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Social activity and network formation

Oliver Baetz
Department of Economics, University of Cambridge

This paper develops a simple model in which a social hierarchy emerges endoge-
nously when agents form a network for complementary interaction (“activity”).
Specifically, we assume that agents are ex ante identical and their best response
activity, as well as their value function, increases (strictly) concavely in the total
activity of their neighbors in the network. There exists a unique and stable posi-
tive activity equilibrium on exogenous networks under mild conditions. When we
endogenize network formation, equilibria become strongly structured: more ac-
tive players have more neighbors, i.e., a higher degree, but tend to sponsor fewer
links. Additionally, in strict equilibria, agents separate themselves into groups
characterized by the symmetric activity of their members. The characteristic ac-
tivity decreases in group size and the network is a complete multipartite graph.

Keywords. Network formation, strategic complementarity, supermodularity,
peer effects, social hierarchy.

JEL classification. C72, D00, D85.

1. Introduction

“Hierarchy [. . . ] appears to be one of the most fundamental features of social rela-
tions. Leaders of groups naturally emerge from interactions. . . ” (Magee and Galinsky 2008,
p. 352).

Optimal actions of individuals embedded in a network often depend on the actions of
their direct neighbors or friends. In recent years, mutually reinforcing actions—that is,
strategic complements—have received particular attention in the applied game theo-
retic literature. However, many papers following the seminal work of Ballester et al.
(2006) maintain two assumptions: first, optimal actions increase linearly in the action
of neighbors; second, the network of social interactions is fixed and exogenously given.
This paper varies both assumptions: we study agents whose optimal action increases
concavely; they are allowed to form costly links and thus create the network of social in-
teractions endogenously. As a result, equilibrium networks become strongly structured;
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a social hierarchy emerges through the interaction of homogenous agents in a simple
one-shot game.

Before we describe the model and our results in more detail, let us briefly con-
sider some examples of strategic complementarity in networks. First, strategic com-
plementarity has been documented in criminal networks, where delinquents learn how
to become a criminal—that is, to identify opportunities and adopt behaviors—through
their social ties.1 Similarly, there is strong evidence for strategic complementarity in
the learning effort of adolescent friends (see, e.g., Calvó-Armengol et al. 2009). In R&D
networks, strategic complementarity may arise when the investment of firms not only
generates innovation, but also develops the firm’s ability to identify, assimilate, and ex-
ploit external knowledge (Cohen and Levinthal 1989, 1990). On a very different note,
casual observation indicates that user activity of friends in online social networks often
displays complementarity.2 Last and on a broader perspective, strategic complemen-
tarity arises in any network in which an agent’s incentive to perform economic activity
increases in the activity of his neighbors. For instance, this can be the case in networks
of bilateral collaborations in which a generalized investment benefits all partners, net-
works of firms selling technologically complementary goods, supply chain networks,
and trading networks.

In this paper, we put forward a simple model that may be applied to the situations
above. Agents are ex ante identical—except possibly for their position in the network—
and simultaneously choose a one-dimensional action (their “activity”). In particular,
their best response function, as well as their value function, increases (strictly) concavely
in the total activity of their neighbors in the network.

We begin our analysis with a fixed and connected interaction network. Provided a
condition on the slope of the best response function holds, there exists a unique and sta-
ble equilibrium with strictly positive activity. In particular, adding a link to the network
strictly increases every player’s equilibrium activity—and thus everyone’s payoff—due
to strategic complementarity.

Thereafter, we endogenize network formation. Each agent can now form links at a
fixed marginal cost simultaneously with his activity choice. As a result, equilibria be-
come strongly structured: more active players have more neighbors (i.e., a higher de-
gree) but tend to sponsor fewer links.3 In comparison to interactions on exogenous net-
works as in Ballester et al. (2006), a much simpler measure of network centrality thus
suffices to rank individual activity.4

1For empirical evidence, see Case and Katz (1991), Glaeser et al. (1996), Ludwig et al. (2001), Bayer et al.
(2009), Damm and Dustmann (2014). For further theoretical work directly tailored to delinquent networks,
see Ballester et al. (2010), Calvó-Armengol and Zenou (2004), Patacchini and Zenou (2008).

2As a starting point, Ugander et al. (2011) provide cross-sectional evidence for a positive correlation be-
tween the site engagement of Facebook friends.

3More precisely, the marginal value of any given link is smaller for the more active adjacent player. Thus
there always exists a corresponding equilibrium in which all links are sponsored by the less active adjacent
players and that is more robust to changes in the linking costs. See Section 4.2 for a detailed discussion.

4Studying linear best responses, Ballester et al. (2006) show that each player’s equilibrium activity is pro-
portional to his Bonacich centrality—the total number of direct and indirect paths in the network originat-
ing from him.
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A social hierarchy emerges endogenously in equilibrium and our model replicates
several key stylized facts of real-world hierarchies.5 The resemblance becomes espe-
cially clear in strict equilibria, which are robust to the introduction of small heterogene-
ity in the players’ linking costs and their best response functions:

(a) Agents separate themselves into groups characterized by the symmetric activity of
their members. Specifically, all groups with more than one member have a differ-
ent size and the characteristic activity decreases in group size. Similarly, many
real-world social hierarchies have “a stratified structure, a pyramid shape with
fewer people at the top than at the bottom” (Magee and Galinsky 2008, p. 352).

(b) Agents try to “climb up the social ladder”: each player forms links to all more ac-
tive players, receives links from all less active ones, and has no connection to oth-
ers with similar activity (unless possibly when he is one of the most active players).

(c) Highly active agents choose high activity because many agents link to them. But
many agents link to them because they choose high activity. Real-world hierar-
chies have a similar self-enforcing nature: “Social interaction can shape individ-
uals’ behaviour in a hierarchy-reinforcing manner by guiding behaviour so that
it conforms to and becomes consistent with status-based expectations. Once
expectations are formed, people often treat targets in an expectancy-consistent
manner and, as a result, elicit expectancy-consistent responses from these targets,
leading to the unwitting fulfillment of those expectations” (Magee and Galinsky
2008, p. 373).

We now discuss how the paper fits into the literature. Recently, games with linear
best responses on exogenous networks have received considerable attention. The influ-
ential paper of Ballester et al. (2006) studies local strategic complements and global sub-
stitutes for small network effects. Other important contributions include Bramoullé and
Kranton (2007), Belhaj et al. (2012), Bramoullé et al. (2014). We extend this line of re-
search to increasing concave best responses but (mainly) focus on endogenous network
formation.

The joint analysis of action choices and endogenous network formation in one-
shot simultaneous-move games was initiated by Galeotti and Goyal (2010), who study
local public goods games (i.e., strategic substitutes). Our paper essentially adapts
Galeotti and Goyal (2010) to strategic complements. The star network constitutes the
most prominent robust equilibrium under strategic substitutes (Propositions 2 and 3 in
Galeotti and Goyal 2010) and is also a possible outcome under strategic complements.6  

5A social hierarchy is commonly defined as “an implicit or explicit rank order of individuals or groups
with respect to a valued social dimension” (Magee and Galinsky 2008, p. 354). In our model, individual
equilibrium activity constitutes this valued social dimension.

6In other words, a similar outcome may emerge in equilibrium under opposite interactions. In both
cases, ex ante identical agents separate themselves into two different groups, namely a central node (the
“center”) and n− 1 peripheral nodes (“spokes”). Under strategic substitutes, the spokes free ride on the cen-
ter and choose zero investment; the center chooses the optimal investment otherwise made by an isolated
player. In contrast, under strategic complements, spokes choose positive activity and the center benefits
from every additional spoke that is included.
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Zhang et al. (2011) extend this line of research to imperfect substitutes and Hiller (2013),
independently, extends it also to strategic complements. The latter differs from our pa-
per by assuming a convex value function, which leads to a type of “bang–bang” solution:
the unique equilibrium network is complete for low linking costs, while it is empty for
high linking costs. For costs in between, any other possible equilibrium network has a
core–periphery architecture. In our model, much richer social structures and activity
patterns exist.7

Finally, there is a related literature studying action choices and network formation in
dynamic games with myopic agents. In contrast to the setting here, the complementarity
effect from any two neighbors is reinforcing in Lagerås and Seim (2012).8 Furthermore,
the network structure converges to so-called nested split graphs, whereas many equi-
librium networks are non-nested graphs in our model.9

 König et al. (2014) analyze a
related dynamic model and test it empirically. Several other papers consider learning
dynamics in coordination games with a finite action space (see, e.g., Jackson and Watts
2002, Goyal and Vega-Redondo 2005). These papers pursue a different objective from
ours: the authors try to determine whether (under different timings of action and link
revisions) the risk-dominant or the efficient action prevails, and are less interested in
the equilibrium network.

The paper proceeds as follows: In the next section, we introduce the model and our
solution concept. In Section 3, we study the pure activity game on exogenous networks.
Section 4 considers the extended game with endogenous network formation and is split
into three subsections: first, we provide five simple equilibrium conditions that are in-
dividually necessary and jointly sufficient. Thereafter, we determine general properties
that hold in any equilibrium and discuss the connection between an agent’s activity and
his position in the network. Finally, we apply an equilibrium refinement and study strict
equilibria. Section 5 discusses the following additional important issues: linear best re-
sponses and network formation; welfare considerations; a two-stage game; two-sided
link formation. The last section concludes. All proofs are presented in the Appendix.

2. Model

Let N = {1�2� � � � � n} be the set of agents with n ≥ 3. All agents i ∈N choose a level of (so-
cial) activity xi ∈ X = [0�∞) simultaneously and the vector x = (x1�x2� � � � � xn) collects
their choices. The social interaction structure is either exogenously given or is formed
endogenously and simultaneously with the activity choices.

Social interaction structure

(a) Social interactions. Social interactions are bilateral. The corresponding interac-
tion network is represented by an undirected graph ḡ ∈ Ḡ, where Ḡ is the set of

7In fact, optimal deviations are quite different in both models, which has a significant effect on equilib-
rium analysis (see footnote 16). For further comparisons of both models, see also Section 5.

8That is, the cross-partial derivative of the best response function is weakly positive in their model,
whereas it is weakly negative in our model. For instance, Assumption 4 from Lagerås and Seim (2012) is
satisfied neither in our Example 1 nor Example 2.

9In nested split graphs, the neighborhood of any lower degree player is contained in the neighborhood
of all higher degree players.
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Figure 1. A complete three-partite graph.

symmetric Boolean n × n matrices with zeros on the main diagonal.10 Let ḡij de-
note the (i� j)th entry of ḡ; players i and j interact if and only if they share a link in
network ḡ, that is, ḡij = ḡji = 1. The operation ḡ ⊕ ij adds a link to network ḡ, i.e.,
the (i� j)th and (j� i)th entry of ḡ are set to 1, keeping the remaining network fixed.

The set Ni�ḡ = {j ∈ N : ḡij = 1} defines player i’s neighborhood in ḡ and its cardi-
nality ni�ḡ = |Ni�ḡ| is called i’s degree. Two players i and j are connected if either
ḡij = 1 or there are players i1� � � � � il with ḡii1 = ḡi1i2 = · · · = ḡilj = 1. Network ḡ is
connected if every pair of players is connected. An independent set is a non-empty
subset of players who do not share any direct links among themselves.

In a complete multipartite graph, the set of agents N can be partitioned into
an arbitrary number of independent sets (so-called partite sets or parts) such that
every agent shares a link with all agents outside of his own part (see, for instance,
Figure 1). There are several special cases: an empty network without any links is
a complete one-partite graph. A complete network—in which every pair of nodes
shares a link—is a complete n-partite graph. A complete biregular bipartite graph
consists of two different-sized partite sets and is called a star if one of these sets
contains a single player, the center, and the other one contains n − 1 spokes. Fi-
nally, a complete core–periphery graph consists of an arbitrary number of singleton
partite sets, the core players, and a single partite set that contains the remaining
periphery players.

(b) Link sponsorship. If the interaction network is formed endogenously, link spon-
sorship is represented by a directed graph g ∈ G, where G denotes the set of
Boolean n×n matrices with zeros on the main diagonal. Player i sponsors, forms,
or supports a link to player j if and only if entry gij = 1. Most importantly, we as-
sume one-sided link formation. That is, g induces the interaction network ḡ with
ḡij = max{gij�gji}.

Let ηi�g = |{j ∈ N :gij = 1}| count i’s self-sponsored links in g. Sponsorship vec-
tor gi, the ith row of g, summarizes i’s link sponsorship and gi denotes the set of
i’s possible sponsorship vectors. The operation

g−i � g′
i ≡ (gt1� � � � � g

t
i−1� g

′t
i � g

t
i+1� � � � � g

t
n)

t

replaces i’s sponsorship vector in g by g′
i ∈ gi.

10For simplicity, we identify the network or graph with its adjacency matrix.
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Payoffs and modeling assumptions

Let πi(x� ḡ) denote player i’s gross payoff (i.e., without linking costs) under activity x
on interaction network ḡ. If the interaction network is formed endogenously, players
additionally incur a fixed cost k> 0 for each self-sponsored link and net payoffs read as

�i(x� g) = πi(x� ḡ)−ηi�gk� ∀i ∈ N� (1)

Our model differs from the existing literature by combining two crucial assumptions.
First, personal activity and the total activity of neighbors are strategic complements such
that a player desires to be active if one of his neighbors is active and then increases his
activity at a diminishing rate.11

Assumption 1 (Best response function). Player i’s unique best response to activity x−i

on interaction network ḡ satisfies

x∗
i (x−i� ḡ) = f

( ∑
j∈Ni�ḡ

xj

)
� ∀i ∈N�

where f (0) = 0, f ′(0) > 1, 0 ≤ limx→∞ f ′(x) < 1/(n− 1), and f ′′ < 0.

Second, the benefits from social activity are limited. Specifically, agents who op-
timize their personal activity receive diminishing marginal (indirect) utility from total
neighbor activity.12

Assumption 2 (Value function). Player i’s maximized gross payoff under activity x−i on
interaction network ḡ satisfies

π∗
i (x

∗
i �x−i� ḡ) = h

( ∑
j∈Ni�ḡ

xj

)
� ∀i ∈N�

where h(0) = 0, h′ > 0 and h′′ < 0.

Below, we introduce two specific additively separable gross payoff functions that sat-
isfy Assumptions 1 and 2. To fix ideas for the first of these payoff functions, assume that
the interaction network ḡ represents a network of bilateral collaborations and activity
xi is a generalized investment that benefits all partners. Specifically, there are quadratic
costs for personal investment 1

2cx
2
i and benefits from investment are proportional to a

concave function v(·) of total partner investment.

11The assumptions on f ′ ensure that a positive activity equilibrium exists; see Section 3. In particular,
sufficient concavity bounds total activity and prevents an infinite solution. Under (increasing) linear best
responses, a restriction on the slope of the best response function (Ballester et al. 2006) or a bounded action
space (Belhaj et al. 2012) are usually imposed for the same reason.

12The “opposite” case of a convex value function is analyzed by Hiller (2013).
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Example 1. We have

πi(x� ḡ) = v

( ∑
j∈Ni�ḡ

xj

)
xi − 1

2cx
2
i �

where c > 0, v(0) = 0, v′(0) > c, 0 ≤ limx→∞ v′(x) < c/(n− 1), and v2 is strictly concave. ♦

The payoff function from Example 1 implies the best response and value function

x∗
i = 1

c
v

( ∑
j∈Ni�ḡ

xj

)
and π∗

i = 1
2c

v

( ∑
j∈Ni�ḡ

xj

)2

�

In Section 4.3, we employ a different example, the “baseline model,” to obtain addi-
tional insights. Here, the gross payoff is additively separable into a Cobb–Douglas util-
ity/production function with diminishing returns to scale and linear activity costs.

Example 2 (The baseline model). We have

πi(x� ḡ) = 2
( ∑
j∈Ni�ḡ

xj

)q/2

x
1/2
i − cxi�

where q ∈ (0�1) and c > 0. ♦

The payoff function of the baseline model implies the best response and value
function

x∗
i = 1

c2

( ∑
j∈Ni�ḡ

xj

)q

and π∗
i = 1

c

( ∑
j∈Ni�ḡ

xj

)q

�

Equilibrium conditions

(a) Exogenous networks. In Section 3, we assume that a (connected) interaction net-
work ḡ is exogenously given and known to all players. A player’s strategy is merely
his level of activity xi ≥ 0, which is chosen simultaneously by all players. Thus an
activity vector x∗ constitutes a (strict) Nash equilibrium if and only if it solves the
best response functions of all players simultaneously:

x∗
i = f

( ∑
j∈Ni�ḡ

x∗
j

)
� ∀i ∈N� (2)

In particular, every player chooses strictly positive activity in a positive activity
equilibrium x∗ > 0.

(b) Endogenous network formation. In Section 4, the network is formed endoge-
nously: all players simultaneously choose their activity xi ≥ 0 and a vector of self-
sponsored links gi ∈ gi. Thus each player’s strategy is described by a pair (xi� gi)
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and their net payoff is given by (1). A pair (x∗� g∗) constitutes a Nash equilibrium
if and only if no player gains from choosing some alternative strategy (x′

i� g
′
i), that

is,

�i(x
∗
i �x∗

−i� g
∗) ≥�i(x

′
i�x∗

−i� g
∗
−i � g′

i)� ∀i ∈N�x′
i ≥ 0� g′

i ∈ gi� (3)

Throughout the paper, we apply two equilibrium refinements. Generic equilib-
ria are robust to small changes of linking costs.13 Moreover, in strict equilibria,
the condition in (3) holds as a strict inequality for all players.

3. Exogenous networks

This section studies the pure activity game on exogenous (connected) networks, which
is closely related to supermodular games. In the latter games, πi has to be supermodular
in (xi�x−i), i.e.,

∂2πi

∂xi ∂xj
≥ 0� for all j 
= i ∈N�

and X is a closed interval in R. Indeed, the pure activity game on exogenous networks
has the following related property.

Remark 1. The function πi has positive cross-partial derivatives at best response activ-
ity by Assumption 1, i.e.,

∂2πi

∂xi ∂xj

∣∣∣∣
xi=x∗

i (x−i�ḡ)

≥ 0� for all j 
= i ∈N�

and X = [0�∞) is a left-closed interval in R.

As a consequence, we can adapt concepts from the literature on supermodular
games by restricting the strategy space conveniently.14 An equilibrium with strictly
positive activity exists due to the shape of the best response function (Assumption 1):
(i) a sufficiently steep incline at the origin prevents ever-decreasing activity while
(ii) a sufficiently small slope at high levels of neighbor activity prevents ever-increasing
play. Furthermore, strict concavity makes the positive activity equilibrium unique and
stable. It also bounds individual equilibrium activity below total neighbor activity. Fi-
nally, adding a link to the network increases every player’s equilibrium activity (and thus
everyone’s gross payoff) due to strategic complementarity and connectedness. In sum-
mary, the following results hold on any connected network ḡ.15

13More precisely, we say that a pair (x∗� g∗) constitutes a generic equilibrium for linking costs k if and
only if (x∗� g∗) constitutes an equilibrium for all k′ ∈ (k− ε�k+ ε) for some ε > 0.

14The main results were developed in the classic papers Topkis (1979), Vives (1990), and Milgrom and
Roberts (1990). For a more recent overview, see Vives (2005).

15In a disconnected network, the proposition holds true for any component of at least three players. For
a connected pair of players, Proposition 1(ii) is not valid as x∗

i = x∗
j > 0, whereas an isolated player optimally

chooses zero activity.
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Proposition 1. A unique positive activity equilibrium x∗ > 0 exists and

(i) x∗ is globally asymptotically stable for x > 0 under best response dynamics

(ii) x∗
i <

∑
j∈Ni

x∗
j

(iii) x∗
ḡ⊕jj′ > x∗̄

g and π∗
i (ḡ ⊕ jj′) > π∗

i (ḡ), ∀i ∈N if ḡjj′ = 0.

4. Endogenous network formation

This section treats the extended game with endogenous network formation, in which
players simultaneously choose a level of activity and a vector of self-sponsored links. As
a result, a Nash equilibrium now consists of a pair (x∗� g∗).

We split the subsequent analysis into three subsections: first, we use Assumptions 1
and 2 to find five simple equilibrium conditions that are individually necessary and
jointly sufficient. On this basis, we then derive general properties that hold in any
equilibrium and show a strong connection between a player’s activity, degree, and to-
tal linking costs. To obtain further insights, we finally apply an equilibrium refinement
and study how players separate themselves into groups of symmetric activity in strict
equilibria.

4.1 Five simple equilibrium conditions

Recall that (3) provides a (general) equilibrium condition for the extended game with en-
dogenous networks formation. We build intuition for the simplified version in Lemma 1
below through three observations. First, each player’s equilibrium activity has to be op-
timal given the activity of his neighbors in the induced interaction network ḡ∗, which
leads to condition (i) of the lemma. Assume for the moment that a candidate equilib-
rium meets this condition and that no link is sponsored by both adjacent players (con-
dition (ii)), which would be wasteful.

The second observation examines an “optimized” deviation from link sponsorship
in the candidate equilibrium. Consider a deviating player who alters his total neighbor
activity. As he has a unique best response activity x∗

i (x−i� ḡ), his “optimized” deviation
from link sponsorship involves simultaneous activity adjustment to his new neighbor
activity. Consequently, only his value from any induced post-deviation network ḡ′ needs
to be considered.

Finally, we exploit the concavity of the value function and the linearity of linking
costs. If an arbitrary “optimized” deviation from link sponsorship is profitable, then
so is one of the following simple (activity-adjusted) deviations: either to add a single
link to the most active non-neighbor (tested by condition (iii)), or to delete the single
least valuable self-sponsored link (tested by condition (iv)), or to do both simultaneously
(tested by condition (v)).16 Thus we arrive at five simple equilibrium conditions:

16This result nicely illustrates a core difference to Hiller (2013). Assume a player desires to deviate from
a candidate equilibrium with a complete network. Under a concave value function, the player maximizes
his average deviation benefit by deleting a single self-sponsored link. Conversely, under a convex value
function, he gains his highest average deviation benefit by deleting all self-sponsored links.
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Lemma 1. A pair (x∗� g∗) constitutes a Nash equilibrium under endogenous network for-
mation for linking costs k> 0 if and only if for all i� i′ ∈N ,

(i) x∗
i = f (

∑
j∈Ni�ḡ∗ x

∗
j )

(ii) gii′ + gi′i ∈ {0�1}
(iii) h(

∑
j∈Ni�ḡ∗ x

∗
j + x̄i)− h(

∑
j∈Ni�ḡ∗ x

∗
j ) ≤ k

(iv) h(
∑

j∈Ni�ḡ∗ x
∗
j )− h(

∑
j∈Ni�ḡ∗ x

∗
j − ¯xi) ≥ k

(v) ¯xi ≥ x̄i,

where x̄i = maxj : ḡ∗
ij=0{x∗

j �0}, ¯xi = minj : g∗
ij=1{x∗

j �∞}, and h(−∞)= −∞.

4.2 General properties of Nash equilibria

It is one of the main objectives of this section to investigate structural properties of equi-
libria that hold independently from the direction of link sponsorship—that is, finding
the set of equilibrium interaction networks and the corresponding activity levels. This
exercise would be greatly simplified by making a particular assumption on the direc-
tion of link sponsorship—namely that each link is sponsored by the less active adjacent
player (“upward linking”). The next paragraph discusses the context in which this as-
sumption is valid.

For certain specifications of the model, there exist equilibria without upward link-
ing. However, any link has a higher marginal value for the less active adjacent player.
Consequently, any equilibrium without upward linking corresponds to one with upward
linking. The corresponding equilibrium with upward linking has the same structure (in-
teraction network and activity levels) but is sustainable under a (weakly) greater interval
of linking costs. Lemma 2 below summarizes this finding. As a result, we may assume
without loss of generality that upward linking holds so as to derive structural properties
of equilibria—as long as we are not concerned with the direction of link sponsorship.

Lemma 2. Let (x∗� g∗) be an equilibrium and consider g′ with (i) g′
ij = 1 and g′

ji = 0 if
ḡ∗
ij = 1 and x∗

i < x∗
j , and (ii) g′

ij = g∗
ij otherwise. Then (x∗� g′) is an equilibrium for a weakly

greater interval of linking costs k and ḡ′ = ḡ∗.

Assuming upward linking, we can show a strong connection between an agent’s ac-
tivity and his position in the network. Since the value function increases in total neigh-
bor activity, more active players are more “popular” friends. As a result, they have more
neighbors in any equilibrium.

However, despite their larger neighborhood, more active players tend to sponsor
fewer links themselves: their marginal value of any particular link—and thus their will-
ingness to pay for that link—is smaller. Thereby, highly active players benefit in two ways
from their attractiveness: they not only have many friends, but also tend to pay little for
link formation.
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There are two further regularities in generic equilibria with upward linking: first, an
agent who sponsors a link to another agent with some particular level of activity also
forms links to all agents with higher activity. Second, agents who access the same neigh-
bor activity through incoming links behave similarly: they sponsor the same number of
links and choose the same level of activity. The following proposition describes these
properties formally.

Proposition 2. Consider any generic equilibrium (x∗� g∗) with upward linking.

(i) If x∗
i > x∗

j , then ηi ≤ ηj and ni > nj .

(ii) If gij = 1 and x∗
j′ > x∗

j , then gij′ = 1.

(iii) If and only if
∑

l : gli=1 x
∗
l = ∑

l : glj=1 x
∗
l , then ηi = ηj and x∗

i = x∗
j .

4.3 Equilibrium refinement: Strict Nash equilibria

This section applies an equilibrium refinement and studies strict Nash equilibria. To
begin with, we briefly motivate this choice of refinement by comparing weak (generic)
equilibria with strict equilibria. As discussed in Section 2, generic equilibria are, by def-
inition, robust to small changes of (individual) linking costs, that is, Lemma 1(iii) and
(iv) hold as strict inequalities. However, when Lemma 1(v) holds with equality, generic
equilibria are not strict. Then some player i sponsors a link to player j with activity x̂

but only shares links with a strict subset of all players with that activity. In particular,
player i can relocate his link from j to a non-neighbor from this group without affecting
his payoff. As a result, these weak equilibria are not robust to small changes of the best
response activity and are only meaningful in a perfectly symmetric world.

In contrast, strict equilibria are robust to the introduction of small heterogeneity in
the best response functions. More precisely, consider the homogeneous model and a
heterogeneous variation in which each player’s best response function is slightly modi-
fied. For any strict equilibrium (x∗� g∗) of the homogeneous model, there exists an equi-
librium (x′� g∗) in the heterogeneous model such that the equilibrium activity vector is
slightly altered but link sponsorship is unchanged. Definitions 1 and 2 in the Appendix
formalize these ideas, and the following proposition summarizes our findings.

Proposition 3. An equilibrium (x∗� g∗) is robust to the introduction of small hetero-
geneity in the best response functions if and only if the equilibrium is strict.

As strict equilibria are robust to small departures from symmetry, their properties
deserve special attention when thinking about applications. In fact, in strict equilibria,
players separate themselves into groups (partite sets) characterized by the symmet-
ric activity of their members. Moreover, every pair of players from different partite
sets shares a link while no pair of players from the same group is connected. For-
mally, the equilibrium network is a complete multipartite graph with different-sized
non-singleton parts. Figure 2 shows a schematic illustration of such a graph. Note that
the characterization allows, among other things, for the empty network, the complete
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Figure 2. Schematic illustration of a directed complete four-partite graph with different-sized
partite sets and upward linking.

network, complete biregular bipartite networks, and complete core–periphery networks
(see the definitions in Section 2). The next proposition summarizes our findings.

Proposition 4. Consider any strict equilibrium (x∗� g∗).

(i) The equilibrium network ḡ∗ is a complete multipartite graph.

(ii) All non-singleton partite sets are of different size.

(iii) An agent’s activity depends on, and decreases in, the size of his part.

A social hierarchy emerges endogenously in equilibrium: if there are singleton par-
tite sets, the corresponding players display the highest level of activity. Apart from that,
the symmetric activity within a partite set decreases in its size. The endogenous hierar-
chy becomes even more apparent under upward linking (as introduced in Section 4.2):
each player forms links to all more active players, receives links from all less active play-
ers, and has no connection to others with similar activity (unless possibly when he is
one of the most active players and constitutes a singleton partite set).

Although Proposition 4 cleanly characterizes strict equilibria, it does not deal with
equilibrium existence. Our next result shows that strict equilibria with up to two levels of
activity exist—independently of the details of the model—for proper intervals of linking
costs k.

Proposition 5. Consider any complete multipartite graph ĝ with different-sized non-
singleton parts. A strict equilibrium (x∗� g∗) with ḡ∗ = ĝ exists if

(i) ĝ is the empty network for k ∈ (0�∞) with x∗
i = 0

(ii) ĝ is the complete network for k ∈ (0�kc) with x∗
i = xc > 0

(iii) ĝ is a complete biregular bipartite network for k ∈ (¯k� k̄) with x∗
i > 0 ∈ {x1�x2}.

Unfortunately, we are unable to provide any further general theoretical results about
equilibria with more levels of activity or other networks. Instead, we made an extensive
numerical analysis of the baseline model (Example 2), leading to two major insights:
first, there exist strict equilibria with many levels of activity for certain specifications of
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the model. For instance, a complete four-partite graph as illustrated in Figure 2 con-
stitutes an equilibrium with four levels of activity for some specifications. Second, it
depends critically on the details of the model—i.e., in the baseline model on exponent
q—whether there exist strict equilibria with particular graphs (allowed by Proposition 4
but different from those in Proposition 5) for a non-empty interval of linking costs. In
conclusion, we make the following important observation:

Remark 2. Depending on the details of the model—i.e., the functional forms of f (·) and
h(·)—there may exist strict equilibria with many activity levels.

5. Discussion

In this section, we discuss further aspects and variations of the model, which may be
used as a basis for future research.

(a) Linear best responses and network formation. Our results from Sections 4.1–4.3
readily extend to linear best responses as long as the value function remains con-
cave.17 However, the classic linear-quadratic payoff function with local comple-
ments as introduced in Ballester et al. (2006), that is,

πi(x� ḡ) = αxi − 1
2x

2
i + δxi

∑
j∈Ni�ḡ

xj�

implies the convex value function

h= 1
2

(
α+ δ

∑
j∈Ni�ḡ

xj

)2

�

As a result, this particular payoff function is covered by the analysis in Hiller
(2013): the equilibrium network is either empty, complete, or a core–periphery
graph.

(b) Welfare analysis. A welfare analysis of our model would be desirable, yet turns out
to be complicated. When payoffs are weakly convex in the effort levels of neigh-
bors, convexity leads to a type of bang–bang solution and the efficient network is
either empty or complete (Hiller 2013). Conversely, when payoffs are concave in
neighbor effort, as in our model, we conjecture that the set of efficient networks is
much larger.

(c) Two-stage game. In our model, players simultaneously choose their link spon-
sorship and level of activity. However, in practice, activity adjustments are made
much more frequently than link alternations. Thus a two-period model seems to
be a reasonable modeling alternative: agents decide about their link sponsorship

17So as to guarantee a positive activity equilibrium on any (exogenous) network, agents must now have
strictly positive activity in isolation and the best response function must be sufficiently flat; see Bramoullé
et al. (2014).
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in the first period, anticipating its effects on everyone’s activity choice in the sec-
ond period. Unfortunately, such a model is a lot less tractable: to solve it via back-
ward induction, one would need to characterize the equilibrium activity on any
exogenous network—an as yet unsolved problem for an arbitrary concave best
response function.

(d) Two-sided link formation. We have focused our analysis on one-sided link forma-
tion. For future research, it would also be interesting to consider two-sided link
formation so as to compare the equilibrium networks and activity patterns (see
Jackson and Wolinsky 1996 for a formal concept). As both adjacent players now
have to sponsor the link, Lemma 2 (that is, upward linking) is no longer applicable,
so our main results may not carry over.

6. Conclusion

Social hierarchies and behavioral complementarities (peer effects) are well documented
empirical phenomena. This paper brings both of them together in a tractable theoretical
model: a social hierarchy is the emergent property of a game in which ex ante identical
agents form a network for complementary interaction. The model may be applied to
understand hierarchies in very different circumstances, for instance, in criminal net-
works or among school friends. Our results show that there exists a unique and stable
positive activity equilibrium on exogenous networks. Furthermore, endogenous equi-
librium networks are strongly structured; a simple measure of network centrality—the
number of neighbors—suffices to rank individual activity. Finally, in strict equilibria,
the network is a complete multipartite graph with higher individual activity in smaller
partite sets.

Apart from the points raised in the last section, there are two particularly promising
directions for future research: first, we only consider one-shot interactions and, sec-
ond, our results are only robust to small levels of heterogeneity. We believe that ex-
tending our research to a dynamic model allowing for arbitrary heterogeneity would be
strongly appealing to social scientists from other disciplines. For instance, there is a well
established sociological literature on how status differences may amplify over time—
known as the Matthew effect (Merton 1968)—which such a model may elaborate and
substantiate.

Appendix: Proofs from the main body

Proof of Remark 1. Assumption 1 states that there is a unique best response x∗
i (x−i� ḡ)

that is an increasing, concave function of i’s total neighbor activity. Thus x∗
i maximizes

πi and ∂x∗
i /∂xj ≥ 0.

The necessary condition for a maximum implies

∂πi

∂xi

∣∣∣∣
xi=x∗

i (x−i�ḡ)

= 0�
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Using the implicit function theorem and rewriting, we get

∂2πi

∂xi ∂xj

∣∣∣∣
xi=x∗

i (x−i�ḡ)

= − ∂2πi

∂xi ∂xi

∣∣∣∣
xi=x∗

i (x−i�ḡ)

∂x∗
i

∂xj
�

As x∗
i is a maximum,

∂2πi

∂xi ∂xi

∣∣∣∣
xi=x∗

i (x−i�ḡ)

< 0

and the claim follows. �

Proof of Proposition 1. First, we prove existence and uniqueness of the positive ac-
tivity equilibrium x∗ > 0 and subsequently show its properties. Let us define the func-
tion fḡ :Xn →Xn as

fḡ(x) =
⎛
⎜⎝
f (

∑
j∈N1�ḡ

xj)

���

f (
∑

j∈Nn�ḡ
xj)

⎞
⎟⎠ ;

fḡ�i(x) denotes the ith entry of fḡ(x). From the equilibrium condition in (2), it is clear
that x∗ is an equilibrium of the pure activity game on exogenous network ḡ if and only if
x∗ is a fixed point of fḡ, that is, fḡ(x∗)= x∗.

First, consider the Taylor expansion of f around 0 evaluated at ε > 0:

f (ε) = f (0)+ f ′(0)ε+ f ′′(0)
2! ε2 + · · · �

Together with Assumption 1, it follows that f (ε)− ε > 0 for sufficiently small ε. Further-
more, as ḡ is connected and f is strictly increasing, f (ni�ḡε) ≥ f (ε) > ε > 0, i.e., there
exists a vector a with fḡ(a) > a > 0.

Second, consider the function g(x) = f ((n − 1)x) − x. Note that g(x) is decreasing
for sufficiently high x by Assumption 1. As g(x) is also concave, there exists some x0
with g(x) < 0 for all x ≥ x0 or, equivalently, b with f ((n − 1)b) < b. Furthermore, since
f strictly increases and each player has at most n − 1 neighbors, there exists a vector b
with fḡ(b) < b.

Finally, as fḡ is non-decreasing, a < fḡ(x) < b for x ∈ [a�b]. Therefore, fḡ : [a�b] →
[a�b], Tarski’s fixed point theorem (Tarski 1955) is applicable, and fḡ has at least one
fixed point x∗ ∈ [a�b].

To show uniqueness of x∗ > 0, we use three important properties of fḡ. First, fḡ is
non-decreasing, that is, x ≥ y implies fḡ(x) ≥ fḡ(y). This holds true because f is strictly
increasing and so f (

∑
j∈Ni�ḡ

xj) ≥ f (
∑

j∈Ni�ḡ
yj), ∀i. Second, x > 0 implies fḡ�i(x) > 0 as

ḡ is connected so that each player i has at least one neighbor. Third, fḡ(λx) > λfḡ(x)
for λ ∈ (0�1) and x > 0 as f is strictly concave and ḡ connected, i.e., f (

∑
j∈Ni�ḡ

λxj) >

λf(
∑

j∈Ni�ḡ
xj), ∀i.

Let u(x) = fḡ(x) − x. Using notation from Kennan (2001), u is strictly R-quasicon-
cave: u(x) = 0, x > 0, and λ ∈ (0�1) implies u(λx) = fḡ(λx) − λx > λ(fḡ(x) − x) = 0.
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Also, u is quasi-increasing: xi = yi and xj ≥ yj for all j ∈ N implies ui(x) = fḡ�i(x) − xi ≥
fḡ�i(y) − yi = ui(y). Thus the conditions of Theorem 3.1 in Kennan (2001) are satisfied
and fḡ has at most one fixed point x∗ > 0.

We now turn to the properties of x∗ > 0.
Part (i). The proof follows similar reasoning as applied in Theorem 8 of Milgrom

and Roberts (1990). Fix some x̃ > 0. Then x∗ is globally asymptotically stable under best
response dynamics if iterative application of fḡ on x̃ converges to x∗. Using the same no-
tation as above, we can find a�b such that x∗� x̃ ∈ (a�b) and restricted fḡ : [a�b] → (a�b),
as a can be arbitrarily close to 0 and b can be arbitrarily large. Consider three sequences
starting at α1 ∈ {a�b� x̃} and αs = fḡ(α

s−1). As fḡ is non-decreasing and fḡ(a) > a, the
sequence as is non-decreasing. As it is also bounded above by b, it converges to some
x0 = sup(as). As both sides of as = fḡ(as−1) converge to x0, x0 is a fixed point of fḡ in
(a�b) and, thus, x0 = x∗. For similar reasons, bs is a nonincreasing sequence converging
to x∗. Finally, x̃s ∈ [as�bs] at the sth elements of the three series, as fḡ is non-decreasing
so that the sequence x̃s converges to x∗ as well.

For the proofs of the other two parts, we need to provide a stronger finding to facili-
tate strict comparative statics:

Claim 1. Consider some x1 > 0 with fḡ(x1) ≥ x1 and at least one strict entry fḡ�i(x1) >

x1
i . Then the sequence xs with fḡ(xs) = xs−1 converges to the unique positive fixed point

x∗ > x1.

Proof. From the reasoning above, it is clear that the sequence xs converges to the
unique positive fixed point x∗ = fḡ(x∗). As fḡ(x1) ≥ x1 and fḡ is non-decreasing, the
sequence xs is also non-decreasing and, thus, x∗ ≥ x1. Assume, by contradiction, that
there exists i ∈ N with x∗

i = x1
i . As x∗ ≥ x1 and, by the fixed point property, x∗

i = fḡ�i(x∗),
it follows immediately that x∗

j = x1
j for all neighbors j ∈ Ni�ḡ. Iterating the argument im-

plies x∗ = x1 since ḡ is connected. As x∗ is a fixed point, fḡ(x1) = x1, a contradiction to
the assumptions of the claim. �

Part (ii). Note that there is a unique positive x̂ for which x̂ = f (x̂) by Assumption 1.
Furthermore, y > x̂ implies f (y) < y. Consider any connected graph ḡ with n > 2 and
assume the hypothetical starting effort level x1 = x̂. There is at least one player k who
has more than one neighbor in ḡ and for whom

fḡ�k(x1)≥ f (2x̂) > f(x̂) = x̂= x1
k�

All other players have at least one neighbor, i.e., fḡ�i(x1) ≥ x1
i . By Claim 1, this implies

x∗ > x1 = x̂. As
∑

j∈Ni
x∗
j > x̂ for any player i, it follows from the reasoning above that

x∗
i = f

(∑
j∈Ni

x∗
j

)
<

∑
j∈Ni

x∗
j � ∀i ∈ N�

Part (iii). Consider some network with ḡij = 0. Since fḡ(x∗̄
g) = x∗̄

g > 0, it follows
that fg⊕ij(x∗̄

g) ≥ fḡ(x∗̄
g) = x∗̄

g and fg⊕ij�i(x∗̄
g) > fḡ�i(x∗̄

g). By Claim 1, the sequence xs =
fg⊕ij(xs−1) with x1 = x∗̄

g then converges to x∗
g⊕ij

> x1 = x∗̄
g. �
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Proof of Lemma 1. The proof simplifies the general equilibrium condition in (3). First,
this general condition implies that every player chooses his unique best response activ-
ity x∗

i (x∗
−i� ḡ

∗) in equilibrium (see Assumption 1): otherwise, a player improves his pay-
off by merely changing his activity. That is, condition (i) of the lemma is a necessary
equilibrium condition.

By Assumption 2, a player then receives gross payoff π∗
i = h(

∑
j∈Ni�ḡ∗ x

∗
j ) from stick-

ing to his (candidate) equilibrium strategy. Since there is a unique best response activity
x∗
i (x−i� ḡ) for any network ḡ, an optimal deviation from (equilibrium) link sponsorship

involves an adjustment of activity,

πi(x
′
i�x∗

−i� g
∗
−i � g′

i)≤ πi(x
∗
i (x∗

−i� g
∗
−i � g′

i)�x∗
−i� g

∗
−i � g′

i) = h

( ∑
j∈N

i�g∗−i
�g′

i

x∗
j

)

for all i ∈ N , x′
i ≥ 0, g′

i ∈ gi. Thus, a pair (x∗� g∗) constitutes an equilibrium if and only
if each agent chooses optimal activity (condition (i) of the lemma) and no player gains
from changing his link sponsorship while simultaneously adjusting his activity to the
new network. Mathematically, the second condition reads as

h

( ∑
j∈Ni�ḡ∗

x∗
j

)
−ηi�g∗k≥ h

( ∑
j∈N

i�g∗−i
�g′

i

x∗
j

)
−ηi�g∗

−i�g′
i
k� ∀i ∈N�g′

i ∈ gi� (4)

It is easy to check that (4) implies conditions (ii)–(v) of the lemma. Conversely, we are
going to show that a violation of (4) implies a violation of at least one of the conditions—
i.e., conditions (ii)–(v) jointly imply (4). Assume some vector g′

i ∈ gi violates (4) in a can-
didate equilibrium (x∗� g∗) in which each link is only sponsored by one of the adjacent
players (i.e., condition (ii) holds true).

If deviation g′
i strictly increases the set of players to whom i supports a link, then

adding a link to the most active non-neighbor, arg maxj : ḡ∗
ij=0{x∗

j }, must also be a prof-

itable deviation (a violation of condition (iii)). If deviation g′
i instead strictly decreases

the set of players to whom i supports a link, deleting only the least valuable self-
sponsored link, arg minj : g∗

ij=1{x∗
j }, must also be a profitable deviation (a violation of con-

dition (iv)).
Finally, consider a profitable deviation g′

i that demands deleting some self-
sponsored links and forming some new ones instead. Then either condition (v) is vi-
olated or the activity of all players to whom i forms a new link is weakly lower than the
activity of all players to whom i deletes his links. Consequently, there is a weakly better
deviation g′′

i : if deviation g′
i increases i’s number of self-sponsored links, g′′

i demands
forming some new links without deleting any old links. If i’s number of self-sponsored
links decreases instead, g′′

i demands deleting some links without adding any. Both these
cases are discussed above. �

Proof of Lemma 2. First note that g′ differs from g∗ only insofar as links between two
players with unequal activity are now sponsored by the less active player; in particular,
ḡ′ = ḡ∗ and Ni�ḡ′ = Ni�ḡ∗ . Therefore, x∗ is an equilibrium activity vector on ḡ′—that is,
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(x∗� g′) meets the first equilibrium condition of Lemma 1—and the total neighbor activ-
ity accessed by any player is unaltered, that is,

∑
j∈Ni�ḡ′ x

∗
j = ∑

j∈Ni�ḡ∗ x
∗
j . Likewise, every

link is only sponsored by one adjacent player (i.e., the second condition holds true).
As ḡ′ = ḡ∗ and every player has unaltered activity x∗

i in g′, no player wants to form any
additional link(s) in g′ under any linking costs k under which he refrains from adding
a link in g∗; hence, in particular, (x∗� g′) meets the third equilibrium condition from
Lemma 1.

Consider any link that is sponsored by the same player in g′ as in g∗, i.e., g′
ij = g∗

ij = 1.
For the same reason as above, no player wants to delete (or switch) such a link for any
linking costs k under which he refrains from deleting (or switching) it in g∗. Thus equi-
librium conditions (iv) and (v) from Lemma 1 are met for these links.

Instead, consider some players m and l who share a link with altered sponsorship,
i.e., g′

lm = g∗
ml = 1. As the link between l and m is sponsored by l in g′ but by m in g∗, then

x∗
l < x∗

m by the assumptions of the lemma. To finalize the proof, we are going to show
(i) that l refrains from deleting his self-sponsored link to m in g′ for a greater interval of
linking costs k than the interval under which m refrains from deleting his link to l in g∗
(equilibrium condition (iv)). Subsequently, we are going to show (ii) that l does not want
to switch his link (equilibrium condition (v)).

(i) As (x∗� g∗) is an equilibrium and g∗
ml = 1, equilibrium condition (iv) of Lemma 1

implies

h

( ∑
j∈Nm

x∗
j

)
− h

( ∑
j∈Nm\{l}

x∗
j

)
≥ k�

Thus l refrains from deleting his self-sponsored link to m in g′ for a greater interval of
linking costs k if

h

(∑
j∈Nl

x∗
j

)
− h

( ∑
j∈Nl\{m}

x∗
j

)
>h

( ∑
j∈Nm

x∗
j

)
− h

( ∑
j∈Nm\{l}

x∗
j

)
�

Since activity x∗
l < x∗

m and as f is strictly increasing, condition (i) of Lemma 1 implies
that total neighborhood activity of l is smaller than m’s:

∑
j∈Nl

x∗
j <

∑
j∈Nm

x∗
j under both

g∗ and g′. Thus x∗
l < x∗

m implies
∑

j∈Nl\{m} x∗
j <

∑
j∈Nm\{l} x∗

j . As h is strictly increasing
and concave, and from the findings above,

h

(∑
j∈Nl

x∗
j

)
− h

( ∑
j∈Nl\{m}

x∗
j

)
> h

( ∑
j∈Nl\{m}

x∗
j + x∗

l

)
− h

( ∑
j∈Nl\{m}

x∗
j

)

> h

( ∑
j∈Nm\{l}

x∗
j + x∗

l

)
− h

( ∑
j∈Nm\{l}

x∗
j

)
�

(ii) Finally, let us turn to condition (v). If this condition does not hold for (x∗� g′),
then there must be some player o ∈ N with x∗

o > x∗
m and ḡ′

lo = ḡ∗
lo = 0 so that l prefers to

form a link to o instead of m. As shown below, this leads to a contradiction as (x∗� g∗)
would not be an equilibrium if such a player o exists.
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Assume (x∗� g∗) is an equilibrium, but, by contradiction, player o as described above
exists. On the one side, since player m supports a link to l in g∗ and x∗

o > x∗
l , we infer

k ≤ h

( ∑
j∈Nm\{l}

x∗
j + x∗

l

)
− h

( ∑
j∈Nm\{l}

x∗
j

)

< h

( ∑
j∈Nm\{l}

x∗
j + x∗

o

)
− h

( ∑
j∈Nm\{l}

x∗
j

)
�

Since player l does not form a link to o in g∗ (and o is currently no neighbor of l), we also
know that

k≥ h

(∑
j∈Nl

x∗
j + x∗

o

)
− h

(∑
j∈Nl

x∗
j

)
�

As h is strictly concave, these two inequalities imply
∑

j∈Nl
x∗
j >

∑
j∈Nm\{l} x∗

j or

x∗
l >

∑
j∈Nm

x∗
j −

∑
j∈Nl

x∗
j � (5)

On the other side, we also know that player l only supports links to players with
activity x∗

i ≥ x∗
o in g∗, as he does not support a link to o. Conversely, as m supports a

link to l in g∗, he must share links with all players of activity x∗
i > x∗

l —i.e., in particular,
x∗
i ≥ x∗

o. Thus every player to whom l forms a link is a neighbor of m. Furthermore, every
player who forms a link to l must share links with all players of activity x∗

i > x∗
l —i.e., in

particular, to m.
These two findings and the fact that o is a neighbor of m but not of l imply

∑
j∈Nm

x∗
j −

∑
j∈Nl

x∗
j ≥ x∗

o + x∗
l − x∗

m > x∗
l �

in contradiction to (5). �

Proof of Proposition 2. Part (ii). Assume gij = 1 in equilibrium and, by contradic-
tion, that there exists some j′ ∈ N with x∗

j′ > x∗
j but gij′ = 0. As i sponsors a link to j

and there is upward linking, x∗
j ≥ x∗

i . This implies x∗
j′ > x∗

i so that gj′i = 0, i.e., j′ does
not sponsor a link to i. But then i can increase his payoff by deleting the link to j and
forming one to j′ instead, a contradiction.

Part (i). Assume, by contradiction, x∗
i > x∗

j but ηi > ηj in some generic equilibrium
(x∗� g∗) with upward linking. Let ¯x = min{xl :gil = 1}, i.e., the minimum level of activity
accessed by i through a self-sponsored link, and let κi = |{l ∈ N :xl = ¯x∧ gil = 1}| be the
number of players with activity ¯x to whom i sponsors a link. Note that ¯x ≥ x∗

i as there is
upward linking so that ¯x > x∗

j and no player with activity ¯x or higher sponsors a link to j.

As each player prefers to link to more active players (see part (ii) above) and ηj < ηi, it
follows κj < κi so that j sponsors less links to players with activity ¯x.
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On the one hand, as i sponsors a link to somebody with activity ¯x in equilibrium and
j refrains from adding a link to one more person with activity ¯x (which would be possible
as κj < κi and players with activity ¯x do not sponsor links to j), Lemma 1 tells us that

h

(∑
l∈Ni

x∗
l

)
− h

(∑
l∈Ni

x∗
l − ¯x

)
≥ k≥ h

(∑
l∈Nj

x∗
l + ¯x

)
− h

(∑
l∈Nj

x∗
l

)
� (6)

As h is strictly concave, this can only hold true if
∑
l∈Ni

x∗
l ≤

∑
l∈Nj

x∗
l + ¯x� (7)

On the other hand, as x∗
i > x∗

j , any player l who sponsors a link to j has to sponsor a
link to i as well by the first statement of this lemma so that i receives more total neighbor
activity than j through incoming links. And as κj < κi, i also receives at least (κi − κj)¯xmore total neighbor activity than j through self-sponsored links. Together this implies

∑
l∈Ni

x∗
l ≥

∑
l∈Nj

x∗
l + (κi − κj)¯x� (8)

Combining (7) and (8), we get
∑
l∈Nj

x∗
l + (κi − κj)¯x≤

∑
l∈Ni

x∗
l ≤

∑
l∈Nj

x∗
l + ¯x�

which can only hold true if κi − κj = 1 and
∑

l∈Ni
x∗
l = ∑

l∈Nj
x∗
l + ¯x. The latter finding

together with (6) implies

h

(∑
l∈Ni

x∗
l

)
− h

(∑
l∈Ni

x∗
l − ¯x

)
= k= h

(∑
l∈Nj

x∗
l + ¯x

)
− h

(∑
l∈Nj

x∗
l

)
�

Then for any small ε > 0, under linking costs k′ = k+ ε, player i would prefer to delete a
link, and for k′ = k − ε, player j would prefer to add a link. In other words, the equilib-
rium is non-generic, a contradiction. Thus x∗

i > x∗
j implies ηi ≤ ηj .

We now show x∗
i > x∗

j also implies ni > nj . Let Nin
j be the set of players who sponsor

links to j. By part (ii) and x∗
i > x∗

j , everybody who sponsors a link to j sponsors a link

to i so that Nin
j ⊆ Nin

i is also the set of players who sponsor links to i as well as to j. Let

A = Nin
j ∪ {i� j}. Then Nj \ A is the set of players to whom j sponsors links apart from

i with |Nj \ A| = ηj − ḡij . Similarly, Ni \ A is the set of i’s neighbors apart from j who
do not sponsor links to i as well as j. Since we delete in both cases the same number of
neighbors, we have

|Ni \A| = ni − (nj − |Nj \A|)= ni − nj +ηj − ḡij �

From optimal activity, x∗
i > x∗

j implies

∑
l∈Ni\A

xl >
∑

l∈Nj\A
xl� (9)
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Consider the set N \ A and relabel players such that x̃1 ≥ · · · ≥ x̃|N\A|. By part (ii), j
sponsors links to some set of most active players, that is,

∑
l∈Nj\A

xl =
ηj−ḡij∑
l=1

x̃l�

whereas the remaining neighbor activity that i accesses is bounded from above by

∑
l∈Ni\A

xl ≤
ni−nj+ηj−ḡij∑

l=1

x̃l�

Together with (9), ni > nj follows.
“Only if” claim of part (iii). As there is upward linking and every player prefers to

link to more active players, ηi = ηj implies
∑

l : gil=1 x
∗
l = ∑

l : gjl=1 x
∗
l . In addition, x∗

i = x∗
j

implies
∑

l∈Ni
x∗
l = ∑

l∈Nj
x∗
l from optimal activity. Thus the claim holds.

“If” claim of part (iii). Assume
∑

l : gli=1 x
∗
l = ∑

l : glj=1 x
∗
l and, by contradiction, x∗

i >

x∗
j . Part (i) of the lemma then implies ηi ≤ ηj . As i only forms links to players with

x∗
j′ ≥ x∗

i > x∗
j due to upward linking, players j′ to whom i sponsors links do not sponsor

a link to j. Thus j could copy i’s linking decisions and strictly increase his payoff, a
contradiction.

The equalities
∑

l : gli=1 x
∗
l = ∑

l : glj=1 x
∗
l and x∗

i = x∗
j together imply

∑
l : gil=1 x

∗
l =∑

l : gjl=1 x
∗
l . As there is upward linking, ηi = ηj follows by part (ii). �

Definition 1. Consider the (homogeneous) game 
 = [N� {X × gi}�h(·)� f (·)�k] with
endogenous network formation, which consists of the set of players N , the action spaces
for activity and link sponsorship {X × gi}, the value function h, the best response func-
tion f , and the linking costs k. Then 
δ = [N� {X × gi}�h� {fi}�k] denotes its heteroge-
neous δ-variation where the individual best response functions {fi} satisfy Assumption 1
and δ≡ supi∈N�x≥0{|fi(x)− f (x)|}.

Definition 2. Let (x∗� g∗) be an equilibrium of the homogenous game and let (x∗
δ�g

∗
δ)

be an equilibrium of a δ-variation. The equilibrium (x∗� g∗) is robust to the introduction
of small heterogeneity in the best response functions if and only if there exists δ̄ > 0
such that for all δ-variations with δ < δ̄, there exist equilibria (x∗

δ�g
∗
δ) with g∗

δ = g∗ and
limδ→0 x∗

δ = x∗.

Proof of Proposition 3. First consider a weak equilibrium. By definition, one of the
conditions (iii)–(v) from Lemma 1 holds as an equality for some player i. If condition
(v) holds with equality, then there exist j� j′ ∈ Ni such that x∗

j = x∗
j′ and gij = 1, whereas

ḡij′ = 0. The equilibrium network is not robust to a small increase in the best response
activity of j′, as player i would desire to switch his self-sponsored link from j to j′. Similar
problems exist when conditions (iii)–(iv) hold with equality.

Conversely, we need to show that any strict equilibrium (x∗� g∗) satisfies Definition 2.
First, note that the results from Proposition 1 readily extend to any heterogeneous
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δ-variation (see Definition 1). In particular, there exists a unique equilibrium activity
vector x∗

δ > 0 on any (connected) exogenous network ḡ.
Second, we show that limδ→0 x∗

δ = x∗ > 0 on any (connected) exogenous network ḡ.
Define f̄ (·) = f (·) + δ and

¯
f = f − δ, and let δ be sufficiently small so that

¯
f (x) > x for

some x > 0. By an extension of Proposition 1, there exists equilibrium activity x̄(δ) > 0
when every player has the best response function f̄ ; equilibrium activity ¯x(δ) > 0 exists
accordingly. By strict complementarity, x̄(δ) strictly increases in δ, whereas ¯x(δ) strictly
decreases and both converge to x∗ for δ → 0. To see the latter, assume that the players
have activity x∗, their best responses shift from f to f̄ = f + δ, and they can simulta-
neously update their activity k times, leading to activity x̄k(δ). From Proposition 1, we
know limk→∞ x̄k(δ) = x̄(δ) for any δ. For k = 1, we have limδ→0 x̄1(δ) = x∗ as

x̄1
i (δ) = f

( ∑
j∈Ni�ḡ

x∗
j

)
+ δ� ∀i ∈N�

If limδ→0 x̄k
′
(δ) = x∗ for some k′, then

lim
δ→0

x̄k
′+1

i (δ) = lim
δ→0

(
f

( ∑
j∈Ni�ḡ

x̄k
′

j (δ)

)
+ δ

)
= x∗

i � ∀i ∈ N�

Consequently, x̄(δ) converges to x∗ for δ → 0 (and ¯x(δ) accordingly). The claim
limδ→0 x∗

δ = x∗ > 0 follows as x∗
δ ∈ [¯x(δ)� x̄(δ)] by strict complementarity.

Finally, (x∗� g∗) strictly satisfies conditions (iii)–(v) of Lemma 1 by definition. Thus
there exists δ̂ > 0 such that (x∗

δ�g
∗) also satisfies conditions (iii)–(v) for all x∗

δ with
‖x∗

δ −x∗‖< δ̂. Together with the finding above, we conclude that every strict equilibrium
(x∗� g∗) satisfies Definition 2. �

Proof of Proposition 4. In any strict equilibrium (x∗� g∗), we can partition the set
of players N into L strictly ordered sets of equally active players Nl, i.e.,

⋃L
l=1 N

l = N

and x∗
i = xl, ∀i ∈ Nl with x1 < x2 < · · · < xL. Furthermore, we assume without loss of

generality that links are sponsored by an adjacent player with weakly smaller activity
(Lemma 2).

For our proof, two observations are decisive: (i) If player i sponsors a link to some
player j ∈Nr in a strict equilibrium, then he shares a link with all players j′ ∈ ⋃L

l=r N
l \{i}.

Otherwise player i can weakly improve his payoff by relocating his self-sponsored link
from j to some non-neighbor j′ ∈ ⋃L

l=r N
l \ {i}, a contradiction.

(ii) If some player i shares a link with all other players j ∈ N \ {i}, then his activity is
maximal—i.e., i ∈ NL and x∗

i = xL—and any other player i′ ∈ NL also shares a link with
players j ∈N \ {i′}. Again, we use a proof by contradiction. First, assume that there exists
j ∈N with x∗

j > x∗
i . Then from optimal activity, we have

x∗
i = f

(∑
s∈Ni

x∗
s

)
< f

(∑
s∈Nj

x∗
s

)
= x∗

j ⇒
∑
s∈N

x∗
s − x∗

i <
∑
s∈Nj

x∗
s ≤

∑
s∈N

x∗
s − x∗

j

⇒ x∗
j < x∗

i �
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Consequently, x∗
i = xL and i ∈ NL. Second, assuming that any other player i′ ∈ NL does

not share a link with players j ∈N \ {i′} leads to a similar contradiction.
We now turn to the main proof. Consider players in N1. There are three possible

configurations: (a) If players in N1 do not sponsor any links, then they have maximal
activity x1 = xL: due to complementarity, any hypothetical more active players would
have to share some links among themselves, in contradiction to Proposition 2(i). Thus
the network is empty, i.e., a complete one-partite graph.

(b) Some player i ∈ N1 sponsors a link to another player in N1. By the two observa-
tions above, L = 1 and all pairs of players share a link, that is, the network is a complete
n-partite graph.

(c) Players in N1 (only) sponsor links to more active players (and N1 is an indepen-
dent set). By Proposition 2, they sponsor the same number of links and prefer to spon-
sor links to more active players. Assume that they did not sponsor any links to players
in N2. Then Proposition 2 implies x1 = x2, a contradiction. As players in N1 sponsor
some links to players in N2, from observation (i) above and by upward linking, players
in N1 sponsor links to all more active players

⋃L
l=2 N

l.
Repeating a similar argument for N2 to NL shows that the network is a complete

multipartite graph. In particular, each set of equally active players Nl is either a non-
singleton partite set of the graph or Nl = NL and consists of |NL| singleton partite sets.
Consider two non-singleton partite sets Nl′ and Nl′′ with l′ < l′′, and assume, by contra-
diction, |Nl′ | ≤ |Nl′′ |. Then

xl
′
< xl

′′ ⇔ f

(∑
i∈N

xi − |Nl′ |xl′
)
< f

(∑
i∈N

xi − |Nl′′ |xl′′
)

⇔ |Nl′′ |xl′′ < |Nl′ |xl′

⇒ xl
′′
< xl

′
�

As a result, all non-singleton partite sets have a different size; all agents within a partite
set have symmetric activity that is smaller in larger partite sets. �

Proof of Proposition 5. Part (i). The zero activity equilibrium with an empty net-
work exists for any linking costs as all conditions in Lemma 1 are met: it is optimal for
an isolated player to choose zero activity and forming a link to any non-active player is
costly as k > 0.

Part (ii). Consider the complete network ḡc and assume that each link is sponsored
(arbitrarily) by one of the adjacent players. By Proposition 1, there is a unique positive
activity equilibrium on ḡc ; the equilibrium activity solves xc = f ((n − 1)xc) > 0 and the
players’ gross payoff reads as πi = h((n− 1)xc). As the interaction network is complete,
no player gains from adding or relocating any self-sponsored link. Conversely, no player
weakly increases his payoff by deleting one of his self-sponsored links if and only if

0 <k< h((n− 1)xc)− h((n− 2)xc) ≡ kc�

In conclusion, all conditions from Lemma 1 are (strictly) satisfied for k ∈ (0�kc).
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Part (iii). Consider an arbitrary complete bipartite graph ḡbp with different-sized
partite sets P1, P2 and assume w.l.o.g. |P1| > |P2|. By Proposition 1, there is a unique
positive activity equilibrium on the (exogenous) network ḡbp; by Proposition 4, players
in P1 choose symmetric activity x1, whereas players in P2 choose symmetric activity x2 >

x1 in this equilibrium. Applying Lemma 2, we assume that links are (only) sponsored by
players in P1. To prove the statement, we need to show that equilibrium conditions (iii)–
(v) from Lemma 1 strictly hold for k ∈ (¯k� k̄) 
= ∅ given the equilibrium activity pattern
described above.

It is obvious that condition (v) is met as x1 < x2; links are sponsored by players in P1
and directed toward players in P2. For the same reason, condition (iv) (preventing link
deletion) is written as

h(|P2|x2)− h(|P2|x2 − x2) ≥ k� (10)

Condition (iii) (preventing link creation) can be split into two conditions, namely that
players in P2 do not gain from adding a link to another player in P2 and that players in
P1 do not gain from adding a link to a player in P1. However, as h is strictly increasing
and concave, and |P2|x2 < |P1|x1 by optimal activity, the following two inequalities hold:

h(|P1|x1 + x2)− h(|P1|x1) < h(|P2|x2 + x2)− h(|P2|x2)

h(|P2|x2 + x1)− h(|P2|x2) < h(|P2|x2 + x2)− h(|P2|x2)�

Therefore, the condition below preventing players in P1 from adding a link to a hypo-
thetical player in P2, is sufficient for equilibrium condition (iii):

h(|P2|x2 + x2)− h(|P2|x2) ≤ k� (11)

As h is strictly concave, we know that

h(|P2|x2 + x2)− h(|P2|x2) < h(|P2|x2)− h(|P2|x2 − x2)

so that (10) and (11) simultaneously strictly hold for some interval (¯k� k̄) 
=∅. �
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