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A folk theorem for stochastic games
with infrequent state changes
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We characterize perfect public equilibrium payoffs in dynamic stochastic games
in the case where the length of the period shrinks, but players’ rate of time dis-
counting and the transition rate between states remain fixed. We present a mean-
ingful definition of the feasible and individually rational payoff sets for this envi-
ronment, and we prove a folk theorem under imperfect monitoring. Our setting
differs significantly from the case considered in previous literature (Dutta 1995,
Fudenberg and Yamamoto 2011, and Hörner et al. 2011) where players become
very patient. In particular, the set of equilibrium payoffs typically depends on the
initial state.
Keywords. Stochastic games, folk theorem.
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1. Introduction

Stochastic games are generalizations of repeated games in which the payoffs in a period
depend not only on the current action profile, but also on the value of a state variable,
whose random evolution is itself influenced by players’ actions. Stochastic games allow
for dynamic interaction between players, but do not impose the strong restriction that
the parameters of the interaction in one period are independent of outcomes in previous
periods. Important economic examples are models with stock variables such as capital,
savings, technology, brand awareness, or natural resource population; models with per-
sistent shocks to demand, productivity, or income; models of durable goods markets;
and political economy models where government policy changes at discrete intervals.

In many such settings, players get frequent opportunities to adjust their actions,
while the state changes more rarely. For example, firms may vary research and develop-
ment expenditure daily, but breakthroughs occur infrequently. Similarly, frequent price
competition between oligopolists can be affected by less frequent events like aggregate
shocks to the macroeconomy or the development of a new product in a related market.
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Copyright © 2015 Marcin Pęski and Thomas Wiseman. Licensed under the Creative Commons Attribution-
NonCommercial License 3.0. Available at http://econtheory.org.
DOI: 10.3982/TE1512

http://econtheory.org/
mailto:mpeski@gmail.com
mailto:wiseman@austin.utexas.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://econtheory.org/
http://dx.doi.org/10.3982/TE1512
http://creativecommons.org/licenses/by-nc/3.0/
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So as to analyze such situations, we examine stochastic games as the length of a period
shrinks, but the players’ rate of time discounting and the state transition rate per unit of
time (not per period) remain fixed. In the limit, the discounting between periods shrinks
to zero, but the discounted time until a state transition does not. The set of equilibrium
payoffs typically depends on the initial state even in the limit, because the discounted
fraction of the game that players expect to spend in that state before the first transition
is nonnegligible.

We consider such stochastic games with finitely or countably many states and im-
perfect public monitoring. (In each period, players observe the state and a noisy signal
of the action profile just played.) Let Eδ(s) denote the set of perfect public equilibrium
(PPE) payoffs given discount factor δ and initial state s. The main contribution of this
paper is that we define two collections of payoff sets, V0 = {V0(s)}s and V0+ = {V0+(s)}s ,
such that (i) V0+(s)⊆ limδ→1E

δ(s)⊆ V0(s) for any state s, and (ii) if V0 has nonempty in-
terior, then generically V0+ = V0. The first inclusion in (i) requires that Fudenberg et al.’s
(1994) (FLM) conditions on public monitoring hold in each state: if the set of states is
infinite, we require that the conditions hold uniformly, in a sense that we define. The
definitions of V0 and V0+ correspond to a particular notion of feasibility and individual
rationality. One of the goals of the paper is to explain why other notions do not work, in
that they do not deliver the set of PPE payoffs. Along the same lines, we demonstrate,
through an example with finitely many states, that the equilibrium set may include pay-
offs that cannot be achieved through any stationary Markov strategy that is individually
rational in each state. We also explore how the “right” notion of individual rationality
may depend on the solution concept.

In our model, the set of feasible and individually rational payoffs depends on the
initial state. Similarly, minmax payoffs vary with the current state. A strategy profile
can be part of a PPE, then, only if it delivers continuation payoffs that are individually
rational, given the current state, after each history: the payoffs thus achievable are ex
post individually rational in Dutta’s (1995) terminology. In fact, though, even a feasible,
ex post individually rational payoff vector may not be achievable in equilibrium. From
that fact, we conclude that the set of feasible, ex post individually rational payoffs is
not the appropriate generalization of the feasible, individually rational set in standard
repeated games.

Instead, we define for each player and each state the minmax payoff relative to a
collection F = {F(s)}s of available continuation payoffs in each state, and we say that F
is self-individually rational if for every state s, each payoff in F(s) exceeds the state-s
minmax payoff relative to F for each player. Similarly, we say that F is self-feasible if
each payoff in F(s) can be generated as the expected payoff from an action in state s
followed, after a transition to any state s′, by a continuation payoff in F(s′). Extending
those definitions, for ε > 0, we say that F is self-ε-individually rational if each payoff
in F(s) is at least ε greater than the state-s minmax payoff relative to F , and that F is
self-ε-feasible if the ε-neighborhood around each payoff in F(s) can be generated using
continuation payoffs in F .

We define V0 as the largest self-feasible and self-individually rational collection, and
define V0+ as the union across ε > 0 of the self-ε-feasible and self-ε-individually ratio-
nal collections. We show (in Theorem 1) that under FLM’s monitoring conditions, any
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payoff vector v ∈ V0+(s) can be achieved in a PPE starting from initial state s, as long
as the length of the period is short enough. Next (in Corollary 1 and Theorem 2), we
show that V0 contains all PPE payoffs, and that for generic (i.e., full Lebesgue measure),
finite-state games that satisfy a full-dimensionality condition, V0 is equal to V0+. Thus,
for such games, we obtain a complete characterization of PPE payoffs (as the length of
the periods shrinks). Finally, even in games for which collection V0 is strictly larger than
the set of PPE payoffs, we argue (in Theorem 3) that it is a good approximation: every
payoff in V0 is a PPE payoff of a nearby game (again, given full dimensionality).

Previous work has focused on an alternative limiting case for stochastic games: fix
the period length and let players become very patient. In that case, the discounted time
until the state changes shrinks to zero. Dutta (1995) derives a folk theorem for that en-
vironment. Fudenberg and Yamamoto (2011) (FY) and Hörner et al. (2011) (HSTV) pro-
vide conditions on imperfect public monitoring under which Dutta’s (1995) folk theo-
rem extends. A key difference from our model is that all three of those results require
that the set of PPE payoffs be independent of the initial state as the discount factor δ
approaches 1.

To ensure that independence, Dutta (1995), FY, and HSTV use irreducibility, the
condition that no single player’s deviation can prevent the Markov process governing
the state variable from being irreducible. We do not assume irreducibility, since in our
model, limδ→1E

δ(s) typically varies with the state s in any case. We allow, for example,
multiple absorbing states, each reachable from the initial state—the first firm to achieve
a technological breakthrough might permanently capture the market, for instance.

The organization of the rest of the paper is as follows. In Section 2, we describe the
model. In Section 3, we introduce the notions of self-feasible and self-individually ratio-
nal collections of payoffs. In Sections 4 and 5, we present our main theorems. Section 6
contains an example of how to construct the maximal self-feasible and self-individually
rational collection V0. We discuss how using different equilibrium concepts affects our
results in Section 7, and we describe the problems with using other notions of “feasible
and individually rational” payoffs in analyzing stochastic games with infrequent state
transitions. Section 8 is the conclusion.

2. Model

There are N ≥ 2 expected-utility maximizing players playing an infinite-horizon sto-
chastic game. The time between periods is given by � > 0 and all players discount the
future at rate r > 0, so that the per-period discount rate is e−r� ≡ δ. There is a (finite or
countably infinite) set S of states of the world. In each different state s ∈ S, there is a
stage game G(s) with a set of action profiles A(s)=A1(s)×A2(s)× · · · ×AN(s), where
Ai(s) is the (finite) set of actions for player i. Let mi(s) denote the number of actions
available to player i: mi(s)≡ #Ai(s). We assume that the total number of actions avail-
able in any state is bounded by m∗ ≡ maxs

∑
i mi(s) <∞. At the start of each period t,

the state s is publicly observed. Each player i chooses an action ai ∈Ai(s) and then all
players observe a public signal y drawn from a finite set Y , which has m elements. The
public signal is distributed according to ρ(a� s), where a is the profile of actions of all
players.
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Player i’s expected stage-game payoff in state s when action profile a is played is
equal to gi(a� s). (As is typical in repeated games with imperfect monitoring, one can
treat gi(a� s) as an expectation of a primitive utility that depends on the action profile
and the public signal.) Denote by g(a� s) the vector of expected payoffs for each player.
We assume that the payoffs are uniformly bounded by M ≡ supa�s ‖g(a� s)‖<∞ (where
‖ · ‖ denotes the Euclidean norm).

At the end of a period in which action profile a is played in state s, the probability
that the state changes to state s′ �= s is equal to (1 − δ)γ(s′;a� s). That is, the transition
probability per period is proportional to the length of the period � ≈ (1/r)(1 − δ), and
the transition probability per unit of time (i.e., (1 − δ)γ(s′;a� s)/� ≈ rγ(s′;a� s)) has a
nontrivial limit as δ→ 1. With the remaining probability 1 − (1 − δ)γ(a� s), where

γ(a� s)≡
∑
s′ �=s

γ(s′;a� s)�

the state does not change. We assume that transition rates are uniformly bounded, i.e.,
γmax ≡ supa�s γ(a� s) <∞. We assume throughout that (1 − δ)γmax < 1, so that the maxi-
mum probability of transition in any period is less than 1.

All these definitions extend in a natural way to mixed and correlated action pro-
files α. This structure is common knowledge. A special case of a stochastic game is
a standard repeated game, in which, for each state s and each action profile a ∈ A(s),
γ(a� s)= 0. Other (and less trivial) examples are given throughout the paper.

We assume that a public randomization device is available to the players. The
set of public histories in period t is equal to Ht ≡ Yt−1 × St , with element ht =
(s1� y1� 	 	 	 � yt−1� st), where st denotes the state at the beginning of period t and yt de-
notes the public signal realized at the end of period t. Player i’s private history in pe-
riod t is hit = (s1� y1� ai�1� 	 	 	 � yt−1� ai�t−1� st), where ai�t is player i’s action in period t;
Hi
t ≡ (Y × Ai)

t−1 × St is the set of such private histories. Define H ≡ ⋃
t≥1Ht and

Hi ≡⋃t≥1H
i
t . For any history ht , let s(ht)≡ st denote the current state.

A strategy for player i is a mapping σi :Hi → 
Ai(s(hit)). A strategy is public if it de-
pends only on public histories. Let �i and �Pi , respectively, denote the set of strategies
and the set of public strategies for player i; let � and �P denote the sets of strategy pro-
files and of public strategy profiles, respectively. Given discount factor δ < 1, a profile
of strategies σ , and an initial state s ∈ S, the vector of expected payoffs in the dynamic
game is given by

vδ(σ� s)= (1 − δ)E
∞∑
t=1

δt−1g(at� st)� (1)

where the expectation is taken with respect to the distribution over actions and states
induced by the profile σ and initial state s.1 For each public strategy σ ∈ �P and public
history h ∈H, the continuation payoffs vδ(σ�h) are calculated in the usual way.

1If the stage-game payoff is proportional to the period length, then (1) gives the total payoff of the dy-
namic game. On the other hand, if we interpret the stage-game payoff as constant (i.e., independent of the
period length), then (1) represents the discounted average payoff of the game.
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A perfect public equilibrium in a game with discount factor δ and initial state s is a
public strategy profile σ such that for each public history hwith s1 = s, each player i, and
each strategy σ ′

i of player i, vδi (σ�h) ≥ vδi (σ ′
i �σ−i� h). Let Eδ(s) be the set of payoffs ob-

tained in perfect public equilibria of the game, given initial state s and discount factor δ.
Note that, in contrast to the setting in FY and HSTV, the set of equilibrium payoffs Eδ(s)
varies with the state even in the limit as δ approaches 1. This happens for two reasons:
first, we do not assume irreducibility. More importantly, both the discount rate and the
rate of transition between states are fixed per unit of time as δ grows, so the discounted
time that the game spends in any given state before the next transition is nonnegligible.

In most of this paper, “equilibrium” means perfect public equilibrium. Section 7
explains how the results of this paper extend to other solution concepts.

In the case of a finite state space, we often assume that the monitoring structure
satisfies the following condition.

Identifiability Condition. FLM’s Conditions 6.2 and 6.3 hold in each state.2

For an infinite space S, we must modify the definition of the Identifiability Condi-
tion to ensure that FLM’s requirements hold uniformly across all infinitely many states.
To simplify the exposition, we delay the infinite-space Identifiability Condition until Ap-
pendix A. Unless specified otherwise, all results and proofs apply to the general, infinite-
space case.

For future purposes, it is instructive to rewrite (1) as

vδ(σ� s)= (1 − δ)g(σ1� s1)+ δ
(∑
s′ �=s
(1 − δ)γ(s′;σ1� s)us′

)
+ δ(1 − (1 − δ)γ(σ1� s))us� (2)

where us′ denotes the continuation payoff from period 2 onward, given period-2 state s′.
Observe that the weights on both the period-1 payoffs and the continuation payoffs after
a state change (the first and second terms) shrink to zero as δ → 1. It is going to be
helpful to separate the terms of order (1 − δ) from the continuation payoff in case of
no state transition. Given a state s ∈ S, let u = (us′)s′ �=s specify a vector of continuation
payoffs in case of a state transition. For each such u and (possibly correlated) action
profile α, we define

ψδ(α� s�u)≡ 1
1 + δγ(α� s)

[
g(α� s)+ δ

∑
s′ �=s

γ(s′;α� s)us′
]

(3)

and

βδ(α� s)≡ (1 − δ)(1 + δγ(α� s)) ∈ (0�1)	

2FLM’s folk theorem (Theorem 6.2) requires either the pairwise full rank condition (Condition 6.2) or that
every pure-action, Pareto-efficient profile is pairwise identifiable for all pairs of players. In our setting, the
appropriate analog would be Pareto efficiency in terms of pseudo-instantaneous payoffs. Because pseudo-
instantaneous payoffs are endogenous (they depend on continuation values after a state change), we do
not focus on that second condition.
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Then we can further rewrite the total payoff (2) as

vδ(σ� s)= βδ(σ1� s)ψ
δ(σ1� s�u)+ (1 −βδ(σ1� s))us	

We refer to ψδ(a� s�u) as the pseudo-instantaneous payoff from playing action profile a
in state s, given continuation payoffs u. The pseudo-instantaneous payoff combines two
payoff effects of the same order: the instantaneous payoff g and the expected continua-
tion payoff after transitions (which today’s action affects through influencing transition
rates).3

Notice that, typically, ψδ(α� s�u) is not equal to Eαψ
δ(a� s�u). Nevertheless,

ψδ(α� s�u) lies in the convex hull of the set {ψδ(a� s�u) :a ∈ supp(α)}, since

ψδ(α� s�u)=
∑
a

α(a)βδ(a� s)

Eαβδ(a� s)
ψδ(a� s�u)	

Finally, observe that (3) is well defined for all δ≤ 1. Recall that δ= 1 corresponds not to
infinite patience, but to the case of players who discount the future and can adjust their
actions at infinitely brief intervals. The definitions above will be useful later.

3. Characterizing payoffs

In a standard repeated game, a folk theorem says that any payoff in the feasible and
individually rational set of the stage game can be attained as an equilibrium payoff of
the repeated game for δ close to 1. In our setting, where each state corresponds poten-
tially to a different stage game, there is no obvious counterpart of that feasible and in-
dividually rational set. In this section, we present a particular notion, based on pseudo-
instantaneous payoffs, of feasible and individually rational sets of payoffs for stochastic
games. That notion has the advantage that using it leads to a folk theorem—in subse-
quent sections we give conditions under which these feasible and individually rational
sets are exactly the limiting sets of PPE payoffs. We discuss alternative (possibly simpler
and more intuitive) notions in Sections 7.1 and 7.2, and we explain why those alterna-
tives may encompass payoffs outside the equilibrium set.

Take any collection F = {F(s)}s of sets F(s) ⊆ [−M�M]N for each s ∈ S. (Recall that
M is the upper bound on the length of any stage-game payoff vector.) Say that collection
F is self-δ-feasible if

F(s)⊆ co{ψδ(a� s�u) :a ∈A(s)�u ∈ ×s′ �=sF(s′)}	

Self-δ-feasibility means that each payoff in F(s) can be generated as the expected pay-
off from some action profile in the state-s stage game followed (after a state transition)
by continuation payoffs that belong to collection F . Because both sides of the above
inclusion refer to collection F , the definition has a fixed point flavor.

3To help interpret this definition, observe that if we let τ denote the (random) number of periods until
a transition to state s′ from state s, given transition rate γ(s′;a� s), then Eδτ = δγ(s′;a� s)/(1 + δγ(s′;a� s)),
the weight on us′ in (3).



Theoretical Economics 10 (2015) A folk theorem for stochastic games 137

For each player i, define the δ-minmax payoff relative to F for player i in state s as

eδi (s;F)= inf
α−i∈×j �=i�Aj(s)�u∈×s′ �=sF(s′)

{
max

ai∈Ai(s)
ψδi (ai�α−i� s�u)

}
	

Say that the collection F is self-δ-individually rational if for each state s, player i, and
v ∈ F(s), vi ≥ eδi (s;F).

The (straightforward) proof of the following claim is in Appendix B:

Claim 1. Given δ < 1, define the (convex hull of the) set of feasible payoffs in initial state
s, V̂ δ(s), as

V̂ δ(s)≡ co{vδ(σ� s) :σ ∈ �P}	
The collection of feasible payoffs V̂ δ ≡ {V̂ δ(s)}s is self-δ-feasible, and the collection of

equilibrium payoffs Eδ is both self-δ-feasible and self-δ-individually rational.

Note that self-δ-feasibility and self-δ-individually rationality together imply an ex
post notion of individual rationality: each payoff above the minmax payoffs can be gen-
erated using continuation payoffs that are themselves above the minmax levels.

Next, we define stronger versions of these concepts, to be used in constructing equi-
libria. Let B(v�ε) denote the closed ball centered at v with radius ε≥ 0. Say that collec-
tion F is self-δ�ε-feasible if for each v ∈ F(s),

B(v�ε)⊆ co{ψδ(a� s�u) :a ∈A(s)�u ∈ ×s′ �=sF(s′)}	

Say that collection F is self-δ�ε-individually rational if for each state s, player i, and
v ∈ F(s), vi ≥ eδi (s;F)+ ε.

Lemma 1. For each δ≤ 1 and ε≥ 0, there exists the largest collection V δε such that V δε (s)⊆
[−M�M]N for each s ∈ S, and V δε is self-δ�ε-feasible and self-δ�ε-individually rational.
Moreover, each V δε (s) is compact and convex, and lim supδ→1 V

δ
ε (s)⊆ V 1

ε (s).
4

Proof. The first claim follows from the fact if F and G are any two self-δ�ε-feasible
and self-δ�ε-individually rational collections, then their union F ∪ G is also self-δ�ε-
feasible and self-δ�ε-individually rational. Since, further, the convex hull of F , coF ≡
{coF(s)}s , and the closure of F , clF ≡ {clF(s)}s , are self-δ�ε-feasible and self-δ�ε-
individually rational collections, the second claim holds. For the third claim, notice that
limδ→1ψ

δ(a� s�u) = ψ1(a� s�u) for each a, s, and u, so the collection lim supδ→1 V
δ
ε (s) is

self-1� ε-feasible and self-1� ε-individually rational, and thus contained in V 1
ε (s). �

We will refer to elements of V δε (s) as self-δ�ε-FIR (feasible and individually rational)
payoffs in state s. We will refer to V 1

0 (s) as the set of self-FIR payoffs in state s. Recall

4We define lim supδ→1 V
δ
ε (s) as the set of all limits v = limn→∞ vn of sequences vn ∈ V δnε (s) such that

δn ↗ 1. We also define lim infδ→1 V
δ
ε (s) as the set of points v such that for all δn → 1, there exists vn ∈ V δnε (s)

such that v= limn→∞ vn. If the sup and the inf limits are equal, we refer to them as limδ→1 V
δ
ε (s).
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from Claim 1 that V δ0 (s) is a subset of V̂ δ(s), the set of feasible payoffs. Note that the
collection of equilibrium payoffs Eδ is not necessarily self-δ�ε-feasible for ε > 0.

Finally, it is also useful to define

V δ0+(s)≡
⋃
ε>0

V δε (s)

for each state s and δ≤ 1.
In Appendix B, we show that the collection V δε can be constructed by iteratively ap-

plying a particular operator to a superset of the collection of feasible payoffs. (The argu-
ment is standard. See, for example, Mailath and Samuelson’s 2006 Proposition 7.3.3, or
Stokey et al.’s 1989 Theorem 17.7. Judd and Yeltekin 2011 provide techniques that might
be used to implement such a computation in practice.)

Claim 1 and the last part of Lemma 1 lead to the following corollary.

Corollary 1. For each stochastic game, lim supδ→1E
δ(s)⊆ V 1

0 (s).

Corollary 1 says that the set V 1
0 (s) is an upper bound on the limit set of equilibrium

payoffs as the length of the period converges to 0. That result implies that each V 1
0 (s) is

nonempty, because standard arguments ensure that a PPE exists.5

4. Partial folk theorem

In this section, we show that when the Identifiability Condition holds, for sufficiently
high δ, any self-δ�ε-FIR payoff at state s can be attained in a perfect public equilibrium
from initial state s: V δε is contained inEδ. The proof of that result is based on techniques
in the proof of FLM’s folk theorem for repeated games with imperfect public monitoring.

FLM’s folk theorem requires that the set of feasible and individually rational payoffs
have a nonempty interior. The role of that condition is to guarantee that after any his-
tory, it is possible to provide incentives by constructing continuation payoffs that lie in
any direction from the target payoffs. Here that full dimensionality is implied by the def-
inition of V δε : self-δ�ε-feasibility means that for any payoff v ∈ V δε (s), every payoff within
ε of v can be generated by some action profile and some continuation payoffs in V δε .

Theorem 1. Suppose that the Identifiability Condition holds. Then for each ε > 0, there
exists δ∗ < 1 such that V δε (s)⊆ Eδ(s) for any initial state s and any δ ≥ δ∗. In particular,
V 1

0+(s)⊆ lim infδ→1E
δ(s).

Theorem 1 demonstrates that the set V 1
0+(s) is a lower bound on the limit set of equi-

librium payoffs, as the length of the period converges to 0. By Corollary 1, the set V 1
0 (s)

is an upper bound. We define the following property.

Definition 1. Property A: For each state s, V 1
0 (s)= clV 1

0+(s).

5Note that even if the set of states is infinite, the uniform upper bound on transition rates allows us to
compactify the set of strategies.
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If the Identifiability Condition holds and the game satisfies Property A, then the set
V 1

0 (s) is equal to the limit set of equilibrium payoffs.

Corollary 2. Suppose that Property A and the Identifiability Condition hold. Then for
each state s, V 1

0 (s)= limδ→1E
δ(s).

In general, not all games have Property A. (See Example 1 in Section 5.4.) That fact
implies the possibility that Theorem 1 does not capture all equilibrium payoffs. We in-
vestigate that possibility in Section 5.

It is worth mentioning that standard repeated games satisfy Property A if and only if
the set of feasible and individually rational payoffs has full dimension. (See Section 5.5.)
Thus, our result extends FLM’s folk theorem to stochastic games with countably many
states.

4.1 Proving Theorem 1

FLM’s proof shows that any smooth set of payoffsW strictly in the interior of the feasible
and individually rational set can be attained in equilibrium. A key step is to show that
any payoff on the boundary of W can be achieved as the weighted average of a stage-
game payoff in the current period that lies outside W (thus the requirement that W is
strictly in the interior of the feasible set) and expected continuation payoffs that lie inW .
Here, we want to do something similar, with pseudo-instantaneous payoffs taking the
place of the stage-game payoffs. The self-δ�ε-feasibility of V δε ensures that for each state
s, there is a pseudo-instantaneous payoff outside V δε (s) in each direction.

Given a state s, let V ⊆ RN be a set of payoffs and let W = {W (s′)}s′ �=s, where each
W (s′)⊆ RN , be a collection of payoff sets. Extending FLM and Abreu et al. (1986, 1990),
we say that V is decomposable with respect to δ and W in state s if for each v ∈ V , there
exist a mixed action profile α, payoffs u = (us′)s′ �=s such that us′ ∈ W (s′) for each s′ �= s,
and a function w :Y → V such that for each player i and each action ai ∈Ai(s),

vi = Eα

(
βδ(a� s)ψδi (a� s�u)+ [1 −βδ(a� s)]

∑
y∈Y

ρ(a� s)[y]wi(y)
)

(4)

≥ Eai�α−i

(
βδ(a� s)ψδi (a� s�u)+ [1 −βδ(a� s)]

∑
y∈Y

ρ(a� s)[y]wi(y)
)
	

Expression (4) says that (i) playing profile α in state s, followed by continuation payoffs
u (if the state changes) or by public-signal-contingent continuation payoffs w(y) (if the
state does not change) yields expected payoff v, and that (ii) given those continuation
payoffs, playing α is optimal for all players. (Note that the continuation payoff after a
state change does not depend on the public signal y; we discuss that point later.)

The proof of Theorem 1 relies on the following lemma (which is proven in Ap-
pendix C).

Lemma 2. Suppose that the Identifiability Condition holds. Then for each ε > 0, there
exists δ∗ < 1 such that for each state s, each δ ≥ δ∗, and each v∗ ∈ V δ10ε(s), the set B(v∗� ε)
is decomposable with respect to V δ10ε and δ in state s.
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A key feature of Lemma 2 is that for any ε, there is a single δ∗ that works in every state.
That uniformity allows us to cover the case of an infinite state space. Using Lemma 2,
we can complete the proof of Theorem 1.

Proof of Theorem 1. For each state s, let B̄(V δ10ε(s)� ε) ≡⋃
v∈V δ10ε(s)

B(v� ε) denote the

closed ε-neighborhood of the set V δ10ε(s). Lemma 2 shows that the collection of payoff
sets {B̄(V δ10ε(s)� ε)}s∈S is “self-decomposable” for high enough δ, in the sense that each
B̄(V δ10ε(s)� ε) is decomposable with respect to δ and the collection {B̄(V δ10ε(s)� ε)}s′∈S .

Lemma 1 shows that each V δ10ε(s) is compact and convex, so each B̄(V δ10ε(s)� ε) is as
well. An argument analogous to the second paragraph of FLM’s proof of Lemma 4.2
establishes the result. The last claim in the theorem follows from the fact that for each
δ≤ 1, V 1

0+(s)⊆ limδ→1 V
δ

0+(s) (since for each 0< ε < ε′, V 1
ε′ is self-δ�ε-FIR for sufficiently

high δ). �

5. Full and approximate folk theorems

Theorem 1 provides a partial folk theorem for all stochastic games, in the sense that it
describes a subset of the limit set of PPE payoffs. Corollary 2 shows that if Property A
holds, then in fact Theorem 1 is a full folk theorem: it completely characterizes the set
of PPE payoffs as the period length shrinks. However, it is possible that Property A fails,
in which case, Theorem 1 may not capture all equilibrium payoffs. The purpose of this
section is to investigate the possibility.

We argue that there are two different reasons why that possibility is not a significant
problem. First, we show that Property A is generic among all games for which the sets
V 1

0 (s) have nonempty interior.
Second, even if Property A does not hold for a given game, we argue that every payoff

in V 1
0 (s) is a PPE payoff of a nearby game, i.e., a game with very similar payoffs and

transition rates. Furthermore, any payoff outside V 1
0 (s) is not a PPE payoff of any nearby

game. We conclude that if there is any uncertainty about the true description of the
game, then V 1

0 (s) is a tight approximation of the set of PPE payoffs.
The results of this section apply to games for which the sets V 1

0 (s) have nonempty in-
terior. In standard repeated games, Property A is equivalent to the condition that V 1

0 has
a nonempty interior: V 1

0 has full dimension if and only if V 1
ε does for small enough ε.

(See Section 5.5.) For stochastic games, that equivalence breaks down. Property A
still implies that each V 1

0 (s) has nonempty interior (since V 1
0 (s)= clV 1

0+(s) and V 1
0 (s) is

nonempty, V 1
0+(s) also is nonempty and thus has nonempty interior by definition), but

the converse fails. (See Example 1 in Section 5.4.) This difference is another illustration
that stochastic games are qualitatively more complicated than repeated games.

We use the following notation. Given the sets of players, states, and actions
available in each state and the monitoring structure, a game G can be identified
as a tuple (g�γ) of stage-game payoffs and (nonnegative) transition rates. Let G =
×s∈S(RN×#A(s) ×R

(#S−1)×#A(s)
+ ) be the space of games. Let G0 ⊆ G be the class of games

that satisfy the following uniform version of the “interiority” condition: there exists ε > 0
such that for each state s, B(v�ε)⊆ V 1

0 (s) for some v ∈ RN . The uniformity has bite only



Theoretical Economics 10 (2015) A folk theorem for stochastic games 141

if the state space is infinite. If there is a finite number of states, then G0 consists of all
games such that V 1

0 (s) has nonempty interior for each state s.

5.1 Equilibrium payoffs in generic games

We assume throughout this subsection that the state space is finite, so G is a subset of
finitely dimensional space that is convex and has nonempty interior. Hence, it can be
equipped with a Lebesgue measure�. We say that a claim holds for generic gamesG ∈ G0

if there exists a (measurable) subset G′ ⊆ G0 such that (i) �(G0 \ G′)= 0 and (ii) the claim
holds for each game G ∈ G′.6 (Observe that class G0 has nonzero �-measure: any game
G such that the transition rate is zero for all actions in all states, and such that the stage
game in each state has a feasible and individually rational payoff set with full dimension,
satisfies the condition, as does an open set around G.) The proof of the next result can
be found below.

Theorem 2 (Folk theorem for generic games). If the set of states is finite, then Property A
holds for generic games G ∈ G0. In particular, if the Identifiability Condition holds, then,
for each state s, limδ→1E

δ(s;G)= V 1
0 (s;G) for generic gamesG ∈ G0.

5.2 Equilibrium payoffs in nearby games

Next consider the perspective of a researcher who must specify the set of all possible
equilibrium payoffs and who is not certain whether the game G is specified correctly.
Specifically, she believes that the true game G′ is within distance ε of G for some ε > 0,
where the distance between two games G, and G′ is measured as a supremum norm in
space G:

D(G�G′)= sup
a�s�s′�i

max
(|γ(s′;a� s)− γ′(s′;a� s)|� |gi(a� s)− g′

i(a� s)|
)
	

If the researcher is cautious and does not want to exclude any potential equilibrium
payoffs, then her prediction should be somewhere between

⋃
G′:D(G′�G)≤ε

V 1
0+(s;G′) and

⋃
G′:D(G′�G)≤ε

V 1
0 (s;G′)	

Theorem 3 shows that when the uncertainty disappears (ε→ 0), then so does the gap
between the lower and upper bounds on the cautious researcher’s prediction.

Theorem 3 (Approximate folk theorem). For all gamesG ∈ G0,

⋂
ε>0

⋃
G′:D(G′�G)≤ε

V 1
0+(s;G′)= V 1

0 (s;G)=
⋂
ε>0

⋃
G′:D(G′�G)≤ε

V 1
0 (s;G′)	

6We assume that the state space is finite so as to use the Lebesgue notion of genericity.
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In other words, V 1
0 (s;G) is equal to the union of the limit equilibrium payoffs sets

for gamesG′ that approximate gameG.
The second equality in Theorem 3 follows from the fact that the self-FIR correspon-

dence is upper hemicontinuous with respect to the gameG. The proof of the first equal-
ity can be found below.

5.3 Sketch of the proofs of Theorems 2 and 3

The proofs of Theorem 2 and the first equality of Theorem 3 follow from the same ob-
servation. For each game G ∈ G0, we define a class of games {Gη} indexed by a one-
dimensional parameter η such thatG1 =G and the parametrization is continuous with
respect to the supremum metric. We show (Lemma 8 in Appendix D) that for any η>η′
in the domain of parametrization, there exists ε > 0 such that the self-FIR correspon-
dence in game Gη

′
is contained in the self-1� ε-FIR correspondence of game Gη. It fol-

lows that

V 1
0 (s;G)= V 1

0 (s;G1)⊆ lim inf
η↘1

V 1
0+(s;Gη)	

That observation finishes the proof of Theorem 3.
To complete the proof of Theorem 2, we show (in Lemma 10, Appendix D) that there

are at most countably many η≥ 1 such that gameGη does not have Property A, so such
games have zero measure in the one-dimensional space {Gη}. We expand on this obser-
vation to show that the subset of games without Property A has zero measure. (The rest
of the proof is in Appendix D.)

5.4 A game without Property A

Theorem 2 established that Property A holds for generic games. Here, we present an
example where Property A fails. In this “reciprocal effort” game, in state si, player i can
exert either low effort L or high effort H; the latter is costly, but yields a benefit to the
other player that exceeds the cost.

Example 1. There are two players and two states, S = {s1� s2}. In each state si, player i
has two actions. The payoffs are

H

L

−1�2
0�0

State s1

H L

2�−1 0�0

State s2

The transition rates in each state do not depend on actions and are equal to 1. ♦

It is easy to see that the vector of minmax payoffs in each state is (0�0) for any dis-
count factor. At δ= 1, the sets of feasible payoffs in each state are

V̂ 1(s1) = co
{
(0�0)� (0�1)�

(
2
3 �

−1
3

)
�
(−2

3 �
4
3

)}
V̂ 1(s2) = co

{
(0�0)� (1�0)�

(−1
3 �

2
3

)
�
(

4
3 �

−2
3

)}
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Figure 1. Payoff sets in Example 1.

(See the left side of Figure 1.)7 For example, playing a1 in state s1 and a2 in state s2 yields
v1((a1� a2)� si) in state si, where v1((a1� a2)� si) = ψ1(ai� si� v

1((a1� a2)� sj)) = 1
2g(ai� si) +

1
2v

1((a1� a2)� sj). Solving yields v1((a1� a2)� si)= 2
3g(ai� si)+ 1

3g(aj� sj).
The following proposition shows that this game violates Property A. That is, there is

a discontinuity of the largest self-1� ε-FIR set with respect to ε at ε= 0. In particular, at
ε= 0, the set has full dimension, but for any positive ε, the set is empty.

Proposition 1. For the game in Example 1,

V 1
0 (s1) = co

{
(0�1)� (0�0)�

(
1
2 �0

)}
V 1

0 (s2) = co
{
(1�0)� (0�0)�

(
0� 1

2

)}
V 1
ε (s1) = V 1

ε (s2)=∅ ∀ε > 0	

Proof. The self-1�0-FIR payoffs in each state s must be feasible and individually ratio-
nal, and so they must belong to the intersection of the set V̂ (s) and the positive orthant.
The collection V 1

0 (s) as defined above is the set of all such payoffs. The collection V 1
0 so

defined is trivially self-1�0-individually rational. Moreover, V 1
0 is self-1�0-feasible. For

7We define V̂ 1 as the largest self-1-feasible collection. Recall that V̂ δ was defined for δ < 1 in Section 3;

V̂ 1 contains the limit of the V̂ δ’s. It is easy to verify that the collection described above is self-1-feasible. For
example, V̂ 1(s1) is equal to the convex hull of the sets

A≡ {ψ1(H� s1�u) :u ∈ V̂ 1(s2)} = 1
2 {(−1�2)} + 1

2 V̂
1(s2)

and

B≡ {ψ1(L� s1�u) :u ∈ V̂ 1(s2)} = 1
2 {(0�0)} + 1

2 V̂
1(s2)�

as shown on the left side of Figure 1.
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example, note that V 1
0 (s1) is contained in the convex hull of the sets

A′ ≡ {ψ1(H� s1�u) :u ∈ V 1
0 (s2)} = 1

2 {(−1�2)} + 1
2V

1
0 (s2)

and

B′ ≡ {ψ1(L� s1�u) :u ∈ V 1
0 (s2)} = 1

2 {(0�0)} + 1
2V

1
0 (s2)	

(See the right side of Figure 1.) It follows that V 1
0 is the largest self-1�0-FIR collection. �

The proof that each V 1
ε (s)= ∅ is in Appendix E.

For the game in Example 1, the conclusion of Theorem 2 fails: many payoffs in V 1
0 are

not achievable in equilibrium. In fact, for any δ < 1, the only PPE is to play L after every
history, yielding the minmax payoffs (0�0) in each state, as the following proposition
shows. (The proof is in Appendix E.)

Proposition 2. For the game in Example 1, Eδ(s)= {(0�0)} for any δ < 1 and each state
s, regardless of the monitoring structure.

The nature of the nongenericity that allows Property A to fail in Example 1 is
that at δ = 1, the strategy profile of playing H in both states after every history gives
player i a payoff, starting from state si, exactly equal to his minmax payoff, 0. The
reason is that the expected discounted fraction of time spent in the current state is
(1 + δ)/(1 + 2δ) = 2

3 . For any δ < 1, though, that profile gives player i a negative pay-
off, [(1 +δ)/(1 + 2δ)](−1)+[δ/(1 + 2δ)]2< 0, because he exerts effort up front and starts
receiving benefits later. If, for instance, we increase the payoff to player j when action
H is played in state si to any value strictly greater than 2, then Property A will hold, and
both V 1

0 (s) and clV 1
0+(s) will be equal to the intersection of the feasible payoff set V̂ 1(s)

(computed at the new parameter value) with the set of individually rational payoffs. (See
Example 6 in Section 7.3.) If we decrease that payoff, on the other hand, then the set
V 1

0 (s) collapses to the singleton {(0�0)}.

5.5 Standard repeated games

As mentioned above, for a standard repeated game, Property A is trivially satisfied if
the set of feasible and individually rational payoffs (in the stage game) has nonempty
interior.

Remark 1. For each game G = (g�γ) ∈ G0 (i.e., G that satisfies the nonempty interior
condition), if γ(a� s) = 0 for each state s and each action profile a ∈ A(s), then G has
Property A.

The result follows from the fact that for such games, any ε-interior of V 1
0 (s) is self-

1� ε-FIR. Moreover, becauseG ∈ G0, V 1
0 (s) is the limit of such ε-interiors.
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6. Example: Oligopoly in an evolving world

Here, we describe a class of oligopoly games and we show how to compute the self-FIR
collection. In this class, the computations are especially easy. In particular, the limiting
(as δ→ 1) set of equilibrium payoffs in state s can be found as the solution to a simple
dynamic fixed point problem.

Example 2. There are N firms. In each period, firm i chooses an action ai ∈Ai (quan-
tities, prices, investments, the number of advertisements, etc.); each Ai includes an
inactive action 0i. The “inactive” action corresponds, for instance, to quantity zero in
Cournot competition or to a very high price in Bertrand competition.

The state is a vector s = (e� s1� 	 	 	 � sN), where the state of the economy e represents
aggregate market conditions, and the firm-specific state si reflects the level of technol-
ogy, the patent pool, costs of production, etc. The state of the economy evolves inde-
pendently of the actions and private states of the firms, and a firm’s private state evolves
independently of the actions and private states of other firms. (Simultaneous transi-
tions are ruled out.) That is, the transition rate from state s = (e� s1� 	 	 	 � sN) to state
s′ = (e′� s′1� 	 	 	 � s′N), given action profile a, is equal to

γ(s′� a� s)=
⎧⎨
⎩
γE(e

′� e) if e′ �= e and s′i = si for all i
γi(s

′
i� ai� e� si) if s′i �= si, e′ = e, and s′j = sj for all i �= j

0 otherwise.

A firm’s instantaneous payoff gi(a� e� si) depends on the actions of all firms, the ag-
gregate conditions, and the firm-specific state. The payoff from the inactive action,
gi((0i� a−i)� e� si), is 0 for all states and all actions by the other firms, and 0 is the (stage-
game) minmax payoff. In any state, the payoffs of all players j �= i (weakly) increase if
player i is inactive: gj((ai� a−i)� e� sj)≤ gj((0i� a−i)� e� sj). Finally, there exists η> 0 such
that in any state, each player can get a payoff of at least η if the other players are inactive:
maxai gi((ai�0−i)� e� si)≥ η. ♦

The key feature that simplifies the analysis of this class of examples is that any player
i can maximize the (dynamic) payoffs of any other players by choosing to be inactive,
and doing so gives player i exactly his minimum total payoff given that i best-responds to
the strategies of other players; in Section 7.1, we denote that value as the Nash minmax.

It is straightforward to see that this Nash minmax for each player in each state is 0.
We will describe the set of all feasible payoffs in the limit as δ→ 1. For each unit vector
λ, we characterize the largest possible reach of hyperplane λ that can be attained among
all feasible payoffs. Specifically, let (cλ(s))s∈S be the vector of solutions to the system of
equations

c(s) = max
α∈�A

λ · g(α� s)+∑s′ �=s γ(s′�α� s)c(s′)
1 + γ(α� s)

= max
α∈�A�u:λ·us′≤c(s′) for each s′ �=s

λ ·ψ1(α� s�u)	
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Because the transition rate γ(a� s) is bounded, one can use the contraction mapping
theorem to show that the solution is unique.

Note that cλ(s) is a tight upper bound on the value in a dynamic problem, in which
players receive an instantaneous payoff λ · g(α� s) as long as they stay in state s and then
receive cλ(s′) following a transition to state s′. It is easy to see that if v is a feasible payoff
(in the limit as δ → 1) in state s, then for each unit vector λ, λ · v ≤ cλ(s). From self-
generation arguments, the opposite claim holds as well: the (limit) set of feasible payoffs
in state s is equal to the set of all payoffs v such that λ · v≤ cλ(s) for all unit vectors λ.

The next result shows that in the game of Example 2, the set of feasible payoffs that
lie above Nash minmaxes is self-feasible and individually rational, and that it is equal to
the (limit) set of equilibrium payoffs.

Proposition 3. In the game in Example 2, Property A holds, and for each state s,

V 1
0 (s)= {v :vi ≥ 0 for each i and λ · v≤ cλ(s) for each unit vector λ}	

The proof is in Appendix F.

7. Comments and other examples

The focus of this paper has been on characterizing the set of PPE payoffs under the Iden-
tifiability Condition. An important component of that effort was defining the appropri-
ate notion of feasible and individually rational payoffs in Section 3. The goal of this sec-
tion is to examine how important our assumptions and definitions are for the results. In
Sections 7.1 and 7.2, we discuss two alternative, perhaps more natural, definitions of in-
dividually rational and feasible payoffs. We explain why these definitions do not lead to
a folk theorem type of result; that is, why payoffs that satisfy these alternative definitions
may not be achievable in perfect public equilibrium. Similarly, in Section 7.3, we show
that a stochastic game may have equilibrium payoffs that cannot be achieved by any
Markov strategy that gives all players at least their minmax payoffs after every history. In
Section 7.4, we show that we cannot relax the identifiability conditions in a way analo-
gous to HSTV without sacrificing some PPE payoffs. Finally, in Sections 7.5 and 7.6, we
discuss briefly how our results change if, instead of looking at PPEs, we consider other
solution concepts: Nash and sequential equilibrium.

7.1 The “Nash” minmax

A player’s minmax payoff in a given state typically depends on the set of continuation
payoffs available in other states. In Sections 4 and 5.1, we use the minmax payoff given
that those continuation payoffs must lie in the equilibrium set. The more obvious par-
allel to standard repeated games might be to consider all feasible continuation payoffs.
We consider the consequences of using that definition here and in the following section.
(See also the discussion in Section 7.5.)

Recall that V̂ δ(s) is the set of payoffs attainable through some strategy profile start-
ing from state s:

V̂ δ(s)≡ co{vδ(σ� s) :σ ∈ �P}	
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Define the Nash minmax eNash�δ
i (s) in state s as the minimum payoff obtained by

player i given that i best-responds to the strategies of other players:

eNash�δ
i (s)≡ min

σ−i∈×j �=i�Pj
max
σi
vδi (σi�σ−i� s)	

It is easy to check that the Nash minmax satisfies the recursive equation

e
Nash�δ
i (s)= min

α−i∈×j �=i�Aj(s)

{
max

ai∈Ai(s)
ψδi
(
(ai�α−i)� s� (eNash�δ(s′))s′ �=s

)}
� (5)

where eNash�δ(s′) is the vector of Nash minmax payoffs in state s′. In other words, the
Nash minmax is the δ-minmax payoff relative to the collection of feasible payoffs V̂ δ.
Since V δ0 (s) ⊆ V̂ δ(s), eNash�δ

i (s) is weakly lower than eδi (s;V δ0 ).8 Finally, define the set
of feasible and Nash-individually rational payoffs, i.e., payoffs that can be obtained in
some strategy profile and that are higher than the minmaxes, as

V Nash�δ(s)= {v :v ∈ V̂ δ(s) and vi ≥ eNash�δ
i (s) ∀i}	

The set of PPE payoffs in the stochastic game may be strictly smaller than V Nash�δ(s).
One of the reasons is that some of the payoffs v ∈ V Nash�δ(s)might be obtainable only in
strategy profiles that lead to continuation payoffs that are not Nash-individually ratio-
nal. In that case, v cannot be a payoff in any PPE. The following example illustrates the
point. (We set the transition rate equal to 1/δ merely to simplify algebra; setting γ = 1
would yield similar results.)

Example 3. There are two players and two states, S = {s1� s2}. In each state si, player i
has two actions. The payoffs are

H

L

3�1
0�0

State s1

H L

3�−2 0�0

State s2

The transition rates in each state do not depend on actions and are equal to 1/δ:
γ(sj;a� si)= 1/δ for all i� j ∈ {1�2}, i �= j, and all a ∈ {H�L}. ♦

The Nash minmax value for player 2 is equal to 0 in both states. The Nash minmax
value for player 1, obtained by his playingH in state s1 and player 2’s playingL in state s2,
can be computed using the recursive formula (5). It depends on the state: eNash�δ

1 (s1)= 2

and eNash�δ
1 (s2)= 1.

Payoff vector v = (3�0) is feasible in state s1, as it can be obtained from a pro-
file in which H is played in each period (and only by that profile). (Note that solv-
ing vδ(HH�s1) = ψδ(H� s1� v

δ(HH�s2)) and vδ(HH�s2) = ψδ(H� s2� v
δ(HH�s1)) yields

vδ(HH�s1)= (3�0) and vδ(HH�s2)= (3�−1).) The payoff v is also Nash-individually ra-
tional. Nevertheless, it cannot be an equilibrium payoff. The reason is that playing H in

8Recall that the simplifying feature of the class of games in Example 2 was that eNash�δ
i (s)= eδi (s;V δ0 ) for

each player in each state.
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each period, starting from state s2, yields payoff (3�−1): that payoff cannot result from
any equilibrium, since player 2 can get a payoff of at least 0 by always playing L.9

7.2 “Ex post Nash” individual rationality

To eliminate payoffs like the one in Example 3, one can require an ex post notion of
individual rationality;10 that is, each payoff v must be generated using strategies with
continuation payoffs above Nash minmaxes:

V ex post Nash�δ(s)≡ co{vδ(σ� s) : σ ∈ �P and vδi (σ�h)≥ eNash�δ
i (st) ∀i and ∀h ∈Ht}	

Here we show that even a strategy that delivers each player at least his Nash minmax
payoff after every history may yield a payoff that cannot be achieved in equilibrium.
That is, the set V ex post Nash�δ(s)may be strictly larger than the set of PPE payoffs Eδ(s).

Example 4. There are two players and two states, S = {s1� s2}. State s1 is the initial state
and state s2 is absorbing. The payoffs are

A2 B2

A1
B1

1�1 1�0
0�1 2�2

State s1

C2 D2

C1
D1

4�0 −1�−2
9�2 0�−2

State s2

In state s1, the transition rate is 1/δ for every action profile. In state s2, the transition rate
for every profile is 0. That is, γ(s2;a� s1)= 1/δ for all a, and γ(s1;a� s2)= 0 for all a. ♦

In state s2, the stochastic game is reduced to a standard repeated game, and it is easy
to see that player 1’s minmax payoff is 0. We can then use that value to calculate his Nash
minmax payoff in state s1. Since

ψδ1((A1�A2)� s1�0) = ψδ1((A1�B2)� s1�0)= 1
2 · 1 + 1

2 · 0 = 1
2

ψδ1((B1�A2)� s1�0) = 1
2 · 0 + 1

2 · 0 = 0

ψδ1((B1�B2)� s1�0) = 1
2 · 2 + 1

2 · 0 = 1�

that minmax value is 1
2 . Similarly, player 2’s minmax payoff in state s2 is also 0, and her

Nash minmax value in state s1 is also 1
2 .

Thus, the Markov strategy profile where player 1 plays B1 in state s1 and randomizes
with probability 1

10 on D1 in state s2, and player 2 plays A2 in state s1 and C2 in state
s2, yielding payoffs ( 9

4 �
3
5) in state s1 and ( 9

2 �
1
5) in state s2, gives both players more than

their Nash minmax values after every history. There is no PPE, however, that gives a
payoff close to ( 9

4 �
3
5) in state s1. In fact, any PPE must give player 1 a payoff of at least

9Similarly, for small η, the strictly Nash-individually rational payoff (3 −η� 2
3η) can be obtained in state

s1 by playingH with probability 1 in state s1 and with probability 1−η in state s2, but it is not an equilibrium
payoff.

10The idea of ex post individual rationality appears in Dutta (1995).
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2	5 in state s1. The reason is that in state s2, any feasible payoff that gives player 2 at
least her minmax value of 0 gives player 1 a payoff of at least 4. Thus, any continuation
equilibrium once state s2 is reached must give player 1 a payoff of at least 4. By playing
action A1 in state s1 until a transition occurs, player 1 can assure himself an expected
payoff of at least 1

2 · 1 + 1
2 · 4 = 5

2 against any equilibrium strategy of player 2.
In a standard repeated game, the fact that player 1 must get strictly more than his

minmax payoff in any equilibrium (because, as in the game in state s2, individual ratio-
nality for player 2 requires a high payoff for player 1) does not affect the ability of player
2 to minmax player 1 for a single period. In a stochastic game, however, the relevant
single-period minmax is the one that corresponds to pseudo-instantaneous payoffs (an
action that gives a low payoff today is not an effective threat if it is likely to lead to an-
other state with a high continuation payoff), and pseudo-instantaneous payoffs depend
on the available continuation values in other states. Dutta’s (1995) Example 2 provides
a similar intuition for the case where transition probabilities are independent of δ.11

Note that the result does not depend on the fact that state s2 is absorbing. Adding a
small positive transition rate out of state s2 would not qualitatively change the result.

7.3 Markov strategies are not enough

Another interesting property of stochastic games is that the set of payoffs generated by
stationary Markov strategies that are individually rational in each state may be strictly
smaller than the set of equilibrium payoffs. Given the widespread use of Markov strate-
gies in the applied literature on stochastic games, it is important to note that if we restrict
attention to such strategies, then we may not be able to describe all possible equilibrium
payoffs (leaving aside the question of whether or not those payoffs can be achieved in
a Markov perfect equilibrium). We illustrate this possibility in Appendix G, where we
modify the reciprocal effort game in Example 1 slightly, so that Property A is satisfied.

7.4 Incentives after state transitions

In the strategies constructed in the proof of Theorem 1, continuation payoffs after a state
transition are independent of the public signal about actions. In principle, we could, like

11The details of that example are not quite correct, however. In fact, in state σ , any feasible payoff vector
x that gives both players more than 0 can be achieved in a subgame perfect equilibrium (SPE) if players are
patient. First, note that in the absorbing state, s, patient players can get any payoff in co{(0�2)� (3�3)} in
equilibrium. The payoff x can be written as x= αw+ (1 − α)v for some α ∈ [0�1], where v ∈ co{(0�2)� (3�3)}
and w ∈ co{(0�−1)� (3�0)}. (That is, w is the result of player 1 playing a1 and player 2 randomizing between
her actions.) Define T as δT ≡ α. Then there is a subgame perfect strategy profile that achieves (approxi-
mately) x: play the profile that yieldsw for the first T periods, and then switch to state s (by playing (a2� b1))
and play the SPE that yields v. After any unilateral deviation by player 2 during the first T periods, restart.
After any unilateral deviation by player 1 during the first T periods, switch to state s (if the deviation did not
already result in a switch) and play a SPE that gives player 1 a payoff below x1. (To achieve x exactly, the
post-transition continuation payoff v would need to be adjusted slightly to compensate for the one period
of payoff (1�0)when the players switch to state s, as well as for the fact that T may not be an integer.) Dutta’s
(1995) Example 1 has a similar problem.
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HSTV, strengthen players’ incentives to choose the specified actions by allowing post-
transition payoffs to depend on the public signal as well. Such a strengthening is not
necessary to get a folk theorem as long as the Identifiability Condition holds. HSTV,
though, are able to provide a weaker sufficient condition on the monitoring structure
by taking advantage of the property that transition rates vary with the action profile and
using the informativeness of state transitions about actions. In our setting, however,
transitions do not occur frequently enough to allow such a weakening, in general. Be-
cause the per-period probability of a transition is proportional to 1 − δ, the expected
value of changing the infinite stream of future payoffs only if a transition occurs in the
current period is on the same scale as the instantaneous payoff. Post-transition incen-
tives, therefore, are only as effective as punishing a deviation for a single period would
be in a standard repeated game. The following example, which satisfies HSTV’s moni-
toring conditions (Assumptions F1 and F2) but not our Identifiability Condition, and in
which the folk theorem fails, illustrates.

Example 5. The stage game is a symmetric two-player prisoners’ dilemma with payoffs
that are independent of the state,

C D

C

D

1�1 −L�1 +G
1 +G�−L 0�0

where L>G> 0. The set of public signals Y is a singleton: the public signal is uninfor-
mative. There are eight states: S = {CC�DD�CD�DC} × {−1�1}. The first component of
a state reflects the action played during the period of the most recent state transition;
the ±1 component allows the players to identify when a state change occurs even if the
action played during the transition is the same as in the previous transition. That is,
state transitions are given by

γ((a′� j′); â� (a� j))=
{
γ if a′ = â and j′ = −j
0 otherwise,

where γ > 0. ♦

We claim that when G is large, then there is no PPE for any value of δ that sup-
ports the efficient symmetric payoff (1�1). To see why, note that in such an equilibrium,
(C�C) must be played in every period. A player would prefer to deviate to D unless the
following condition holds:

1 ≥ (1 − δ)(1 +G)+ δ[(1 − δ)γ · 0 + [1 − (1 − δ)γ] · 1
]
	 (6)

Expression (6) says that the payoff of 1 from cooperating must be at least as high as
the expected payoff from deviating for one period. The deviation can be punished only
if it is publicly revealed—that is, only if the state changes—and the punishment payoff
can be no worse than the minmax payoff 0. But (6) is equivalent to the condition that
δγ ≥G. Thus, ifG>γ, then payoffs (1�1) cannot be sustained.
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In fact, a similar argument rules out any payoffs other than (0�0). The one-period
gain from playing D rather than C outweighs the greatest possible loss in continuation
value (1 − 0 = 1) times the probability that the deviation is publicly detected ((1 − δ)γ).

7.5 Nash equilibrium

Let ENash�δ denote the set of Nash equilibria in public strategies. In standard repeated
games, the folk theorem tells us that for high values of δ, the set of PPE payoffs Eδ is
approximately equal to ENash�δ. In stochastic games, that equivalence need not hold:
ENash�δ may be strictly larger. The reason is that a different notion of “individually ra-
tional” applies to the two different solution concepts. Recall Example 4, and that the
Markov strategy profile where player 1 plays B1 in state s1 and randomizes with proba-
bility 1

10 on D1 in state s2, and player 2 plays A2 in state s1 and C2 in state s2, yielding
payoffs ( 9

4 �
3
5) in state s1 and ( 9

2 �
1
5) in state s2, gives both players more than their Nash

minmax values after every history. In Section 7.2, we showed that there is no PPE that
gives a payoff close to ( 9

4 �
3
5) in state s1. However, with perfect monitoring, that payoff

can be attained in a Nash equilibrium, using the strategy above, supported by the threat
of switching to the Nash minmax strategy for player i if player i deviates. Note, though,
that a continuation strategy in state s2 that gave a player less than his or her state s2
Nash minmax could not be part of a Nash equilibrium, because state s2 is reached with
probability 1 under any strategy.

As that example suggests, the “right” set of feasible and individually rational payoffs
for games with perfect monitoring when the solution concept is Nash equilibrium is
V ex post Nash�δ, the collection of payoffs that can be generated using strategies with con-
tinuation payoffs above Nash minmaxes (defined in Section 7.2). Clearly, a strategy that
gives some player a continuation payoff below his Nash minmax after some history on
the path of play cannot be a Nash equilibrium: that player has a profitable deviation. So
consider any strategy σ that gives continuation payoffs at least ε > 0 above Nash min-
maxes after every history on the path of play, and let v be the associated payoff. We claim
that the payoff from that strategy, vδ(σ� s0), lies in V ex post Nash�δ(s0), and that there exists
a Nash equilibrium strategy σ∗ that attains payoff vδ(σ� s0) if δ is high enough.

The intuition is as follows. Suppose that σ is a pure strategy. (If not, then for high
δ, there exists a pure strategy that yields a payoff arbitrarily close to vδ(σ� s0).) We use
σ to construct two other strategies: σ̂ is the same as σ on the path, it specifies player
i’s Nash minmax strategy after any unilateral deviation by player i, and it specifies some
continuation that gives at least Nash minmax payoffs after multilateral deviations. The
strategy σ̃ is the same as σ on the path and it specifies some continuation that gives at
least Nash minmax payoffs at every history off the path. Strategy σ̂ gives the same payoff
as σ and it is a Nash equilibrium if players are patient. Strategy σ̃ features continuation
payoffs above Nash minmaxes after every history and it also gives the same payoff as
σ , so we conclude that vδ(σ� s0) ∈ V ex post Nash�δ(s0). Thus, the set of Nash equilibrium
payoffs is approximately equal to V ex post Nash�δ(s0) for high δ.
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7.6 Sequential equilibrium

Suppose that we use sequential equilibrium rather than PPE as our solution concept.
(That is, we drop the requirement that players use public strategies.) The key difference
that arises, as in standard repeated games, is that in games with imperfect monitoring,
two or more players may be able to use information in their private histories as a corre-
lation device and, thus, hold another player below his minmax payoff. Potentially, then,
any feasible vector of payoffs such that each player gets at least his correlated minmax
payoff may be sustainable in sequential equilibrium. (See Fudenberg and Tirole’s 1991
Example 5.10, and see Gossner and Hörner 2010 for a discussion.) Thus, allowing pri-
vate correlation (either exogenously through a private randomization device or endoge-
nously through private strategies) can expand the set of equilibrium payoffs, and so the
limiting set (as players become patient) of sequential equilibrium payoffs may be strictly
greater than the limiting set of PPE payoffs. In a standard repeated game, however, if the
public monitoring structure is such that a folk theorem holds (that is, if every feasible
payoff that gives each player at least his uncorrelated minmax can be achieved in a per-
fect public equilibrium), then that expansion can only be “downward”: any sequential
equilibrium payoff that is not a PPE payoff must give at least one player a payoff below
his uncorrelated minmax. (Otherwise the payoff would be in the set of PPE payoffs.)

In stochastic games, on the other hand, allowing private correlation may yield an
equilibrium that Pareto dominates any PPE. We demonstrate with an example in Ap-
pendix H. The construction of the example uses the fact that a standard repeated game
may have sequential equilibrium payoffs that are not Pareto dominated by any PPE
payoff.

8. Summary and discussion

This paper examines properties of the set of PPE payoffs for stochastic games with im-
perfect public monitoring in the limit as the time between periods shrinks to zero, hold-
ing the time rate of discounting and the time rate of state transitions fixed. There are
important qualitative differences between the results in this model and the results in
the models studied by Dutta (1995), FY, and HSTV. In particular, in our environment the
limiting set of PPE payoffs typically varies with the initial state.

Roughly speaking, we do two things in the paper. First, we characterize the set of
payoffs that could potentially be achieved in equilibrium: that is, the analog for stochas-
tic games of a repeated game’s feasible and individually rational set of stage-game pay-
offs. Second, we show that all such payoffs can in fact be attained in equilibrium if mon-
itoring is sufficiently informative and the length of the period is sufficiently small. We
provide upper and lower bounds on the equilibrium set, and we show that if the num-
ber of states is finite, then those bounds coincide for generic games that satisfy a full-
dimensionality condition. Additionally, we define pseudo-instantaneous payoffs, and
demonstrate that they are a useful tool.

We note that the results of this paper can be easily generalized to sequences of
stochastic games in which the payoff function gδ and the transition function γδ are
parametrized with discount factor δ < 1, and gδ → g1 = g and γδ → γ1 = γ for δ → 1
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and some functions g and γ. We can redefine pseudo-instantaneous payoffsψδ and col-
lections V δε of self-(δ� ε)-FIR payoffs using the functions gδ and γδ in place of g and γ.
The statements of Theorems 1–3 and their proofs apply with straightforward changes.
In particular, the definition of Property A is not changed.

The notion of self-feasible and self-individually-rational collections of payoff sets
may potentially be useful in deriving equilibrium payoff sets in Dutta (1995), FY, and
HSTV’s environment for the case where irreducibility is not satisfied. In that setting,
the pseudo-instantaneous payoff would be redefined to reflect the fact that transition
probabilities are no longer proportional to 1 − δ:

ψδ(a� s�u)≡ 1
1 − δ+ δγ(a� s)

[
(1 − δ)g(a� s)+ δ

∑
s′ �=s

γ(s′;a� s)us′
]
	

Because we define the equilibrium set that we derive (V 1
0 ) implicitly as the largest

fixed point of a given correspondence, the question of how to derive its properties from
the primitives of the stage-game payoffs and transition probabilities for a given stochas-
tic game is open. The approaches of Judd and Yeltekin (2011) and of Kitti (2013) may
be useful. Other interesting topics for further research include introducing imperfect
private monitoring of state transitions, and tying the precision of monitoring to the pe-
riod length (as in Abreu et al. 1991, Fudenberg and Levine 2007, 2009, and Hellwig and
Schmidt 2002, among others). In Pęski and Wiseman (2014), we study a variation on our
model with a continuous state space, where as the period length decreases, the proba-
bility of state changes stays fixed, but the magnitude of the change shrinks.

Appendix A: Identifiability

For each state s, player i, and (mixed) action profile α, let�i(α� s) be themi(s)×mmatrix
whose rows correspond to the probability distribution over public signals induced by
each of player i’s actions, given s and α−i: �i(α� s) ≡ ρ((·�α−i)� s). Similarly, for each
state s and action profile α, let �ij(α� s) be the (mi(s) +mj(s)) ×m matrix whose first
mi(s) rows are �i(α� s) and whose lastmj(s) rows are �j(α� s).

Action profile α has individual full rank in state s if �i(α� s) has rank mi(s) for each
player i. Action profile α has pairwise full rank for players i and j in state s if�ij(α� s) has
rank mi(s)+mj(s)− 1. FLM’s identifiability requirements are based on those full-rank
conditions. To ensure that the rank conditions hold uniformly over the possibly infinite
number of states, we require some more notation.

Let Mkl be the set of k× l matrices and let Ml be the set of square l-matrices. Given
j ≤ k� l and matrices A ∈ Mkl and B ∈ Mj , we write B ⊆A if matrix B can be obtained
fromA by crossing out k− j rows and l− j columns. Let

dj(A)= max
{B∈Mj :B⊆A}

|detB|	

Thus, dj(A) > 0 if and only if the rank of matrix A is not smaller than j. Individual
full rank for action α in state s is equivalent to the condition dmi(s)(�i(α� s)) > 0 for
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each player i, and pairwise full rank for players i and j is equivalent to the condition
dmi(s)+mj(s)−1(�ij(α� s)) > 0.

Given scalar d > 0, say that action profile α has individual d-rank in state s if
dmi(s)(�i(α� s))≥ d for each player i. Similarly, say that α has pairwise d-rank for players
i and j in state s if dmi(s)+mj(s)−1(�ij(α� s))≥ d.

With those definitions, we can state the identifiability condition on the monitoring
structure.

Definition 2. Identifiability Condition. There exists d > 0 such that for each state s,
the following statements hold:

(i) Every pure action profile has individual d-rank in state s.

(ii) For each pair of players i and j, there exists a profile α(s) that has pairwise d-rank
for i and j in state s.

If the number of states is finite, then our identifiability condition requires only that
FLM’s Conditions 6.2 and 6.3 hold in each state.

Appendix B: Proof of Claim 1 and an iterative procedure

for constructing V δε

Proof of Claim 1. Pick any nonzero vector λ ∈ RN . For each state s, let vλ(s) ∈
arg maxv∈V̂ δ(s) λ · v and let σλ(s) ∈ �P be a strategy that yields payoff vλ(s) from initial

state s. Strategy σλ(s) induces mappings ws′ :Y → V̂ δ(s′) that specify, for each state s′
and each public signal y, the continuation payoff if public signal y is observed in period
1 and the state in period 2 is s′. Strategy σλ(s) also specifies the (mixed) action profile αλ

to be played in the first period. Define vλ ∈ ×s′ �=sV̂ δ(s′) as {vλ(s′)}s′ . Then

λ · vλ(s)= λ ·Eαλ(1 − δ)g(a� s)

+ λ ·Eαλ
{
δ
∑
y∈Y

ρ(a� s)[y]

×
[∑
s′ �=s
(1 − δ)γ(s′;a� s)ws′(y)+ δ[1 − (1 − δ)γ(a� s)]ws(y)

]}

≤Eαλβδ(a� s){λ ·ψδ(a� s� vλ)} + [1 −Eαλβδ(a� s)]λ · vλ(s)
≤Eαλβδ(a� s)

{
max
a∈A(s)

λ ·ψδ(a� s� vλ)
}

+ [1 −Eαλβδ(a� s)]λ · vλ(s)�

where the first inequality follows from the definition of vλ(·) and the second inequality
follows from the fact that ψδ(αλ� s� vλ) lies in the convex hull of the set {ψδ(a� s� vλ) :
a ∈ supp(αλ)}. Thus, λ · vλ(s)≤ maxa∈A(s) λ ·ψδ(a� s� vλ) for all λ. We conclude that

V̂ δ(s)⊆ co{ψδ(a� s�u) :a ∈A(s)�u ∈ ×s′ �=sV̂ δ(s′)};
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that is, V̂ δ is self-δ-feasible.
An analogous argument establishes thatEδ is self-δ-feasible. To see thatEδ is self-δ-

individually rational, note that because a PPE strategy must specify, after any deviation,
continuation payoffs that are themselves PPE payoffs, player i would have a profitable
deviation from a strategy that did not give him a payoff of at least eδi (s;Eδ) starting from
state s. �

An iterative procedure for constructing V δε

Let F denote the set of collections F , where F = {F(s)}s and F(s)⊆ [−M�M]N for each
s ∈ S. Given scalar ε≥ 0 and set X ⊆ RN , let int(X�ε)≡ {x ∈X :B(x�ε)⊆X} denote the
ε-interior of X . Then for each δ ≤ 1 and ε ≥ 0, define the transformation Tδ�ε :F → F

as follows.

Definition 3. We have Tδ�ε(F)≡ {Tδ�εs (F)}s , where

Tδ�εs (F)≡ {v ∈ int(T̂ δs (F)� ε) :vi ≥ eδi (s;F)+ ε ∀i}
and

T̂ δs (F)≡ co{ψδ(a� s�u) :a ∈A(s)�u ∈ ×s′ �=sF(s′)}	
That is, Tδ�ε(F) is the largest collection that is δ�ε-feasible and δ�ε-individually ra-

tional relative to F .

Let F̄ ≡ ([−M�M]N)S and let F̄δ�ε∞ ≡⋂m(T
δ�ε)m(F̄).

Proposition 4. We have V δε = F̄δ�ε∞ = limm→∞(Tδ�ε)m(F̄).

Proof. Because (i) V δε is a fixed point of Tδ�ε, (ii) V δε ⊆ F̄ , and (iii) Tδ�ε is monotone (in
the sense that F ′ ⊆ F ⇒ Tδ�ε(F ′)⊆ Tδ�ε(F)), we have that

V δε ⊆ (Tδ�ε)m+1(F̄)⊆ (Tδ�ε)m(F̄)⊆ F̄ ∀m≥ 1	

Thus, V δε ⊆ F̄δ�ε∞ . Also, note that because F̄ is compact (by Tychonoff’s theorem), so
is (Tδ�ε)m(F̄) for each m. (The argument is similar to the one in the proof of the second
claim in Lemma 1.) Because the set of compact subsets of F̄ is compact, the decreasing
sequence ((Tδ�ε)m(F̄))m has a limit:

F̄δ�ε∞ = lim
m→∞(T

δ�ε)m(F̄)	

Finally, to show that F̄δ�ε∞ ⊆ V δε , we argue that F̄δ�ε∞ is self-δ�ε-FIR (that is, that
F̄δ�ε∞ ⊆ Tδ�ε(F̄δ�ε∞ )) and thus must lie in the largest self-δ�ε-FIR collection V δε . Because
the operator Tδ�ε is upper hemicontinuous,

F̄δ�ε∞ = lim
m→∞(T

δ�ε)m(F̄)

= lim
m→∞T

δ�ε[(Tδ�ε)m(F̄)]
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⊆ Tδ�ε
[

lim
m→∞(T

δ�ε)m(F̄)
]

= Tδ�ε(F̄δ�ε∞ )	 �

Appendix C: Preliminaries for and proof of Lemma 2

The proof of Lemma 2 follows the approach in FLM: for each state s, we identify a subset
of payoffs and show that it can be decomposed on tangent hyperplanes. There are two
major differences. First, we use pseudo-instantaneous payoffs instead of stage-game
payoffs in state s to take into account continuation payoffs after the transition out of
state s. Second, we need to ensure that we can choose the same discount factor uni-
formly for all, possibly infinitely many, states s. We therefore require tighter bounds on
the ranges of the supporting in-state continuation payoffs than are needed in FLM. Sec-
tion C.1 contains some preliminary results and the estimates that bound the sizes of
the solutions to the systems of linear equations. Section C.2 ensures that every (corre-
lated) action profile can be approximated by profiles that satisfy appropriate rank con-
ditions. Section C.3 discusses enforceability, and the last section contains the proof of
Lemma 2.

C.1 Preliminary results

We need two preliminary results. The first result provides a bound on the size of so-
lutions to a system of linear equations. For any vector x ∈ Rn, let ‖x‖∞ ≡ maxi |xi|
denote the sup norm. (Recall that ‖x‖ denotes the Euclidean norm and notice that
‖x‖∞ ≤ ‖x‖ ≤ n‖x‖∞.) For each matrixAwith generic element aij , let ‖A‖∞ = maxij |aij|.

Lemma 3. Let positive integers j ≤ n, matrixA ∈ Mjn, and vector b ∈Rj be given.
Case 1. We have dj(A) > 0.
Case 2. We have dj−1(A) > 0 and there exists a nonzero vector a ∈Rj such that a′b= 0

and a′A= 0.
If either Case 1 or 2, then there exists w ∈Rn such that

Aw= b

and

‖w‖∞ ≤ 1
dk(A)

‖A‖n∞‖b‖∞�

where k= j in Case 1 and k= j − 1 in Case 2.

Proof. By the definition of dk(A), there exists matrix B ∈ Mk such that B ⊆ A and
|detB| = dk(A). Define vector b̃ ∈ Rk as b̃ = b in Case 1, and in Case 2, define it as the
vector obtained from b by crossing out the same row that is crossed out from matrixA so
as to obtain B. Let w̃ = B−1b̃ ∈ Rk. Then, by Cramer’s rule, ‖w̃‖∞ ≤ ‖A‖n∞‖b‖∞/dk(A).
Let wi = w̃i for each column i that is not crossed out in matrix B and let wi = 0 for all
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other columns. Then vector w satisfies the required bound and Aw= b. (In Case 1, that
equality is immediate; in Case 2 it follows from the existence of the vector a.) �

The second result, which will be used for applying the Identifiability Condition, pro-
vides a lower bound on the local “variability” of nonzero polynomials. Recall that m∗ is
the maximum number of actions available in any state. For each positive integer n, let
Fn�m∗ be the space of polynomial functions f :Rm

∗ → R with m∗ variables and of order
not higher than n. We consider restrictions of such polynomials to the simplex �m∗ of
probability distributions α over action profiles. For each c ∈ (0�1), let F∗

n�m∗(c) ⊆ Fn�m∗

be the subspace of polynomials f such that supα∈�m∗ |f (α)| ∈ [c�1].

Lemma 4. For each n, c > 0, and ε > 0, there exists a constant c̄ > 0 such that for each
polynomial f ∈ F∗

n�m∗(c) and each profile α ∈ �m∗ , there exists a profile α′ ∈ �m∗ such that
‖α− α′‖ ≤ ε and |f (α′)| ≥ c̄.

Proof. On the contrary, suppose that there is a sequence of polynomials fk ∈ F∗
n�m∗(c)

and profiles αk such that supα′:‖αk−α′‖≤ε |fk(α′)| → 0. Because F∗
n�m∗(c) and �m∗ are

compact, we can choose a subsequence so that fk → f ∗ ∈ F∗
n�m∗(c) and αk → α∗, and

supα′:‖α∗−α′‖≤ε |f ∗(α′)| = 0. Because f ∗ is a polynomial, this implies that f ∗ ≡ 0, which
contradicts the fact that supα∈�m∗ |f ∗(α)| ≥ c. �

C.2 Results on identifiability

For each state s, player i, (mixed) action profile α, and δ≤ 1, define themi(s)×mmatrix

�δi (α� s)=

⎡
⎢⎢⎢⎢⎢⎣

E
(a
(1)
i �α−i)

[(1 −βδ(a� s))ρ(a� s)]
E
(a
(2)
i �α−i)

[(1 −βδ(a� s))ρ(a� s)]
			

E
(a
(mi(s))

i �α−i)
[(1 −βδ(a� s))ρ(a� s)]

⎤
⎥⎥⎥⎥⎥⎦ �

where a(1)i � 	 	 	 � a
(mi(s))
i is an enumeration of all actions in Ai(s). For any two players i

and j, let

�δij(α� s)=
[
�δi (α� s)

�δj (α� s)

]
	

Observe that �1
i (α� s)=�i(α� s) and �1

ij(α� s)=�ij(α� s).

Lemma 5. If the Identifiability Condition holds, then for each ε > 0, there exist δε < 1
and dε > 0 such that for each state s, each action profile α, and player i, the following
statements hold:

(i) There exists an action profile α′
−i for players other than i such that ‖α−i − α′

−i‖ ≤
ε/M and for each action ai ∈ Ai(s), each δ ≥ δε, and each player j �= i,
dmj(s)(�

δ
j (ai�α

′
−i))≥ dε.
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(ii) There exists an action profile α′ such that ‖α − α′‖ ≤ ε/M and for each δ ≥ δε,
dmi(s)+mj(s)−1(�

δ
ij(α

′))≥ dε.

Proof. If δ= 1, then the existence of a d′
ε > 0 satisfying the two conditions follows from

the fact that the determinant of any of the relevant matrices is a nonzero polynomial in
the mixed strategies of the players, Lemma 4, and the proofs of Lemmas 6.2 and 6.3 from
FLM.

For square matrices A and X of the same dimension, the following formula holds:
det(A+ εX)− detA= det(A) tr(A−1X)ε+O(ε2) . The error termO(ε2) can be bounded
by aCε2, whereC depends onm∗ and upper bounds on ‖A‖∞, ‖X‖∞, and det(A). Since
the monitoring probabilities lie between 0 and 1, then we conclude that there exists a
constant C ′ > 0 such that

dmi(�
δ
i (α� s))≥ dmi(�1

i (α� s))− (1 − δ)C ′

for each profile α, each state s, each δ < 1, and all players i and j. That conclusion im-
plies that we can take dε = d′

ε/2 and δε = 1 − dε/2C ′. �

C.3 Identifiability and enforceability

Let U be the set of unit vectors in RN : U ≡ {λ ∈ RN |‖λ‖ = 1}. For each unit vector
λ ∈U , let N(λ)= {i :λi �= 0} and b(λ)= mini∈N(λ) |λi|. Say that vector λ ∈ RN is regular if
#N(λ) ≥ 2. Recall that m is the number of public signals. The following result follows
directly from Case 1 of Lemma 3.

Corollary 3. For each δ < 1, d > 0, player i, state s, profile α∗ such that
dmi(s)(�

δ
i (α

∗� s)) ≥ d, and vector x ∈ Rmi(s) such that ‖x‖∞ ≤M , there exists w ∈ Rm such
that �δi (α

∗� s)w= x and ‖w‖∞ ≤ d−1M .

The next result requires only slightly more work.

Lemma 6. For each δ < 1, d > 0, state s, profile α∗ such that dmi(s)+mj(s)−1(�
δ
ij(α

∗)) ≥ d

for all players i and j, each regular unit vector λ ∈ RN , and each collection of vectors
{xi}Ni=1 ∈ ×iR

mi(s) such that ‖xi‖∞ ≤ M and α∗
i · xi = 0 for all i, there exists a mapping

w :Y →RN such that for each player i,

�δi (α
∗� s)wi = xi�

and, for each y, λ ·w(y)= 0 and ‖w(y)‖∞ ≤NM/db(λ).

Proof. Pick any i� j ∈ N(λ) such that i �= j. By definition of the matrices �δ,
α∗
i · �δi (α∗� s)= α∗

j · �δj (α∗� s). Case 2 of Lemma 3 implies that there exists wi�j ∈ Rm such
that

�δij(α
∗� s)wi�j =

⎡
⎣ 1

#N(λ)−1xi

−λj
λi
xj

⎤
⎦
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and ‖wi�j‖∞ ≤M/db(λ). Using Case 1 of Lemma 3, for each player i /∈N(λ), there exists
wi ∈Rm such that

�δi (α
∗� s)wi = xi

and ‖wi‖∞ ≤M/d. Fix i ∈N(λ) and define w(y) as

wi(y) =
∑

j∈N(λ)\{i}
wij(y)

wj(y) = −λi
λj
wij(y) for each j ∈N(λ) \ {i}

wj(y) = wj(y) for each j /∈N(λ)	

The result follows. �

C.4 Proving Lemma 2

Lemma 2 follows easily from the following lemma:

Lemma 7. Suppose that the Identifiability Condition holds. Then for each z ∈ B(0� ε),
there exist ηz > 0 and δz < 1 such that for each δ ≥ δz , each state s, each payoff vec-
tor v∗ ∈ V δ10ε(s), and each v ∈ B(v∗� ε) ∩ B(v∗ + z�ηz), there exist continuation payoffs

u ∈ ×s′ �=sV δ10ε(s
′), profile α, and a function w :Y → B(v∗� ε) such that (4) holds for each

player i.

Proof. We first observe that the definition of collection V δε implies that for all states s
and v∗ ∈ V δ10ε(s), the following conditions hold:

• For each unit vector λ, there exist continuation payoffs u ∈ ×s′ �=sV δ10ε(s
′) and profile

α, such that λ ·ψδ(α� s�u)≥ λ · v∗ + 10ε.

• For each player i, there exist continuation payoffs u ∈ ×s′ �=sV δ10ε(s
′) and profile α−i,

such that for each ai, v∗
i ≥ψδi (ai�α−i� s�u)+ 10ε.

We consider four cases separately:

Case 1: z = ελ for some regular λ ∈ U . Notice that z ∈ bdB(0� ε) and λ is the normal
vector to the boundary at z. Using the observation from the beginning of the proof,
for each state s and v∗ ∈ V δ10ε(s), we can find continuation payoffs u ∈ ×s′ �=sV δ10ε(s

′) and
profile α, such that

λ ·ψδ(α� s�u)≥ λ · v∗ + 10ε≥ λ · (v∗ + z)+ 9ε	

(Note that λ · z ≤ ε.) Using Lemma 5, we can always replace strategy profile α by profile
α∗ so that λ ·ψδ(α∗� s�u)≥ λ · (v∗ + z)+ 5ε and dmi(s)+mj(s)−1(�

δ
ij(α

∗))≥ dε > 0 for all i� j
and all δ≥ δε.
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Take any v ∈ B(v∗� ε) and define

xi(ai)= 1
1 − δE(ai�α∗

−i)β
δ(a� s)(vi −ψδi (a� s�u))

− 1
1 − δ

1 −E(ai�α∗
−i)β

δ(a� s)

1 −Eα∗βδ(a� s)

(
(Eα∗βδ(a� s))vi −

(
Eα∗ [βδ(a� s)ψδi (a� s�u)]

))
	

Note that ‖xi‖ ≤ 2(1 +γmax)M and α∗
i ·xi = 0. By Lemma 6, then, there exists ŵ :Y → RN

such that λ · ŵ(y)= 0 for each y, ‖ŵ(y)‖∞ ≤ 2(1+γmax)NM/dεb(λ), and for each player i,

�δi (α
∗� s)ŵi = xi	

Let

w(y)= v+ 1
1 −Eα∗βδ(a� s)

(
(Eα∗βδ(a� s))v− (Eα∗βδ(a� s)ψδ(a� s�u))

)+ (1 − δ)ŵ(y)	

Then simple computations show that

E(ai�α∗
−i)

(
βδ(a� s)ψδi (a� s�u)+ [1 −βδ(a� s)]

∑
y∈Y

ρ(a� s)[y]wi(y)
)

=E(ai�α∗
−i)β

δ(a� s)ψδi (a� s�u)+ (1 −E(ai�α∗
−i)β

δ(a� s))vi

+
1 −E(ai�α∗

−i)β
δ(a� s)

1 −Eα∗βδ(a� s)

(
(Eα∗βδ(a� s))vi − (Eα∗βδ(a� s)ψδi (a� s�u))

)
+ (1 − δ)E(ai�α∗

−i)[1 −βδ(a� s)]
∑
y∈Y

ρ(a� s)[y]ŵ(y)

= (1 −E(ai�α∗
−i)β

δ(a� s))vi +E(ai�α∗
−i)β

δ(a� s)vi = vi	
Thus, (4) holds with equality for all players and all actions.

Additionally, observe that

λ · (v−w(y)) = 1
1 −Eα∗βδ(a� s)

λ · (Eα∗βδ(a� s)ψδ(a� s�u)− (Eα∗βδ(a� s))v
)

= Eα∗βδ(a� s)

1 −Eα∗βδ(a� s)
λ · (ψδ(α∗� s�u)− v)

≥ Eα∗βδ(a� s)

1 −Eα∗βδ(a� s)
ε≥ (1 − δ)ε	

The first inequality holds because v ∈ B(v∗� ε), which then implies λ · ψδ(α∗� s�u) ≥
λ · v + 5ε. The second inequality holds because Eα∗βδ(a� s)/[1 − Eα∗βδ(a� s)] ≥ 1 − δ.
Furthermore,

‖v−w(y)‖ ≤
∥∥∥∥ Eα∗βδ(a� s)

1 −Eα∗βδ(a� s)
v

∥∥∥∥+
∥∥∥∥Eα∗βδ(a� s)ψδ(a� s�u)

1 −Eα∗βδ(a� s)

∥∥∥∥+ (1 − δ)‖ŵ(y)‖

≤ (1 − δ)Cλ�ε
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for some constant Cλ�ε that depends on λ and ε, and on the constants γmax,M , andN .
Notice that for any two vectors a and b, ‖a+ b‖2 = ‖a‖2 + ‖b‖2 + 2a · b. Also, notice

that for each v ∈ B(v∗ + z�η) ∩ B(v∗� ε), for any vector θ, (v − v∗) · θ ≤ εθ · λ+ η‖θ‖. It
follows that for each y ∈ Y and each v ∈ B(v∗ + z�η)∩B(v∗� ε),

‖w(y)− v∗‖2 = ‖v− v∗ +w(y)− v‖2

= ‖v− v∗‖2 + ‖w(y)− v‖2 + 2(v− v∗) · (w(y)− v)
≤ ε2 + (Cλ�ε)2(1 − δ)2 − 2ε2(1 − δ)+ 2η(1 − δ)Cλ�ε	

Let ηz = ε2/2Cλ�ε. Then there exists δz such that for all δ≥ δz , ‖w(y)− v∗‖ ≤ ε.

Case 2: zi = −ε for some i and zj = 0 for all j �= i. For each state s and v∗ ∈ V δ10ε(s), we
can find continuation payoffs u ∈ ×s′ �=sV δ10ε(s

′) and profile α−i such that for each ai, v∗
i ≥

ψδi (ai�α−i� s�u)+ 10ε. Using Lemma 5, we can replace α−i by profile α∗
−i such that for

each ai, v∗
i ≥ψδi (ai�α∗

−i� s�u)+ 5ε and dmj(s)(�
δ
j (ai�α

∗
−i))≥ dε > 0 for all δ≥ δε. Let a∗

i be

an action that maximizes ψδi (ai�α
∗
−i� s�u) and let α∗ = (a∗

i � α
∗
−i).

Take any v ∈ B(v∗� ε) and for each j �= i, let

xj(aj) = 1
1 − δE(aj�α∗

−j)β
δ(a� s)(vj −ψδj (a� s�u))	

Then, since ‖xj‖∞ ≤ 2(1 + γmax)M , by Corollary 3, there exists ŵ : Y → RN such that for
each y, ‖ŵ(y)‖∞ ≤ 2(1 + γmax)NM/dεb(λ), and for all players j �= i and all actions aj ,

xj(ai)=E(aj�α∗
−j)(1 −βδ(a� s))

∑
y∈Y

ρ(a� s)[y]ŵj(y)	

Let

wj(y) = v+ (1 − δ)ŵ(y)
for j �= i and let

wi(y)= vi + (1 − δ)Eα∗βδ(a� s)(vi −ψδi (a� s�u))	
Then for all players j �= i and all actions aj ,

vj =E(aj�α∗
−j)

(
βδ(a� s)ψδj (a� s�u)+ [1 −βδ(a� s)]

∑
y∈Y

ρ(a� s)[y]wj(y)
)
�

and for player i, a∗
i is a best response and it satisfies

vi =Eα
(
βδ(a� s)ψδi (a� s�u)+ [1 −βδ(a� s)]

∑
y∈Y

ρ(α� s)[y]wi(y)
)
	

Moreover,

wi(y)− vi = (1 − δ)Eα∗βδ(a� s)(vi −ψδi (a� s�u))
≥ (1 − δ)(vi −ψδi (α∗� s�u))≥ (1 − δ)ε�
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where the last inequality holds because v ∈ B(v∗� ε) and ψδi (α
∗� s�u)≤ v∗ − 5ε. Second,

‖v−w(y)‖ ≤ (1 − δ)‖ŵ(y)‖
≤ (1 − δ)Cλ�ε

for some constant Cλ�ε that depends on ε. This case is concluded by the same argument
as Case 1.

Case 3: zi = ε for some i and zj = 0 for all j �= i. The proof of this case is analogous to that
of Case 2.

Case 4: z ∈ intB(0� ε). Fix state s and continuation payoffs u. Find profile αδ that is a
Nash equilibrium of a one-shot game with payoffs ψδ(a� s�u). For each v ∈ B(v∗� ε), let

wδ(y)= v+ Eα∗βδ(a� s)

1 − (Eα∗βδ(a� s))
(v−ψδ(αδ� s�u))	

Let ηz = 1
2(ε− ‖z‖) and δz = 1 − (ε− ‖z‖)/4(1 + γmax)M . Then, for each v ∈ B(v∗� ε) ∩

B(v∗ + z�ηz) and for each δ≥ δz ,

‖wδ(y)− v∗‖ ≤ ‖v− (v∗ + z)‖ + ‖z‖ + ‖wδ(y)− v‖
≤ ηz + ‖z‖ + 2(1 − δ)(1 + γmax)M

≤ ε	
This concludes the proof of the lemma. �

Now we can complete the proof of Lemma 2.

Proof of Lemma 2. Lemma 7 shows that for each z ∈ B(0� ε), there exist δz < 1 and
ηz such that for each δ ≥ δz , each state s, each payoff vector v∗ ∈ V δ10ε(s), and each v ∈
B(v∗� ε) ∩ B(v∗ + z�ηz), there exist continuation payoffs u ∈ ×s′ �=sV δ10ε(s

′), profile α, and
a function w :Y → B(v∗� ε) such that (4) holds for each player i. Because a closed ball in
RN is compact, there is a finite collection Z of z’s such that B(v∗� ε)⊆⋃

Z B(v
∗ + z�ηz).

Setting δ∗ = maxZ δz yields the required δ∗ < 1 for Lemma 2. �

Appendix D: Proof of Theorem 2

D.1 One-dimensional class of games

For each d ∈ R#S×N , let G0(d)⊆ G0 be a class of games such that there exists ε > 0 such
that for each state s,B(d(s)� ε)⊆ intV 1

0 (s). For each gameG, let γmax(G)= maxa�s γ(a� s).
For each game G ∈ G0(d), we define a one-dimensional class of games indexed by η ∈
(0�1 + (γmax(G))

−1), i.e.,Gη;d = (gη;d�γη;d), where

gη;d(a� s) = η

1 − (η− 1)γ(a� s)
g(a� s)− (η− 1)(1 + γ(a� s))

1 − (η− 1)γ(a� s)
d(s)

γη;d(s′;a� s) = η

1 − (η− 1)γ(a� s)
γ(s′;a� s)	
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Notice that G1�d = G. We choose the parametrization so that pseudo-instantaneous
payoffs ψ1(a� s�u;Gη;d) expand radially from d(s) relative to payoffs ψ1(a� s�u;G). The
next result summarizes that property and other properties of the parametrization.

Lemma 8. For each G ∈ G0(d) and each η�ν > 1 such that ην < 1 + (γmax(G))
−1, the

following statements hold:

(i) We have (Gη;d)ν;d =Gην;d .

(ii) For each action profile a, each state s, and all continuation payoffs u ∈ ×s′ �=sRN ,
ψ1(a� s�u;Gη;d)− d(s)= η(ψ1(a� s�u;G)− d(s)).

(iii) There exists ε > 0 such that for each state s, V 1
0 (s)⊆ V 1

ε (s;Gη�d).
(iv) We haveGη;d ∈ G0(d).

Proof. Part (i). Notice that

η

1 − (η− 1) ν
1−(ν−1)γ(a�s)γ(a� s)

ν

1 − (ν− 1)γ(a� s)
= ην

1 − (ν− 1)γ(a� s)− (η− 1)νγ(a� s)

= ην

1 − (ην− 1)γ(a� s)
	

This implies that (γη;d)ν;d = γην;d . In a similar way, we show that (gη;d)ν;d = gην;d .
Part (ii). For each η> 0,

ψ1(a� s�u;Gη;d)− d(s)= gη;d(a� s)+∑s′ �=s γη;d(s′;a� s)u(s′)
1 + γη;d(a� s)

− d(s)

= η

1 + γ(a� s)g(a� s)− (η− 1)d(s)

+
∑
s′ �=s ηγ(s′;a� s)u(s′)

1 + γ(a� s) − d(s)

= η
(
g(a� s)+∑s′ �=s γ(s′;a� s)u(s′)

1 + γ(a� s) − d(s)
)

= η(ψ1(a� s�u)− d(s))	

Part (iii). Choose ε′ > 0 such that for each s, B(d(s)� ε′)⊆ V 1
0 (s). Let ε= (η− 1)ε′. We

show that collection V 1
0 (·;G) is self-(1� ε)-individually rational in gameGη;d . Using part

(ii), we get

e1
i (s;V 1

0 (·;G)�Gη�d)
= inf
α−i∈×j �=i�Aj(s)�u∈×s′ �=sV 1

0 (s
′;G)

{
max

αi∈�Ai(s)
ψ1
i (αi�α−i� s�u;Gη;d)

}

= inf
α−i∈×j �=i�Aj(s)�u∈×s′ �=sV 1

0 (s
′;G)

{
max

αi∈�Ai(s)
[
di(s)+ (ψ1

i (αi�α−i� s�u;Gη;d)− di(s))
]}
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= inf
α−i∈×j �=i�Aj(s)�u∈×s′ �=sV 1

0 (s
′;G)

{
max

αi∈�Ai(s)
[
di(s)+η(ψ1

i (αi�α−i� s�u;G)− di(s))
]}

= −(η− 1)di(s)+η inf
α−i∈×j �=i�Aj(s)�u∈×s′ �=sV 1

0 (s
′;G)

{
max

αi∈�Ai(s)
ψ1
i (αi�α−i� s�u;G)

}

= di(s)+η(e1
i (s;V 1

0 (·;G)�G)− di(s)
)
	

Because e1
i (s;V 1

0 (·;G)�G) ≤ di(s) − ε′, it must be that e1
i (s;V 1

0 (·;G)�Gη�d) ≤
e1
i (s;V 1

0 (·;G)�G)−(η−1)ε′. This implies that V 1
0 (·;G) is self-(1� ε)-individually rational

in gameGη;d .
Next, we show that collection V 1

0 (·;G) is self-(1� ε)-feasible. Take any v0 ∈ V 1
0 (s) and

v ∈ B(v0� ε). For each λ ∈RN such that maxi |λi| = 1,

λ · v ≤ ε+ λ · v0 ≤ (η− 1)ε′ + sup
v′∈V 1

0 (s)

λ · v′

= (η− 1)ε′ + λ ·ψ1(aλ� s�uλ;G)

for some action profile aλ and continuation payoffs uλ ∈ ×s′ �=sV 1
0 (s

′;G), where

(aλ�uλ) ∈ arg max
a∈A(s)�u∈×s′ �=sV 1

0 (s
′)
λ ·ψ1(a� s�u;G)	

Because V 1
0 (·;G) is self-1�0-feasible in game G and B(d(s)� ε′) ⊆ V 1

0 (s), it must be that
ε′ ≤ λ · (ψ1(aλ� s�uλ;G)− d(s)) and

λ · v ≤ (η− 1)ε′ + λ ·ψ1(aλ� s�uλ;G)
≤ (η− 1)λ · (ψ1(aλ� s�uλ;G)− d(s))+ λ · (ψ1(aλ� s�uλ;G)− d(s))+ λ · d(s)
= ηλ · (ψ1(aλ� s�uλ;G)− d(s))+ λ · d(s)
= λ · (ψ1(aλ� s�uλ;Gη;d)− d(s))+ λ · d(s)
= λ ·ψ1(aλ� s�uλ;Gη;d)�

where the second-to-last equality comes from part (ii). The above implies that

v ∈ co{ψ1(a� s�u;Gη;d) :a ∈A(s) and u ∈ ×s′ �=sV 1
0 (s

′)}

and that V 1
0 is self-(1� ε)-feasible in gameGη;d .

Part (iv) follows from part (iii) and the fact that V 1
ε (s;Gη;d)⊆ V 1

0 (s;Gη;d). �

D.2 Intermediate results

In the next two parts of this appendix, we assume that the space state is finite. The proof
of Theorem 2 requires three intermediate results. Let A ⊆ G0 be the set of all games with
Property A. Recall that � is a Lebesgue measure on the space of games. Let �N be a
Lebesgue measure on RN .
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Lemma 9. The set A is measurable.

Proof. For each ε≥ 0 and each s ≥ 0, define function fε�s :G →R as

fε�s(G)=�N(V 1
ε (s;G))	

Because the self ε-FIR correspondence is upper hemicontinuous, function fε�s is upper
semicontinuous and hence measurable. Define f0+�s = limε→0 fε�s. Then function f0+�s
is measurable. Finally, notice that A =⋂s{G : f0�s(G)= f0+�s(G)}. �

Lemma 10. For each gameG ∈ G0(d), the set

E = {η ∈ (0�1 + (γmax(G))
−1) :Gη�d ∈ G(d) \A}

is countable.

Proof. We will prove a weaker claim: for each game G ∈ G0(d), there exist at most
countably many 1 ≤ η≤ 1+ (γmax(G))

−1 such thatGη;d /∈ A. It turns out that the weaker
claim delivers the lemma. On the contrary, if the set E is uncountable, then there exists
η∗ ∈ E such that the set {η ∈ E :η > η∗} is uncountable. But because of Lemma 8, this
contradicts our claim applied toGη

∗�d .
We move to the proof of the claim. Define two functions of η ∈ [1�1 + (γmax(G))

−1):

μ0(η) =
∑
s

�N(V
1

0 (s;Gη;d))

μ(η) =
∑
s

�N

(⋃
ε>0

V 1
ε (s;Gη;d)

)
	

Because V 1
ε (s)⊆ V 1

0 (s), we have μ0(η)≥ μ(η) for each η, and gameGη;d has Property A
if and only if μ0(η)= μ(η). Also, notice that part (iii) of Lemma 8 implies that for each
η > 1, μ(η) > μ0(1). That fact, together with part (i) of the lemma, implies that the
functions μ0 and μ are strictly increasing. Part (iii) implies that limη′↘η μ(η)= μ0(η) for
each η. It follows that

μ(η)≥ μ(1)+
∑

η′∈E�η′<η
(μ0(η

′)−μ(η′))	

If there are uncountably many elements in E, then there exists η such that the right-
hand side of the above inequality is unbounded. But this contradicts the fact that μ(η)
is a well defined function for each η ∈ [1�1 + (γmax(G))

−1). �

By Lemma 9, set A is measurable, and we can state the following result.

Lemma 11. For each d ∈R#S×N , �(G0(d) \A)= 0.

Proof. Let G00 ⊆ G0 be the subclass of all games such that γmax(G) > 0 and let
G∗

00 ⊆ G00 be the subclass of all games such that γmax(G) = 1. Then there exists
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a continuous mapping h :G00 → G∗
00 × (0�2): for each G = (g�γ) ∈ G00, let h(G) =

(Gη(γmax(G));d� (η(γmax(G)))
−1), where

η(γ)= 1 + γ
2γ

	

Note that G∗
00 is an open subset of the union of finitely many affine subspaces of G

(i.e., the subspace that contains all games with the maximum transition rate equal to 1).
Hence, it can be equipped with a Lebesgue measure. This implies that G∗

00 × (0�2) can
be equipped with Lebesgue measure �∗ as well. By Fubini’s theorem and Lemma 10,
�∗(h((G0(d) ∩ G00) \ A)) = 0. (Notice that all sets involved here are measurable.12) Be-
cause the mapping h is differentiable and has a differentiable inverse, it follows that
�((G0(d)∩ G00) \A)= 0.

Finally, Remark 1 shows that all games in G0 \ G00 have Property A. �

D.3 Proof of Theorem 2

Lemma 11 says that the Lebesgue measure of G0(d) \A is equal to 0. Notice that

G0 \A =
⋃

d∈Q#S×N
G0(d) \A�

where Q is the set of rational numbers. Thus, G0 \A has zero Lebesgue measure: it is the
union of countably many sets with zero Lebesgue measure.

Appendix E: Proving Propositions 1 and 2

Rest of the proof of Proposition 1. We want to show that V 1
ε (s1) = V 1

ε (s2) = ∅

∀ε > 0. Consider ε > 0 and suppose that V 1
ε (s1) is nonempty. It follows by the symmetry

of the game that V 1
ε (s2) is nonempty as well. Let

l= max
(v1�v2)∈V 1

ε (s1)
(2v1 + v2)

and note that (by symmetry again) l also satisfies

l= max
(v1�v2)∈V 1

ε (s2)
(v1 + 2v2)	

Thus, any (v1� v2) ∈ V 1
ε (s2) satisfies v2 ≤ 1

2 l − 1
2v1. Further, since B((v1� v2)� ε) must lie

in V̂ 1(s) ∩ {(v1� v2) ∈ R2 :v1� v2 ≥ 0}, it must be that v2 ≥ ε. Therefore, v1 ≤ l − 2ε, since
v1 + 2v2 ≤ l. Finally, define V 1

ε (s2|1)≡ {v1 ∈R :∃v2 s.t. (v1� v2) ∈ V 1
ε (s2)} and note that

l ≤ max
a∈{H�L}�(v1�v2)∈V 1

ε (s2)

{
2ψ1

1(a� s1� (v1� v2))+ψ1
2(a� s1� (v1� v2))

}
= 1

2 max
a∈{H�L}

{2g1(a� s1)+ g2(a� s1)} + 1
2 max
(v1�v2)∈V 1

ε (s2)
{2v1 + v2}

12We are grateful to an anonymous referee for pointing out an omission in our earlier proof.
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≤ 0 + 1
2 max
v1∈V 1

ε (s2|1)

{
2v1 + 1

2 l− 1
2v1

}

≤ max
v1∈V 1

ε (s2|1)

{
3
4v1 + 1

4 l
}

≤ 3
4(l− 2ε)+ 1

4 l

≤ l− 3
2ε	

But this is a contradiction, and so both V 1
ε (s1) and V 1

ε (s2)must be empty. �

The proof of Proposition 2 is very similar to the proof of Proposition 1.

Proof of Proposition 2. First, note that playingL after every history is a perfect pub-
lic equilibrium, so (0�0) ∈Eδ(s). Next, let

l= max
(v1�v2)∈Eδ(s1)

(2v1 + v2)

and note that (by symmetry) l also satisfies

l= max
(v1�v2)∈Eδ(s2)

(v1 + 2v2)	

Thus, any (v1� v2) ∈ Eδ(s2) satisfies v2 ≤ 1
2 l − 1

2v1. Since individual rationality requires
that v1� v2 ≥ 0, we must have l ≥ v1 ≥ 0. Furthermore, the condition that v1� v2 ≥ 0 im-
plies that if Eδ(s2) contains any point other than (0�0), then l > 0. Define Eδ(s2|1) ≡
{v1 ∈R :∃v2 s.t. (v1� v2) ∈Eδ(s2)} and note that

l ≤ max
a∈{H�L}�(v1�v2)∈Eδ(s2)

{
2ψδ1(a� s1� (v1� v2))+ψδ2(a� s1� (v1� v2))

}

= 1
1 + δ max

a∈{H�L}
{2g1(a� s1)+ g2(a� s1)} + δ

1 + δ max
(v1�v2)∈Eδ(s2)

{2v1 + v2}

≤ 0 + δ

1 + δ max
v1∈Eδ(s2|1)

{
2v1 + 1

2 l− 1
2v1

}

≤ δ

1 + δ2l

≤ l	

The final inequality is strict if l > 0, so we conclude that l = 0, and that Eδ(s2) and (by
symmetry) Eδ(s1) are equal to {(0�0)}. �

Appendix F: Proof of Proposition 3

Let U be the set of all unit vectors and let U+ be the subset of vectors with nonnegative
coordinates. For each state s, let

F(s)≡ {v :vi ≥ 0 and λ · v≤ cλ(s) for each λ ∈U}	
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We divide the proof of the proposition into four steps.
Step 1: V 1

0 (s) ⊆ F(s) for each state s. To see this, notice that the (limit) set of all
feasible payoffs is equal to

V̂ 1(s)= lim sup
δ→1

V̂ δ(s)= {v :λ · v≤ cλ(s) for each λ ∈U}	

Moreover, the Nash minmax for each player is equal to 0. The claim follows from the fact
that the self-FIR payoffs must be feasible and Nash-individually rational; see Section 7.1.

Step 2: F is self-(1�0)-feasible. Fix state s, and take any unit vector λ ∈U and v ∈ F(s).
It is enough to show that there exists an action profile a ∈A and a continuation payoffs
u ∈ ×s′ �=sF(s′) such that λ · v ≤ λ ·ψ1(a� s�u). When λ has only nonpositive coordinates,
the claim follows from the payoff assumptions and the fact that (0� 	 	 	 �0) ∈ F(s) for each
state s. From now on, suppose that λ has some strictly positive entries, and define

λ+ ∈ U+ by λ+
i ≡ cmax(λi�0) for all i, where c ≡ 1/

√∑
j(max(λj�0))2 > 0 is a constant

of proportionality.
As an intermediate step, notice that for each state s′, each x ∈ V̂ 1(s′), and each set of

players N0 � {1� 	 	 	 �N}, there exists x+ ∈ F(s′) such that x+
i ≥ max(xi�0) for each player

i /∈N0 and x+
i = 0 for each player i ∈N0. The claim follows from the fact that each payoff

vector x is the expected payoff from a strategy profile σ , given initial state s′. Consider a
strategy profile σ ′ in which, after each history, each action of players j ∈N0 ∪ {j :xj < 0}
is replaced by the inactive action 0j . Then, by the assumptions on the properties of the
inactive actions, the payoff x+ from such a profile has the required property.

Because v ∈ V̂ 1(s), there exist action profile a′ and continuation payoffs u′ ∈
×s′ �=sV̂ 1(s′) such that λ+ · v ≤ λ+ ·ψ1(a′� s�u′). Let a be an action profile obtained from
a′ by replacing the actions of players j ∈ N0 = {i :λi ≤ 0} by the inactive action 0j . Let
u(s′) = (u′(s′))+ ∈ F(s), where (u′(s′))+ is chosen as in the intermediate step. Then,
because vi ≥ 0 for each player i,

λ · v ≤
∑
i /∈N0

λivi = 1
c
λ+ · v≤ 1

c
λ+ ·ψ1(a′� s�u′)

≤ 1
c
λ+ ·ψ1(a� s�u)= λ ·ψ1(a� s�u)	

The last inequality follows from the fact that ψ1
j (a

′� s�u′) ≤ ψ1
j (a� s�u) for each player

j /∈ N0, and the last equality follows from the fact that ψ1
j (a� s�u) = 0 for each player

j ∈N0.
Step 3: F is self-(1�0)-individually rational. The claim follows from the assumptions

and the fact that (0� 	 	 	 �0) ∈ F(s) for each state s.
Steps 1, 2, and 3 establish that V 1

0 (s)= F(s) for each state s.
Step 4: Property A holds. By the assumption, there exists v∗ = (η/3N� 	 	 	 �η/3N)

and, for each state s, a (possibly mixed) action profile α∗
s such that for each state s,

g(α∗
s � s)= v∗,

B

(
v∗� η

3N

)
⊆ V 1

0 � and B

(
v∗� η

3N

)
⊆ co{g(a� s) :a ∈A}	 (F.1)
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For each ε > 0 and each state s, define

Fε(s)= εv∗ + (1 − ε)V 1
0 (s)	

Let C = η/(3N(1 + γmax(G))). We show that the collection Fε is self-1�Cε-FIR. To see
self-1�Cε-feasibility, notice that for each s,

Fε(s)⊆ co{εv∗ + (1 − ε)ψ1(a� s�u) :a ∈A�u ∈ ×s′ �=sV 1
0 (s

′)}

= co
{
εv∗ + (1 − ε)g(a� s)+∑s′ �=s γ(s′;a� s)(εv∗ + (1 − ε)us′)

1 + γ(a� s) :

a ∈A�u ∈ ×s′ �=sV 1
0 (s

′)
}

= co
{
g((1 − ε)a+ εα∗

s � s)+∑s′ �=s γ(s′;a� s)us′
1 + γ(a� s) :a ∈A�u ∈ ×s′ �=sFε(s′)

}
�

so (F.1) implies that

B(Fε(s)�Cε)⊆ co{ψ1(a� s�u) :a ∈A�u ∈ ×s′ �=sFε(s′)}	

Self-1�Cε-rationality is proven using a similar argument. Thus, for each v ∈ V 1
0 (s) and

each ε > 0, there exists v′ ∈ Fε(s) such that ‖v−v′‖ ≤ εM . It follows that V 1
0 (s)= clV 1

0+(s).

Appendix G: Markov strategies are not enough: Example

Example 6. The players and states are as in Example 1. The payoffs are

H

L

−1�3
0�0

State s1

H L

3�−1 0�0

State s2

As before, the transition rates in each state do not depend on actions and are equal
to 1. ♦

The vector of Nash minmax payoffs in each state is (0�0) for any discount factor. At
δ= 1, the sets of feasible payoffs in each state are

V̂ 1(s1) = co
{
(0�0)�

(
1
3 �

5
3

)
�
(

1� −1
3

)
�
(−2

3 �2
)}

V̂ 1(s2) = co
{
(0�0)�

(
5
3 �

1
3

)
�
(−1

3 �1
)
�
(

2� −2
3

)}
	

Recall that V Nash�1(s) is the set of feasible payoffs, starting from state s, that give both
players at least their Nash minmax payoffs:

V Nash�1(s)≡ V̂ 1(s)∩ {(v1� v2) ∈R2 :v1� v2 ≥ 0}	
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Those sets are given by

V Nash�1(s1) = co
{
(0�0)�

(
1
3 �

5
3

)
�
(

8
9 �0

)
�
(

0� 16
9

)}
V Nash�1(s2) = co

{
(0�0)�

(
5
3 �

1
3

)
�
(

0� 8
9

)
�
(

16
9 �0

)}
	

We can use Corollary 2 to show that all of these payoffs can be achieved (approximately)
in a PPE when players are patient.

Proposition 5. Suppose that the Identifiability Condition holds for the game in Exam-
ple 6. Then for each η > 0, there exists δ∗ < 1 such that for each v ∈ V Nash�1(s) and each
δ≥ δ∗, there exists v′ ∈Eδ(s) such that ‖v− v′‖ ≤ η.

Proof. Without loss of generality, consider initial state s1. First, we show that V 1
0 (s1)=

V Nash�1(s1): any self-1�0-FIR set must lie in (V Nash�1(s))s , so it is sufficient to show
that (V Nash�1(s))s is self-1�0-FIR. It is clearly self-1�0-individually rational, since all pay-
offs are weakly positive. It is also self-1�0-feasible: (0�0) = ψ1(L� s1� (0�0)), ( 1

3 �
5
3) =

ψ1(L� s1� (
16
9 �0)), ( 8

9 �0) = ψ1(H� s1� (
5
3 �

1
3)), and (0� 16

9 ) = ψ1(H� s1� (1� 5
9)). (Note that

(1� 5
9) = 2

5(0�
8
9)+ 3

5(
5
3 �

1
3), so (1� 5

9) ∈ Ṽ 1(s2).) It is straightforward to verify that the col-
lection (V 1

ε (s))s is continuous in ε at ε= 0. Thus, Property A holds, so Corollary 2 implies
the result. �

Next, consider a stationary Markov strategy αM = (αM1 �α
M
2 ), where αMi ∈ [0�1] is the

probability that player i plays action H in state i. Denote by Mδ(s) the set of payoffs
in initial state s that are generated by some stationary Markov strategy that yields both
players at least their minmax payoffs in both states:

Mδ(si)≡ {vδ((αM1 �αM2 )� si) : (αM1 �α
M
2 ) ∈ [0�1]2� vδ((αM1 �α

M
2 )� sj)≥ 0 for j ∈ {1�2}}	

The highest payoff for player 1 in Mδ(s1) is strictly lower than in V Nash�1(s1). The in-
tuition is that any stationary Markov strategy in which both players exert high effort H
with positive probability is “biased” in favor of player 2: because s1 is the initial state,
player 1 incurs effort costs and player 2 gets the benefit “up front,” while player 1 must
wait for player 2 to reciprocate. A (non-Markov) strategy in which player 1 initially exerts
low effort and after the first state transition, both players exert high effort, yields a higher
payoff for player 1. In particular, we can state the following proposition.

Proposition 6. For the game in Example 6, max{vi : (v1� v2) ∈Mδ(si)} ≤ 5
9 for i ∈ {1�2}

and all δ≤ 1.

Proof. Without loss of generality, consider i= 1. First, note that

vδ((αM1 �α
M
2 )� s1) = ψδ

(
αM1 � s1� v

δ((αM1 �α
M
2 )� s2)

)
= 1

1 + δ(−α
M
1 �3αM1 )+ δ

1 + δv
δ((αM1 �α

M
2 )� s2)	
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Symmetrically,

vδ((αM1 �α
M
2 )� s2)= 1

1 + δ(3α
M
2 �−αM2 )+ δ

1 + δv
δ((αM1 �α

M
2 )� s1)	

Solving yields

vδ((αM1 �α
M
2 )� s1) = 1 + δ

1 + 2δ
(−αM1 �3αM1 )+ δ

1 + 2δ
(3αM2 �−αM2 )

vδ((αM1 �α
M
2 )� s2) = 1 + δ

1 + 2δ
(3αM2 �−αM2 )+ δ

1 + 2δ
(−αM1 �3αM1 )	

Individuality rationality requires that vδ((αM1 �α
M
2 )� s)≥ 0 for each state s. The necessary

and sufficient condition is that

αM2 ∈
[

1 + δ
1 + 2δ

αM1 �
1 + 2δ
1 + δ α

M
1

]
	

Thus,

vδ1((α
M
1 �α

M
2 )� s1) = 1 + δ

1 + 2δ
(−αM1 )+ δ

1 + 2δ
(3αM2 )

≤ max
α∈[0�1]

{
1 + δ
1 + 2δ

(−α)+ δ

1 + 2δ
3 min

{
1�

1 + 2δ
1 + δ α

}}

≤ 5δ2 + δ− 1
4δ2 + 4δ+ 1

≤ 5
9 	 �

Note that for any payoff v ∈ V Nash�1(s), there does exist a stationary Markov strat-
egy that delivers payoff v from initial state s. For example, the strategy ( 1

6 �1) yields
2
3(− 1

6 �
1
2)+ 1

3(3�−1) = ( 8
9 �0) at initial state s1 and δ = 1. Consistent with Dutta’s (1995)

Lemma 1, any feasible payoff can be achieved by a stationary Markov strategy. The point
of the preceding example is that those Markov strategies may not be individually rational
after a state transition.

Appendix H: Sequential equilibrium: Example

Consider a version of Gossner and Hörner’s (2010) duenna game with public monitor-
ing: there are three players, and two actions for each player, B and C. The common
payoff to players 1 and 2 (the “lovers”) is 1 if they choose the same action and player 3
(the “duenna”) chooses the other action, and is 0 otherwise. The duenna gets the nega-
tive of the lovers’ payoff. The duenna’s action is publicly observed and, with probability
α ∈ (0�1), the actions of both lovers are observed. Otherwise, no information about their
actions is revealed. (Note that this monitoring structure satisfies the Identifiability Con-
dition.) Players observe their own payoffs each period. In the infinitely repeated game,
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the best perfect public equilibrium payoff for players 1 and 2 is 1
4 , attainable from in-

dependent, uniform randomization by all players. However, it is straightforward to con-
struct a sequential equilibrium that yields the lovers an expected payoff of v∗(α) ∈ ( 1

4 �
5
16)

(and the duenna a payoff of −v∗(α)).13

Example 7. There are two states and three players. In state s2, which is absorbing, the
duenna game described above is played. In initial state s1, each player has at least two
actions, and every action profile gives instantaneous payoffs gL ∈ ( 1

4 � v
∗(α)) to the lovers

and −1 to the duenna. There is exactly one profile a∗ with a positive transition rate; the
transition rate for all other profiles is 0. ♦

In any PPE of the stochastic game in Example 7, play remains in state s1 forever,
yielding gL for the lovers and −1 for the duenna. The reason is that any continuation
PPE in state s2 gives the lovers at most 1

4 < gL, and each player can unilaterally prevent a
transition out of state s1. There is a sequential equilibrium of the stochastic game, how-
ever, with payoffs that Pareto dominate that PPE payoff: in state s1, action a∗ is played
until the state changes (deviations in state s2 are ignored), and in state s2, players play the
sequential equilibrium of the duenna game that yields continuation payoffs v∗(α) > gL
for the lovers and −v∗(α) >−1 for the duenna.
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