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Merging with a set of probability measures: A characterization

Yuichi Noguchi
Department of Economics, Kanto Gakuin University

In this paper, I provide a characterization of a set of probability measures with
which a prior weakly merges. In this regard, I introduce the concept of condi-
tioning rules that represent the regularities of probability measures and define
the eventual generation of probability measures by a family of conditioning rules.
I then show that a set of probability measures is learnable (i.e., all probability mea-
sures in the set are weakly merged by a prior) if and only if all probability mea-
sures in the set are eventually generated by a countable family of conditioning
rules. I also demonstrate that quite similar results are obtained with almost weak
merging. In addition, I argue that my characterization result can be extended to
the case of infinitely repeated games and has some interesting applications with
regard to the impossibility result in Nachbar (1997, 2005).

Keywords. Bayesian learning, weak merging, conditioning rules, eventual gen-
eration, frequency-based prior.
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1. Introduction

Bayesian learning is a learning procedure that has been widely studied in game theory.
In particular, Kalai and Lehrer (1993) introduced a learning concept called merging to
repeated games and showed that if every player’s prior belief merges with the probabil-
ity measure induced by the players’ true strategies, then the path of play converges to
Nash equilibrium. Merging requires that the updated forecast (i.e., the posterior) about
any future events be eventually accurate; the future events include infinite future ones,
such as tail events. However, when players discount future payoffs in a repeated game,
the merging property is more than enough for obtaining convergence to Nash equilib-
rium. In other words, any information about the infinite future is not useful for the
discounting players. Accordingly, Kalai and Lehrer (1994) propose a weaker concept of
merging called weak merging. Weak merging means that the updated forecast about any
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finite period future event is eventually accurate. Furthermore, the weak merging prop-
erty is sufficient to deal with learning to play Nash equilibrium (see, e.g., Lehrer and
Smorodinsky 1997 and Sandroni 1998). Since then, the literature has mainly focused on
weak merging.

In order to give a general argument, we consider (a set of) probability measures that
represent the evolutions of discrete-time finite-state stochastic processes. That is, given
a finite set S of states, we focus on (a set of) probability measures over the set

∏t=∞
t=1 S

of infinite sequences of states. In this setting, I provide a characterization of a set of
probability measures with which a prior (belief) “weakly merges.” For that purpose,
I introduce the concept of conditioning rules that represent the regularities of proba-
bility measures and define the eventual generation of probability measures by a family
of conditioning rules. I then show that a set of probability measures is learnable; that is,
all probability measures in the set are weakly merged by a prior, if and only if the set is
included in a set of probability measures eventually generated by a countable family of
conditioning rules. In other words, Bayesian learning can eventually make accurate pre-
dictions regarding all probability measures eventually generated by a countable family
of conditioning rules, but it cannot do so regarding more than those.

The basic ideas of the key concepts, that is, conditioning rules and eventual gener-
ation, are easily explained by a simple example. For instance, a second-order Markov
probability measure has the regularity that the current probabilities of states are always
determined by the states realized in the last two periods. In other words, the current
probabilities are conditioned on the states of the last two periods. A conditioning rule
captures such a conditioning property of a probability measure so that the regularity of
any probability measure is arbitrarily approximated by some conditioning rule. Further-
more, by “a probability measure eventually generated by a family of conditioning rules,”
I mean that the regularity of the probability measure is (arbitrarily) approximated by
one in the family of conditioning rules from some period on. As for the above Markov
case, a probability measure eventually generated by the second-order Markov condi-
tioning rule means that the current probabilities of states (with respect to the measure)
are determined by the states of the last two periods from some period on.

My characterization is particularly important in the context of repeated games. In a
repeated game, players sequentially interact with each other and thus tend to be quite
uncertain about their opponents’ strategies at the beginning of the game. Therefore,
it is natural to start with the assumption that no player knows her opponents’ charac-
teristics except that they play behavior strategies (independently). In this situation, a
player would want to use a prior belief that weakly merges with as many strategies of
her opponents as possible. Nonetheless, it is not difficult to show that there is no prior
belief that weakly merges with all the opponents’ strategies. Then a fundamental issue
arises: the identification of a learnable set of the opponents’ strategies, that is, a set of
the opponents’ strategies with which a prior belief could weakly merge. Characterizing
a learnable set is certainly helpful in clarifying the possibilities of Bayesian learning in
repeated games. For example, as Nachbar (1997, 2005) shows, some diversity property of
learnable sets may be related to the impossibility of learning to play Nash equilibrium.
In the last section, I remark that my characterization is related to Nachbar’s impossibility
result; see Noguchi (2015) for details.
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I provide two results to obtain my characterization. First, I show that no prior can
weakly merge with more probability measures than those eventually generated by a
countable family of conditioning rules. Therefore, any learnable set must be included in
a set of probability measures eventually generated by a countable family of conditioning
rules. Second, and more importantly, I show that for any countable family of condition-
ing rules, there exists a prior such that the prior weakly merges with all probability mea-
sures eventually generated by the family. This means that if a set of probability measures
is included in a set of those eventually generated by a countable family of conditioning
rules, then the set is learnable. Therefore, I conclude that a learnable set is character-
ized by a countable family of conditioning rules. Furthermore, I demonstrate that quite
similar results are obtained with “almost weak merging.”

The objective of this paper is to demonstrate how to form or construct a prior for
obtaining the characterization result. As Gilboa et al. (2004) point out, “Bayesian learn-
ing means nothing more than the updating of a given prior. It does not offer any theory,
explanation, or insight into the process by which prior beliefs are formed.” Indeed, not
many ideas have been provided for the construction of nontrivial priors. As such, I make
use of an insight obtained from a study of another learning procedure called conditional
smooth fictitious play (CSFP): I construct a prior on the basis of conditional empirical
frequencies. To be specific, the prior that I construct is a modification of the belief for-
mation process for CSFP presented in Noguchi (2000, 2009). Although the process is
based on a quite simple intuitive story of individual learning behavior, it is powerful
enough to eventually make accurate predictions regarding as many probability mea-
sures as possible. This will be shown later. Furthermore, to prove that the prior works,
I use a different mathematical tool than those used in previous works: the theory of large
deviations, which gives precise probability evaluations about rare events.

Previous work in game theory has mainly explored the conditions on relations be-
tween a prior and a (true) probability measure for the prior to (weakly) merge with the
measure (e.g., Blackwell and Dubins 1962, Kalai and Lehrer 1993, 1994)1; Sorin (1999)
explains the links to reputation models. The main reason is that if we interpret pri-
ors as players’ prior beliefs and a probability measure as that induced by players’ true
strategies, then such merging conditions are also conditions for convergence to Nash
equilibrium. Clearly, these merging conditions may be helpful in considering learnable
sets. For example, the absolute continuity condition implies that any countable set of
probability measures is merged by any prior that puts positive probability on each of the
probability measures.

In other research fields (e.g., computer sciences, information theory, statistical
learning theory, and so on), various issues about (Bayesian) learning have been studied;
see, for example, Solomonoff (1978), Ryabko (1988), Cesa-Bianchi and Lugosi (2006),
Ryabko and Hutter (2008), and Ryabko (2011) for issues related to this paper.2 In par-
ticular, Ryabko (2010) provides a general result of learnability with respect to merging:

1As for other related studies, Jackson et al. (1999) investigate a natural (convex combination) represen-
tation of a given prior belief from the viewpoint of learning, and Kalai et al. (1999) explore the relationships
between calibration tests and merging.

2The author thanks an anonymous referee for introducing him to works in other research fields.
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(under a mild assumption) a set of probability measures with which a prior merges is ar-
bitrarily approximated by its countable subset in a strong sense. I will discuss a merged
set of probability measures (by comparing merging with weak merging) in the last sec-
tion.

This paper is organized as follows. Section 2 gives a description of the basic model
and several concepts. Section 3, the main part of the paper, provides a characterization
of a set of probability measures with which a prior weakly merges. In Section 4, the
characterization result is applied to repeated games. Section 5 provides quite similar
results with respect to almost weak merging. Section 6 concludes with several remarks.

2. Model

2.1 Basic model and notations

Let S be a finite set of states and let a state in S be generically denoted by s. Further,
let �(S) designate the set of probability distributions over S. A history is a sequence
of states realized each time. I write HT for the set of all finite histories with length T :
HT := ∏ t=T

t=1 S. Let H denote the set of all finite histories, including the null history h0,
that is, H := ⋃t=∞

t=0 Ht , where h0 := ∅ and H0 := {h0}. A finite history is denoted by h.
When the length of a finite history is emphasized, I write hT for a finite history up to time
T : hT := (s1� � � � � sT ). Let H∞ designate the set of all infinite histories: H∞ := ∏ t=∞

t=1 S. An
infinite history is denoted by h∞ := (s1� s2� � � �). If a finite history h is an initial segment
of a (finite or infinite) history h′, then it is denoted by h≤ h′. When h≤ h′ and h �= h′, it is
designated by h < h′. I assume the standard measurable structure F on H∞.3 Let {FT }T
be the standard filtration: FT ⊆ FT+1 ⊆ F for all T .4 Let μ denote a probability measure
on (H∞�F). When a probability measure is considered as a prior, it is denoted by μ̃.

2.2 Weak merging

The focus in this paper is primarily on weak merging. Weak merging requires that the
updated forecast about any finite-period future event be eventually accurate.

Definition 1. A prior μ̃ weakly merges with a probability measure μ if, for all k≥ 1,

lim
T→∞

sup
A∈FT+k

∣∣μ̃(A|FT )−μ(A|FT )
∣∣ = 0� μ-a.s.

Let μ(s|hT ) denote the probability of s at time T + 1 conditional on a realized past
history hT up to time T , and let μ(h) denote the probability of h. It is then important to
note that μ̃ weakly merges with μ if and only if the one period ahead forecast is eventu-
ally correct (see Lehrer and Smorodinsky 1996a): for μ-almost all h∞ and all s ∈ S,

lim
T→∞

∣∣μ̃(s|hT )−μ(s|hT )
∣∣ = 0� (1)

3The set F is the minimum σ-algebra including all cylinder sets based on finite histories: F :=
σ(

⋃t=∞
t=0 {Ch | h ∈Ht}), where Ch := {h∞ | h< h∞}.

4The set FT is the minimum σ-algebra including all cylinder sets based on finite histories with length T :
FT := σ({Ch | h ∈ HT }).
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The purpose of this paper is to characterize a set of probability measures with which
a prior weakly merges. Accordingly, I define the phrase “weak merging with a set of
probability measures.”

Definition 2. A prior μ̃ weakly merges with a set M of probability measures if μ̃ weakly
merges with all probability measures in M . Further, a set M of probability measures is
weakly merged if there exists a prior μ̃ such that μ̃ weakly merges with M .

2.3 Conditional probability systems

I make use of conditional probability systems (CPSs). A CPS represents the probability
distribution of the current state after each past history (up to the previous time). For-
mally, a CPS is a mapping from the set H of finite histories to the set �(S) of probability
distributions over S. It is denoted by f : H → �(S). Then it follows from Kolmogorov’s
extension theorem (see, e.g., Shiryaev 1996) that for all f , there exists a unique proba-
bility measure μf such that μf (s|h) = f (h)[s] for all s ∈ S and all h ∈ H. Conversely, it is
easy to see that for all μ, there exists a CPS fμ such that fμ(h)[s] = μ(s|h) for all s ∈ S and
all h ∈H.5 The correspondence makes it possible to focus on CPSs instead of probability
measures. Indeed, from (1) in the previous subsection, μ̃ weakly merges with μ if and
only if for μ-almost all h∞,

lim
T→∞

‖fμ̃(hT )− fμ(hT )‖ = 0�

where ‖ · ‖ is the maximum norm: ‖x‖ := maxs |x[s]|.

Remark 1. If μ̃(A) = μ̃′(A) for all A ∈ F , then μ̃ and μ̃′ are identical as probability mea-
sures. However, it is possible that μ̃(s|h) �= μ̃′(s|h) for some s ∈ S and some h ∈ H with
μ̃(h) (= μ̃′(h)) = 0. In this paper, I assume that μ̃ and μ̃′ are different as priors in such a
case. Therefore, each prior has its unique corresponding CPS.

2.4 Conditioning rules and classes

I introduce a key concept to characterize a learnable set: conditioning rules (CRs). A CR
represents a (approximate) regularity of a CPS or a probability measure. Formally, a CR
is a finite partition of H and is denoted by P . An element of a CR P is called a class in P
and is denoted by α. Note that a class (in P) is considered a subset of H because it is an
element of a partition of H. In the following, I will often define a subset of H and call it
a class (although the subset may not be an element of any given CR). If a realized history
hT−1 ∈ α, we say that α is active at time T or that time T is an α-active period.

For any CPS f , I define its ε-approximate conditioning rule (ε-ACR). The definition
states that probability distributions (on S) after finite histories in each class α are almost
the same.

5A CPS fμ corresponding to μ is not necessarily unique, because if μ(h) = 0, then μ(s|h) is arbitrary.
However, μ(s|h) is uniquely determined for all s ∈ S and all h ∈ H with μ(h) > 0. Thus, for any two CPSs fμ
and f ′

μ corresponding to μ, fμ(h)[s] = f ′
μ(h)[s] for all s ∈ S and all h ∈ H with μ(h) > 0.
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Definition 3. Given ε ≥ 0, a finite partition Pf
ε of H is called an ε-approximate condi-

tioning rule (ε-ACR) of f if for all α ∈ Pf
ε and all h�h′ ∈ α, ‖f (h)− f (h′)‖ ≤ ε.

If ε = 0, Pf
ε is simply called a conditioning rule (CR) of f . Note that any CPS f has its

ε-ACR for all ε > 0.6

Example 1. Let S := {L�R} and let f be a first-order Markov CPS such that f (hT ) :=
( 1

3 �
2
3) when sT = L and f (hT ) := ( 2

3 �
1
3) when sT = R. Then let Pf := {αL�αR}, where

αL := {hT ∈ H | sT = L} and αR := {hT ∈ H | sT = R}.7 Hence, Pf is an ε-ACR of f for all
ε > 0; that is, Pf is a CR of f . ♦

Conversely, CRs generate CPSs.

Definition 4. A CPS f : H → �(S) is generated by a family P of CRs if for all ε > 0, there
exists P ∈ P such that P is an ε-ACR of f .

The definition states that for all ε > 0, the regularity of f is ε-approximated by some
CR in P.

Example 2. Let S := {L�R} and P := {αL�αR}, where αL := {hT ∈ H | sT = L} and αR :=
{hT ∈ H | sT = R}. Furthermore, let Q := {αE�αO}, where αE := {hT ∈ H | T is odd} and
αO := {hT ∈ H | T is even}. Then f : H → �(S) is generated by {P�Q} if and only if either
there exist 0 ≤ p�q ≤ 1 such that for all h ∈ αL, f (h) = (p�1 − p), and such that for all
h ∈ αR, f (h) = (q�1 − q), or there exist 0 ≤ p′� q′ ≤ 1 such that for all h ∈ αE , f (h) =
(p′�1 −p′), and such that for all h ∈ αO , f (h) = (q′�1 − q′).8 ♦

Note that all independent and identically distributed (i.i.d.) CPSs are generated by
any (nonempty) family of CRs.9 Further, note that any CPS f is generated by any family

{Pf
1/n}n of its 1/n-ACRs.

Similarly, CRs also generate probability measures.

Definition 5. A probability measure μ is generated by a family P of CRs if there exists
a CPS fμ corresponding to μ such that fμ is generated by P.

6By the compactness of �(S), for all ε > 0, we may take a finite family {�j}j=m
j=1 of subsets in �(S) such

that (i) {�j}j covers �(S), that is,
⋃j=m

j=1 �j = �(S), and (ii) those diameters are no more than ε, that is,

supπ�π′∈�j
‖π − π′‖ ≤ ε for all j. Thus, for all CPSs f and all ε > 0, an ε-ACR Pf

ε of f is defined by the
following equivalence relation on H: for all h�h′ ∈ H,

h∼Pf
ε
h′ if and only if there exists j such that f (h)� f (h′) ∈ �j and f (h)� f (h′) /∈ �k for all k < j�

7The null history h0 (:=∅) may belong to either class.
8More generally, for any finite family {Pn}n=N

n=1 of CRs, f is generated by {Pn}n=N
n=1 if and only if there exists

n such that Pn is a CR of f .
9A CPS f is i.i.d. if f (h) = f (h′) for all h�h′ ∈H.
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The set of all probability measures generated by P is denoted by G(P). As in the CPS
case, all i.i.d. probability measures are generated by any (nonempty) family of CRs.10

In addition, any probability measure is generated by a countable family of CRs.

Remark 2. A useful fact is that if a set Sm is countable for all m = 1�2� � � � , the union⋃
m Sm is also countable. Hence, any countable set of probability measures {μm}m is

generated by a countable family of CRs because each μm is generated by a countable

family {Pfμm
1/n }n of CRs.

The CRs are ordered in fineness: if for all α ∈ P , there (uniquely) exists β ∈ Q such
that α ⊆ β, P is finer than Q (or Q is coarser than P), denoted by Q ≤ P . Furthermore,
if α ⊆ β, α is finer than β (or β is coarser than α). It is important to note that a finer
CR generates more probability measures; for example, if Q ≤ P , G(Q) ⊆ G(P). More-
over, note that the partition consisting only of {H}, that is, PId := {{H}}, is the coarsest
partition: PId ≤ P for any partition P (of H). For convenience, PId will be called the
identity partition. It is easy to see that a CPS (or a probability measure) is i.i.d. if and
only if it is generated by PId. Finally, note the following useful joint property of finite
partitions. Given any two finite partitions P and Q, let P ∧ Q denote the joint of P and
Q: P ∧Q := {α ∩β | α ∈ P�β ∈ Q}. Then P ∧Q is also a finite partition, and is finer than
P and Q.

3. Characterization of a learnable set

3.1 Main result

To characterize a learnable set of probability measures, I slightly extend the generation
of probability measures: eventual generation. The following definition is rather com-
plicated, but it simply states that for any ε > 0, the regularity of f is (almost surely) ε-
approximated by one of the CRs {Pi}i from some period on.

Definition 6. A CPS f : H → �(S) is eventually generated by {Pi}i if for all ε > 0, there
exist an index i0, a μf -probability 1 set Z0, and a time function T0 : Z0 → N such that for
all α ∈ Pi0 and all hT �h

′
T ′ ∈ α, if there exist h∞�h′∞ ∈ Z0 wherein hT < h∞, T ≥ T0(h∞),

h′
T ′ < h′∞, and T ′ ≥ T0(h

′∞), then ‖f (hT )− f (h′
T ′)‖ ≤ ε.11

Clearly, any CPS generated by {Pi}i is eventually generated by {Pi}i. As in the case of
generation, I define the eventual generation of probability measures. A probability mea-
sure μ is eventually generated by {Pi}i if there exists a CPS fμ corresponding to μ such
that fμ is eventually generated by {Pi}i. The set of all probability measures eventually
generated by {Pi}i is denoted by EG({Pi}i). As in the CPS case, any probability measure
generated by {Pi}i is eventually generated by {Pi}i: G({Pi}i) ⊆ EG({Pi}i). More precisely,
EG({Pi}i) is strictly larger than G({Pi}i), that is, G({Pi}i) � EG({Pi}i). Now we can state
the main result.

10A probability measure μ is i.i.d. if a CPS fμ corresponding to μ is i.i.d.
11Let N denote the set of natural numbers.
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Theorem 1. A set M of probability measures is weakly merged if and only if all probabil-
ity measures in M are eventually generated by some countable family {Pi}i of CRs, that is,
if and only if there exists a countable family {Pi}i of CRs such that M ⊆ EG({Pi}i).

For example, the following corollaries are immediate from Theorem 1.

Corollary 1. The set of all i.i.d. probability measures is weakly merged.

Proof. As noted in Section 2.4, all i.i.d. probability measures are generated by the iden-
tity partition PId. From this and Theorem 1, it follows that the set of all i.i.d. probability
measures is weakly merged. �

Corollary 2. The set of all Markov probability measures is weakly merged.

Proof. For all k = 1�2� � � � , let Mk be the kth-order Markov CR.12 Then {Mk}k is a
countable family of CRs. Since all Markov probability measures are generated by {Mk}k,
it follows from Theorem 1 that the set of all Markov probability measures (of all orders)
is weakly merged. �

In Section 4, I provide more examples of the weakly merged set particularly related
to repeated games.

3.2 Bounds of weak merging

First, I show that the weak merging property is always bounded by a countable family
of CRs. In other words, no prior can weakly merge with more probability measures than
those eventually generated by a countable family of CRs.

Proposition 1. For any prior μ̃, there exists a countable family {Pi}i of CRs such that μ̃
does not weakly merge with any μ /∈ EG({Pi}i).

Proof. Fix any μ̃. Let fμ̃ be the CPS corresponding to μ̃. As noted in Section 2.4, for

each n, we may take a 1/n-ACR Pfμ̃
1/n of fμ̃. I show that μ̃ does not weakly merge with

any μ /∈ EG({Pfμ̃
1/n}n). Take any μ /∈ EG({Pfμ̃

1/n}n). Then there exists ε0 > 0 such that for all

n, all μ-probability 1 sets Z, and all time functions T : Z → N, there exist α ∈ Pfμ̃
1/n and

hT �h
′
T ′ ∈ α wherein hT < h∞, T ≥ T(h∞), h′

T ′ < h′∞, and T ′ ≥ T(h′∞) for some h∞�h′∞ ∈
Z, and ‖fμ(hT )− fμ(h

′
T ′)‖> ε0.

Suppose that μ̃ weakly merges with μ. Then there exists a μ-probability 1 set Z0 such
that for all h∞ ∈ Z0, there exists T0(h∞) wherein for all T ≥ T0(h∞), ‖fμ̃(hT )− fμ(hT )‖ ≤
ε0/4. On the other hand, letting n0 ≥ 4/ε0, it follows from the previous paragraph that

12The CR Mk is defined by the following equivalence relation on H: for all h�h′ ∈ H,

h ∼Mk
h′ if and only if the states of the last k periods in h are the same as those in h′�
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for n0, Z0, and T0 : Z0 → N, there exist α ∈ Pfμ̃
1/n0

and hT �h
′
T ′ ∈ α such that hT < h∞, T ≥

T0(h∞), h′
T ′ < h′∞, and T ′ ≥ T0(h

′∞) for some h∞�h′∞ ∈ Z0, and ‖fμ(hT ) − fμ(h
′
T ′)‖ >

ε0. These imply that ‖fμ̃(hT ) − fμ̃(h
′
T ′)‖ ≥ ε0/2. Then, however, since α ∈ Pfμ̃

1/n0
and

hT �h
′
T ′ ∈ α, ‖fμ̃(hT ) − fμ̃(h

′
T ′)‖ ≤ 1/n0 ≤ ε0/4. This is a contradiction. Thus, μ̃ does not

weakly merge with μ. �

3.3 Frequency-based prior

For any countable family of CRs, I construct a prior that weakly merges with all proba-
bility measures eventually generated by the family. To form the prior, I use the method
for constructing a belief formation process for “conditional smooth fictitious play” pro-
vided in Noguchi (2000, 2009): a prior is defined on the basis of conditional empirical
frequencies; such a prior will be called a frequency-based prior.

Proposition 2. For any countable family {Pi}i of CRs, there exists a frequency-based
prior μ̃F such that μ̃F weakly merges with all μ ∈ EG({Pi}i).

In the remainder of this subsection, I specify the construction of a frequency-based
prior μ̃F , which includes a brief explanation of why μ̃F works (for any μ ∈ EG({Pi}i)).
The proof of Proposition 2 is given in Appendix B.

Without loss of generality, we may assume (in the remainder of this subsection) that
{Pi}i is ordered in fineness: Pi ≤ Pi+1 for all i; see Section 2.4.13 To construct a frequency-
based prior μ̃F , I start by determining the prior sample size nα0 for each class α ∈ ⋃

iPi,
where

⋃
iPi is the set of all classes in {Pi}i. (This is based on a result of large devia-

tions given in Appendix A.) Suppose that α ∈ Pi. Then choose any positive integer nα0
such that

nα0 ≥ i2

2

(
i+ log

(
#Pi

1 − exp(−2i−2)

))
� (2)

where # denotes the cardinality of a set. Note that this inequality is equivalent to
#Pi

∑n=∞
n=nα0

exp(−2ni−2) ≤ exp(−i), which will be used in the proof of Proposition 2.
Taking a larger nα0 means obtaining more prior samples for class α so as to make the
probability of wrong prediction exponentially smaller.

Next, I introduce a categorizing rule that classifies observed samples into categories.
A category is represented by a pair made of an index and a class, that is, (i�α) such that
α ∈ Pi, and a categorizing rule is defined by two mappings i : H → N and α : H → ⋃

iPi.
Specifically, i(·) and α(·) represent the following forecaster’s learning behavior. A fore-
caster first employs all classes in P1, for example, {αk

1 }k, to categorize past samples (i.e.,
realized states): each αk

1 is used as a (temporary) category. That is, for each αk
1 , the em-

pirical frequencies of the samples obtained in αk
1 -active periods are used as the forecasts

13For any {Pi}i, let Qi := ∧j=i
j=1 Pj for all i. Then {Qi}i has the following property: Pi ≤ Qi for all i and

Qi ≤ Qi+1 for all i.
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in αk
1 -active periods. However, if any αk

1 has been active many times so that enough sam-
ples have been obtained as prior samples for classes (in P2) finer than αk

1 , then the fore-
caster switches αk

1 to the finer classes (in P2); that is, {αl
2}l such that αl

2 ⊆ αk
1 . Otherwise,

the forecaster continues using αk
1 . In other words, the forecaster starts to employ each

αl
2 as a (temporary) category and uses the empirical frequencies consisting of the prior

samples (obtained in the past αk
1 -active periods) and the samples observed in αl

2-active
periods after switching to αl

2. Again, if the forecaster has obtained enough samples in
αl

2-active periods, then she switches αl
2 to classes (in P3) finer than αl

2; that is, {αm
3 }m

such that αm
3 ⊆ αl

2, and so on.
In this behavior, the forecaster continues switching to finer classes because it en-

ables the forecaster to learn more probability measures. Furthermore, enough prior
samples for each class are obtained before employing the class as a (temporary) category.
It eventually enables the forecaster to make accurate predictions from the first active pe-
riod (to the last active period) of employing each class (as a category), which means that
the forecaster eventually makes accurate predictions (regarding any μ ∈ EG({Pi}i)).

I provide the formal definitions of i(·), α(·), and μ̃F . To define i(·) and α(·), I intro-
duce three other functions m : H → N, n : H → N, and β : H → ⋃

iPi. Roughly, m(hT ) is
the maximum index of past employed classes that are coarser than currently employed
class α(hT ). Let n(hT ) be the number of times that a currently employed class has been
active and let β(hT ) be a finer class that will be employed next. I recursively define i(·),
α(·), m(·), n(·), and β(·) as follows:

• First, let i(h0) := 1 and α(h0) := α, where h0 ∈ α and α ∈ P1. Furthermore, let
m(h0) := 1, n(h0) := 0, and β(h0) := α, where h0 ∈ α and α ∈ Pm(h0)+1.

• Suppose that i(ht), α(ht), m(ht), n(ht), and β(ht) are defined for 0 ≤ t ≤ T − 1. Let
m(hT ) := max{i(ht) | ht < hT �hT ∈ α(ht)},14 and let β(hT ) := α, where hT ∈ α and
α ∈ Pm(hT )+1. Furthermore, let n(hT ) := #{ht | ht < hT �hT ∈ α(ht)� i(ht) = m(hT )}.
Then define

i(hT ) :=
{
m(hT )+ 1 if n(hT ) ≥ n

β(hT )
0

m(hT ) otherwise,
(3)

where n
β(hT )
0 is the prior sample size for class β(hT ). Finally, let α(hT ) := α, where

hT ∈ α and α ∈ Pi(hT ).

It is important to note that the inequality in the definition of i(hT ) is the switching
criterion such that if n

β(hT )
0 samples are obtained as prior samples for β(hT ), then a

forecaster switches to a finer class β(hT ); otherwise, the forecaster continues using a
currently employed class.

Given hT−1, if i(hT−1) = i and α(hT−1) = α, time T is an effective period of category
(i�α) (or category (i�α) is effective at time T ). Note that given any h∞, each period has
exactly one effective category. Further note that any category (i�α) with i ≥ 2 has its
(unique) predecessor (ip�αp) such that ip = i − 1 and α ⊆ αp ∈ Pip ; indeed, (i�α) can be
effective only after (ip�αp) has been effective nα0 times. Next, I define the prior samples

14If {i(ht) | ht < hT �hT ∈ α(ht)} =∅, then let m(hT ) := 1.
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d(i�α)0 and the prior sample size n(i�α)0 for each (i�α). For all (i�α) (with i ≥ 2), let d(i�α)0
consist of samples observed in the effective periods of its predecessor (ip�αp): each

component d(i�α)0 [s] is the number of times that s has occurred in the first nα0 effective

periods of (ip�αp).15 Thus, d(i�α)0 is history-dependent : d(i�α)0 may change according to

h∞. Let n(i�α)0 := ∑
s d

(i�α)
0 [s] (= nα0 ).

Finally, I define a prior μ̃F . Given a realized past history hT , suppose that a category
(i�α) is effective at time T + 1: i = i(hT ) and α = α(hT ). Then collect observed states in
the past effective periods of (i�α), which are represented by a vector d(i�α)T : each compo-

nent d(i�α)T [s] is the number of times that s has occurred in the past effective periods of

(i�α). Let n(i�α)T denote the sample size for (i�α) up to time T : n(i�α)T := ∑
s d

(i�α)
T [s]. Define

the conditional empirical distribution D(i�α)
T on (i�α) up to time T as

D(i�α)
T := d

(i�α)
T + d

(i�α)
0

n(i�α)T + n(i�α)0

�

Then use D(i�α)
T as the forecast at time T + 1. Accordingly, define frequency-based CPS

fF as follows: for all hT ∈ H, fF(hT ) := D(i�α)
T , where i = i(hT ) and α = α(hT ). Then let

μ̃F := μfF .16

For the proof of Proposition 2, see Appendix B.
Propositions 1 and 2 induce a characterization of weak merging with a set of proba-

bility measures, which is the main result of this paper.

Proof of Theorem 1. Suppose that a set M of probability measures is weakly merged.
Then there exists a prior μ̃ such that μ̃ weakly merges with all μ in M . However, Propo-
sition 1 then states that there exists a countable family {Pi}i of CRs such that μ̃ does not
weakly merge with any μ /∈ EG({Pi}i). Therefore, M ⊆ EG({Pi}i). Conversely, suppose
that there exists a countable family {Pi}i of CRs such that M ⊆ EG({Pi}i). Proposition 2
then states that there exists a prior μ̃F such that μ̃F weakly merges with all μ ∈ EG({Pi}i).
Thus, μ̃F weakly merges with all μ ∈ M because M ⊆ EG({Pi}i). Therefore, M is weakly
merged. �

4. Application to repeated games

4.1 Basic observation

The characterization result in the previous section is applied to an infinitely repeated
game with perfect monitoring. Player i = 1� � � � � I takes a pure action ai from a finite set
Ai each time. Specifically, each time, every player observes the history of all the play-
ers’ (pure) actions taken (up to the previous time) and then chooses her mixed action
(i.e., a probability distribution over Ai) independently. That is, each player i plays her
behavior strategy, denoted by σi. A profile of all players’ actions is denoted by a := (ai)i.

15For any α ∈ P1, we may take d
(1�α)
0 arbitrarily such that

∑
s d

(1�α)
0 [s] = nα0 . Then let n(1�α)0 := ∑

s d
(1�α)
0 [s]

(= nα0 ).
16That is, for any hT (= (s1� � � � � sT )), μ̃F (hT ) = μfF (hT )= fF (h0)[s1] · fF (h1)[s2] · · · fF(hT−1)[sT ].
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Let A designate the set of all action profiles, that is, A := ∏
i Ai. Further, a history of

the repeated game is a sequence of all players’ actions realized each time. Notations
about histories are the same as in Section 2.1; that is, HT := ∏t=T

t=1 A, H := ⋃t=∞
t=0 Ht , and

H∞ := ∏t=∞
t=1 A. Hence, a behavior strategy (for player i) σi is formally represented by a

mapping from H to �(Ai), where �(Ai) is the set of player i’s mixed actions. Let 
i de-
note the set of all behavior strategies of player i. Moreover, a strategy profile of player i’s
opponents is denoted by σ−i (:= (σj)j �=i). Let 
−i designate the set of all the opponents’
strategy profiles; that is, 
−i := ∏

j �=i 
j . Given a strategy profile σ := (σ1� � � � �σI), I write
μ(σ) for the probability measure (on H∞) induced by playing σ . Kuhn’s theorem for
repeated games assures that each player i’s prior belief about her opponents’ behavior
strategies is identified with a profile of the opponents’ behavior strategies, denoted by
ρ̃i := (ρ̃ij)j �=i, where ρ̃ij is a behavior strategy of player j for each j �= i (see Aumann 1964,
Kalai and Lehrer 1993, and Nachbar 2005, 2009). Note that given a player i’s strategy σi,
μ(σi� ρ̃

i) weakly merges with μ(σi�σ−i) if and only if for μ(σi�σ−i)-almost all h∞,

lim
T→∞

‖ρ̃ij(hT )− σj(hT )‖ = 0 for all j �= i�

Moreover, it is important to note that merging with the opponents’ strategies de-
pends on the player’s own behavior in a repeated game. Accordingly, I explicitly write
the player’s own strategy in the following definition of learning.

Definition 7. A prior belief ρ̃i of player i leads the player to learn to predict her oppo-
nents’ strategies σ−i with her own strategy σi if μ(σi� ρ̃

i) weakly merges with μ(σi�σ−i).

Indeed, the following example shows that, in general, whether or not a set of the
opponents’ strategies is learnable depends on the player’s own strategy.

Example 3. Let Ai := {L�R} for i = 1�2. For m= 1�2� � � � , let σ(R�m)
1 be player 1’s strategy,

in which player 1 takes R for certain from time 1 to time m and then takes L for certain
from time m+1 onward. Further, for n= 1�2� � � � , let 
̂(R�n)

2 := {σ2 | σ2(h
(R�n)) = ( 1

2 �
1
2) for

any h(R�n)}, where h(R�n) denotes any finite history in which player 1 has taken R from
time 1 to time n. Then, if m ≥ n, there are many prior beliefs (of player 1) such that each
of them leads the player to learn to predict all σ2 ∈ 
̂(R�n)

2 with σ(R�m)
1 . Otherwise (i.e., if

m< n), no prior belief leads the player to learn to predict all σ2 ∈ 
̂(R�n)
2 with σ(R�m)

1 . ♦

Let LS(ρ̃i�σi) denote the set of all the opponents’ strategies that player i’s prior belief
ρ̃i leads her to learn to predict with her own strategy σi:

LS(ρ̃i�σi) := {σ−i | ρ̃i leads player i to learn to predict σ−i with σi}�

Notice that LS(ρ̃i� ·) is considered a set correspondence from the set 
i of player i’s strate-
gies to the power set 2
−i of her opponents’ strategies. This, along with Example 3,
means that a set correspondence (rather than a set) is appropriate to capture the learn-
ing performance of a prior belief in a repeated game.
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Definition 8. A prior belief ρ̃i of player i leads the player to learn to predict a set cor-
respondence �i : 
i → 2
−i if �i(σi) ⊆ LS(ρ̃i�σi) for all σi ∈ 
i.

Definition 9. A set correspondence �i : 
i → 2
−i is learnable (by player i) if there
exists a prior belief ρ̃i of player i such that ρ̃i leads her to learn to predict �i.

As in the CPS case, for any σ−i, I define its ε-approximate conditioning rule (ε-ACR).
Given ε ≥ 0, a finite partition Pσ−i

ε of H is said to be an ε-approximate conditioning rule
(ε-ACR) of σ−i if for all α ∈ Pσ−i

ε and all h�h′ ∈ α, ‖σj(h)−σj(h
′)‖ ≤ ε for all j �= i. If ε = 0,

Pσ−i
ε is simply called a conditioning rule (CR) of σ−i. It is not difficult to show that any

σ−i has its ε-ACR for all ε > 0; see footnote 6 in Section 2.4.
Conversely, CRs generate (the opponents’) strategies. A strategy profile σ−i of player

i’s opponents is generated by a family P of CRs if for all ε > 0, there exists P ∈ P such
that P is an ε-ACR of σ−i. The set of all the opponents’ strategy profiles generated by P

is denoted by G−i(P).
Furthermore, noting that the path of play in a repeated game depends on player i’s

own behavior, I define the eventual generation of strategies.

Definition 10. A strategy profile σ−i of player i’s opponents is eventually generated by
a family {Pn}n of CRs with player i’s strategy σi if for all ε > 0, there exist an index n0, a
μ(σi�σ−i)-probability 1 set Z0, and a time function T0 : Z0 → N such that for all α ∈ Pn0

and all hT �h
′
T ′ ∈ α, if there exist h∞�h′∞ ∈ Z0 wherein hT < h∞, T ≥ T0(h∞), h′

T ′ < h′∞,
and T ′ ≥ T0(h

′∞), then ‖σj(hT )− σj(h
′
T ′)‖ ≤ ε for all j �= i.

The set of all the opponents’ strategy profiles eventually generated by {Pn}n with σi

is denoted by EG({Pn}n�σi). Obviously, G−i({Pn}n) ⊆ ⋂
σi

EG({Pn}n�σi). As in the CPS
case, all i.i.d. strategy profiles (of the opponents)17 are generated by any (nonempty)
family of CRs18; thus, G−i({Pn}n) is always uncountable. In general, even G−i({Pn}n) is
much larger than any previously known learnable set. In addition, any profile of the
opponents’ strategies is generated by a countable family of CRs; for example, any σ−i

is generated by any family {Pσ−i

1/n }n of its 1/n-ACRs. Thus, any countable set of the op-
ponents’ strategy profiles is generated by a countable family of CRs; see Remark 2 in
Section 2.4.

Propositions 3 and 4 correspond to Propositions 1 and 2, respectively. In other
words, we can take a countable family of CRs to characterize a learnable set
correspondence.

Proposition 3. For any prior belief ρ̃i of player i, there exists a countable family {Pn}n
of CRs such that for all σi ∈ 
i and all σ−i /∈ EG({Pn}n�σi), ρ̃i does not lead her to learn to
predict σ−i with σi.

Proof. As in the CPS case, ρ̃i has a 1/n-ACR P ρ̃i

1/n for all n. The rest of the argument is
the same as in the proof of Proposition 1. �

17We say that σ−i is i.i.d. if σ−i(h) = σ−i(h
′) for all h�h′ ∈ H.

18As in the CPS case, σ−i is i.i.d. if and only if σ−i is generated by the identity partition PId.
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Proposition 4. For any countable family {Pn}n of CRs, there exists a frequency-based
prior belief ρ̃iF of player i such that for all σi ∈ 
i and all σ−i ∈ EG({Pn}n�σi), ρ̃iF leads her
to learn to predict σ−i with σi.

Proof. The construction of ρ̃iF is just the same as that of the frequency-based CPS fF

except that D(i�α)
T (= (D(i�α)

T�j )j �=i) are the conditional empirical distributions of the op-
ponents’ realized actions. The rest of the argument is similar to the proof of Proposi-
tion 2. �

Propositions 3 and 4 entail the characterization of a learnable set correspondence.

Theorem 2. A set correspondence �i : 
i → 2
−i is learnable (by player i) if and
only if there exists a countable family {Pn}n of CRs such that for all σi ∈ 
i, �i(σi) ⊆
EG({Pn}n�σi).

The proof of Theorem 2 is similar to that of Theorem 1.

4.2 Frequency-based belief formation

Frequency-based prior belief ρ̃iF is a belief for conditional smooth fictitious play (CSFP):
taking a smooth approximate myopic best response to prior belief ρ̃iF is CSFP (see
Fudenberg and Levine 1998, 1999 and Noguchi 2000, 2009). Thus, CSFP is interpreted
as a Bayesian learning procedure (in the myopic case). Interestingly, Propositions 3 and
4 imply that the class of (prior) beliefs for CSFP weakly merges with any learnable set
correspondence: the class of beliefs for CSFP has a kind of dominance property of weak
merging.

Corollary 3. For any prior belief ρ̃i of player i, there exists a frequency-based prior belief
ρ̃iF of player i such that ρ̃iF leads her to learn to predict LS(ρ̃i� ·): for all σi ∈ 
i and all
σ−i ∈ 
−i, if μ(σi� ρ̃

i) weakly merges with μ(σi�σ−i), then μ(σi� ρ̃
i
F ) also weakly merges

with μ(σi�σ−i).

By slightly modifying the switching criterion (3) in Section 3.3, Corollary 3 is gener-
alized to have a similar dominance property of almost weak merging as well; the modi-
fication also enables CSFP to have a sophisticated no-regret property. See Section 5 for
details.

4.3 Some noteworthy examples

4.3.1 Uniformly learnable set I have argued that, in general, learnability crucially de-
pends on the player’s own behavior in a repeated game. However, many well known
classes of (the opponents’) strategies are learnable regardless of the player’s strategy:
they are uniformly learnable.
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Definition 11. A set S−i of the opponents’ strategies is uniformly learnable (by
player i) if there exists a prior belief ρ̃i of player i such that for all σi ∈ 
i and all σ−i ∈ S−i,
ρ̃i leads the player to learn to predict σ−i with σi.

From the argument in Section 4.1, it is evident that the set of i.i.d. strategies is uni-
formly learnable because it is generated by the identity partition PId. Similarly, the set of
all Markov strategies (of all orders) is uniformly learnable because it is generated by the
(countable) family {Mk}k of all Markov CRs. More generally, for any countable family
{Pn}n of CRs, the set G−i({Pn}n) of the opponents’ strategy profiles generated by {Pn}n is
uniformly learnable.

Corollary 4. For any countable family {Pn}n of CRs, G−i({Pn}n) is uniformly learnable
(by player i).

Proof. For {Pn}n, construct a frequency-based prior belief ρ̃iF , as in the proof of Propo-
sition 4. As noted in Section 4.1, G−i({Pn}n)⊆ ⋂

σi
EG({Pn}n�σi). This, along with Propo-

sition 4, implies that for all σi ∈ 
i and all σ−i ∈ G−i({Pn}n), ρ̃iF leads player i to learn to
predict σ−i with σi. �

A typical example of Corollary 4 is the set of finite automaton strategies19; strategies
implemented by finite automata have been studied much in the repeated game litera-
ture (see, e.g., Osborne and Rubinstein 1994 for details).20 A CR P is said to be a finite
automaton conditioning rule (FACR) if for any class α ∈ P and any action profile a ∈ A,
there exists a (unique) class β ∈ P such that for any h, if h ∈ α, then h ∗ a ∈ β, where h ∗ a
is the concatenation of h with a.21 (The identity partition PId and any Markov CR Mk

are examples of FACRs.) Note that the opponents’ strategy profile σ−i is generated by an
FACR if and only if σ−i is implemented by a finite automaton.22 Further, the family of all
FACRs, denoted by PF , is countable.23 Therefore, we can apply Corollary 4 to G−i(PF),

19The author thanks an anonymous referee and the co-editor for suggesting this important example.
20This paper follows Mailath and Samuelson (2006). A finite automaton consists of a finite set of states

W , an initial state w0(∈ W ), an output function g : W → ∏
i �(Ai), and a transition function q : W ×A → W .

Then the finite automaton (W �w0� g�q) implements a (unique) strategy profile σ as follows. First, for the
null history h0, let σ(h0) := g(w0). Next, for any history h1 with length 1, define σ(h1) := g(w1), where w1 =
q(w0� a) and h1 = a. Similarly, for any history h2 with length 2, let σ(h2) := g(w2), where w2 = q(w1� a

2),
w1 = q(w0� a

1), and h2 = (a1� a2), and so on. Accordingly, we say that the opponents’ strategy profile σ−i

is implemented by a finite automaton if for some player i’s strategy σi, (σi�σ−i) is implemented by a finite
automaton.

21That is, h ∗ a is the finite history such that h occurs first, and then a is realized in the period after h.
22To any FACR P , there corresponds a pair (w0� q) made of an initial state w0 and a transition function q.

Indeed, each class in P is interpreted as a state, and the initial state w0 is the class to which the null history
belongs. Then, for any α ∈ P and any a ∈ A, let q(α�a) := β, where h ∗ a ∈ β (∈ P) for all h ∈ α. (Evidently,
q is well defined.) Hence, any strategy profile σ−i generated by P is implemented by a finite automaton
corresponding to P . Conversely, it is easy to see that any strategy profile σ−i implemented by a finite au-
tomaton is also implemented by some finite automaton corresponding to an FACR. Thus, σ−i is generated
by the FACR.

23For each k = 1�2� � � � , the number of transition functions in all automata with k states (i.e., #W = k)
is kk#A, and the number of (possible initial) states is k. Hence, the number of all (w0� q)s is k · kk#A and
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and the set of all (the opponents’) strategy profiles implemented by finite automata is
uniformly learnable.

As a more general example of G−i({Pn}n), we may consider the set of (the oppo-
nents’) computably regular strategies. Computably regular strategies have strong regu-
larities in the sense that their CRs are determined by computer algorithms. A function
 : H ×H → {0�1} is called the characteristic function of a partition P if for all h�h′ ∈H,
h∼P h′ ⇔(h�h′) = 1. A CR P is said to be computably regular if its characteristic func-
tion is (Turing machine) computable. Let PC denote the family of all computably regular
CRs. A strategy profile σ−i of the opponents is computably regular if σ−i is generated by
PC . Most practical strategies, including all i.i.d. strategies, all computable pure strate-
gies,24 all Markov strategies of all orders, all strategies implemented by finite automata,
and equilibrium strategies in folk theorems,25 are computably regular. In addition, com-
putably regular strategies are interpreted as a generalization of computable pure (be-
havior) strategies to mixed (behavior) strategies. Indeed, any computable pure strategy
(profile) is generated by some computably regular CR. Finally, we may apply Proposi-
tion 4 (and Corollary 4) to the set 
C

−i of (the opponents’) computably regular strategies
because PC is countable and 
C

−i := G−i(PC).

Corollary 5. There exists a frequency-based prior belief ρ̃iF of player i such that for all
σi ∈ 
i and all σ−i ∈ 
C

−i, ρ̃
i
F leads her to learn to predict σ−i with σi.

Remark 3. The union of PC and any countable family {Pn}n of CRs is also countable.
Thus, we may assume that 
C

−i is included in a learnable set (correspondence).

4.3.2 Examples for Nachbar’s impossibility theorem Nachbar (1997, 2005) provides a
celebrated impossibility theorem about Bayesian learning in repeated games. Roughly,
the impossibility theorem states that if each player’s prior belief leads her to learn to
predict her opponents’ diverse strategies and the learning performances of the players’
prior beliefs are symmetric to each other, then some player’s prior belief cannot lead
her to learn to predict her opponents’ true strategies (i.e., her opponents’ (approximate)
optimal strategies with respect to their prior beliefs) with all of her own diverse strate-
gies, including her true one; recall that the path of play depends on the player’s own
behavior. In this subsection, I show that for any countable family {Pn}n of CRs, the pair
(G1({Pn}n)�G2({Pn}n)) is an (general) example for Nachbar’s impossibility theorem. To
demonstrate this, I provide several formal definitions and a version of the impossibility
theorem. Following Nachbar (2005), consider a two-player infinitely repeated game. Let

is thus finite. Therefore, the set of (w0� q)s in all finite automata is countable. Since there is a one-to-one
correspondence between FACRs and their corresponding (w0� q)s, PF is also countable.

24For example, see Nachbar and Zame (1996) for computable pure strategies.
25For example, equilibrium strategies in Fudenberg and Maskin (1991) are computably regular provided

that players’ discount factors, their payoffs in a stage game, and the target values of their averaged dis-
counted payoff sums are computable numbers. In addition, equilibrium strategies (in the perfect monitor-
ing case) in Hörner and Olszewski (2006) are also computably regular if the same computability condition
holds. Moreover, a simple strategy profile (and an optimal simple penal code) in Abreu (1988) is computably
regular provided that the initial path and the punishments for players are computable sequences.
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̂i generically denote a set of player i’s strategies for i = 1�2. First, I impose an appropri-
ate learnability condition on a pair (
̂1� 
̂2) of players’ strategy sets.

Learnability. A pair (
̂1� 
̂2) is learnable by a pair (ρ̃1� ρ̃2) of players’ prior beliefs if
(a) for any i �= j, any σi ∈ 
̂i, and any σj ∈ 
̂j , the prior belief ρ̃iof player i leads the player

to learn to predict σj with σi, and (b) for any i �= j, any σi ∈ 
̂i, any σj ∈ 
̂j , and any h ∈ H,
if μ(σi� ρ̃

i)(h) = 0, then μ(σi�σj)(h) = 0.26

Next, the following condition requires 
̂1 and 
̂2 to be diverse, and symmetric to
each other.

CSP. A pair (
̂1� 
̂2) satisfies CS (caution and symmetry) if for any i �= j, any pure strat-
egy si ∈ 
̂i, and any (relabeling) function γij : Ai → Aj , there exists a pure strategy sj ∈ 
̂j

such that for the infinite history h∞ generated by si and sj , there exists a dense sequence

D of periods wherein for any T ∈ D, sj(hT ) = γij(si(hT )).27 Furthermore, (
̂1� 
̂2) satis-

fies P (pure strategies) if there exists ξ > 0 such that for any i = 1�2 and any σi ∈ 
̂i, there
exists a pure strategy si ∈ 
̂i wherein for any h ∈H, if si(h) = ai, then σi(h)[ai]> ξ.

Finally, I define the condition that requires every player to learn to predict her oppo-
nent’s true strategy (i.e., her opponent’s uniform approximate best response to the oppo-
nent’s prior belief) with all of her own diverse strategies, including her true one.

Consistency. Given ε ≥ 0, (
̂1� 
̂2) is ε-consistent with respect to (ρ̃1� ρ̃2) if for any
i = 1�2, player i has a uniform ε-best response σ

ρ
i to ρ̃i in 
̂i; that is, (σρ

1 �σ
ρ
2 ) ∈ 
̂1 × 
̂2.28

The following version of Nachbar’s impossibility theorem states that if a learnable
pair of players’ strategy sets satisfies CSP, then the pair cannot satisfy the consistency
condition. Let δ denote the (common) discount factor between the players in the re-
peated game.

Impossibility Theorem (Nachbar 200529). (i) Suppose that neither player has a
weakly dominant action in the stage game (NWD). Then there exists δ̄ > 0 such
that for any 0 ≤ δ < δ̄, there exists ε > 0 wherein for any (
̂1� 
̂2) and any (ρ̃1� ρ̃2),

26Nachbar (2005) uses a slightly weaker learnability condition: weak learnability. The weak learnability
condition is equivalent to almost weak merging (instead of weak merging) plus (b). See Section 5 for details
on almost weak merging.

27A set D of nonnegative integers is a dense sequence of periods if limT→∞ #(D∩{0�1� � � � �T − 1})/T = 1.
28Player i’s strategy σi is a uniform ε-best response to her prior belief ρ̃i if (a) σi is an ε-best response

to ρ̃i and (b) for any h such that μ(σi� ρ̃
i)(h) > 0, the continuation strategy σi�h (following h) is an ε-best

response to the posterior ρ̃ih (:= (ρ̃ij�h)j �=i) (after h) in the continuation game following h. See Nachbar (1997,
2005) for details.

29The original version in Nachbar (2005) is slightly more general because Nachbar (2005) only imposes

the weak learnability condition on pure strategies in (
̂1� 
̂2); that is, “pure weak learnability,” as mentioned
in footnote 26. Pure weak learnability means that the weak learnability condition is satisfied by the pair
(Ŝ1� Ŝ2) of pure strategy sets, where Ŝi is the set of all (player i’s) pure strategies in 
̂i for i = 1�2.
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if (
̂1� 
̂2) is learnable by (ρ̃1� ρ̃2) and satisfies CSP, then (
̂1� 
̂2) is not ε-consistent
with respect to (ρ̃1� ρ̃2).

(ii) Suppose that each player’s pure action maxmin payoff is strictly less than her min-
max payoff in the stage game (MM). Then, for any 0 ≤ δ < 1, there exists ε > 0 such
that for any (
̂1� 
̂2) and any (ρ̃1� ρ̃2), if (
̂1� 
̂2) is learnable by (ρ̃1� ρ̃2) and satisfies
CSP, then (
̂1� 
̂2) is not ε-consistent with respect to (ρ̃1� ρ̃2).30

Note that from the viewpoint of convergence (to approximate Nash equilibrium), it
is pointless to apply Nachbar’s impossibility theorem to (
̂1� 
̂2) that is not learnable (by
any pair of players’ prior beliefs). In other words, Nachbar’s impossibility theorem must
be applied to (
̂1� 
̂2) that is learnable (and satisfies CSP). The following lemma shows
that for any {Pn}n, the pair (G1({Pn}n)�G2({Pn}n)) is learnable (by some pair of players’
prior beliefs) and satisfies CSP.

Lemma 1. For any countable family {Pn}n of CRs, (G1({Pn}n)�G2({Pn}n)) is learnable (by
some pair of players’ prior beliefs (ρ̃1� ρ̃2)) and satisfies CSP.

Proof. Fix any {Pn}n. From Corollary 4 in Section 4.3.1, for any i �= j, any σi ∈ 
i, and
any σj ∈ Gj({Pn}n), ρ̃iF leads player i to learn to predict σj with σi. Furthermore, we can
easily modify ρ̃iF to satisfy (b) in the learnability condition: for any j �= i, ρ̃iF�j(h)[aj] > 0

for any aj ∈Aj and any h ∈H. Therefore, (G1({Pn}n)�G2({Pn}n)) is learnable by (ρ̃1
F� ρ̃

2
F).

Next, take any i ( �= j), any pure strategy si ∈ Gi({Pn}n), and any (relabeling) function
γij . From the definition of Gi({Pn}n), there exists n̄ such that si is generated by Pn̄ (or,
equivalently, Pn̄ is a CR of si). That is, for each α ∈ Pn̄, there exists a pure action ai ∈ Ai

such that si(h) = ai for all h ∈ α. Then define player j’s pure strategy sj as follows: sj(h) :=
γij(si(h)) for all h ∈H. Evidently, (sj is well defined and) sj is generated by Pn̄. Hence, sj ∈
Gj({Pn}n). In addition, by the definition of sj , it is obvious that for the infinite history h∞
generated by si and sj , sj(hT ) = γij(si(hT )) for all T . Therefore, (G1({Pn}n)�G2({Pn}n))
satisfies CS.

Finally, let ξ := 1/(2(#Ā + 1)), where #Ā := maxi #Ai. Take any i and any strategy
σi ∈ Gi({Pn}n). Then, by the definition of Gi({Pn}n), there exists n̂ such that for any α ∈ Pn̂

and any h�h′ ∈ α, ‖σi(h)−σi(h
′)‖ ≤ 1/(2#Ā). For each α ∈ Pn̂, take a finite history ĥ ∈ α

and a pure action âi ∈ Ai such that σi(ĥ)[âi] ≥ 1/#Ai. Then define a pure strategy si
as follows: for any α ∈ Pn̂ and any h ∈ α, let si(h) := âi, where ĥ ∈ α and σi(ĥ)[âi] ≥
1/#Ai. Evidently, (si is well defined and) si is generated by Pn̂. Therefore, si ∈ Gi({Pn}n).
Furthermore, take any h ∈H. Then there exists a unique class α ∈ Pn̂ such that h ∈ α. By
the definition of si, si(h) = âi, where ĥ ∈ α and σi(ĥ)[âi] ≥ 1/#Ai. Since ‖σi(h)−σi(ĥ)‖ ≤
1/(2#Ā), this implies that σi(h)[âi] ≥ σi(ĥ)[âi]−1/(2#Ā) ≥ 1/#Ai−1/(2#Ā)≥ 1/#Ā−
1/(2#Ā)= 1/(2#Ā) > 1/(2(#Ā+1))= ξ. Therefore, (G1({Pn}n)�G2({Pn}n)) satisfies P. �

30Suppose that (
̂1� 
̂2) is ε-consistent with respect to (ρ̃1� ρ̃2) (and is learnable by (ρ̃1� ρ̃2)). Then each
player i’s prior belief ρ̃i leads her to learn to predict her opponent’s true strategy (i.e., her opponent’s uni-
form ε-best response to ρ̃j ) σρ

j with her own true strategy σ
ρ
i . This implies that (σρ

1 �σ
ρ
2 ) (almost surely)

converges to approximate Nash equilibrium. Therefore, consistency is a stronger condition than conver-
gence (to approximate Nash equilibrium).
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From Nachbar’s impossibility theorem and Lemma 1, it immediately follows that
Nachbar’s impossibility always holds for (G1({Pn}n)�G2({Pn}n)); from this and the pre-
vious subsection, Nachbar’s impossibility holds for the pair of (players’) i.i.d. strategy
sets, that of Markov strategy sets, that of finite automaton strategy sets, and that of com-
putably regular strategy sets.

5. Almost weak merging

We also obtain quite similar characterization results with respect to almost weak merg-
ing. The learning criterion is introduced as a weaker concept of merging in Lehrer and
Smorodinsky (1996b). Almost weak merging requires that the updated forecast about
any finite-period future event be accurate in almost all periods. A set D of nonnegative
integers is a dense sequence of periods if limT→∞ #(D∩ {0�1� � � � �T − 1})/T = 1.

Definition 12. A prior μ̃ almost weakly merges with a probability measure μ if for all
ε > 0, all k ≥ 1, and μ-almost all h∞, there exists a dense sequence D of periods such
that for all T ∈ D,

sup
A∈FT+k

∣∣μ̃(A|FT )−μ(A|FT )
∣∣ ≤ ε�

Notice that a prior μ̃ almost weakly merges with a probability measure μ if and only
if for all ε > 0 and μ-almost all h∞, there exists a dense sequence D of periods such that
for all T ∈D, ‖fμ̃(hT )− fμ(hT )‖ ≤ ε. This is also equivalent to the following: for all ε > 0,
there exist a μ-probability 1 set Z and an ordered family {Tm}m=∞

m=1 of time functions31;
that is, Tm : Z → N, such that (i) for all h∞ ∈ Z and all m, ‖fμ̃(hTm) − fμ(hTm)‖ ≤ ε, and
(ii) limT→∞NT(h∞)/T = 1 for all h∞ ∈ Z, where NT(h∞) := #{m | Tm(h∞)+ 1 ≤ T }.

As in the weak merging case, I define the phrase “almost weak merging with a set
of probability measures.” A prior μ̃ almost weakly merges with a set M of probability
measures if μ̃ almost weakly merges with all probability measures in M . Moreover, a set
M of probability measures is almost weakly merged if there exists a prior μ̃ such that μ̃
almost weakly merges with M .

Now, I define the almost generation of CPSs. The definition simply states that for
any ε > 0, the regularity of f is (almost surely) ε-approximated by one in a given family
of CRs in almost all periods.

Definition 13. A CPS f : H → �(S) is almost generated by a family {Pi}i of CRs if
for all ε > 0, there exist an index i0, a μf -probability 1 set Z0, and an ordered family
{Tm}m of time functions such that (a) for all α ∈ Pi0 and all hT �h

′
T ′ ∈ α, if there exist

h∞�h′∞ ∈ Z0 and m�m′ such that hT < h∞, T = Tm(h∞), h′
T ′ < h′∞, and T ′ = Tm′(h′∞),

then ‖f (hT ) − f (h′
T ′)‖ ≤ ε; and (b) limT→∞NT(h∞)/T = 1 for all h∞ ∈ Z0, where

NT(h∞) := #{m | Tm(h∞)+ 1 ≤ T }.

31By an ordered family {Tm}m of time functions, I mean that Tm(h∞) < Tm+1(h∞) for all m and all h∞ ∈ Z.
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Further, a probability measure μ is almost generated by a family {Pi}i of CRs if there
exists a CPS fμ corresponding to μ such that fμ is almost generated by {Pi}i. The set of
all probability measures almost generated by {Pi}i is denoted by AG({Pi}i). Obviously,
EG({Pi}i)� AG({Pi}i).

As in the weak merging case, no prior almost weakly merges with more probability
measures than those almost generated by a countable family of CRs.

Proposition 5. For any prior μ̃, there exists a countable family {Pi}i of CRs such that μ̃
does not almost weakly merge with any μ /∈ AG({Pi}i).

See Appendix C for the proof.
For any {Pi}i, I construct a prior μ̃M that almost weakly merges with all probability

measures almost generated by {Pi}i. For that purpose, I only have to modify the switch-
ing criterion (3) in the definition of i(·) as follows:

i(hT ) :=
{
m(hT )+ 1 if n(hT ) ≥ n

β(hT )
0 and

∑i=m(hT )+1
i=1

∑
α∈Pi

nα0
n(hT )

< 1
m(hT )

m(hT ) otherwise.
(4)

All other things are exactly the same as in the weak merging case. Let fM denote
the modified frequency-based CPS and let μ̃M := μ̃fM . In the definition of i(·), a new
inequality is added to the switching criterion so that for almost all categories, the prior
sample size is negligible relative to the number of effective periods; this fact will be used
for proving Proposition 6.

Proposition 6. For any countable family {Pi}i of CRs, there exists a frequency-based
prior μ̃M such that μ̃M almost weakly merges with all μ ∈ AG({Pi}i).

See Appendix C for the proof.
Note that μ̃M also weakly merges with EG({Pi}i); the proof is quite similar to that

of Proposition 2 in Section 3.3. Therefore, μ̃M not only almost weakly merges with
AG({Pi}i) but also weakly merges with EG({Pi}i).

Corollary 6. For any countable family {Pi}i of CRs, there exists a prior μ̃M such that
μ̃M not only almost weakly merges with AG({Pi}i) but also weakly merges with EG({Pi}i).

Finally, Propositions 5 and 6 give us the characterization of almost weak merging
with a set of probability measures, as in the weak merging case.

Theorem 3. A set M of probability measures is almost weakly merged if and only if there
exists a countable family {Pi}i of CRs such that M ⊆ AG({Pi}i).

The proof is similar to that of Theorem 1.

Remark 4. As noted in Section 4.2, let ρ̃iM be the modified frequency-based prior be-

lief (in the repeated game) that is the same as fM except that D(i�α)
T (= (D(i�α)

T�j )j �=i) are
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the conditional empirical distributions of the opponents’ realized actions. Then, by a
similar argument to Corollary 6, both Corollary 3 and the almost weak merging version
of Corollary 3 hold for ρ̃iM : ρ̃iM has the dominance property of both weak merging and
almost weak merging.

Remark 5. As a belief for CSFP, ρ̃iM has a sophisticated no-regret property (i.e., universal
(classwise) conditional consistency) as well. See Noguchi (2000, 2003, 2009) for details
on the (no-regret) properties of CSFP. Further, this fact suggests that there may be some
important relations between (almost) weak merging and no-regret, but this is an open
issue. See Cesa-Bianchi and Lugosi (2006) for a comprehensive survey on associated
issues and learning procedures in the no-regret literature.

6. Concluding remarks

I have provided a characterization of a learnable set with respect to (almost) weak merg-
ing by using the conditioning rule and eventual generation. That is, I have shown
that a set of probability measures is learnable if and only if the set is contained in the
set of probability measures eventually generated by some countable family of condi-
tioning rules. Furthermore, I have demonstrated that this characterization result can
be extended to the case of infinitely repeated games by introducing the concept of a
learnable set correspondence. I conclude by stating several issues pertaining to my
characterization.

Application to convergence to approximate Nash equilibrium

My characterization may have interesting applications. In particular, it may enable us to
find out various types of “smart” prior beliefs.32 Indeed, making use of the characteriza-
tion result in this paper, Noguchi (2015) constructs smart prior beliefs that lead players
to learn to play approximate Nash equilibrium in any repeated game with perfect mon-
itoring, combined with smooth approximate optimal behavior. This positive result has
a significant implication for the impossibility result in Nachbar (1997, 2005); see Sec-
tion 4.3.2 for the impossibility result and its examples. Although Nachbar’s impossibil-
ity result does not necessarily imply the impossibility of convergence to (approximate)
Nash equilibrium, it, along with other impossibility results, has led to skepticism regard-
ing whether a general result of convergence could be obtained for Bayesian learning in
repeated games. However, the positive result in Noguchi (2015) induces the following
possibility theorem: there exist prior beliefs ρ̃∗ := (ρ̃i∗)i such that although each player i’s
prior belief ρ̃i∗ leads her to approximately learn to predict her opponents’ diverse strate-
gies and the learning performances of ρ̃∗ are symmetric to each other, the prior beliefs
ρ̃∗ (almost surely) lead the players to learn to play approximate Nash equilibrium for any
stage game payoff and any discount factor (combined with smooth approximate opti-
mal behavior). In other words, the possibility result clarifies that Nachbar’s impossibility
is different from the impossibility of learning to play approximate Nash equilibrium in a
general sense.

32By a smart prior belief, I mean a prior belief that leads the player to learn to predict as many strategies
of her opponents as possible.
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Size of the learnable set: Large or small

I have characterized a learnable set. Then a natural (open) question arises as to whether
a learnable set is generally large or small.33 There are many different criteria to measure
the size of a set.34 Here, I briefly discuss several criteria; in the following argument, a
probability measure is identified with its corresponding CPSs. First, in the supremum
norm topology, a canonical learnable set EG({Pi}i) is not open. However, given ε > 0,
we may consider the set EGε({Pi}i) of probability measures ε-eventually generated by
{Pi}i,35 and we can show that for any ε > 0, frequency-based prior μ̃F ε-weakly merges
with EGε({Pi}i)36; EGε({Pi}i) is considered an approximately learnable set. Evidently,
the interior of EGε({Pi}i) is nonempty in this topology. From this point of view, EG({Pi}i)
may not be small, at least in an approximate sense. However, even Gε(PId) (i.e., the set
of ε-i.i.d. probability measures) has a nonempty interior (for any ε > 0) although Gε(PId)

may be supposed to be small.
Next, in the weak (-star) topology, a first category set is often considered as a “small”

one (e.g., Dekel and Feinberg 2006).37 In this topology, for any small ε > 0 and any CR
P , Gε(P) is a closed set with its interior being empty. Since Gε({Pi}i) = ⋃

i Gε(Pi),38

Gε({Pi}i) is a countable union of closed sets with their interiors being empty, that is, a
first category set. As for EG({Pi}i), however, we can easily show that both EG({Pi}i) and
its complement are dense (for any {Pi}i). This reflects the following two facts. On the one
hand, the definition of EG({Pi}i) only imposes a restriction on the limit (or long-run)
property of a probability measure (i.e., a CPS): (for any ε > 0) the regularity of a prob-
ability measure (in EG({Pi}i)) is (almost surely) eventually ε-approximated by one in
{Pi}i. On the other hand, given any two probability measures, the weak (-star) topology
is only effective to measure the differences in the probabilities of finite-period events
(i.e., short- and medium-run events)39; that is, it cannot capture the differences in the
limit (or long-run) property. These facts lead us to doubt the validity of the weak (-star)
topology as a criterion for measuring the size of a learnable set; that is, in general, nei-
ther EG({Pi}i) nor its complement may be of first category. (This is in contrast to the
case of merging. See the next remark on merging.)

Finally, instead of the above topological criteria, we may consider a “measure theo-
retic” one, shyness, which is an infinite dimensional version of Lebesgue measure zero;

33The author thanks Drew Fudenberg for suggesting this issue and introducing him to the relevant liter-
ature. Further, the author is grateful to an anonymous referee and the co-editor for introducing him to the
literature on prevalence and shyness.

34Miller and Sanchirico (1997) investigate an interesting related problem.
35The set EGε({Pi}i) is defined as follows: μ ∈ EGε({Pi}i) if and only if there exist an index i0,

a μ-probability 1 set Z0, and a time function T0 : Z0 → N such that for all α ∈ Pi0 and all hT �h
′
T ′ ∈ α, if there

exist h∞�h′∞ ∈ Z0 wherein hT < h∞, T ≥ T0(h∞), h′
T ′ < h′∞, and T ′ ≥ T0(h

′∞), then ‖fμ(hT )− fμ(h
′
T ′)‖ ≤ ε.

36We say that μ̃ ε-weakly merges with μ if for μ-almost all h∞, lim supT→∞ ‖fμ̃(hT )− fμ(hT )‖ ≤ ε.
37A set is of first category if the set is contained in a countable union of closed sets with their interiors

being empty.
38Given ε > 0, Gε({Pi}i) is defined as follows: μ ∈ Gε({Pi}i) if and only if there exists i such that Pi is

an ε-ACR of a CPS fμ corresponding to μ. Evidently, G({Pi}i)� Gε({Pi}i)� EGε({Pi}i) for any ε > 0.
39Indeed, a sequence {μn}n weakly converges to μ if and only if for any finite history h, μn(h) → μ(h) as

n→ ∞. See Parthasarathy (1967) for the properties of the weak (-star) topology.
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see Anderson and Zame (2001). As an attempt to check whether this criterion is valid,
I consider a tractable example, that is, the set SEG({Pi}i) of probability measures that
are surely eventually approximated by {Pi}i: a probability 1 set Z0 (in the definition of
EG({Pi}i)) is replaced by the set H∞ of all infinite histories.40 (Hence, for any {Pi}i,
G({Pi}i) � SEG({Pi}i) � EG({Pi}i).) On the one hand, as in the case of EG({Pi}i), both
SEG({Pi}i) and its complement are dense in the weak (-star) topology. On the other
hand, we can show that SEG({Pi}i) is shy.41

From the above argument, shyness may be more appropriate than the other two
criteria. Nonetheless, it does not seem easy to verify the shyness of EG({Pi}i), because a
probability 1 set Z0 is quite different according to a probability measure.42 Therefore, it
is unknown whether, in general, EG({Pi}i) is shy.

Merging

This paper only explores (almost) weak merging. The same issue can be explored about
merging; that is, the identification of a set of probability measures with which a prior
merges. It has been known that no prior can merge with even the set of i.i.d. probability
measures. Further, Sandroni and Smorodinsky (1999) investigate the relationships be-
tween merging and weak merging, and show that merging requires weak merging with
fast speed in almost all periods. These results lead us to conjecture that, in general, a
merged set (of probability measures) may be much smaller than a weakly merged set.
Accordingly, Ryabko (2010) provides a general result of the merged set: under a stan-
dard assumption (i.e., local absolute continuity),43 any merged set M has a countable
dense subset in the total variation metric topology.44 As a corollary, any strictly convex
combination of the probability measures in the countable subset merges with M . Inter-
estingly, combining this corollary with a mathematical proposition in Dekel and Fein-
berg (2006), we immediately obtain that a merged set is of first category (in the weak
(-star) topology). See Appendix D for the proof.

I address several questions from the viewpoint of game theory. First, since the to-
tal variation metric topology is quite strong, we may expect a sharper evaluation of the
size of a merged set. Second, it is desirable to provide a (complete) characterization of
a merged set without the local absolute continuity assumption. This is important for
game theory because the conditional probability (or the posterior) on an event of prob-

40That is, SEG({Pi}i) is defined as follows: μ ∈ SEG({Pi}i) if and only if for any ε > 0, there exist an index
i0 and a time function T0 : H∞ →N such that for all α ∈ Pi0 and all hT �h

′
T ′ ∈ α, if there exist h∞�h′∞ wherein

hT < h∞, T ≥ T0(h∞), h′
T ′ < h′∞, and T ′ ≥ T0(h

′∞), then ‖fμ(hT )− fμ(h
′
T ′)‖ ≤ ε.

41To be precise, the set of CPSs corresponding to SEG({Pi}i) is finitely shy in
∏

h∈H �(S) equipped with
the supremum norm topology. (Finite shyness implies shyness; see Anderson and Zame 2001.)

42Note that the regularity of any probability measure μ in SEG({Pi}i) is eventually approximated by {Pi}i
on the same set; that is, the set of all infinite histories. This property enables us to show the (finite) shyness
of SEG({Pi}i).

43The literature on merging usually assumes the local absolute continuity condition on a prior μ̃ and
a probability measure μ: for any finite history h, if μ̃(h) = 0, then μ(h) = 0. For example, see Kalai and
Lehrer (1994), Sandroni (1998), and Sandroni and Smorodinsky (1999). Note that in order to provide a
characterization of a weakly merged set, this paper does not assume any condition on the relationships
between a prior and a probability measure.

44The total variation metric d is defined as follows: for any μ�μ′, d(μ�μ′) := supA∈F |μ(A)−μ′(A)|.
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ability zero is often considered in many games, including repeated ones.45 Finally, it is
worthwhile to explore how the above results of merging can be applied to the study of
Bayesian learning in repeated games, as in Section 4 of this paper.

Appendix A

I prepare a mathematical proposition to prove Propositions 2 and 6. Let T α
n (h∞) de-

note the calendar time of the nth α-active period in h∞; T α
n (h∞) < ∞ means that α is

active at least n times in h∞. Let dα
n(h∞) designate the vector in which each coordinate

dα
n(h∞)[s] is the number of times that s has occurred in the first n α-active periods along

h∞. The next proposition extends a basic fact of large deviations to a conditional case.
It states that if the probabilities of a state s have common upper and lower bounds in
active periods of a given class, then the probability that the frequency of s in the first n
active periods of that class is not between those bounds, decreases exponentially in the
sample size n.

Proposition A. Let α be any subset of H. Take any probability measure μ and any state
s that satisfy the following condition: for all h ∈ α with μ(h) > 0, l ≤ μ(s|h) ≤ L, where l

and L are nonnegative constants. Then, for all ε > 0 and all n = 1�2� � � � ,

μ

(
T α
n <∞�

dα
n[s]
n

≤ l − ε or
dα
n[s]
n

≥L+ ε

)
≤ 2 exp(−2nε2)�

where dα
n[s] is the s-coordinate of dα

n(h∞).

I first show the following claim in the case that μ(s|h) ≥ l. The case that μ(s|h) ≤L is
proved similarly. Let Pl denote the probability measure in the coin-flipping process: in
each independent trial, a coin is used that generates heads with probability l. Let dn[H]
denote the number of times that heads has come out in the first n trials. By h∗h′, I mean
the concatenation of h with h′, that is, h occurs first and then h′ happens.

Claim A. Let α be any subset of H. Take any probability measure μ and any state s that
satisfy the following condition: for all h ∈ α with μ(h) > 0, μ(s|h) ≥ l. Then, for all n ≥ 1
and all m = 0�1� � � � � n,

μ

(
T α
n <∞�

dα
n[s]
n

≤ m

n

)
≤ Pl

(
dn[H]
n

≤ m

n

)
�

Proof. I prove Claim A inductively. Define a class αF : = {h | h ∈ α, h′ /∈ α for all h′ < h}:
αF consists of histories whose next period is the first α-active period. Clearly, αF ⊆ α.
Notice that

∑
h∈αF μ(h)≤ 1. For notational simplicity, let λ(m�n) := Pl(dn[H]/n≤m/n).

Step 1. I first show Claim A for the case that n = 1. Let m= 0. Then

μ(T α
1 <∞�dα

1 [s] = 0)=
∑
h∈αF

(1 −μ(s|h))μ(h) ≤
∑
h∈αF

(1 − l)μ(h) ≤ 1 − l�

45The local absolute continuity implies that a forecaster does not need to consider the posterior μ̃(·|h)
after any history h that she believes never happens (i.e., μ̃(h) = 0), because h actually does not occur (i.e.,
μ(h) = 0).
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Since λ(0�1) = 1 − l, Claim A is true for the case that n = 1 and m = 0. When m = 1,
λ(1�1) = 1 so that Claim A holds in that case. Therefore, Claim A is true for the case that
n = 1.

Step 2. Suppose that Claim A is true for n. Given the inductive hypothesis, I show that
Claim A is also true for n+1. In the case that m = n+1, λ(n+1� n+1)= 1. Thus, Claim A
is trivial in that case. Consider the case that m < n + 1. First, note that the following
equality holds:

μ

(
T α
n+1 < ∞�

dα
n+1[s]
n+ 1

≤ m

n+ 1

)
=

∑
h∈αF

∑
s′∈S

μ

(
T α
n+1 < ∞�

dα
n+1[s]
n+ 1

≤ m

n+ 1

∣∣∣h ∗ s′
)
μ(h ∗ s′)�

Step 3. Let αh := {h′ | h ∗ h′ ∈ α} and define a probability measure μh by μh(h
′) :=

μ(h ∗ h′)/μ(h) (when μ(h) > 0). Note that for all h ∈ H (with μ(h) > 0), (αh�μh� s� l)

satisfies the condition in Claim A. Furthermore, when h ∈ αF (with μ(h ∗ s) > 0),

μ

(
T α
n+1 < ∞�

dα
n+1[s]
n+ 1

≤ m

n+ 1

∣∣∣h ∗ s

)
= μh∗s

(
T αh∗s
n < ∞�

dαh∗s
n [s]
n

≤ m− 1
n

)
�

(Note that when m = 0, the right hand side is zero.) When h ∈ αF and s′ �= s (with
μ(h ∗ s′) > 0),

μ

(
T α
n+1 <∞�

dα
n+1[s]
n+ 1

≤ m

n+ 1

∣∣∣h ∗ s′
)

= μh∗s′
(
T αh∗s′
n <∞�

d
αh∗s′
n [s]
n

≤ m

n

)
�

Since (αh∗s�μh∗s� s� l) and (αh∗s′�μh∗s′� s� l) satisfy the condition in Claim A, the in-
ductive hypothesis implies that μh∗s(T αh∗s

n < ∞�dαh∗s
n [s]/n ≤ (m − 1)/n) ≤ λ(m − 1� n)

and μh∗s′(T
αh∗s′
n < ∞�d

αh∗s′
n [s]/n ≤ m/n) ≤ λ(m�n) for all s′ �= s. From this and Step 2, it

is derived that

μ

(
T α
n+1 <∞�

dα
n+1[s]
n+ 1

≤ m

n+ 1

)
≤

∑
h∈αF

[
λ(m− 1� n)μ(h ∗ s)+

∑
s′ �=s

λ(m�n)μ(h ∗ s′)
]

=
∑
h∈αF

μ(h)
[
λ(m− 1� n)μ(s|h)+ λ(m�n)(1 −μ(s|h))]�

Step 4. Note that λ(m − 1� n) ≤ λ(m�n). Furthermore, 1 − μ(s|h) ≤ 1 − l for all h ∈ α

(with μ(h) > 0). Thus, for all h ∈ αF (with μ(h) > 0),

μ(s|h)λ(m− 1� n)+ (1 −μ(s|h))λ(m�n)≤ lλ(m− 1� n)+ (1 − l)λ(m�n)�

From this and the inequality in Step 3, it follows that

μ

(
T α
n+1 <∞�

dα
n+1[s]
n+ 1

≤ m

n+ 1

)
≤

∑
h∈αF

μ(h)[lλ(m− 1� n)+ (1 − l)λ(m�n)]

≤ lλ(m− 1� n)+ (1 − l)λ(m�n)�

Since lλ(m− 1� n)+ (1 − l)λ(m�n) = λ(m�n+ 1), the proof is completed. �
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Proof of Proposition A. We have the following inequalities of large deviations (see,
e.g., Shiryaev 1996): for all ε > 0 and all n, Pl(dn[H]/n ≤ l − ε) ≤ exp(−2nε2) and
PL(dn[H]/n ≥ L + ε) ≤ exp(−2nε2). Let mn

l�ε := max{m | m ≤ (l − ε)n} and Mn
L�ε :=

min{m | m≥ (L+ ε)n}. By Claim A and the inequalities above, for all ε > 0 and all n,

μ

(
T α
n < ∞�

dα
n[s]
n

≤ l − ε or
dα
n[s]
n

≥L+ ε

)

≤ μ

(
T α
n <∞�

dα
n[s]
n

≤ mn
l�ε

n

)
+μ

(
T α
n <∞�

dα
n[s]
n

≥ Mn
L�ε

n

)

≤ Pl

(
dn[H]
n

≤ mn
l�ε

n

)
+ PL

(
dn[H]
n

≥ Mn
L�ε

n

)

= Pl

(
dn[H]
n

≤ l − ε

)
+ PL

(
dn[H]
n

≥L+ ε

)

≤ 2 exp(−2nε2)� �

Appendix B

Without loss of generality, we may assume (throughout Appendix B) that {Pi}i is ordered
in fineness: Pi ≤ Pi+1 for all i. The following lemma will be used to prove Proposition 2.
It states that a forecaster employs finer and finer classes as (temporary) categories, as
time proceeds.

Lemma B. For all h∞, limT→∞ i(hT )= ∞.

Proof. Suppose that lim infT→∞ i(hT ) < ∞ for some h∞. Thus, i(hTk) = i0 for infinitely
many Tk. Since Pi0 and Pi0+1 only have finite classes and Pi0 ≤ Pi0+1, there exist α0 ∈ Pi0

and β0 ∈ Pi0+1 such that β0 ⊆ α0, and α(hTkl
) = α0 and β(hTkl

) = β0 for some infinite
subsequence {Tkl }l of {Tk}k; clearly, i(hTkl

) = i0 for all Tkl . This, along with the defini-
tion of m(·), implies that m(hTkl

)= i0 for all Tkl . However, then, by the definition of n(·),

n(hTkl
) → ∞ as Tkl → ∞. This means that for some Tkl , n(hTkl

) ≥ n
β0
0 = n

β(hTkl
)

0 , and,
consequently, by (3) in Section 3.3, i(hTkl

) = m(hTkl
) + 1 = i0 + 1. This is a contradic-

tion. �

Proof of Proposition 2. Let fF be the frequency-based CPS for {Pi}i. Fix any μ ∈
EG({Pi}i) and let fμ be a CPS corresponding to μ. Then it suffices to show that for μ-
almost all h∞, ‖fF(hT )− fμ(hT )‖ → 0 as T → ∞:

μ

( ⋂
m≥1

⋃
T ′≥0

⋂
T≥T ′

{
h∞

∣∣∣ ‖fF(hT )− fμ(hT )‖< 1
m

})
= 1�

Equivalently, I only have to show that for all m= 1�2� � � � ,

μ

( ⋂
T ′≥0

⋃
T≥T ′

{
h∞

∣∣∣ ‖fF(hT )− fμ(hT )‖ ≥ 1
m

})
= 0�
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Since μ ∈ EG({Pi}i), we obtain a μ-probability 1 set Z0 (i.e., μ(Z0) = 1) such that for
any ε > 0, there exist i0 and T0 : Z0 → N wherein for all α ∈ Pi0 and all hT �h

′
T ′ ∈ α, if

there exist h∞�h′∞ ∈ Z0 such that hT < h∞, T ≥ T0(h∞), h′
T ′ < h′∞, and T ′ ≥ T0(h

′∞),
then ‖fμ(hT )− fμ(h

′
T ′)‖ ≤ ε.

Step 1. Let ε := 1/(3m). Since {Pi}i is ordered in fineness, we may take i0 ≥ 3m.
For each α ∈ Pi0 , define a class α̂ as follows: hT ∈ α̂ if and only if (a) hT ∈ α and
(b) hT < h∞ and T ≥ T0(h∞) for some h∞ ∈ Z0. Then, for all α ∈ Pi0 and all s, let
Lα[s] := suph∈α̂ fμ(h)[s] and lα[s] := infh∈α̂ fμ(h)[s]; note that Lα[s] − lα[s] ≤ ε for all s.
Furthermore, for all (i�α), define a class γ(i�α) as follows: hT ∈ γ(i�α) if and only if
(a) time T + 1 is either an effective period of (i�α) or one of the first n(i�α)0 effective peri-
ods of (ip�αp), and (b) hT < h∞ and T ≥ T0(h∞) for some h∞ ∈ Z0. Since {Pi}i is ordered
in fineness, for each (i�α) with i ≥ i0 + 1, there exists a unique class β ∈ Pi0 such that
γ(i�α) ⊆ β̂; then let L(i�α)[s] := Lβ[s] and l(i�α)[s] := lβ[s] for all s. Hence, for all h ∈ γ(i�α)

and all s, l(i�α)[s] ≤ fμ(h)[s] (= μ(s|h)) ≤L(i�α)[s]. Moreover, it follows from the definition
of fF (in Section 3.3) and Lemma B that for all h∞ ∈ Z0 and all j ≥ i0 + 1, there exists
T̂ such that for all T ≥ T̂ , fF(hT ) = D

(i�α)
T = dγ(i�α)

n (h∞)/n for some (i�α) with i ≥ j and

some n ≥ n(i�α)0 (= nα0 ).
Step 2. For all categories (i�α) with i ≥ i0 + 1, let

B(i�α)
n :=

{
h∞

∣∣∣ T γ(i�α)
n <∞�∃s

(
dγ(i�α)
n [s]

n
≤ l(i�α)[s] − 1

i
or

dγ(i�α)
n [s]

n
≥L(i�α)[s] + 1

i

)}
�

Then, from Step 1, it follows that for all j ≥ i0 + 1,

⋂
T ′≥0

⋃
T≥T ′

{
h∞

∣∣∣ ‖fF(hT )− fμ(hT )‖ ≥ 1
m

}
∩ Z0 ⊆

⋃
i≥j

⋃
α∈Pi

⋃
n≥n

(i�α)
0

B(i�α)
n �

Step 3. From Step 1 and Proposition A (in Appendix A), it follows that for all (i�α)
with i ≥ i0 + 1, μ(B(i�α)

n ) ≤ 2#S exp(−2ni−2) for all n. Furthermore, by the definition of
n(i�α)0 , n(i�α)0 = nα0 for all α ∈ Pi and all i. From this and (2) in Section 3.3, it follows that for
all i and all α ∈ Pi, #Pi

∑n=∞
n=n

(i�α)
0

exp(−2ni−2)≤ exp(−i). These imply that for all j ≥ i0 +1,

μ

(⋃
i≥j

⋃
α∈Pi

⋃
n≥n

(i�α)
0

B(i�α)
n

)
≤

∑
i≥j

∑
α∈Pi

∑
n≥n

(i�α)
0

2#S exp(−2ni−2)

≤ 2#S
∑
i≥j

#Pi

∑
n≥n

(i�α)
0

exp(−2ni−2)

≤ 2#S
∑
i≥j

exp(−i)

≤ 2#S(1 − exp(−1))−1 exp(−j)�

From this inequality and the set inclusion in Step 2, it follows that for all j ≥ i0 + 1,

μ

( ⋂
T ′≥0

⋃
T≥T ′

{
h∞

∣∣∣ ‖fF(hT )− fμ(hT )‖ ≥ 1
m

}
∩ Z0

)
≤ 2#S(1 − exp(−1))−1 exp(−j)�
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Thus, letting j → ∞, we have

μ

( ⋂
T ′≥0

⋃
T≥T ′

{
h∞

∣∣∣ ‖fF(hT )− fμ(hT )‖ ≥ 1
m

}
∩ Z0

)
= 0�

Note that the complement of Z0 is of μ-probability 0. Therefore, the above equality
implies the desired result. �

Appendix C

Proof of Proposition 5. Fix any μ̃ and let fμ̃ be the CPS corresponding to μ̃. I show

that μ̃ does not almost weakly merge with any μ /∈ AG({Pfμ̃
1/n}n). Take any μ /∈

AG({Pfμ̃
1/n}n). Then there exists ε0 > 0 such that for all n, all μ-probability 1 sets Z, and

all ordered families of time functions {Tm}m, either there exist α ∈ Pfμ̃
1/n and hT �h

′
T ′ ∈ α

such that for some h∞�h′∞ ∈ Z and some m�m′, hT < h∞, T = Tm(h∞), h′
T ′ < h′∞,

T ′ = Tm′(h′∞), and ‖fμ(hT ) − fμ(h
′
T ′)‖ > ε0; or lim infT→∞NT(h∞)/T < 1 for some

h∞ ∈ Z, where NT(h∞) := #{m | Tm(h∞)+ 1 ≤ T }.
Suppose that μ̃ almost weakly merges with μ. Then, for ε0/4, there exist a μ-

probability 1 set Z0 and an ordered family {T 0
m}m of time functions such that for

all h∞ ∈ Z0 and all m, ‖fμ̃(hT 0
m
) − fμ(hT 0

m
)‖ ≤ ε0/4, and that limT→∞N0

T (h∞)/T = 1
for all h∞ ∈ Z0, where N0

T (h∞) := #{m | T 0
m(h∞) + 1 ≤ T }. On the other hand, let-

ting n0 ≥ 4/ε0, it follows from the previous paragraph that for n0, Z0, and {T 0
m}m, ei-

ther there exist α ∈ Pfμ̃
1/n0

and hT �h
′
T ′ ∈ α such that for some h∞�h′∞ ∈ Z0 and some

m�m′, hT < h∞, T = T 0
m(h∞), h′

T ′ < h′∞, T ′ = T 0
m′(h′∞), and ‖fμ(hT ) − fμ(h

′
T ′)‖ > ε0;

or lim infT→∞N0
T (h∞)/T < 1 for some h∞ ∈ Z0. Since limT→∞N0

T (h∞)/T = 1 for all

h∞ ∈ Z0, these imply that ‖fμ̃(hT ) − fμ̃(h
′
T ′)‖ ≥ ε0/2. However, then, since α ∈ Pfμ̃

1/n0
and hT �h

′
T ′ ∈ α, ‖fμ̃(hT )− fμ̃(h

′
T ′)‖ ≤ 1/n0 ≤ ε0/4. This is a contradiction. Thus, μ̃ does

not almost weakly merge with μ. �

Without loss of generality, we may assume (in the remainder of Appendix C) that
{Pi}i are ordered in fineness: Pi ≤ Pi+1 for all i. Given hT , let n(i�α)T be the number of
times that category (i�α) has been effective up to time T , and let �T denote the set of
categories that have been effective (up to time T ). Before proving Proposition 6, I show
the following lemma. Lemma C(i) is the same as Lemma B, and Lemma C(ii) states that
for almost all categories, the prior sample size is negligible relative to the number of
effective periods.

Lemma C. (i) limT→∞ i(hT ) = ∞ for all h∞ and (ii) limT→∞
∑

(i�α)∈�T (n
(i�α)
T /T) ×

(n
(i�α)
0 /n

(i�α)
T ) = 0 for all h∞.

Proof. (i) Suppose that lim infT→∞ i(hT ) < ∞ for some h∞. Then i(hTk) = i0 for in-
finitely many Tk. Since Pi0 and Pi0+1 only have finite classes and Pi0 ≤ Pi0+1, there exist
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α0 ∈ Pi0 and β0 ∈ Pi0+1 such that β0 ⊆ α0, and α(hTkl
) = α0 and β(hTkl

) = β0 for some
infinite subsequence {Tkl }l of {Tk}k; i(hTkl

) = i0 for all Tkl . This, along with the defini-

tion of m(·), implies that m(hTkl
)= i0 for all Tkl . However, then, by the definition of n(·),

n(hTkl
) → ∞ as Tkl → ∞. This means that for some Tkl , n(hTkl

) ≥ n
β0
0 = n

β(hTkl
)

0 and

∑i=m(hTkl
)+1

i=1
∑

α∈Pi
nα0

n(hTkl
)

=
∑i=i0+1

i=1
∑

α∈Pi
nα0

n(hTkl
)

<
1
i0

= 1
m(hTkl

)
�

Therefore, by (4) in Section 5, i(hTkl
) =m(hTkl

)+ 1 = i0 + 1. This is a contradiction.

(ii) Let i∗(hT ) := max{i(ht) | t ≤ T }, t∗(hT ) := min{t | i(ht) = i∗(hT )� t ≤ T }, n∗(hT ) :=
n(ht∗(hT )), and m∗(hT ) := m(ht∗(hT )). Since i(hT ) → ∞ as T → ∞, i∗(hT ) → ∞ as
T → ∞. Note that i∗(hT ) = m∗(hT ) + 1 and switching occurs at time t∗(hT ) + 1. Fur-

ther note that if category (i�α) has been effective up to time T + 1, then α ∈ ⋃j=i∗(hT )
j=1 Pj .

Thus,
∑

(i�α)∈�T+1
n(i�α)0 ≤ ∑j=m∗(hT )+1

j=1
∑

α∈Pj
nα0 . Obviously, n∗(hT ) ≤ T + 1. These imply

that

∑
(i�α)∈�T+1

n
(i�α)
T+1

T + 1
n(i�α)0

n
(i�α)
T+1

=
∑

(i�α)∈�T+1
n
(i�α)
0

T + 1
≤

∑j=m∗(hT )+1
j=1

∑
α∈Pj

nα0

n∗(hT )

<
1

m∗(hT )
= 1

i∗(hT )− 1
�

The first equality and the second inequality are obvious. The third inequality holds be-
cause switching occurs at time t∗(hT )+ 1; that is, the switching criterion (4) in Section 5
is passed. Since i∗(hT )→ ∞ as T → ∞, the desired result is obtained. �

Proof of Proposition 6. Let fM be the modified frequency-based CPS for {Pi}i. Fix
any μ ∈ AG({Pi}i). Suppose that μ̃M does not almost weakly merge with μ.

Step 1. On the one hand, since μ̃M does not almost weakly merge with μ, there
exists ε0 > 0 such that for any μ-probability 1 set Z, there exist h∞ ∈ Z and a set
I of nonnegative integers such that for all T ∈ I, ‖fM(hT ) − fμ(hT )‖ > ε0, and that
lim supT→∞ #(I∩ {0�1� � � � �T − 1})/T > 0.

Step 2. On the other hand, since μ ∈ AG({Pi}i), for all ε > 0, there exist an index i0,
a μ-probability 1 set Z0, and an ordered family {T 0

m}m of time functions such that (i) for
all α ∈ Pi0 and all hT �h

′
T ′ ∈ α, if there exist h∞�h′∞ ∈ Z0 and m�m′ such that hT < h∞,

T = T 0
m(h∞), h′

T ′ < h′∞, and T ′ = T 0
m′(h′∞), then ‖fμ(hT ) − fμ(h

′
T ′)‖ ≤ ε; and that (ii)

limT→∞N0
T (h∞)/T = 1 for all h∞ ∈ Z0, where N0

T (h∞) := #{m | T 0
m(h∞)+ 1 ≤ T }.

Step 3. Let ε := ε0/4. From Step 2, it follows that for ε, there exist an index i0, a μ-
probability 1 set Z0, and an ordered family {T 0

m}m of time functions such that (i) and (ii)
hold. Since Pi ≤ Pi+1 for all i, we may take i0 ≥ 4/ε0. For all α ∈ Pi0 , define a class α̂

as follows: hT ∈ α̂ if and only if (a) hT ∈ α and (b) hT < h∞ and T = T 0
m(h∞) for some

h∞ ∈ Z0 and some m. Then, for all α ∈ Pi0 and all s, let Lα[s] := suph∈α̂ fμ(h)[s] and
lα[s] := infh∈α̂ fμ(h)[s]; note that Lα[s] − lα[s] ≤ ε = ε0/4 for all s. Furthermore, for all
(i�α), define a class γ̄(i�α) as follows: hT ∈ γ̄(i�α) if and only if (a) either time T + 1 is an
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effective period of (i�α), that is, (i(hT )�α(hT )) = (i�α), or time T + 1 is one of the first
nα0 effective periods of (ip�αp); and (b) hT < h∞ and T = T 0

m(h∞) for some h∞ ∈ Z0 and
some m. Since Pi ≤ Pi+1 for all i, for each (i�α) with i ≥ i0 + 1, there exists a unique class
β ∈ Pi0 such that γ̄(i�α) ⊆ β̂; let L(i�α)[s] := Lβ[s] and l(i�α)[s] := lβ[s] for all s. Thus, for
all h ∈ γ̄(i�α) and all s, l(i�α)[s] ≤ fμ(h)[s] (= μ(s|h)) ≤L(i�α)[s].

Step 4. For all (i�α) with i ≥ i0 + 1, let

C(i�α)
n :=

{
h∞

∣∣∣ T γ̄(i�α)
n < ∞�∃s

(
dγ̄(i�α)
n [s]

n
≤ l(i�α)[s] − 1

i
or

dγ̄(i�α)
n [s]

n
≥L(i�α)[s] + 1

i

)}
�

Then, from Step 3 and Proposition A (in Appendix A), it follows that for all (i�α)
with i ≥ i0 + 1, μ(C(i�α)

n ) ≤ 2#S exp(−2ni−2) for all n. In addition, by (2) in Section 3.3,
#Pi

∑n=∞
n=nα0

exp(−2ni−2)≤ exp(−i) for all α ∈ Pi and all i. These imply that for all j ≥ i0 +1,

μ

( ⋂
j≥i0+1

⋃
i≥j

⋃
α∈Pi

⋃
n≥nα0

C(i�α)
n

)
≤ μ

(⋃
i≥j

⋃
α∈Pi

⋃
n≥nα0

C(i�α)
n

)
≤ 2#S(1 − exp(−1))−1 exp(−j)�

Thus, letting j → ∞, we have μ(
⋂

j≥i0+1
⋃

i≥j

⋃
α∈Pi

⋃
n≥nα0

C(i�α)
n ) = 0.

Step 5. Let C := ⋃
j≥i0+1

⋂
i≥j

⋂
α∈Pi

⋂
n≥nα0

(C(i�α)
n )c , where (C(i�α)

n )c is the complement

of C(i�α)
n . From Steps 3 and 4, μ(C ∩ Z0) = 1. Thus, by Step 1, for C ∩ Z0, there exist h∞ ∈

C ∩ Z0 and a set I of nonnegative integers such that for all T ∈ I, ‖fM(hT )− fμ(hT )‖> ε0,

and that lim supT→∞ #(I ∩ {0�1� � � � �T − 1})/T > 0. Let I(i�α)T denote the number of ef-
fective periods of category (i�α) in which ‖fM(h) − fμ(h)‖ > ε0 (up to time T ). Re-
call that �T is the set of categories that have been effective up to time T . Then the
above statement is equivalent to lim supT→∞

∑
(i�α)∈�T (n

(i�α)
T /T)(I(i�α)T /n(i�α)T ) > 0. Let-

ting �I
T (δ) := {(i�α) | I(i�α)T /n(i�α)T ≥ δ}, this, in turn, implies that there exists δ0 > 0 such

that for infinitely many Tl,
∑

(i�α)∈�ITl (δ0)
n(i�α)Tl

/Tl > 2δ0.

Step 6. Since h∞ ∈ Z0, limT→∞N0
T (h∞)/T = 1 by Steps 2 and 3. Let J

(i�α)
T be the

number of times that (for some m,) time T 0
m(h∞) + 1 has been an effective period of

(i�α) (up to time T ). Note that (for all T ),
∑

(i�α)∈�T J
(i�α)
T = N0

T (h∞) by the defini-

tions of J(i�α)T and N0
T (h∞). Therefore, limT→∞

∑
(i�α)∈�T (n

(i�α)
T /T)(J(i�α)T /n(i�α)T ) = 1. This

means that for any η > 0, there exists l0 such that for all l ≥ l0,
∑

(i�α)∈�JTl (η)
n
(i�α)
Tl

/Tl ≥
1 − η, where �J

Tl
(η) := {(i�α) | J(i�α)Tl

/n
(i�α)
Tl

≥ 1 − η}. Moreover, from Lemma C(ii), it fol-

lows that limT→∞
∑

(i�α)∈�T (n
(i�α)
T /T)(n(i�α)0 /n(i�α)T ) = 0. This implies that for any η > 0,

there exists l1 such that for all l ≥ l1,
∑

(i�α)∈�KTl (η)
n(i�α)Tl

/Tl ≥ 1 − η, where �K
Tl
(η) :=

{(i�α) | n(i�α)0 /n
(i�α)
Tl

≤ η}.

Step 7. It follows from Steps 5 and 6 that for any sufficiently small η > 0, there
exists l2 such that for all l ≥ l2,

∑
(i�α)∈�ITl (δ0)∩�JTl (η)∩�

K
Tl
(η) n

(i�α)
Tl

/Tl > δ0: for any suffi-

ciently large Tl, �I
Tl
(δ0) ∩ �J

Tl
(η) ∩ �K

Tl
(η) �= ∅. This, along with limT→∞ i(hT ) = ∞ from

Lemma C(i), implies that for any sufficiently small η> 0, any T , and any j ≥ i0 + 1, there
exist T̄ ≥ T and (ı̄� ᾱ) with ı̄≥ j such that (i) time T̄ +1 is an effective period of (ı̄� ᾱ), that
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is, i(hT̄ ) = ı̄ and α(hT̄ ) = ᾱ, (ii) T̄ = T 0
m(h∞) for some m, (iii) ‖fM(hT̄ ) − fμ(hT̄ )‖ > ε0,

(iv) J(ı̄�ᾱ)
T̄

/n
(ı̄�ᾱ)

T̄
≥ (δ0 − η)/δ0, and (v) n(ı̄�ᾱ)0 /n

(ı̄�ᾱ)

T̄
≤ η/(δ0 − η). Furthermore, note that

fM(hT̄ )= D(ı̄�ᾱ)

T̄
and

D(ı̄�ᾱ)

T̄
= d(ı̄�ᾱ)

T̄
+ d(ı̄�ᾱ)0

n(ı̄�ᾱ)
T̄

+ n(ı̄�ᾱ)0

= n

n(ı̄�ᾱ)
T̄

+ n(ı̄�ᾱ)0

dγ̄(ı̄�ᾱ)
n

n
+ n(ı̄�ᾱ)

T̄
+ n(ı̄�ᾱ)0 − n

n(ı̄�ᾱ)
T̄

+ n(ı̄�ᾱ)0

d(ı̄�ᾱ)
T̄

+ d(ı̄�ᾱ)0 − dγ̄(ı̄�ᾱ)
n

n(ı̄�ᾱ)
T̄

+ n(ı̄�ᾱ)0 − n
�

where n is the number of times that (for some m), time T 0
m(h∞) + 1 has been either

an effective period of (ı̄� ᾱ) or one of the first n(ı̄�ᾱ)0 effective periods of its predecessor

(ı̄p� ᾱp) (up to time T̄ ). Hence, n ≥ J(ı̄�ᾱ)
T̄

by the definitions of n and J(ı̄�ᾱ)
T̄

. From this

and (iv) and (v), it follows that n ≥ J(ı̄�ᾱ)
T̄

≥ (δ0 − η)n(ı̄�ᾱ)
T̄

/δ0 ≥ (δ0 − η)2n(ı̄�ᾱ)0 /δ0η and

n/(n(ı̄�ᾱ)
T̄

+n(ı̄�ᾱ)0 ) ≥ (δ0 −η)J(ı̄�ᾱ)
T̄

/δ0n
(ı̄�ᾱ)

T̄
≥ (δ0 −η)2/(δ0)

2. Therefore, for any sufficiently

small η > 0, n ≥ n(ı̄�ᾱ)0 (= nᾱ0 ) and ‖fM(hT̄ ) − dγ̄(ı̄�ᾱ)
n /n‖ < ε0/4. Furthermore, recall that

i0 ≥ 4/ε0 and ı̄≥ i0 + 1. These, along with (i), (ii), (iii), and Step 3, imply that for some s,

dγ̄(ı̄�ᾱ)
n [s]

n
≤ l(ı̄�ᾱ)[s] − 1

ı̄
or

dγ̄(ı̄�ᾱ)
n [s]

n
≥L(ı̄�ᾱ)[s] + 1

ı̄
�

Thus, h∞ ∈ (C)c , where (C)c is the complement of C. However, then, from Step 5, it
follows that h∞ ∈ C ∩ Z0. This is a contradiction to C ∩ (C)c = ∅. Therefore, μ̃M almost
weakly merges with μ. �

Appendix D

Proof of the merged set being of first category. Let M denote any merged set
and let

∑
n wnμn denote any strictly convex combination of a countable dense subset

{μn}n of M , where
∑

n wn = 1 and wn > 0 for all n. Proposition 1(1) in Dekel and Fein-
berg (2006) states that any probability measure has a first category set of probability 1.
Therefore,

∑
n wnμn has a first category set ZI of probability 1:

∑
n wnμn(ZI) = 1. Hence,

μn(ZI) = 1 for all n. Since {μn}n is dense in M , for any μ ∈ M , there exists n such that
|μ(ZI) − μn(ZI)| ≤ 1

2 . Thus, μ(ZI) ≥ 1
2 for all μ ∈ M . However, Proposition 1(2) in Dekel

and Feinberg (2006) states that for any first category set D (of infinite histories), the set
of probability measures that put positive probability on D is of first category (in the weak
(-star) topology). Hence, M is also a first category set. �
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