appropriately small ε̂ to be specified. For the second inequality, let −K1 denote
the maximal (expected) stage-game loss for the principal (i.e., lowest expected output
minus insurance payments). Choose L(δ) such that

δL(δ)K1/(1 − δ) < ε̂�

For the third inequality on L(δ), let ε̂1 denote the expected value of the bonus payment
from reporting in a given period. We need L(δ) long enough so that

δL(δ)K/(1 − δ) < ε̂1�

This ensures that under C(δ), collusion stops once it becomes known that the KS test
registers failure. Let ε and ε′ be fixed as in the Corollary 1, and let C(ε�ε′) denote the con-
tract produced by Theorem 1, with participation fee tε. Now choose ε̂ and a participation
fee, tC(δ), such that the following inequality is satisfied:

tε ≤ tC(δ) − ε̂(1 − δ)� (10)
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Note that the principal’s expected loss, viewed forward from a period where the KS
statistic has fallen into the rejection region, is at most ε̂ (by (9)). The inequalities defin-
ing L(δ)� tC(δ) imply that the reduction in the participation fee (which itself can be made
arbitrarily small) outweighs the maximal potential loss to the principal from restarting
the review phases after a punishment of length L(δ). Hence, if we reduce the partici-
pation fee to tε, the principal’s expected normalized discounted payoff (viewed forward
from the period where the punishment phase would commence) is lower than in the
equilibrium with the contract C(δ).

Consider the class of contracts, C(δ), where the KS statistic and stage parameters
(e.g., R1, R2, etc.) are the same as in C(ε�ε′). Punishment lengths equal L(δ) (chosen to
satisfy the above inequalities (9)–(10)) and the per-period participation fee is some tC(δ)
that satisfies (10). We claim that this collection {C(δ)} satisfies the corollary. We check
this by reducing the argument to the result of Theorem 1. Let us treat the upper bound
on agents’ payoffs. Let ρδn be the sequence of SPNE’s in �(δn) and for each ρδn , consider
the associated strategy, call it ρ̂δn , in the game induced by contract C(ε�ε′). The associated
strategy profile ρ̂δn just mimics ρδn along histories in which the null hypothesis is never
rejected. Along histories in which the null hypothesis is rejected, the ρ̂ strategy mimics
ρ until the conclusion of the current review phase. From that point on, there is nothing
to mimic since the punishment length is infinite under the contract C(ε�ε′).

Note that by choice of the participation fee tC(δ) and the lengths L(δ), we obtain that
payoffs to agents under C(ε�ε′) are weakly higher under the profile ρ̂δn than under the
contract C(δ) when the profile ρδn is played. Importantly, the participation constraint
holds for the game induced by the contract C(ε�ε′) (under the profile ρ̂δn ). Also note that
the profile ρ̂δn inherits the property that collusion stops once the null hypothesis is re-
jected (moreover, it is an SPNE if ρδn is pure, although we do not need this); hence, the
arguments of Theorem 1 apply to this modified profile, as the only place where we use
the hypothesis of equilibrium is to claim (i) participation holds and (ii) that collusion
stops once the null is rejected. Finally, observe that the probability measures Pρδ live on
the product space

∏
i H

i. Adjust continuation probabilities as follows: include ∅ in the
space of continuation histories and whenever punishment is incurred, place all mass of
the continuation probability on ∅. Now extend to H∗ (arguing as in Observation 4) to
obtain a measure Pρ̂δ on the histories induced by C(ε�ε′). We apply the result of Theo-
rem 1 to the sequence (ρ̂δn�Pρ̂δn

). Payoffs to agents from this sequence approach the
first-best payoff. Since payoffs under ρ̂ are higher than under ρ, the upper bound on
agents’ payoffs follows.

Now for the principal’s payoff. Let ρδn and ρ̂δn be as above, the latter with associated
measures Pρ̂δn

. Note that by choice of the participation fees (and since the participation
constraint is satisfied under ρ̂δn ) and punishment lengths L(δ), the principal’s payoff in
the contract C(ε�ε′) under the profile ρ̂δn is lower than in the game induced by contract
C(δ). Now apply the result of Theorem 1 to the pair (ρ̂δn�Pρ̂δn

). Since participation holds
under this sequence of profiles, the principal’s payoff approaches the first-best bench-
mark. Since payoffs under the contracts C(δ) (under the equilibria ρδn ) are (weakly)
higher, the lower bound follows. �
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