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1. Introduction

1.1 Purpose

Since the 1990s, governments in numerous countries have conducted auctions to allo-
cate a variety of objects or assets including spectrum rights, vehicle ownership licenses,
and land. Although auctions sometimes make a large amount of government revenue,
the announced goals of many government auctions are rather to allocate objects “ef-
ficiently,” i.e., to agents who benefit most from them.1 Agents who benefit more are
willing to pay higher prices and thus, have a better chance to win the auctions. How-
ever, as mentioned below, large-scale auction payments would influence agents’ abili-
ties to utilize objects or benefit from them, thereby complicating efficient allocations.
This article analyzes rules that allocate auctioned objects efficiently even when pay-
ments are so large that they impair agents’ abilities to utilize them or realize their bene-
fits. We investigate what types of allocation rules can allocate objects efficiently in such
environments.

1.2 Main result

An allocation rule, or simply a rule, is a function that assigns to each preference profile
an allocation, which consists of an assignment of objects and agents’ payments. Each
agent receives one object at most, and has a preference over objects and payments.2

The domain of rules is the class of preference profiles. We assume that preferences sat-
isfy monotonicity,3 continuity, and finiteness, which means that, given an assignment,
any change of assigned object is compensated by a finite amount of money. We call
such preferences classical. It is well known that in this model, there is a minimum price
Walrasian equilibrium (MPWE),4 and that the allocation associated with the MPWE co-
incides with the outcome of a certain type of auction called the simultaneous ascending
(SA) auction.5 Under SA auctions, bids on all objects start simultaneously, and the sale
of any object is not settled as long as new bids are made on some objects. We focus on
the rule that assigns an MPWE allocation to each preference profile. We refer to this rule
as the minimum price Walrasian (MPW) rule.

The MPW rule satisfies four desirable properties. The first is (Pareto) efficiency.
An allocation is efficient if no agent can be made better off without either some other
agents being made worse off or the government’s revenue being reduced.6 The second is
strategy-proofness. Note that efficiency is evaluated based on agents’ preferences. Thus,
an efficient allocation cannot be chosen without information about preferences. Since

1For example, frequency auctions in the United States were introduced to promote “efficient and inten-
sive use of the electromagnetic spectrum.” See McAfee and McMillan (1996, p. 160).

2Each agent knows his own preference. In this sense, our model is one of private value models.
3More precisely, in this article, we introduce two types of monotonicity assumptions, which we call

money monotonicity and desirability of objects. See Section 2 for the formal definitions.
4See Demange and Gale (1985).
5For example, see Demange et al. (1986).
6In our auction model, efficiency is defined by taking government revenue into account.
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preferences are private information, agents may have an incentive to behave strategi-
cally to influence the final outcome in their favor. Strategy-proofness is an incentive-
compatibility property, which gives a strong incentive for each agent to reveal his true
preference. It says that for each preference profile, in the normal form game induced
by the rule, it is a (weakly) dominant strategy for each agent to reveal his true prefer-
ence. The MPW rule satisfies strategy-proofness7 and chooses an efficient allocation
corresponding to the revealed preferences.

The third property of the MPW rule is individual rationality, which requires that no
agent should be made worse off than if he had received no object and paid nothing. This
property induces voluntary participation. The fourth property is no subsidy for losers.
Under the MPW rule, the governments never subsidize losers. This property prevents
agents who do not need objects from flocking to auctions only to sponge subsidies.

The primary conclusion of this article is that only the minimum price Walrasian rule
satisfies strategy-proofness, efficiency, individual rationality, and no subsidy for losers
(Theorem 2). Since the outcome of the MPW rule coincides with that of the SA auction
(Proposition 1), the result supports SA auctions adopted by many governments.

1.3 Related literature

Holmström (1979) establishes a fundamental result relating to our question that applies
when agents’ benefits from auctioned objects are not influenced by their payments, i.e.,
agents have “quasi-linear” preferences. He assumes that preferences are quasi-linear,
and shows that only the Vickrey–Clarke–Groves (VCG)8 type allocation rules satisfy
strategy-proofness and efficiency.9 His result implies that on the quasi-linear domain,
only the Vickrey rule10 satisfies strategy-proofness, efficiency, individual rationality, and
no subsidy for losers.11 As Marshall (1920) demonstrates, preferences are approximately
quasi-linear if payments for goods we analyze are sufficiently low.12 However, quasi-
linearity is not an appropriate assumption for large-scale auctions. Excessive payments
for the auctioned objects may damage bidders’ budgets to purchase complements for
effective uses of the objects and thus, may influence the benefits from the objects. Alter-
natively, bidders may need to obtain loans to bid high amounts, and typically finan-
cial costs are nonlinear in borrowings, which makes bidders’ preferences on objects
and payments non-quasi-linear.13 In spectrum license auctions and vehicle ownership

7In addition, the MPW rule is group strategy-proof, i.e., by jointly misrepresenting their preferences, no
group of agents should obtain assignments that they prefer.

8See Vickrey (1961), Clarke (1971), and Groves (1973).
9More precisely, Holmström (1979) studies public goods models. When agents have quasi-linear prefer-

ences, his result can be applied to the auction model.
10See Section 6 for the formal definition.
11Recall that the payment of an agent under the VCG rule is decomposed into two parts. The first part

is what is called Vickrey price, the social opportunity cost to allocate him an object; the second part is the
term that is independent of his preference. Individual rationality and no subsidy for losers imply that the
second part is zero. See also Chew and Serizawa (2007).

12See also Vives (1987) and Hayashi (2013) for mathematical arguments.
13See Saitoh and Serizawa (2008) for numerical examples.
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license auctions, license prices often equal or exceed bidders’ annual revenues. Thus,
bidders’ preferences are non-quasi-linear for such important auctions.14 As contrasted
with Holmström (1979), our result applies to such environments.

Saitoh and Serizawa (2008) investigate a problem similar to ours in the case where
the domain includes non-quasi-linear preferences and there are multiple copies of the
same object. They generalize Vickrey rules by employing compensated valuations from
no object and no payment, and characterize the generalized Vickrey rule by strategy-
proofness, efficiency, individual rationality, and no subsidy.15 We stress that when pref-
erences are not quasi-linear, the heterogeneity of objects makes the MPW rule different
from the generalized Vickrey rule.16

Although the assumption of quasi-linearity neglects the serious effects of large-scale
auction payments in actual practice, it is difficult to investigate the above question with-
out this assumption. Quasi-linearity simplifies the description of efficient allocations.
More precisely, under quasi-linear preferences, an efficient allocation of objects can be
achieved simply by maximizing the sum of realized benefits from objects (agents’ net
benefits), and hence, is independent of how much agents pay. In this sense, Holmström
(1979) characterizes only the payment part of strategy-proof and efficient rules. On the
other hand, without quasi-linearity, efficient allocations of objects do depend on pay-
ments and thus, cannot be simply identified in the same way as in the quasi-linear
case. In this article, we overcome that difficulty. Furthermore, as mentioned earlier,
on non-quasi-linear domains, the MPW rule is different from the generalized Vickrey
rule, and the former outperforms the latter in terms of our desirable properties, i.e.,
strategy-proofness and efficiency are satisfied by the MPW rule, but not by the general-
ized Vickrey rule. Needless to say, Holmström’s (1979) results cannot be applied to prove
our results on the non-quasi-linear domain. It is worthwhile to mention that most stan-
dard results of auction theory, such as the revenue equivalence theorem, also depend on
assuming quasi-linearity. Recently, Baisa (2013) studies an auction model where proba-
bilistic allocations are accommodated and he demonstrates that the effect of non-quasi-
linearity makes optimal mechanisms qualitatively different.

Since Hurwicz’s (1972) seminal work, many authors have investigated efficient and
strategy-proof rules in pure exchange economies.17 In pure exchange economies, clas-
sical18 preferences are standard, but no rule is strategy-proof, efficient, and individu-
ally rational on the classical domain. On the other hand, Demange and Gale (1985)
show that, in the model studied in this article, the MPW rule is strategy-proof, efficient,

14Ausubel and Milgrom (2002) also discuss the importance of the analysis under non-quasi-linear pref-
erences. See Baisa (2013) for more examples of non-quasi-linear preferences.

15Sakai (2008) also obtains a result similar to theirs.
16In Section 6, we give a detailed discussion on this point by contrasting the MPW rule with the general-

ized Vickrey rule.
17For example, see Zhou (1991), Barberà and Jackson (1995), Schummer (1997), Serizawa (2002), and

Serizawa and Weymark (2003).
18In pure exchange economies, where consumption spaces are some multidimensional Euclidean space,

classical preferences are assumed to satisfy convexity in addition to continuity and monotonicity. Clearly,
the class of such preferences contains non-quasi-linear preferences.
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and individually rational on the classical domain.19 Generalizing the MPW rule to the
situations where price ranges are bounded, Andersson and Svensson (2014) introduce
the minimum rationing price equilibrium rule, and demonstrate that it satisfies (group)
strategy-proofness and a weak variant of efficiency. Miyake (1998) shows that only the
MPW rule satisfies strategy-proofness among Walrasian rules.20 Note that the Walrasian
rules are a small part of the class of allocation rules satisfying efficiency, individual ratio-
nality, and no subsidy for losers. By developing analytical tools different from Miyake’s
(1998),21 we extend his characterization in that we establish the uniqueness of the rules
satisfying the desirable properties without confinement to Walrasian rules.

Many authors have analyzed SA auctions in quasi-linear settings (e.g., Gul and Stac-
chetti 2000, Ausubel and Milgrom 2002, Ausubel 2004, 2006, de Vries et al. 2007, Mishra
and Parkes 2007, Andersson et al. 2013). In non-quasi-linear settings, the MPW rules
differ from the generalized Vickrey rules, and it is the MPWE allocation that coincides
with the outcome of the SA auction. Alaei et al. (2013) construct an alternative algo-
rithm computing MPWE in non-quasi-linear settings. Our result demonstrates that the
SA auction and alternative algorithms analyzed by those authors are more important in
non-quasi-linear settings.

The problems of allocating objects and money have been studied by many authors.
One of the extensively studied problems not referenced above is the one of fair (envy-
free) allocation (Svensson 1983, Maskin 1987, Alkan et al. 1991, Tadenuma and Thom-
son 1991).22 In the context of strategy-proofness, fair allocation rules are investigated
by Tadenuma and Thomson (1995), Sun and Yang (2003), Ohseto (2006), and Svensson
(2004, 2009).23

When Svensson (2004, 2009) characterizes the class of strategy-proof and envy-free
rules, he does not impose no subsidy for losers on rules, but imposes only the nonneg-
ativity of the sum of payments—the requirement that the sum of the agents’ payments
be nonnegative.24 This alternative requirement is mild and natural. However, we em-
phasize that envy-freeness is a strong requirement in his model and in ours. When each
object is assigned to some agent, envy-freeness implies efficiency (Svensson 1983) and
is almost equivalent to Walrasian equilibrium conditions. Given an allocation such that
each object is assigned to some agent, take the price vector such that the price of each
object is the payment of the agent who receives it. Envy-freeness implies that for this

19More precisely, Demange and Gale (1985) study two-sided matching markets that contain our model
as a special case and show that the rules selecting an optimal stable assignment for one side of the market
are group strategy-proof for the agents on that side.

20A Walrasian rule is the rule that assigns a Walrasian equilibrium allocation to each preference profile.
21In Appendix B, we discuss why different analytical tools are necessary.
22Envy-freeness (Foley 1967) is the requirement that no agent should prefer anyone else’s assignment to

his own.
23Some authors also investigate the problem by other fairness axioms. See, for example, Ashlagi and

Serizawa (2012) and Mukherjee (2014) for the axiom of anonymity in welfare, and see Sakai (2013) and
Adachi (2014) for the axiom of weak envy-freeness for equals.

24To be precise, he requires that the sum of the agents’ payments have a lower bound. This requirement
implies that the total subsidy is limited by a prespecified level, but not that the subsidy to an individual
agent is limited.
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price vector, each agent demands the object he receives in the given allocation. Since
we do not impose envy-freeness on rules, our results and the results of Svensson (2004,
2009) are logically independent.

Other authors have investigated the existence of strategy-proof and nonbossy rules.25
 

Miyagawa (2001) characterizes the class of strategy-proof, nonbossy, individually ratio-
nal, and onto rules. Svensson and Larsson (2002) characterize the classes of strategy-
proof and nonbossy rules with several additional desirable properties.26 It is well known
that nonbossiness together with strategy-proofness makes the analysis tractable. Since
the MPW rules violate nonbossiness, we do not impose this demanding property and
thus, cannot apply their proof techniques in our proof.

1.4 Organization

The article is organized as follows. Section 2 sets up the model and introduces basic
concepts. Section 3 defines the MPWE and discusses its properties. Section 4 provides
our main result. Section 5 defines the SA auction, and shows that its outcome coincides
with the MPWE. Section 6 introduces the generalized Vickrey rules and contrasts them
with the MPW rules. Section 7 concludes. Most proofs appear in the Appendix. Proofs
omitted from the main paper are given in a supplementary file on the journal website,
http://econtheory.org/supp/1470/supplement.pdf.

2. The model and definitions

There are n agents and m objects, where 2 ≤ n <∞ and 1 ≤m<∞. We denote the set of
agents by N ≡ {1� � � � � n} and the set of objects by M ≡ {1� � � � �m}. Let L ≡ {0} ∪ M . Each
agent consumes one object at most. We denote the object that agent i ∈ N receives by
xi ∈L. Object 0 is referred to as the null object, and xi = 0 means that agent i receives no
“real” object. We denote the amount that agent i pays by ti ∈ R. For each i ∈ N , agent i’s
consumption set is L×R, and a (consumption) bundle for agent i is a pair zi ≡ (xi� ti) ∈
L×R. Let 0 ≡ (0�0).

Each agent i has a complete and transitive preference relation Ri on L × R. Let Pi

and Ii, respectively, be the strict relation and the indifference relation associated with
Ri. Given a preference Ri and a bundle zi, let the upper contour set and lower contour
set of Ri at zi be UC(Ri� zi) ≡ {z′

i ∈ L × R :z′
i Ri zi} and LC(Ri� zi) ≡ {z′

i ∈ L × R :zi Ri z
′
i},

respectively. For each i ∈N , agent i’s preference Ri satisfies the following properties.

Money monotonicity. For each xi ∈ L and each ti� t
′
i ∈ R, if t ′i < ti, then

(xi� t
′
i) Pi (xi� ti).

Finiteness. For each ti ∈ R and each xi�x
′
i ∈ L, there exist t ′i� t

′′
i ∈ R such that

(x′
i� t

′
i) Ri (xi� ti) and (xi� ti) Ri (x

′
i� t

′′
i ).

25Nonbossiness (Satterthwaite and Sonnenschein 1981) is the requirement that when an agent’s prefer-
ences change, if his assignment remains the same, then the chosen allocation should remain the same.

26See also Schummer (2000) for the other analysis of strategy-proof and nonbossy rules.

http://econtheory.org/supp/1470/supplement.pdf
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Continuity. For each zi ∈L×R, UC(Ri� zi) and LC(Ri� zi) both are closed.

Let RE denote the class of money monotonic, finite, and continuous preferences—
the extended domain. Given Ri ∈ RE , zi ≡ (xi� ti) ∈ L × R, and yi ∈ L, we define the
compensating valuation cvi(yi;zi) of yi from zi for Ri by (yi� ti + cvi(yi;zi)) Ii zi, and we
let CV i(yi;zi) ≡ ti + cvi(yi;zi). We refer to CV i(yi;zi) as the compensated valuation of yi
from zi for Ri. Note that by continuity and finiteness, CV i(yi;zi) exists, and by money
monotonicity, CV i(yi;zi) is unique. The compensated valuation for R ′

i is denoted by
CV ′

i.
We introduce another property of preferences.

Desirability of objects. For each xi ∈ M and each ti ∈R, (xi� ti) Pi (0� ti).27

Definition 1. A preference Ri is classical if it satisfies money monotonicity, finiteness,
continuity, and desirability of objects.

Let RC denote the class of classical preferences—the classical domain. Note that
RC �RE .

Definition 2. A preference Ri is quasi-linear if there is a “valuation function”
vi :L→R+ such that (i) vi(0) = 0, (ii) for each x ∈ M , vi(x) > 0, and (iii) for each zi ≡
(xi� ti) ∈L×R and each z′

i ≡ (x′
i� t

′
i) ∈ L×R, zi Ri z

′
i if and only if vi(xi)− ti ≥ vi(x

′
i)− t ′i .

Let RQ denote the class of quasi-linear preferences—the quasi-linear domain. Note
that RQ �RC .

An object allocation is an n-tuple (x1� � � � � xn) ∈Ln such that for each i� j ∈N , if xi 
= 0
and i 
= j, then xi 
= xj , that is, no two agents receive the same object except when both
receive the null object. Let X be the set of object allocations. A (feasible) allocation
is an n-tuple z ≡ (z1� � � � � zn) ≡ ((x1� t1)� � � � � (xn� tn)) ∈ [L × R]n of bundles such that
(x1� � � � � xn) ∈ X . Let Z be the set of feasible allocations. We denote the object allocation
and the agents’ payments at z′ ∈Z by x′ ≡ (x′

1� � � � � x
′
n) and t ′ ≡ (t ′1� � � � � t

′
n), respectively.

Let R be a class of preferences such that R ⊆ RE . A preference profile is an n-tuple
R ≡ (R1� � � � �Rn) ∈ Rn. Given R ≡ (R1� � � � �Rn) ∈ Rn and N ′ ⊆ N , let RN ′ ≡ (Ri)i∈N ′ and
R−N ′ ≡ (Ri)i∈N\N ′ .

An allocation rule, or simply a rule, on Rn is a function f from Rn to Z. Given a rule
f and a preference profile R ∈ Rn, we denote agent i’s assigned object under f at R by
f xi (R) and denote his payment by f ti (R), and we write

fi(R) ≡ (f xi (R)� f
t
i (R))� f (R) ≡ (f1(R)� � � � � fn(R))� and f x(R) ≡ (f xj (R))j∈N�

We introduce basic properties of rules. The efficiency condition defined below takes
the auctioneer’s preference into account and assumes that he is only interested in his
revenue. An allocation z′ ∈Z (Pareto-) dominates z ∈Z for R ∈ Rn if

27A preference Ri satisfies weak desirability of objects if for each xi ∈ M , (xi�0) Pi 0. All the results in this
article still hold if desirability of objects is replaced by weak desirability of objects.
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(i)
∑

i∈N t ′i ≥ ∑
i∈N ti

(ii) for each i ∈N�z′
i Ri zi, and

(iii) for some j ∈N , z′
j Pj zj .

An allocation z ∈ Z is (Pareto) efficient for R ∈ Rn if there is no feasible allocation that
dominates z for R.

Efficiency. For each R ∈ Rn, f (R) is efficient for R.

Individual rationality says that a rule should never select an allocation at which
some agent is worse off than if he had received the null object and paid nothing. No
subsidy says that the payments should always be nonnegative. No subsidy for losers says
that the payments of agents who obtain the null object should always be nonnegative.
No subsidy implies no subsidy for losers.

Individual rationality. For each R ∈ Rn and each i ∈ N , fi(R) Ri 0.

No subsidy. For each R ∈ Rn and each i ∈ N , f ti (R) ≥ 0.

No subsidy for losers. For each R ∈ Rn and each i ∈N , if f xi (R) = 0, then f ti (R) ≥ 0.

The two properties below have to do with incentives. First, by misrepresenting his
preferences, no agent should obtain an assignment that he prefers.

Strategy-proofness. For each R ∈ Rn, each i ∈ N , and each R ′
i ∈ R,

fi(R) Ri fi(R
′
i �R−i).

The second property is stronger: by jointly misrepresenting their preferences, no
group of agents should obtain assignments that they prefer.

Group strategy-proofness. For each R ∈ Rn and each N ′ ⊆ N , there is no R′
N ′ ∈

R|N ′| such that for each i ∈N ′, fi(R′
N ′�R−N ′) Pi fi(R).28

3. Minimum price Walrasian equilibrium

3.1 Definition of Walrasian equilibria

We define Walrasian equilibrium and minimum price Walrasian equilibrium. Let R ⊆
RE in this section. All results in this section also hold on the classical domain RC .

Let p ≡ (p1� � � � �pm) ∈ Rm+ be a price vector. The budget set at prices p is defined as
B(p) ≡ {(x�px) :x ∈ L}, where px = 0 if x = 0. Given i ∈ N , Ri ∈ R, and p ∈ Rm+ , agent i’s
demand set is defined as D(Ri�p)≡ {x ∈ L : for each y ∈L�(x�px) Ri (y�p

y)}.

28Let |A| denote the cardinality of set A.
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Definition 3. Let R ∈ Rn. A pair ((x� t)�p) ∈ Z × Rm+ is a Walrasian equilibrium for R
if

(WE-i) for each i ∈N , xi ∈D(Ri�p) and ti = pxi , and

(WE-ii) for each y ∈M , if for each i ∈N , xi 
= y, then py = 0.

Condition (WE-i) says that each agent receives an object he demands and pays its
price. Condition (WE-ii) says that an object’s price is zero if it is not assigned.

Fact 1. For each R ∈ Rn, there is a Walrasian equilibrium for R.

Fact 1 is already known.29 Given R ∈ Rn, let W (R) be the set of Walrasian equilibria
for R, and let Z(R) and P(R) be the sets of Walrasian equilibrium allocations and prices
for R, respectively, i.e.,

Z(R) ≡ {z ∈Z : for some p ∈Rm+� (z�p) ∈W (R)} and

P(R) ≡ {p ∈Rm+ : for some z ∈Z�(z�p) ∈W (R)}�

Next is a first welfare theorem for our model.30

Fact 2. Let R ∈ Rn and z ∈Z(R). Then z is efficient for R.31

Fact 3 says that for each preference profile, there is a unique minimum Walrasian
equilibrium price vector. The minimum price Walrasian equilibrium (hereafter MPWE)
is the Walrasian equilibria associated with the minimum price.

Fact 3 (Demange and Gale 1985). For each R ∈ Rn, there is a unique p′ ∈ P(R) such that
for each p ∈ P(R), p′ ≤ p.

Let pmin(R) denote this price vector for R.
Given R ∈ Rn, let Wmin(R) be the set of minimum price Walrasian equilibria for R

and let

Zmin(R) ≡ {
z ∈Z : (z�pmin(R)) ∈Wmin(R)

}
�

29For example, see Alkan and Gale (1990). Our model is a special case of theirs.
30See also Svensson (1983).
31To see this, suppose that z ≡ (z1� � � � � zn) is not efficient for R. Then there is z′ ≡ (z′

1� � � � � z
′
n) such that

(i)
∑

i∈N t ′i ≥ ∑
i∈N ti

(ii) for each i ∈N , z′
i Ri zi

(iii) for some j ∈ N , z′
j Pj zj .

Since z ∈ Z(R), there is a price vector p ∈ Rm+ such that (z�p) ∈ W (R). Then, by (ii) and (WE-i), for each

i ∈ N , t′i ≤ px′
i . By (iii) and (WE-i), t ′j < p

x′
j . Thus,

∑
i∈N t ′i <

∑
i∈N px′

i = ∑
i∈N ti. This contradicts (i).
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Figure 1. Illustration of non-quasi-linear preferences and the minimum price Walrasian
equilibrium.

By Facts 1 and 3, for each R ∈ Rn, the set Zmin(R) is nonempty. Although the correspon-
dence Zmin is set-valued, it is essentially single-valued, i.e., for each R ∈ Rn, each pair
z� z′ ∈Zmin(R), and each i ∈N , zi Ii z′

i.
32

As Demange et al. (1986), e.g., show for the quasi-linear domain, and as shown for
our domain (Section 5), the SA auctions achieve the MPWE.

3.2 Illustration of minimum price Walrasian equilibrium

Figure 1 illustrates an MPWE for three agents, and two objects, say A and B. There are
three horizontal lines. The lowest one corresponds to the null object. The middle and
highest lines correspond to the real objects A and B, respectively. The intersection of the
vertical line and each horizontal line denotes the bundle consisting of the correspond-
ing object and no payment. For example, the origin 0 denotes the bundle consisting of
the null object and no payment. For each point zi on one of the three horizontal lines,
the distance from zi to the vertical line denotes payment. For example, z1 denotes the
bundle consisting of object A and payment pA. Indifference between bundles is shown
by a curvy line connecting them. Welfare increases with decreasing payments. Thus, in
Figure 1, agent 1 prefers z1 to 0.

Assume that preferences are as depicted in Figure 1. The compensated valuations
from the origin are ranked as CV 1(A; 0) > CV 3(A; 0) > CV 2(A; 0) and CV 1(B; 0) >

32An allocation z′ ∈Z is obtained by an indifferent permutation from z ∈ Z if there is a permutation π on
N such that for each i ∈ N , z′

i = zπ(i) and z′
i Ii zi (Tadenuma and Thomson 1991). Note that for each pair

z� z′ ∈ Zmin(R), z′ is obtained by an indifferent permutation from z.



Theoretical Economics 10 (2015) Strategy-proofness and efficiency 455

CV 2(B; 0) > CV 3(B; 0). In Figure 1, agent 1’s preference is not quasi-linear, but clas-
sical.33 Thus, Figure 1 also illustrates that RQ �RC .

The MPWE for the preference profile R = (R1�R2�R3) is as follows: Agent 1 receives
object A and pays CV 3(A; 0), i.e., the price pA of object A is CV 3(A; 0). His consump-
tion is z1. Agent 2 receives object B and pays CV 1(B;z1), i.e., the price pB of object B is
CV 1(B;z1). His consumption is z2. Agent 3’s consumption is 0 and is depicted as z3.

Let us see why the allocation z ≡ (z1� z2� z3) is an MPWE for R. First, note that for
each agent i = 1�2�3, zi is maximal for Ri in the budget set {0� (A�pA)� (B�pB)}. Thus, z
is a Walrasian equilibrium.

Next, let (p′A�p′B) be a Walrasian equilibrium price vector. We show p′A ≥ pA and
p′B ≥ pB. If p′A < pA and p′B < pB, then all agents prefer (A�p′A) or (B�p′B) to 0, that
is, all three agents demand A or B or both. In that case, one agent cannot receive an
object he demands, contradicting (WE-i) in Definition 3. Thus, p′A ≥ pA or p′B ≥ pB. If
p′A < pA, then p′B ≥ pB, and so both agents 1 and 3 prefer (A�p′A) to 0 and (B�p′B),
that is, both demand only A. In that case, agents 1 or 3 cannot receive the object they
demand, contradicting Walrasian equilibrium. Therefore, p′A ≥ pA. If p′B < pB, both
agents 1 and 2 prefer (B�p′B) to 0 and (A�p′A), and so agents 1 or 2 cannot receive the
object they demand, contradicting Walrasian equilibrium. Therefore, p′B ≥ pB. Hence,
(z�p) is the MPWE.

3.3 Overdemanded and underdemanded sets

Next, we introduce the concepts of overdemanded set and underdemanded set (Mishra
and Talman 2010, e.g.), and relate these concepts to Walrasian equilibria.

Definition 4. (i) A set M ′ ⊆M of objects is (weakly) overdemanded at p for R if

∣∣{i ∈ N :D(Ri�p)⊆M ′}∣∣ (≥) > |M ′|�

(ii) A set M ′ ⊆ M of objects is (weakly) underdemanded at p for R if

[∀x ∈M ′�px > 0] 
⇒ ∣∣{i ∈N :D(Ri�p)∩M ′ 
= ∅}∣∣ (≤) < |M ′|�

In Figure 1, note that {i ∈ N :D(Ri�p) ⊆ {A}} = ∅, {i ∈ N :D(Ri�p) ⊆ {B}} = {2},
{i ∈N :D(Ri�p)⊆ {A�B}} = {1�2}, {i ∈N :D(Ri�p)∩ {A} 
=∅} = {1�3}, {i ∈ N :D(Ri�p)∩
{B} 
= ∅} = {1�2}, and {i ∈ N :D(Ri�p) ∩ {A�B} 
= ∅} = {1�2�3}. Thus, no set is overde-
manded or weakly underdemanded.

Fact 4 and Theorem 1 below are established by Mishra and Talman (2010) for quasi-
linear preferences. Fact 4 is a characterization of Walrasian equilibria by means of the
concepts of overdemanded and underdemanded sets. Their proof also works for Fact 4
in the extended domain.

33Suppose that agent 1’s preference is quasi-linear. Then since CV 1(B�0) > CV 1(A�0), agent 1’s com-
pensated valuation CV 1(B�z1) of object B from the point z1 in Figure 1 must be greater than CV 2(B�0).
However, in Figure 1, agent 1 prefers z1 to the point (B�CV 2(B�0)). This is a contradiction.
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Fact 4 (Mishra and Talman 2010). Let R ∈ Rn. A price vector p is a Walrasian equilib-
rium price vector for R if and only if no set is overdemanded and no set is underdemanded
at p for R.

Theorem 1 is a characterization of the minimum price Walrasian equilibrium by
means of the concepts of overdemanded and weakly underdemanded sets. We em-
phasize, in contrast to Fact 4, that Mishra and Talman’s (2010) proof crucially depends
on quasi-linearity. It relies on the simple fact that when preferences are quasi-linear,
if a set M ′ is weakly underdemanded at a Walrasian equilibrium price vector p, then
all the prices of M ′ can be slightly lowered by the same amount while maintaining the
Walrasian equilibrium conditions (WE-i) and (WE-ii).34 However, this is not true when
preferences are not quasi-linear. Theorem 1 is a novel result, and is the key to obtaining
Theorem 2 and Proposition 1.

Theorem 1. 35 Let R ∈ Rn. A price vector p is a minimum Walrasian equilibrium price
vector for R if and only if no set is overdemanded and no set is weakly underdemanded at
p for R.

Corollary 1 says that if the number of objects is greater than or equal to the number
of agents, the price of some objects is 0. It is used to prove Fact 6. Corollary 2 says
that each object whose price is positive is “connected” by agents’ demands to the null
object or to an object with a price of 0. This corollary is used to prove Theorem 2.36

For example, in Figure 1, object B has a positive equilibrium price, agent 1’s demand
connects objects A and B, and agent 3’s demand connects object A and the null object.

Corollary 1 (Existence of free object). Let m ≥ n, R ∈ Rn, and z ∈ Zmin(R). Then there
is i ∈ N such that pxi

min(R) = 0.

Corollary 2 (Demand connectedness). 37 Let R ∈ Rn and (z�p) ∈ Wmin(R). For each
x ∈ M with px > 0, there is a sequence {ik}Kk=1 of K distinct agents such that (i) xi1 = 0 or
pxi1 = 0, (ii) for each k ∈ {2� � � � �K− 1}, xik 
= 0 and pxik > 0, (iii) xiK = x, and (iv) for each
k ∈ {1� � � � �K − 1}, {xik�xik+1} ⊆ D(Rik�p).

Here, we also introduce a concept of di-truncation of a preference. This concept is
important to prove Theorem 1. It says that the welfare position of each bundle zi ∈M×R
is lowered as much as di in terms of money, but their relative positions are kept.

Given Ri ∈ R and di ∈ R, the di-truncation of Ri is the preference R ′
i such that for

each zi ∈ M ×R, CV ′
i(0;zi) = CV i(0;zi)+ di. Given R ∈ Rn and d ∈ Rn, the d-truncation

of R is the preference profile R′ such that for each i ∈N , R ′
i is the di-truncation of Ri.

The following remark and fact pertain to truncations. Remark 1(i) and Fact 5 are
used to prove Theorem 1.

34For details, refer to the proof of Lemma 3 in Mishra and Talman (2010).
35Alaei et al. (2013) also establish this result independently by using different proof methods.
36See Lemma 12 for details.
37This structure is discussed by Demange et al. (1986) and Miyake (1998).
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Remark 1. Let Ri ∈ R, di ∈ R, and R ′
i be the di-truncation of Ri. Then the following

statements hold:

(i) For each zi� ẑi ∈ M ×R, zi Ri ẑi if and only if zi R ′
i ẑi.

(ii) R ′
i satisfies money monotonicity, finiteness, and continuity, and so R ′

i ∈ RE .

(iii) For large di, R ′
i violates desirability of objects.38

Fact 5 (Roth and Sotomayor 1990). Let R ∈ Rn and let R′ be a d-truncation of R such
that for each i ∈ N , di ≥ 0. Then pmin(R

′)≤ pmin(R).

4. Main results

In this section, we provide a characterization of the MPWE by means of properties of
rules. Let R ⊆ RE .

Definition 5. A rule f on Rn is a minimum price Walrasian (MPW) rule if for each
R ∈ Rn, f (R) ∈Zmin(R).

4.1 Properties of the minimum price Walrasian rule

Let g be an MPW rule on Rn. First, by Fact 2, for each R ∈ Rn, g(R) is efficient for R.
Let R ∈ Rn. Then there is a price vector p ≡ (p1� � � � �pm) ∈ Rm+ such that for each i ∈ N ,
(a) gi(R) ∈ B(p), and (b) for each z′

i ∈ B(p), gi(R) Ri z
′
i. Let i ∈ N . Note that, for each

x ∈ M , px ≥ 0 and B(p) = {(0�0)� (1�p1)� (2�p2)� � � � � (m�pm)}. Thus, by (a), gti (R) ≥ 0,
and by (b), gi(R)Ri 0. Therefore, the MPW rule satisfies efficiency, individual rationality,
and no subsidy.

Fact 6 (Demange and Gale 1985). The minimum price Walrasian rule is group strategy-
proof.

Theorem 1 allows a direct proof (see Appendix B).

4.2 Characterizations

In this subsection, we assume that each agent has a classical preference and the number
of agents exceeds the number of objects. Recall that all results established in Section 3
also hold in this case. Theorem 2 is our main result of this article, a characterization of
the MPW rule.

Theorem 2. Let R ≡ RC and n > m. A rule f on Rn satisfies strategy-proofness, effi-
ciency, individual rationality, and no subsidy for losers if and only if it is a minimum
price Walrasian rule: for each R ∈ Rn, f (R) ∈Zmin(R).

38Because of Remark 1(iii), a di-truncation of a classical preference may not be classical. However, this
does not create any problems in the proofs of this article.
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The proof is given in Appendix B. Since the MPW rules are group strategy-proof,
Theorem 2 implies that only the MPW rules satisfy group strategy-proofness, efficiency,
individual rationality, and no subsidy for losers. Since no subsidy implies no subsidy
for losers, Theorem 2 also implies that only the MPW rules satisfy strategy-proofness,
efficiency, individual rationality, and no subsidy.

4.3 Indispensability of the axioms and assumptions

The “only if” part of Theorem 2 fails if we drop any of the four axioms, as shown by the
following examples.

Example 1 (Dropping strategy-proofness). Let f be the rule that chooses a “maximum”
price Walrasian equilibrium allocation for each preference profile. Then f satisfies the
axioms of Theorem 2 except for strategy-proofness.39 ♦

Example 2 (Dropping efficiency). Let f be the rule such that for each preference profile,
each agent receives the null object and pays nothing. Then f satisfies the axioms of
Theorem 2 except for efficiency. ♦

Next, we introduce variants of Walrasian equilibria—those with “entry fees.” Given
an entry fee ei ∈ R, let D(Ri�p�ei) ≡ {x ∈ L : for each y ∈ L�(x�px + ei) Ri (y�p

y + ei)},
where px = 0 if x = 0. A pair ((x� t)�p) ∈ Z × Rm is a Walrasian equilibrium with entry
fees for R ∈ Rn if there is an entry fee vector e= (e1� � � � � en) ∈Rn such that

(WE-i*) for each i ∈N�xi ∈D(Ri�p�ei), and ti = pxi + ei, and

(WE-ii) for each y ∈M , if for each i ∈N , xi 
= y, then py = 0.

Note that, similarly to Facts 1, 2, and 3, for each preference profile R ∈ Rn and each
e = (e1� � � � � en) ∈ Rn, there is an MPWE with entry fees e, and it is efficient. A rule f is a
minimum price Walrasian rule with entry fees if there is an entry fee vector e ∈ Rn and
for each R, f (R) is an MPWE with entry fees e. Then, MPW rules with entry fees are
efficient. Similarly to Fact 6, we can show that they are also group strategy-proof.

Example 3 (Dropping individual rationality). Let e = (e1� � � � � en) ∈ Rn be an entry fee
vector such that for each i ∈ N , ei > 0. Then the associated minimum price Walrasian
rule with entry fees satisfies the axioms of Theorem 2 except for individual rationality. ♦

Example 4 (Dropping no subsidy for losers). Let e = (e1� � � � � en) ∈ Rn be an entry fee
vector such that for each i ∈ N , ei < 0. Then the associated minimum price Walrasian
rule with entry fees satisfies the axioms of Theorem 2 except for no subsidy for losers. ♦

39Demange and Gale (1985) also show that for each preference profile, there is a maximum price Wal-
rasian equilibrium. When there is only one object, the maximum price Walrasian equilibrium corresponds
to the first price auction. It is well known that the first price auction is not strategy-proof.
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We further generalize MPW rules with entry fees as follows: a rule f is a minimum
price Walrasian rule with variable entry fees if there is a list {ei(·)}i∈N of entry fee func-
tions defined on Rn, and for each R, f (R) is an MPWE with entry fees {ei(R)}i∈N .

MPW rules with variable entry fees are also efficient. Note that if for each i ∈ N ,
the entry fee function ei(·) depends only on the other agents’ preferences R−i, then the
associated MPW rule with variable entry fees {ei(·)}i∈N on the quasi-linear domain is
strategy-proof and so, by Holmström (1979), it is a rule, called Groves rule.40 However, as
illustrated in Example 5, an MPW rule with variable entry fees {ei(·)}i∈N is not strategy-
proof on the classical domain even if for each i ∈N , the entry fee function ei(·) depends
only on the other agents’ preferences R−i. This fact demonstrates the complexity of
analysis on the classical domain.

Example 5 (A violation of strategy-proofness of an MPW rule with variable entry fees).
Let N ≡ {1�2} and M ≡ {1}. Let f be the MPW rule with variable entry fees {ei(·)}i∈N
such that for each R2, e1(R2) = 0, and for each R1, e2(R1) = CV 1(1; 0). Let R be a pref-
erence profile such that CV 1(1; 0) ≡ 4, cv2(1; (0�4)) ≡ 2, and cv2(1; (0�7)) ≡ 1. Then
f1(R) = (1�2). Let R′

1 be such that CV ′
1(1; 0) ≡ 7. Then f1(R

′
1�R−1) = (1�1). Thus,

f1(R
′
1�R−1) P1 f1(R). ♦

One might wonder if the MPW rules with entry fees can be characterized by only
strategy-proofness and efficiency. Our proof of Theorem 2 fails if individual rationality
and no subsidy for losers are dropped. However, we have not found an example of a rule
that satisfies strategy-proofness and efficiency, but is not an MPW rule with entry fees.
Therefore, it is an open question whether the class of MPW rules with entry fees can be
characterized by only strategy-proofness and efficiency.

One might also wonder if the assumption that n >m can be dropped in Theorem 2.
Our proof of Theorem 2 also fails if n ≤ m. However, we have not found an example of a
rule that satisfies the four axioms of Theorem 2, but is not an MPW rule even if n >m is
dropped. Therefore, this question is also open.

5. Simultaneous ascending auction

We define a class of simultaneous ascending auctions and show that they achieve the
MPWE. Let R ⊆ RE , R ∈ Rn, and p ∈Rm+ .

Definition 6. A set M ′ ⊆ M is a minimal overdemanded set at p for R if M ′ is overde-
manded at p for R and there is no M ′′ �M ′ such that M ′′ is overdemanded at p.

Under a (continuous time) simultaneous ascending auction, there is a constant d >

0, and at each time, each bidder submits his demand at the current price vector and
the prices of the objects in a minimal overdemanded set are raised at a speed at least d.
When there is no overdemanded set, the auction stops. Given a preference profile, a
simultaneous ascending auction generates a “price path.”

40See Section 6 for the definition of Groves rule.
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Definition 7. A simultaneous ascending (SA) auction is a function τ from R+ × Rm+ ×
Rn to Rm+ such that the following statements hold:

(i) Given R ∈ Rn, τ is integrable with respect to time t ∈R+ and price p ∈ Rm+ .

(ii) There is d > 0 such that for each t ∈ R+, each p ∈ Rm+ , each R ∈ Rn, and each
x ∈M ,

(ii-a) if x is in a minimal overdemanded set at p, then τx(t�p�R)≥ d

(ii-b) τx(t�p�R)= 0 otherwise.

For each R ∈ Rn, the price path generated by an SA auction τ is a function p from R+
to Rm+ such that the following statements hold:

(i) For each x ∈M , px(0) = 0.

(ii) For each x ∈M and each t ∈R+,

px(t) =
∫ t

0
τx(s�p(s)�R)ds�

Proposition 1 says that the outcome of an SA auction coincides with the MPWE.

Proposition 1. For each R ∈Rn, the price path generated by any simultaneous ascend-
ing auction converges to the minimum Walrasian equilibrium price in a finite time.

The proof is given in Appendix C. Proposition 1 implies that for each R ∈ Rn, the
price path p(·) generated by an SA auction has a termination time T such that for each
t ≥ T , p(t) = p(T) = pmin(R), and at the final prices p(T), each agent receives an object
from his demand and pays the final price of the object that he receives.

6. Generalized Vickrey rule

In this section, we introduce the generalized Vickrey rules and contrast them with the
MPW rules.

6.1 Generalized Vickrey rule

Each quasi-linear preference Ri can be defined by means of a valuation function vi :L →
R+, and a preference profile R in the quasi-linear domain corresponds to a valua-
tion profile v(R) ≡ (v1(R1)� � � � � vn(Rn)). Given a valuation profile v = (v1� � � � � vn), let
(x∗

1(v)� � � � � x
∗
n(v)) ∈ arg max(x1�����xn)∈X

∑
i vi(xi), σ−i(v) ≡ ∑

j 
=i vj(x
∗
j (v)) and σ ′

−i(v) ≡
max(x1�����xn)∈X

∑
j 
=i vj(xj).41 On the quasi-linear domain, the Vickrey rules are defined

as follows.

41Note that effectively σ ′
−i(·) is a function of v−i .
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Definition 8. A rule f on the quasi-linear domain is a Groves rule if (i) for each val-
uation profile v, f x(v) ∈ arg max(x1�����xn)∈X

∑
i vi(xi), and (ii) for each i ∈ N , there is a

function hi of the other agents’ valuation profile v−i such that for each valuation profile
v, f ti (v) = hi(v−i)− σ−i(v). A Groves rule f is a Vickrey rule if for each i ∈N , hi = σ ′

−i.

To generalize Vickrey rules to the classical domain, we need to use some valuation
function vi for each classical preference Ri. The compensated valuation CV i(·; 0) from
the origin is defined for each classical preference Ri and a generalization of valuation
function, and so is a natural candidate. Given a classical preference Ri, let vi(·;Ri) be
a function defined as, for each x ∈ L, vi(x;Ri) ≡ CV i(x; 0). Given a classical preference
profile R, let v′(R) ≡ (v1(·;R1)� � � � � vn(·;Rn)).

Definition 9. A rule f on the classical domain is a generalized Vickrey rule if for each
classical preference profile R, f x(v′(R)) ∈ arg max(x1�����xn)∈X

∑
i vi(xi;Ri), and for each

i ∈N , f ti (v
′(R)) = σ ′

−i(v
′(R))− σ−i(v

′(R)).

A classical preference Ri is object-blind if for each x� y ∈ M and each t ∈ R,
(x� t) Ii (y� t). We call the class of object-blind preferences the object-blind domain.
The object-blind domain is a subset of the classical domain. On the object-blind do-
main, Saitoh and Serizawa (2008) and Sakai (2008) characterize the generalized Vickrey
rules.

Fact 7 (Saitoh and Serizawa 2008, Sakai 2008). Let n > m. A rule on the object-blind
domain satisfies strategy-proofness, efficiency, individual rationality, and no subsidy if
and only if it is a generalized Vickrey rule.42

On the quasi-linear domain, the classes of Vickrey rules, generalized Vickrey rules,
and MPW rules coincide. Fact 7 suggests that the generalized Vickrey rules are natural
generalizations of the Vickrey rules on the object-blind domain. On the object-blind
domain, the classes of generalized Vickrey rules and MPW rules also coincide. How-
ever, these two classes of rules differ outside the above two domains, as explained in
Section 6.2. Thus, Fact 7 does not imply Theorem 2. Since the object-blind domain is
smaller than the classical domain, Theorem 2 does not imply Fact 7 either. Therefore,
the two results are mathematically independent.

6.2 Generalized Vickrey rule vs. minimum price Walrasian rule

Notice that, in example of Section 3.2 (Figure 1), agent 2’s payment in the MPWE al-
location z cannot be computed from the compensated valuations vi(·;Ri), i = 1�2�3,
from the origin 0. Payments of the MPW rule depend on the compensated valua-
tions from various points. It is worthwhile to mention that for the preference profile
in Figure 1, it is agent 1’s preference R1 that determines whether agent 2 or agent 3 re-
ceives a real object in the MPWE allocation. In Figure 1, agent 1 prefers (A�CV 3(A; 0))

42It is straightforward that on the object-blind domain, strategy-proofness, efficiency, individual ratio-
nality, and no subsidy for losers imply no subsidy.
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to (B�CV 2(B; 0)), and agent 2 receives a real object. However, if agent 1 prefers
(B�CV 2(B; 0)) to (A�CV 3(A; 0)), agent 3 instead receives a real object. Object alloca-
tions of the MPW rule also depend on the compensated valuations from various points.
Thus, the MPWE allocation z is not the outcome of the generalized Vickrey rule. Accord-
ingly, the MPW rule does not coincide with the generalized Vickrey rule.43

One can easily check that the generalized Vickrey rule is neither efficient nor
strategy-proof on the classical domain with heterogeneous objects. To check this
fact, let R1 ∈ RC , R2 ∈ RQ, and R3 ∈ RQ be such that CV 1(A; 0) = 9, CV 1(B; 0) = 10,
(A�6) P1 (B�5), CV 2(A; 0) = 3, CV 2(B; 0) = 5, CV 3(A; 0) = 6, and CV 3(B; 0) = 2. The
indiffence curves of Figure 1 illustrate those preferences. The outcome of the general-
ized Vickrey rule for R is z ≡ ((B�5)� (0�0)� (A�4)). Let z′ ≡ ((A�6)� (B�5)� (0�−2)). Then
z′ Pareto-dominates z, a violation of efficiency. Let R′

1 ∈ RQ be such that CV ′
1(A; 0) = 8

and CV ′
1(B; 0) = 5. Then under the generalized Vickrey rule, the bundle that agent 1 ob-

tains for (R′
1�R−1) is (A�6). Since (A�6) P1 (B�5), the generalized Vickrey rule violates

strategy-proofness.
The generalized Vickrey rule employs only a small part of the information about

agents’ preferences (i.e., compensated valuations from the origin). On the other hand,
the MPW rule employs other information (i.e., compensated valuations from various
points). As we stated in Section 4, only the MPW rule satisfies strategy-proofness, effi-
ciency, individual rationality, and no subsidy for losers on the domain including non-
quasi-linear preferences. Thus, the information about compensated valuations from
various points is necessary to design rules satisfying the above four properties on this
domain. Proposition 1 states that the SA auction achieves the same outcome as the
MPW rule.

7. Concluding remarks

In this article, we mainly focus on the analysis of rules that allocate objects efficiently,
and we show that only the MPW rules are desirable based on the four properties strategy-
proofness, efficiency, individual rationality, and no subsidy for losers. It would be also
important to investigate rules that produce more revenues for the auctioneer. An inter-
esting question relating to this issue is whether there are strategy-proof, efficient, and
individually rational rules that produce greater revenues than the MPW rule for each
preference profile. We hope that the results and techniques developed in this article will
be useful for the study of this research topic.

Appendixes: Proofs

In this appendix, we provide the proofs of all results in the article. In Appendix A, we
prove Theorem 1 and Corollaries 1 and 2. In Appendix B, we give the proofs of the main
results (Fact 6 and Theorem 2). Appendix C gives the proof of Proposition 1. The proofs
of Facts 4 and 5 appear in the supplementary file on the journal website.

43When agent 1 prefers (B�CV 2(B; 0)) to (A�CV 3(A; 0)), the MPWE allocation z∗ ≡ (z∗
1� z

∗
2� z

∗
3) is z∗ ≡

((B�CV 2(B; 0))� (0�0)� (A�CV 1(A;z∗
1))). Thus, unless CV 1(A;z∗

1) = CV 2(B; 0) + CV 1(A; 0) − CV 1(B; 0),
the MPWE allocation z∗ does not coincide with the outcome of the generalized Vickrey rule.
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Appendix A: Proofs for Section 3 (Theorem 1, and Corollaries 1 and 2)

Let R ⊆ RE in this section.

Lemma 1. Let R ∈ Rn, (z�p) ∈ W (R), and R′ be a d-truncation of R such that for each
i ∈ N with xi 
= 0, di ≤ −CV i(0;zi), and for each i ∈ N with xi = 0, di ≥ 0. Then (z�p) ∈
W (R′).

Proof. Since (z�p) ∈ W (R), (z�p) satisfies (WE-i) and (WE-ii) for R. Since (WE-ii) is
independent of preferences, we show only (WE-i) for R′, that is, that for each i ∈ N and
each y ∈L, (xi�pxi) R ′

i (y�p
y). Let i ∈N and y ∈ L.

Case 1. xi 
= 0. If y 
= 0, then by Remark 1(i), (xi�pxi) R ′
i (y�p

y). If y = 0, then by di ≤
−CV i(0;zi), (xi�pxi) R ′

i 0 = (y�py).

Case 2. xi = 0. If y = 0, then by (y�py) = 0 = (xi�p
xi), (xi�pxi) R ′

i (y�p
y). If y 
= 0, then

by (xi�p
xi) Ri y(y�p

y) and di ≥ 0, (xi�pxi) R ′
i (y�p

y). �

Lemma 2. Let i ∈ N , Ri ∈ R, di ∈ R, and R ′
i be the di-truncation of Ri. Let p�q ∈ Rm+ ,

x ∈ M , and y ∈ L be such that x ∈D(Ri�p) and y ∈D(R ′
i � q).

(i) If qx < px and y ∈ M , then (y�qy) Pi (x�p
x) and qy < py .

(ii) If qx < px and di ≤ −CV i(0; (x�px)), then y ∈M , (y�qy) Pi (x�p
x), and qy < py .

Proof. (i) Let qx < px and y ∈ M . By y ∈ D(R ′
i � q), (y�qy) R ′

i y(x�qx). Since R ′
i is the

di-truncation of Ri, by Remark 1(i), (y�qy) Ri (x�q
x). Then

(y�qy) Ri (x�q
x) Pi

qx<px
(x�px) Ri

x∈D(Ri�p)
(y�py)�

Thus, (y�qy) Pi (x�p
x). Also, (y�qy) Pi (y�p

y) implies qy < py .
(ii) Let qx < px and di ≤ −CV i(0; (x�px)). Then CV ′

i(0; (x�px)) ≤ 0 and so
(x�px) R ′

i 0. Thus,

(y�qy) R ′
i

y∈D(R ′
i �q)

(x�qx) P ′
i

qx<px

(x�px) R ′
i 0�

Then (y�qy) P ′
i 0 implies y ∈M . Thus, by Lemma 2(i), (y�qy) Pi (x�p

x) and qy < py . �

Proof of Theorem 1. “If.” Assume that no set is overdemanded, and no set is weakly
underdemanded at p for R. Then, by Fact 4, p ∈ P(R). Suppose that there is q ∈ P(R)

such that q ≤ p and q 
= p. Without loss of generality, assume that for each x ∈ M ′, qx <
px, and for each x /∈M ′, qx = px, where M ′ ≡ {1� � � � �m′} and 1 ≤m′ ≤m.

Since M ′ is not weakly underdemanded at p for R, there is N ′ ⊆ N such that |N ′| >
|M ′| and for each i ∈ N ′, D(Ri�p)∩M ′ 
= ∅. For each i ∈ N ′, let yi ∈ D(Ri�p)∩M ′. Since
for each x ∈ M ′, qx < px, and for each x /∈ M ′, qx = px, it follows that for each i ∈ N ′ and
each x /∈ M ′, (yi� qyi) Pi (yi�p

yi) Ri (x�p
x) = (x�qx). Thus, for each i ∈ N ′, D(Ri�q) ⊆ M ′.

By |N ′|> |M ′|, M ′ is overdemanded at q. Since q ∈ P(R), this contradicts Fact 4.
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“Only if.” Let p ≡ pmin(R). Then, by Fact 4, no set is overdemanded and no set
is underdemanded at p for R. We show that no set is weakly underdemanded at p

for R. Suppose that there is a set M ′ that is weakly underdemanded at p for R,
i.e., for each x ∈ M ′, px > 0, and |{i ∈ N :D(Ri�p) ∩ M ′ 
= ∅}| ≤ |M ′|. Let N ′ ≡
{i ∈ N :D(Ri�p) ∩ M ′ 
= ∅}. Without loss of generality, assume that M ′ is minimal: no
proper subset of M ′ is weakly underdemanded at p for R. Since p ∈ P(R), there is z ∈ Z

such that for each i ∈ N , xi ∈ D(Ri�p) and ti = pxi . Since no set is underdemanded at p
for R, |N ′| = |M ′|. Without loss of generality, let M ′ ≡ {1� � � � �m′} and N ′ ≡ {1� � � � �m′}.

Step 1. For each i ∈ N ′, xi ∈ M ′.

Proof. Since for each x ∈M ′, px > 0, (WE-ii) implies that for each x ∈M ′, there is i(x) ∈
N ′ such that xi(x) = x. Then, by |N ′| = |M ′|, for each i ∈N ′, xi ∈M ′. �

For each x ∈ M ′, let qx ≡ max{CV j(x;zj) : j ∈ N \ N ′} ∪ {0}. Then, for each x ∈ M ′,
qx < px.44 Let R′

m′+1 ∈ R be such that for each x ∈ M ′, if qx > 0, then CV ′
m′+1(x; 0) = qx,

and if qx = 0, then CV ′
m′+1(x; 0) ∈ (0�px). We consider the economy E′ with object set

M ′ and agent set N ′′ ≡N ′ ∪ {m′ + 1}.

Let W M ′�N ′′
(R̄N ′′) and W M ′�N ′′

min (R̄N ′′) be the sets of Walrasian and minimum price
Walrasian equilibria of the economy with object set M ′ and agent set N ′′ with prefer-

ence R̄N ′′ , and let PM ′�N ′′
(R̄N ′′) and pM ′�N ′′

min (R̄N ′′) be the set of Walrasian prices and the
minimum Walrasian equilibrium price vector of the economy, respectively. Let zm′+1 ≡ 0
and zN ′′ ≡ (zN ′� zm′+1).

Step 2. We have (zN ′′�pM ′
) ∈W

M ′�N ′′
min (RN ′�R′

m′+1).

Proof. Let (z̃N ′′� p̃M ′
) ∈ W M ′�N ′′

min (RN ′�R′
m′+1). Since (zN ′′�pM ′

) ∈ W M ′�N ′′
(RN ′�R′

m′+1),

we have p̃M ′ ≤ pM ′
. Let M− ≡ {x ∈ M ′ : p̃x < px}. We show M− = ∅. Suppose M− 
= ∅.

Let N− ≡ {i ∈N ′ :D(Ri�p
M ′

)∩M− 
=∅}.

Step 2.1. For each i ∈N−, x̃i ∈M−.

Proof. Let i ∈N−. Then there is x ∈D(Ri�p
M ′

)∩M−. Thus, x ∈ M ′ and p̃x < px. Since
(z̃N ′′� p̃M ′

) ∈ W M ′�N ′′
min (RN ′�R′

m′+1), we have x̃i ∈ D(Ri� p̃
M ′

). Then, by Lemma 2(ii), x̃i ∈
M ′ and p̃x̃i < px̃i . Thus, x̃i ∈M−. �

Step 2.2. We have M− = M ′, N− =N ′, and |M−| = |N−|.

Proof. Since no two agents in N− receive the same object, Step 2.1 implies |M−| ≥
|N−|.

44To see this, suppose that for some x ∈ M ′, qx ≥ px. Then there is j ∈ N \N ′ such that (x�px)Rj zj . Since
xj ∈D(Rj�p), we have x ∈ D(Rj�p). Thus, j ∈ N ′. This contradicts j ∈N \N ′.
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Suppose M− 
= M ′. Then since M− � M ′ and M ′ is a minimal weakly underde-
manded set at p for R, M− is not weakly underdemanded at pM ′

for (RN ′�R′
m′+1).45

Thus, since for each x ∈ M−, px > 0, we have |N−| ≥ |M−| + 1. This contradicts
|M−| ≥ |N−|. Thus, M− =M ′.

By the definition of N−, M− = M ′ implies N− = N ′. Since M ′ is weakly underde-
manded, we have |N ′| = |M ′|. From the above results, |M−| = |M ′| = |N ′| = |N−|. �

Step 2.3. For each x ∈M ′, p̃x ≥ qx.

Proof. Suppose that there is x ∈ M ′ such that p̃x < qx. Then qx > 0. Note that
by x̃m′+1 ∈ D(R′

m′+1� p̃
M ′

) and p̃x < qx = CV ′
m′+1(x; 0), x̃m′+1 ∈ M ′. By M− = M ′ and

N− = N ′ (Step 2.2), Step 2.1 implies that for each i ∈ N ′, x̃i ∈ M ′. This contradicts
|M ′| =m′. �

Let (z̄� p̄) ∈Z×Rm+ be such that z̄N ′ = z̃N ′ , z̄−N ′ = z−N ′ , p̄M ′ = p̃M ′
, and p̄−M ′ = p−M ′

.

Step 2.4. The pair (z̄� p̄) is a Walrasian equilibrium of the original economy, i.e., (z̄� p̄) ∈
W (R).

Proof. By Step 2.3, for each y ∈ M ′, p̃y ≥ qy . Let h ∈ N \ N ′. Then, for each y ∈ L, if
y /∈M ′, then

(x̄h� p̄
x̄h) =

h/∈N ′ (xh�p
xh) Rh

xh∈D(Rh�p)
(y�py) =

y /∈M ′ (y� p̄
y)�

and if y ∈M ′, then

(x̄h� p̄
x̄h) =

h/∈N ′ (xh�p
xh) Rh

def� of qy
(y�qy) Rh

qy≤p̃y=p̄y
(y� p̄y)�

Thus, for each h ∈N \N ′, x̄h ∈D(Rh� p̄).
Let h ∈ N ′. Then, for each y ∈L, if y /∈M ′, then

(x̄h� p̄
x̄h) =

h∈N ′ (x̃h� p̃
x̃h) Rh

x̃h∈D(Rh�p̃M′
)

(xh� p̃
xh) Rh

p̃M′≤pM′
(xh�p

xh) Rh
xh∈D(Rh�p)

(y�py) =
y /∈M ′ (y� p̄

y)�

and if y ∈M ′, then

(x̄h� p̄
x̄h) =

h∈N ′ (x̃h� p̃
x̃h) Rh

x̃h∈D(Rh�p̃M′
)

(y� p̃y) =
y∈M ′ (y� p̄

y)�

Thus, for each h ∈ N ′, x̄h ∈ D(Rh� p̄). Since (z�p) and (z̃N ′′� p̃) satisfy (WE-ii), so does
(z̄� p̄). �

45By M− ⊆ M ′, {i ∈ N :D(Ri�p) ∩ M− 
= ∅} ⊆ {i ∈ N :D(Ri�p) ∩ M ′ 
= ∅} = N ′. Thus, {i ∈ N ′ :
D(Ri�p

M ′
)∩M− 
= ∅} = {i ∈ N :D(Ri�p)∩M− 
= ∅}. Hence,

|N−| = ∣∣{i ∈ N ′ :D(Ri�p
M ′

)∩M− 
= ∅}∣∣ = ∣∣{i ∈ N :D(Ri�p)∩M− 
= ∅}∣∣ > |M−|�
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Recall that p = pmin(R). However, since M− 
= ∅, we have p̄ ≤ p and p̄ 
= p. This is a
contradiction. Thus, M− =∅. This completes the proof of Step 2. �

Step 3. There is a d1-truncation R′
1 of R1 such that CV ′

1(x1; 0) < px1 and agent 1 ob-
tains a real object in an MPWE for (R′

1�R
′
m′+1�RN ′\{1}), i.e., for (ẑN ′′� p̂M ′

) ∈
W M ′�N ′′

min (R′
1�R

′
m′+1�RN ′\{1}), x̂1 
= 0.

Proof. Note that d1 needs to be large enough so that CV ′
1(x1; 0) < px1 , but at the same

time, d1 needs to be small enough so that x̂1 
= 0, that is, CV ′
1(x1; 0) needs to be close

to px1 . To analyze how CV ′
1(x1; 0) needs to be close to px1 , we introduce the concept of

assignment sequence as follows:
Let � denote the set of permutations of M ′ and denote by {x(k)}m′

k=1 its generic ele-

ment. Given {x(k)}m′
k=1 ∈ �, let {i(k)}m′

k=1 be the permutation of agents in N ′ defined by

xi(1) = x(1), xi(2) = x(2), � � � , xi(m′) = x(m′), and let {t(k)}m′
k=1 be a sequence of the pay-

ments of agents in N ′ such that t(1) ≤ CV ′
m′+1(x(1); 0), t(2) ≤ CV i(1)(x(2);z0(1)), � � � ,

t(m′) ≤ CV i(m′−1)(x(m
′);z0(m

′ − 1)), where for each k ∈ {1� � � � �m′}, z0(k) ≡ (x(k)� t(k)).
We call such a pair {z0(k)� i(k)}m′

k=1 an assignment sequence.

Step 3.1. There is an upper bound b < px1 such that for any assignment sequence
{z0(k)� i(k)}m′

k=1 constructed as above and for k with x(k) = x1, t(k) < b.

Proof. Given {x(k)}m′
k=1 ∈ �, let {z0(k)� i(k)}m′

k=1 be the assignment sequence
such that t(1) = CV ′

m′+1(x(1); 0), t(2) = CV i(1)(x(2);z0(1)), � � � , and t(m′) =
CV i(m′−1)(x(m

′);z0(m
′ − 1)). Since CV ′

m′+1(x(1); 0) < px(1), the following relation holds
inductively: for each k≥ 2,

(x(k)� t(k)) Ii(k−1) z0(k− 1) (by def� of t(k))

Pi(k−1) (x(k− 1)�px(k−1)) (by t(k− 1) < px(k−1))

Ri(k−1) (x(k)�p
x(k)) (by x(k− 1) ∈D(Ri(k−1)�p))

and t(k) < px(k). Note that for any assignment sequence {z′
0(k)� i

′(k)}m′
k=1 associated

with the same {x(k)}m′
k=1, for each k, t ′(k) ≤ t(k) and thus, for k with x(k) = x1,

t ′(k) < px1 .
Since the cardinality of � is finite (m′!), the conclusion of the above paragraph im-

plies that there is b < px1 such that for any assignment sequence {z0(k)� i(k)}m′
k=1 and for

k with x(k) = x1, t(k) < b. �

Step 3.2. LetR′
1 be a d1-truncation ofR1 such that b < CV ′

1(x1; 0) < px1 . Let (ẑN ′′� p̂M ′
) ∈

W
M ′�N ′′

min (R′
1�R

′
m′+1�RN ′\{1}). Then x̂1 
= 0.

Proof. Suppose that x̂1 = 0. We use Claim 1 below. It implies that m′ agents (agents 2,
� � � , m′ + 1) receive m′ different objects in M ′ \ {x1}. By |M ′| = m′, this is a contradiction.
Thus, proving Claim 1 completes the proof of Step 3.2. �
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Claim 1. Construct the assignment sequences {z0(k)� i(k)}m′
k=1 as follows: x(1) ≡ x̂m′+1,

xi(1) = x(1), and t(1) ≡ p̂x(1), and for each k ∈ {2� � � � �m′}, x(k) ≡ x̂i(k−1), xi(k) = x(k),
and t(k) ≡ p̂x(k). Then, for each k ∈ {1� � � � �m′}, x(k) 
= 0, x(k) 
= x1, and p̂x(k) < px(k).

Proof. The proof is by induction.

Induction base. First, we show x(1) ≡ x̂m′+1 
= 0. Suppose x̂m′+1 = 0. Then since
two agents (1 and m′ + 1) in N ′′ receive the null object and |N ′′| = |M ′| + 1, there is
x ∈ M such that for each h ∈ N ′′, x̂h 
= x. By (WE-ii), p̂x = 0. Since CV ′

m′+1(x; 0) > 0,
we have (x� p̂x)P ′

m′+10. This is a contradiction since x̂m′+1 = 0 and (ẑN ′′� p̂M ′
) ∈

W
M ′�N ′′

min (R′
1�R

′
m′+1�RN ′\{1}). Thus, x(1) 
= 0.

Note that by Step 1, x(1) 
= 0 implies that agent i(1) with xi(1) = x(1) uniquely exists.
Thus, x(1), i(1), and t(1) are well defined.

Second, by x(1) ≡ x̂m′+1 ∈D(R′
m′+1� p̂

M ′
), p̂x(1) ≤ CV ′

m′+1(x(1); 0) < px(1).
Third, we show x(1) 
= x1. Suppose x(1) = x1. Then, by Step 3.1 and the def-

inition of R′
1, p̂x1 ≡ t(1) < b < CV ′

1(x1; 0), that is, (x1� p̂
x1) P ′

1 0. Thus, by x̂1 = 0,

x̂1 /∈ D(R′
1� p̂

M ′
). However, since (ẑN ′′� p̂M ′

) ∈ W
M ′�N ′′

min (R′
1�R

′
m′+1�RN ′\{1}), this is a con-

tradiction. Therefore, x(1) 
= x1.

Induction argument. Let k ∈ {2� � � � �m′}. Assume that Claim 1 holds until k−1. Since
x(k − 1) ∈ D(Ri(k−1)�p), x̂i(k−1) ∈ D(Ri(k−1)� p̂

M ′
), and p̂x(k−1) < px(k−1), Lemma 2(ii)

implies that x(k) ≡ x̂i(k−1) 
= 0 and p̂x(k) < px(k).
Note that by Step 1, x(k) 
= 0 implies that agent i(k) with xi(k) = x(k) uniquely exists.

Thus, x(k), i(k), and t(k) are well defined.
We can show x(k) 
= x1 similarly to the induction base. If x(k) = x1, then p̂x1 =

t(k) < b < CV ′
1(x1; 0), which implies x̂1 /∈ D(R′

1� p̂
M ′

), contradicting (ẑN ′′� p̂M ′
) ∈

W M ′�N ′′
min (R′

1�R
′
m′+1�RN ′\{1}). �

Step 4. Concluding that no set is weakly underdemanded at p for R.

Note that CV ′
1(x1; 0) < px1 (Step 3) implies d1 > 0. By (ẑN ′′� p̂M ′

) ∈
W

M ′�N ′′
min (R′

1�R
′
m′+1�RN ′\{1}), Step 2 and Fact 5 imply that p̂M ′ ≤ pM ′

. Note that

(x̂1� p̂
x̂1) R′

1
x̂1∈D(R′

1�p̂
M′

)

0 I ′
1

def� of R′
1

(x1�CV ′
1(x1; 0)) P ′

1
CV ′

1(x1;0)<px1

(x1�p
x1)�

By Steps 1 and 3, x1 
= 0 and x̂1 
= 0. By the definition of R′
1 and Remark 1(i),

(x̂1� p̂
x̂1) P ′

1 (x1�p
x1) implies (x̂1� p̂

x̂1) P1 (x1�p
x1). Therefore,

(x̂1� p̂
x̂1) P1 (x1�p

x1) R1
x1∈D(R1�p)

(x̂1�p
x̂1)�

This implies p̂x̂1 < px̂1 . By the definition of R′
1, R1 is the (−d1)-truncation of R′

1
and −d1 ≤ 0 ≤ −CV ′

1(0; ẑ1). Thus, Lemma 1 implies p̂M ′ ∈ PM ′�N ′′
(RN ′�R′

m′+1).
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However, by Step 2, pM ′ = p
M ′�N ′′
min (RN ′� R̂m′+1). Since p̂M ′ ≤ pM ′

and p̂x̂1 < px̂1 , this is
a contradiction. �

Proof of Corollary 1. Suppose that for each i ∈N , pxi
min(R) > 0. Then, for each i ∈N ,

xi 
= 0. Let M̄ ≡ {x1� � � � � xn}. Then |M̄| = |N|. Since |M̄| = |{i ∈ N :D(Ri�p)∩ M̄ 
= ∅}|, M̄
is weakly underdemanded at p for R. This contradicts Theorem 1. �

Proof of Corollary 2. Let x ∈ M be such that px > 0. We construct the sequence of
agents in two steps.

Step 1. By (WE-ii) in Definition 3, there is j1 ∈ N such that xj1 = x. By Theorem 1, the
set {x} is demanded at p by at least two agents. Thus, there is j′2 ∈ N \ {j1} such that

x ∈ D(Rj′2�p). Let N2 be the set of such agents. If xj′2 = 0 or p
xj′2 = 0 for some agent

j′2 ∈ N2, then let j2 = j′2 and go to Step 2. If xj′2 
= 0 and p
xj′2 > 0 for each j′2 ∈ N2, pick

arbitrarily an agent j2 ∈N2.
By Theorem 1, the set {xj1�xj2} is demanded at p by at least three agents. Thus, there

is j′3 ∈ N \ {j1� j2} such that D(Rj′3�p) ∩ {xj1�xj2} 
= ∅. Let N3 be the set of such agents. If

xj′3 = 0 or p
xj′3 = 0 for some agent j′3 ∈ N3, then let j3 = j′3 and go to Step 2. If xj′3 
= 0 and

p
xj′3 > 0 for each j′3 ∈ N3, pick arbitrarily an agent j3 ∈N3.

Since m is finite, proceeding inductively, there are K′ ≤ m and a sequence {jk}K′
k=1 of

K′ distinct agents such that (a) xjK′ = 0 or pxjK′ = 0, (b) for each k ∈ {2� � � � �K′ −1}, xjk 
= 0
and pxjk > 0, (c) xj1 = x, and (d) for each k ∈ {2� � � � �K′}, {xj1� � � � � xjk−1} ∩D(Rjk�p) 
= ∅.
Then go to Step 2.

Step 2. Let i1 ≡ jK′ . By (z�p) ∈ W (R), xi1 ∈ D(Ri1�p). By (d), there is i2 ∈ {j1� � � � � jK′−1}
such that xi2 ∈ D(Ri1�p). By (z�p) ∈ W (R), xi2 ∈ D(Ri2�p). By (d), there is i3 ∈
{j1� � � � � jk′−1} such that xi3 ∈ D(Ri2�p), where k′ is such that jk′ = i2. By (z�p) ∈ W (R),
xi3 ∈ D(Ri3�p). Proceeding inductively, we have some K such that iK = j1. Then the
sequence {ik}Kk=1 of K distinct agents satisfies (i), (ii), (iii), and (iv). �

Appendix B: Proofs for Section 4 (main results: Fact 6 and Theorem 2)

Proof of Fact 6. Let R ⊆ RE . Let g be an MPW rule on Rn. By contradiction,
suppose that there are R ∈ Rn, N ′ ⊆ N , and R′

N ′ ∈ R|N ′| such that for each i ∈ N ′,
gi(R

′
N ′�R−N ′) Pi gi(R). Let z ≡ g(R) and z′ ≡ g(R′

N ′�R−N ′), with associated equilibrium
prices p and p′. Without loss of generality, let N ′ = {1� � � � � n′}. Let M+ ≡ {x ∈ M : 0 <px}
and m+ ≡ |M+|. Note that if n > m, then n > m+, and if n ≤ m, then by Corollary 1,
m+ ≤ n− 1 < n.

In this paragraph, we show that for each i ∈ N ′, x′
i 
= 0 and p′x′

i < px′
i . Let i ∈N ′. Note

that

(x′
i�p

′x′
i ) Pi

z′
iPizi

(xi�p
xi) Ri

xi∈D(Ri�p)
0�
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Thus, x′
i 
= 0. Also,

(x′
i�p

′x′
i ) Pi (xi�p

xi) Ri
xi∈D(Ri�p)

(x′
i�p

x′
i )�

Thus, (x′
i�p

′x′
i ) Pi (x

′
i�p

x′
i ) implies that p′x′

i < px′
i .

For each i ∈ N ′, since 0 ≤ p′x′
i < px′

i , x′
i ∈ M+. Then if m+ < n′, more than m+

agents receive the objects in M+, which is a contradiction. Thus, assume
that m+ ≥ n′. By Theorem 1, there is i′ ∈ N \ N ′ such that D(Ri′�p) ∩
{x′

1� � � � � x
′
n′ } 
= ∅. Without loss of generality, let i′ ≡ n′ + 1. By Lemma 2(ii), x′

n′+1 
= 0 and

0 ≤ p
′x′

n′+1 <p
x′
n′+1 . Thus, x′

n′+1 ∈M+. Then, by Theorem 1, there is i′′ ∈N \ {1� � � � � n′ + 1}
such that D(Ri′′�p)∩ {x′

1� � � � � x
′
n′+1} 
=∅. Without loss of generality, let i′′ ≡ n′ + 2. Thus,

by Lemma 2(ii), x′
n′+2 
= 0 and 0 ≤ p

′x′
n′+2 < p

x′
n′+2 . Thus, x′

n′+2 ∈ M+. Repeat this argu-
ment (m+ − n′ + 1) times. Then more than m+ agents receive objects in M+. This is
impossible. �

Next, we prove Theorem 2. Let R ≡ RC and n >m. Let f be a rule on Rn. Since the
“if” part of Theorem 2 follows from the discussion in Section 4.1, we only give the proof
of the “only if” part of the theorem.

B.1 Difficulties and overview of the proof of Theorem 2

We explain the difficulties of the proof, compared to the previous works and give an
overview of the proofs.

First, we discuss the difficulties of our proof compared to the literature assuming
quasi-linearity such as Holmström (1979). As emphasized in the Introduction, without
quasi-linearity, efficient allocations of objects depend on agents’ payments. Thus, it is
difficult to identify the object allocations of the rules satisfying our desirable properties
without knowing how much agents pay. At the same time, it is also difficult to iden-
tify the payments of the rules satisfying our properties without knowing how objects
are allocated. Therefore, without quasi-linearity, we need to identify simultaneously
the object allocation and payments of the rules. This is similar to solving simultaneous
equations, and is much more difficult than identifying only the payments by assuming
quasi-linearity.

Second, we discuss the difficulties of our proof, compared to Miyake (1998), who
shows that only the MPW rule satisfies strategy-proofness among Walrasian rules. No-
tice that the Walrasian rules are a small part of the class of allocation rules satisfying ef-
ficiency, individual rationality, and no subsidy for losers. Our proof is to investigate how
the four properties restrict the possibility of allocation changes when an agent changes
his preference. If the rule is assumed to be among Walrasian rules as in Miyake (1998),
the possibility of allocation is limited to a small class from the beginning, and so this
investigation is relatively easy. Since we establish the uniqueness of the rules satisfy-
ing the four properties without confinement to Walrasian rules, our proof is much more
difficult.



470 Morimoto and Serizawa Theoretical Economics 10 (2015)

Third, we discuss how we overcome the above difficulties. The widely employed
methods to solve simultaneous equations comprise constructing algorithms to reach
the solutions step by step. In our proof, we employ a similar method, that is, we an-
alyze how the above four properties restrict the possibility of allocations step by step.
Lemma 6 states that payments are bounded below by the (m+1)th highest compensated
valuations from the origin. Lemmas 9 and 10 restrict the possibility of object allocations
in turn, i.e., Lemma 9 restricts the candidates who obtain a real object; Lemma 10 gives
a sufficient condition that an agent obtains a specific real object. These lemmas enable
us to prove that agents pay at most the minimum Walrasian prices (Proposition 2).

As Corollary 2 states, the MPWE allocation has a structure, called demand connect-
edness. Lemma 12 states that the allocation chosen by the rules satisfying our four
properties has a similar structure for special preference profiles. Lemma 14 states that
if an agent obtains an object but pays less than the minimum Walrasian price, when-
ever the object is connected to the origin by the demands of agents who pay the mini-
mum Walrasian price, there is a Pareto improvement. These lemmas enable us to prove
that agents pay at least the minimum Walrasian prices (Proposition 3 and the proof of
Theorem 2).

Our proof has four parts.

Part 1. The following six lemmas are used in the proof.
First, under individual rationality and no subsidy for losers, whenever an agent re-

ceives the null object, he pays nothing.

Lemma 3 (Zero payment for losers). Let f satisfy individual rationality and no subsidy
for losers. Let R ∈ Rn and i ∈N be such that f xi (R) = 0. Then f ti (R) = 0.

Under efficiency, individual rationality, and no subsidy for losers, each real object
should be assigned to someone.

Lemma 4 (No remaining object). Let f satisfy efficiency, individual rationality, and no
subsidy for losers. Let R ∈ Rn and x ∈ M . Then there is i ∈N such that f xi (R) = x.

Given an allocation and a pair {i� j} of agents such that agent i receives a real object
and prefers his assignment at least as desirable as j’s, but j prefers i’s assignment to his
own, if the difference between j’s payment and i’s compensated valuation (CV) of j’s as-
signment of objects from i’s assignment is less than the difference between i’s payment
and j’s CV of i’s assignment of objects from j’s assignment, then a Pareto improvement
is possible.

Lemma 5 (Sufficient condition for a Pareto improvement to be possible). Let R ∈ Rn,
i� j ∈ N , and z ∈ Z be such that xi 
= 0, zi Ri zj , and zi Pj zj . Assume that (a) tj −
CV i(xj;zi) < CV j(xi;zj)− ti. Then there is z′ ∈Z that Pareto-dominates z at R.

We introduce additional notations. Given R ∈ Rn, x ∈ M , and z ∈ [L × R]n, let
πx(R) ≡ (πx

1 (R)� � � � �π
x
n(R)) be the permutation on N such that CV πx

n(R)(x;zπx
n (R)) ≤
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· · · ≤ CV πx
1 (R)

(x;zπx
1 (R)

). For each k ∈ N , let Ck(R�x;z) ≡ CV πx
k(R)

(x;zπx
k(R)

). That is,

Ck(R�x;z) is the kth highest compensated valuation (CV) of x from z. We simply write
Ck(R�x; (0� � � � �0)) as Ck(R�x).

Under the four axioms of Theorem 2, if an agent receives x ∈M , then he pays at least
the (m + 1)th highest CV of x from the origin. Thus, the (m + 1)th highest CV of each
object from 0 is a lower bound for the payment of the agent who obtains the object.

Lemma 6 (Payment lower bound). Let f satisfy the four axioms of Theorem 2. Let R ∈ Rn,
i ∈N , and x ∈M . If f xi (R) = x, then f ti (R) ≥ Cm+1(R�x).

No subsidy is implied by our four axioms.

Lemma 7 (No subsidy). The four axioms of Theorem 2 imply no subsidy.

Hereafter, we use this implication repeatedly.
Given zi ≡ (xi� ti) ∈M ×R, let RNCV(zi) be the set of preferences R ′

i ∈ R such that for
each y ∈ L \ {xi}, CV ′

i(y;zi) < 0, that is, for each object except for xi, the compensated
valuation of R ′

i from zi is negative. We refer to the preferences in RNCV(zi) as zi-favoring.
Under strategy-proofness and no subsidy for losers, given R ∈ Rn, for each agent

who receives a real object, if the agent’s preference is changed to a preference that is
fi(R)-favoring, then his assignment remains the same.

Lemma 8 (Invariance property). Let f satisfy strategy-proofness and no subsidy. Let R ∈
Rn and i ∈N be such that f xi (R) 
= 0. Let R ′

i ∈ RNCV(fi(R)). Then fi(R
′
i �R−i) = fi(R).

Part 2. The next proposition says that for each preference profile, the allocation cho-
sen by a rule satisfying the four axioms of Theorem 2 should (weakly) dominate the
MPWE allocations from the bidders’ perspectives. This implies that for a rule satisfy-
ing our properties, the agent who receives x ∈ M pays at most the minimum Walrasian
price px. Thus, Proposition 2 implies stringent upper bounds for payments even without
knowing how objects are allocated.

Proposition 2. 46 Let f satisfy the four axioms of Theorem 2. Let R ∈ Rn and z ∈
Wmin(R). Then, for each i ∈ N , fi(R) Ri zi.

We introduce two lemmas to prove Proposition 2. Hereafter, we maintain the as-
sumption that f satisfies the four axioms of Theorem 2. By Lemma 7, f also satisfies no
subsidy.

From Lemma 6, we deduce that if an agent receives x ∈M , then his CV of x from 0 is
no less than the mth highest CV of x from 0. For each x ∈M , Lemma 9 restricts who can
obtain x without knowing how much agents pay.

Lemma 9 (Necessary condition for receiving x ∈ M). Let R ∈ Rn, i ∈ N , and x ∈ M . If
f xi (R) = x, then CV i(x; 0) ≥ Cm(R�x).

46This result also holds for any Walrasian equilibrium allocation z.
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By Lemma 9, assumption (a) of Lemma 10 implies that for any real object other than
x ∈ M , if an agent’s CV from 0 is less than the mth highest, then he never receives a real
object other than x. Together with this assumption, (b) and (c) of Lemma 10 guarantee
that agent i receives x.

Given R ∈ Rn, let ZIR(R) be the set of individually rational allocations, that is,
ZIR(R) ≡ {z ∈Z : for each i ∈ N�zi Ri 0}.

Lemma 10 (Sufficient condition for receiving x ∈ M). Let R ∈ Rn, x ∈ M , i ∈ N , and z ∈
ZIR(R). Assume that (a) for each y ∈M \ {x}, CV i(y; 0) < Cm(R�y), (b) for each j ∈N \ {i},
fj(R) Rj zj , and (c) CV i(x; 0) > C1(R−i� x;z). Then f xi (R) = x.

Part 3. Given R ∈Rn and z ∈Zmin(R), let RI(z) be the set of preferences R ′
i ∈ R such

that for each pair i� j ∈ N , zi I ′
i zj , that is, all the assignments under z are indifferent. We

refer to the preferences in RI(z) as z-indifferent.
Proposition 3 says that given (z∗�p) ∈ Wmin(R) and a preference profile such that a

group N ′ of agents have z∗-indifferent preferences, if for any z∗-indifferent preferences
of N ′ and each x ∈ M , the agent outside N ′ who obtains x pays at least px, then for
each x ∈ M , the agent in N ′ who obtains x pays at least px. Thus, although in a limited
pattern, this proposition implies lower bounds for payments even without knowing how
objects are allocated.

Proposition 3. Let R ∈ Rn, (z∗�p) ∈ Wmin(R), and N ′ ⊆ N . Assume that (3-i) for
each R̄N ′ ∈ RI(z∗)|N ′|, each i ∈ N \ N ′, and each x ∈ M , if f xi (R̄N ′�R−N ′) = x, then
f ti (R̄N ′�R−N ′) ≥ px. Let R′

N ′ ∈ RI(z∗)|N ′|. Then, for each i ∈ N ′ and each x ∈ M , if
f xi (R

′
N ′�R−N ′) = x, then f ti (R

′
N ′�R−N ′)≥ px.

We introduce four lemmas to prove Proposition 3.
Given (z∗�p) ∈ Wmin(R), if a group of agents change their preferences to z∗-

indifferent preferences, then for the new preference profile, (a) (z∗�p) is also an MPWE
and (b) the allocation chosen by the rule f (weakly) dominates z∗ from the bidders’
viewpoints.

Lemma 11. Let R ∈ Rn, (z∗�p) ∈ Wmin(R), N ′ ⊆ N , R′
N ′ ∈ RI(z∗)|N ′|, and R′ ≡

(R′
N ′�R−N ′). Then (a) (z∗�p) ∈Wmin(R

′) and (b) for each i ∈N , fi(R′) R ′
i z

∗
i .

Given p ∈ Rm++ and R ∈ Rn, let N(R�p) denote the set of demanders of the real ob-
jects at prices p, that is, N(R�p)≡ {i ∈N :D(Ri�p)∩M 
= ∅}.

Lemma 12 states a limited pattern of demand connectedness. Given R ∈ Rn and
(z∗�p) ∈ Wmin(R), when some agents’ preferences are changed to z∗-indifferent prefer-
ences, under the assumptions of Lemma 12, the object obtained by some z∗-indifferent
agent is connected to the null object by the demands of non-z∗-indifferent agents.

Lemma 12. Let R ∈ Rn and (z∗�p) ∈Wmin(R). Let N ′ ⊆ N with 1 ≤ |N ′|, R′
N ′ ∈ RI(z∗)|N ′|,

R′ ≡ (R′
N ′�R−N ′), and N ′′ ≡N(R�p)\N ′. Assume that (12-i) for each i ∈N \N ′, and each
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x ∈ M , if f xi (R
′)= x, then f ti (R

′) ≥ px, and (12-ii) for each j ∈N ′, f xj (R
′) 
= 0.47 Then there

is a sequence {ik}Kk=1 of K distinct agents such that

(i) K ≥ 2

(ii) f xi1(R
′)= 0

(iii) for each k ∈ {2� � � � �K}, f xik(R
′) 
= 0

(iv) for each k ∈ {1� � � � �K − 1}, ik ∈N ′′ and iK ∈N ′

(v) for each k ∈ {1� � � � �K − 1}, {f xik(R′)� f xik+1
(R′)} ⊆D(Rik�p).

When an agent i receives x ∈ M and his CV of the null object from his assignment is
negative, for each agent j 
= i, if j’s CV of x from 0 is greater than the difference between
what i pays and i’s CV of the null object from his assignment, then j receives a real object.

Lemma 13. Let R ∈ Rn, i ∈ N , and x ∈ M be such that f xi (R) = x and CV i(0; fi(R)) < 0.
Let j ∈N \ {i}. Assume that (13-i) f ti (R)− CV i(0; fi(R)) < CV j(x; 0). Then f xj (R) 
= 0.

Given a preference profile such that an object x obtained by an agent j who pays less
than px is connected to the null object by the demands of the agents who pay prices p, if
px is greater than the difference between what j pays and his CV of the null object from
his assignment, then a Pareto improvement is possible.

Lemma 14. Let R ∈ Rn and (z∗�p) ∈ Wmin(R). For each i ∈ N , let xi ≡ f xi (R). Assume
that there is a sequence {ik}Kk=1of K distinct agents such that (a) 2 ≤K ≤m+ 1, (b) xi1 = 0,
(c) for each k ∈ {1� � � � �K − 1}, {xik�xk+1} ⊆ D(Rik�p) and f tik(R) = pxi , and (d) f tiK (R) <
pxiK and f tiK (R) − CV iK (0; fiK (R)) < pxiK . Then there is z′ ∈ Z that Pareto-dominates
f (R) at R.

Part 4. By applying the above lemmas and propositions, we complete the proof of
Theorem 2.

Let R ∈ Rn and (z∗�p) ∈ Wmin(R). Let R′ ∈ Rn be a profile of z∗-indifferent prefer-
ences. Then, for each x ∈ M , the (m+ 1)th highest CV of x from the origin is equal to px.
Thus, by Lemma 6, for each x ∈ M , the agent who obtains x pays at least px. We replace
the preferences in R′ by the original preferences in R one by one, and inductively show
that for each x ∈M , the agent who obtains x pays at least px.

Step 1. We replace the preference R ′
i in R′ of agent i ∈ N by his original preference Ri.

Then if agent i obtains x at the new profile (Ri�R
′
−i), then f ti (Ri�R

′
−i) ≥ px. For oth-

erwise, since R ′
i is z∗-indifferent, fi(Ri�R

′
−i) P

′
i fi(R

′), contradicting strategy-proofness.
Then, by Proposition 3, for each x ∈ M , the remaining agent who obtains x pays also at
least px.

47Assumption (12-ii) implies |N ′| ≤m.
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Step 2. We replace the preference R′
j in (Ri�R

′
−i) of agent j 
= i by his original prefer-

ence Rj . Then if agent i obtains x at the new profile (Ri�j�R
′
−i�j), then f ti (Ri�j�R

′
−i�j) ≥ px.

For otherwise, since R ′
i is z∗-indifferent, Step 1 implies fi(Ri�j�R

′
−i�j) P

′
i fi(Rj�R

′
−j),

contradicting strategy-proofness. Similarly, if agent j obtains x at (Ri�j�R
′
−i�j), then

f tj (Ri�j�R
′
−i�j) ≥ px. Then, by Proposition 3, for each x ∈ M , the remaining agent who

obtains x pays also at least px.
Proceeding inductively, we conclude that at R, for each x ∈M , the agent who obtains

x pays at least px. Then, from Proposition 2, we deduce that each agent is assigned an
object in his demand set at prices p and pays its price.48 Thus, (WE-i) in Definition 3
holds. Since R ≡ RC and n > m, for each x ∈ M , px > 0. By Lemma 4, each real object
is assigned to someone. Thus, (WE-ii) in Definition 3 also holds. Since p = pmin(R), we
have f (R) ∈ Wmin(R).

B.2 Formal proofs of lemmas and propositions for Theorem 2

Part 1

Proof of Lemma 3. By no subsidy for losers, f ti (R) ≥ 0. By individual rationality,
f ti (R) ≤ 0. Thus, f ti (R) = 0. �

Proof of Lemma 4. By contradiction, suppose that for each i ∈ N , f xi (R) 
= x. Then, by
n >m, there is j ∈ N such that f xj (R) = 0. By Lemma 3, f tj (R) = 0. Let z′ ∈ Z be defined
by setting z′

j ≡ (x�0) and for each i ∈ N \ {j}, z′
i ≡ fi(R). Then, since (x�0) Pj (0�0), we

have z′
j Pj fj(R). Note that for each i ∈N \ {j}, z′

i Ii fi(R) and
∑

i∈N t ′i = ∑
i∈N f ti (R). Thus,

z′ Pareto-dominates f (R) at R, which contradicts efficiency. �

Proof of Lemma 5. Let d ≡ tj − CV i(xj;zi) and let z′ ∈ Z be defined by setting z′
i ≡

(xj� tj − d), z′
j ≡ (xi� ti + d), and for each k ∈ N \ {i� j}, z′

k ≡ zk. By z′
i = (xj�CV i(xj;zi)),

z′
i Ii zi. By (a) and z′

j = (xi� ti + tj − CV i(xj;zi)), z′
j Pj (xi�CV j(xi;zj)) Ij zj . For each

k ∈ N \ {i� j}, z′
k Ik zk and

∑
k∈N t ′k = tj −d+ ti +d+∑

k
=i�j tk = ∑
k∈N tk. Thus, z′ Pareto-

dominates z at R. �

Proof of Lemma 6. First, for each y ∈ M and each i ∈ N , (y�0) Pi (0�0). Thus, for
each y ∈ M , Cm+1(R� y) > 0. To the contrary, suppose that f xi (R) = x and f ti (R) <

Cm+1(R�x). Let R ′
i ∈ RQ be such that for each y ∈ M , 0 < CV ′

i(y; 0) < Cm+1(R� y) and
f ti (R) < CV ′

i(x; 0). Let y ′ ≡ f xi (R
′
i �R−i). Then, by strategy-proofness, f ti (R

′
i �R−i) ≤

CV ′
i(y

′; fi(R)). Since CV ′
i(0; fi(R)) < 0, no subsidy for losers implies y ′ 
= 0.

Since |{j ∈ N \ {i} : CV j(y
′; 0) ≥ Cm+1(R� y ′)}| ≥ m, there is j ∈ N \ {i} such that

CV j(y
′; 0) ≥ Cm+1(R� y ′) and f xj (R

′
i �R−i) = 0. By Lemma 3, f tj (R

′
i �R−i) = 0.

Let z′
i ≡ (0�CV ′

i(0; fi(R ′
i �R−i)), z′

j ≡ (y ′�CV ′
i(y

′; 0)), and for each k 
= i� j, z′
k ≡

fk(R
′
i �R−i). Then z′

i I
′
i fi(R

′
i �R−i), and for each k 
= i� j, z′

k Ik fk(R
′
i �R−i). By CV j(y

′; 0) >

48To see this, let i ∈ N and y ≡ f xi (R). By Proposition 2, f ti (R) ≤ CV i(y;z∗
i ). By x∗

i ∈ D(Ri�p), CV i(y;z∗
i )≤

py , where py = 0 if y = 0. If y = 0, py = 0 = f ti (R). If y 
= 0, py ≤ f ti (R). Thus, by f ti (R) ≤ CV i(y;z∗
i ) ≤ py ≤

f ti (R), CV i(y;z∗
i ) = py = f ti (R). Then fi(R) Ii z

∗
i . Since x∗

i ∈ D(Ri�p), for each z′
i ∈ B(p), fi(R) Ii z∗

i Ri z
′
i. By

f ti (R) = py , f xi (R) ≡ y ∈D(Ri�p).
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CV ′
i(y

′; 0), z′
j Pj fj(R

′
i �R−i). By R ′

i ∈ RQ, CV ′
i(0; fi(R ′

i �R−i)) = f ti (R
′
i �R−i) − CV ′

i(y
′; 0).

Thus, t ′i + t ′j = CV ′
i(0; fi(R ′

i �R−i)) + CV ′
i(y

′; 0) = f ti (R
′
i �R−i). By f tj (R

′
i�R−i) = 0,∑

k∈N t ′k = ∑
k∈N f tk(R

′
i �R−i). Thus, z′ Pareto-dominates f (R ′

i �R−i) at (R ′
i �R−i), which

contradicts efficiency. �

Proof of Lemma 7. Let f satisfy the four axioms of Theorem 2 on Rn. Let R ∈ Rn, i ∈N ,
and x ≡ f xi (R). If x = 0, Lemma 7 follows from no subsidy for losers. Thus, suppose that
x 
= 0. Then, by Lemma 6, f ti (R) ≥ Cm+1(R�x). Since for each y ∈ M and each i ∈ N ,
(y�0) Pi (0�0), for each y ∈ M , Cm+1(R� y) > 0. Thus, f ti (R) > 0. �

Proof of Lemma 8. First, we show f xi (R
′
i �R−i) = f xi (R). Suppose not. Let x ≡

f xi (R
′
i �R−i). By strategy-proofness, fi(R

′
i �R−i) R ′

i fi(R) and so f ti (R
′
i �R−i) ≤

CV ′
i(x; fi(R)). Since R ′

i ∈ RNCV(fi(R)), CV ′
i(x; fi(R)) < 0. Thus, f ti (R

′
i �R−i) < 0, con-

tradicting no subsidy.
Next, we show f ti (R

′
i �R−i) = f ti (R). Suppose that f ti (R

′
i �R−i) < f ti (R). (The opposite

case can be treated symmetrically.) Then fi(R
′
i �R−i) Pi fi(R), contradicting strategy-

proofness. �

Part 2: Proof of Proposition 2

Proof of Lemma 9. By contradiction, suppose that f xi (R) = x and CV i(x; 0) <

Cm(R�x). Then, by Lemma 6, Cm+1(R�x) ≤ f ti (R). By individual rationality,
f ti (R) ≤ CV i(x; 0). Then, by CV i(x; 0) ≤ Cm+1(R�x), f ti (R) = CV i(x; 0). Since
|{j ∈ N : CV j(x; 0) ≥ Cm(R�x)}| = m, there is j ∈ N \ {i} such that CV j(x; 0) ≥ Cm(R�x)

and f xj (R) = 0. By Lemma 3, f tj (R) = 0. Then, by CV i(0; fi(R)) = 0 and f ti (R) =
CV i(x; 0) < Cm(R�x) ≤ CV j(x; 0), f tj (R) − CV i(0; fi(R)) < CV j(x; fj(R)) − f ti (R). Note
that fi(R) Ii fj(R) and fi(R) Pj fj(R). Thus, by x 
= 0 and Lemma 5, there is z′ ∈ Z that
Pareto-dominates f (R) at R, which contradicts efficiency. �

Proof of Lemma 10. (Figure 2.) By contradiction, suppose that f xi (R) 
= x. Then,
by Lemma 4, there is j ∈ N \ {i} such that f xj (R) = x. By (b) and (c), f tj (R) ≤
CV j(x;zj) < CV i(x; 0). Since z ∈ ZIR(R), for each y ∈ M , CV j(y;zj) ≤ CV j(y; 0). Let
R′
j ∈ RNCV(fj(R)) be such that (i) −CV ′

j(0; fj(R)) < CV i(x; 0) − f tj (R) and (ii) for each

y ∈ M \ {x}, CV ′
j(y; 0) = CV j(y; 0). Then, by Lemma 8, fj(R

′
j�R−j) = fj(R). Since

f xj (R
′
j�R−j) = x, f xi (R

′
j�R−j) 
= x.

Next, we show f xi (R
′
j�R−j) /∈ M \ {x}. Suppose there is y ∈ M \ {x} such that

f xi (R
′
j�R−j) = y. By (ii), Cm(R′

j�R−j� y) = Cm(R�y). By (a), CV i(y; 0) < Cm(R′
j�R−j� y),

which contradicts Lemma 9. Thus, f xi (R
′
j�R−j) = 0. By Lemma 3, f ti (R

′
j�R−j) = 0. Then,

by (i) and fj(R
′
j�R−j) = fj(R), f ti (R

′
j�R−j) − CV ′

j(0; fj(R′
j�R−j)) < CV i(x; fi(R′

j�R−j)) −
f tj (R

′
j�R−j). Note that fj(R′

j�R−j) P
′
j fi(R

′
j�R−j) and fj(R

′
j�R−j) Pi fi(R

′
j�R−j). By x 
= 0

and Lemma 5, there is z′ ∈ Z that Pareto-dominates f (R′
j�R−j) at (R′

j�R−j), which con-
tradicts efficiency. �
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•
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j(0; fj(R))

CV i(x; 0)− f tj (R)
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Figure 2. Illustration of the proof of Lemma 10.

Proof of Proposition 2. We only show f1(R) R1 z1, since the other agents can be
treated in the same way. If x1 = 0, then z1 = 0 and so, by individual rationality,
f1(R) R1 z1. Thus, assume that x1 
= 0. Let N+ ≡ {j ∈N :xj 
= 0}. Note that |N+| =m.

By contradiction, suppose that z1 P1 f1(R). We prove Claim 2 by induction. Part (iv)
of Claim 2 induces a contradiction by the finiteness of N+.

Claim 2. For each k≥ 0, there exist a set N(k+ 1) of k+ 1 distinct agents, say N(k+ 1)≡
{1� � � � �k+ 1}, and R′

N(k+1) ∈ Rk+1 such that

(i) zk+1 Pk+1 fk+1(R
′
N(k)�R−N(k))

(ii) for each j ∈N(k+ 1) and each y ∈M \ {xj},

CV ′
j(y; 0) < Cn(R′

{1�����j−1}�R−{1�����j−1}� y)

(iii) tk+1 < CV ′
k+1(xk+1; 0) < CV k+1(xk+1; fk+1(R

′
N(k)�R−N(k)))

(iv) N(k+ 1)�N+,

where N(k)≡ {1� � � � �k}.

Figure 3 illustrates (i), (ii), and (iii) for k= 1.
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•
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•
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Figure 3. Illustration of (i), (ii), and (iii) in the proof of Proposition 2 for k= 1.

Proof.

Step 1. Let k = 0 and N(1) ≡ {1}. By z1 P1 f1(R), (i) holds and so t1 < CV 1(x1; f1(R)).
Note that for each y ∈ M , Cn(R�y) > 0. Thus, there is R′

1 ∈ R such that (ii) for each
y ∈M \ {x1}, CV ′

1(y; 0) < Cn(R�y), and (iii) t1 < CV ′
1(x1; 0) < CV 1(x1; f1(R)).

Note that {1} ⊆ N+. Suppose {1} = N+. Since |N+| = m, m = 1. Thus, by x1 
= 0,
for each j ∈ N \ {1}, zj = 0. Since z ∈ W (R), for each j ∈ N \ {1}, zj Rj z1 and so
CV j(x1; 0) ≤ t1. Thus, by (iii), C1(R−1�x1;z) ≤ t1 < CV ′

1(x1; 0). By individual rational-
ity, for each j ∈ N \ {1}, fj(R′

1�R−1) Rj 0 = zj . Since z ∈ ZIR(R′
1�R−1), Lemma 10 im-

plies f x1 (R
′
1�R−1) = x1. By individual rationality, f t1(R

′
1�R−1) ≤ CV ′

1(x1; 0). However, by
(iii), f t1(R

′
1�R−1) < CV 1(x1; f1(R)). Thus, f1(R

′
1�R−1) P1 f1(R), contradicting strategy-

proofness. Thus, (iv) {1} �N+.

Step 2 (Induction argument). Let k≥ 1. As induction hypothesis, assume that there
exist a set N(k) ⊇ N(1) of k distinct agents, say N(k) ≡ {1� � � � �k}, and R′

N(k) ∈ Rk such
that

(i-k) zk Pk fk(R
′
N(k)\{k}�R−N(k)\{k})

(ii-k) for each j ∈N(k) and each y ∈M \{xj}, CV ′
j(y; 0) < Cn(R′

{1�����j−1}�R−{1�����j−1}� y)

(iii-k) tk < CV ′
k(xk; 0) < CV k(xk; fk(R′

N(k)\{k}�R−N(k)\{k}))

(iv-k) N(k)�N+.

By (iv-k), N+ \N(k) 
= ∅. The proof has two steps.
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Step 2.1. There is i ∈ N+ \N(k) such that zi Pi fi(R
′
N(k)�R−N(k)).

Proof. By contradiction, suppose that for each j ∈N+ \N(k), fj(R′
N(k)�R−N(k)) Rj zj .

First, we show that f xk (R
′
N(k)�R−N(k)) = xk. By (ii-k), for each y ∈M \ {xk},

CV ′
k(y; 0) < Cn(R′

N(k)\{k}�R−N(k)\{k}� y)

= Cn−1(R′
N(k)�R−N(k)� y)

≤ Cm(R′
N(k)�R−N(k)� y)�

Let z′ ∈ Z be defined by setting for each j ∈ N \N(k), z′
j ≡ zj , and for each j ∈ N(k),

z′
j ≡ 0. Then z′ ∈ ZIR(R′

N(k)�R−N(k)). By the supposition of Step 2.1, for each j ∈ N+ \
N(k), fj(R′

N(k)�R−N(k))Rj zj ≡ z′
j . By individual rationality, for each j ∈N(k)∪(N \N+),

fj(R
′
N(k)�R−N(k)) Rj 0 = z′

j .
Since z ∈ W (R), for each j ∈ N \ N(k), CV j(xk;z′

j) = CV j(xk;zj) ≤ tk. By (ii-k), for
each j ∈N(k) \ {k},

CV ′
j(xk;z′

j) = CV ′
j(xk; 0) < Cn(R′

{1�����j−1}�R−{1�����j−1}�xk)≤ Cn(R�xk) ≤ tk�

Thus, by (iii-k), C1(R′
N(k)\{k}�R−N(k)�xk;z′)≤ tk < CV ′

k(xk; 0).
Since the assumptions of Lemma 10 hold for (R′

N(k)�R−N(k)) as above,
Lemma 10 implies that f xk (R

′
N(k)�R−N(k)) = xk. By individual rationality,

f tk(R
′
N(k)�R−N(k)) ≤ CV ′

k(xk; 0). However, (iii-k) implies that f tk(R
′
N(k)�R−N(k)) <

CV k(xk; fk(R′
N(k)\{k}�R−N(k)\{k})).

Thus, fk(R
′
N(k)�R−N(k)) Pk fk(R

′
N(k)\{k}�R−N(k)\{k}), contradicting strategy-

proofness. �

Step 2.2. We complete the proof of Claim 2.

Proof. Without loss of generality, let i ≡ k+ 1 and N(k+ 1)≡ N(k)∪ {k+ 1}.
Then N(k + 1) � N(k), and (i) follows from zi Pi fi(R

′
N(k)�R−N(k)). By (i), tk+1 <

CV k+1(xk+1; fk+1(R
′
N(k)�R−N(k))). Also, for each y ∈M , Cn(R′

N(k)�R−N(k)� y) > 0. Thus,
there is R′

k+1 ∈ R such that

tk+1 < CV ′
k+1(xk+1; 0) < CV k+1(xk+1; fk+1(R

′
N(k)�R−N(k)))�

and for each y ∈ M \ {xk+1}, CV ′
k+1(y; 0) < Cn(R′

N(k)�R−N(k)� y). Let R′
N(k+1) ≡

(R′
N(k)�R

′
k+1). Then (ii) and (iii) follow from (ii-k).

By (iv-k) and {k+ 1} ⊆N+, N(k+ 1)⊆ N+.
Finally, we show (iv): N(k+1)�N+. Suppose that N(k+1)= N+. Then |N(k+1)| =

|N+| = m. Thus, for each j ∈N \N(k+ 1), zj = 0.
By (ii), for each y ∈M \ {xk+1},

CV ′
k+1(y; 0) < Cn(R′

N(k)�R−N(k)� y)

= Cn−1(R′
N(k+1)�R−N(k+1)� y)

≤ Cm(R′
N(k+1)�R−N(k+1)� y)�
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Let z′ ∈ Z be defined by setting for each j ∈ N , z′
j ≡ 0. Then z′ ∈

ZIR(R′
N(k+1)�R−N(k+1)).

By individual rationality, for each j ∈ N \ {k + 1}, fj(R′
N(k+1)�R−N(k+1)) Rj 0 = z′

j .

Since z ∈ W (R), for each j ∈ N \ N(k + 1), CV j(xk+1;z′
j) = CV j(xk+1;zj) ≤ tk+1. By (ii),

for each j ∈N(k+ 1) \ {k+ 1},

CV ′
j(xk+1;z′

j) = CV ′
j(xk+1; 0) < Cn(R′

{1�����j−1}�R−{1�����j−1}�xk+1)≤ Cn(R�xk+1) ≤ tk+1�

Thus, by (iii), CV ′
k+1(xk+1; 0) > tk+1 ≥ C1(R′

N(k)�R−N(k+1)� xk+1;z′), and the
assumptions of Lemma 10 hold for (R′

N(k+1)�R−N(k+1)). By Lemma 10,
f xk+1(R

′
N(k+1)�R−N(k+1)) = xk+1. By individual rationality, f tk+1(R

′
N(k+1)�R−N(k+1)) ≤

CV ′
k+1(xk+1; 0). However, (iii) implies that f tk+1(R

′
N(k+1)�R−N(k+1)) <

CV k+1(xk+1; fk+1(R
′
N(k)�R−N(k))).

Thus, fk+1(R
′
N(k+1)�R−N(k+1)) Pk+1 fk+1(R

′
N(k)�R−N(k)), contradicting strategy-

proofness. �

Part 3: Proof of Proposition 3

Proof of Lemma 11. First, we show (a). Let M ′ ⊆ M . Since z∗ ∈Zmin(R), by Theorem 1,
(i) |{i ∈ N :D(Ri�p) ⊆ M ′}| ≤ |M ′| and (ii) |{i ∈ N :D(Ri�p) ∩ M ′ 
= ∅}| > |M ′|. Note that
for each i ∈N ′, D(R ′

i �p)=L and for each j ∈N \N ′, D(R′
j�p)=D(Rj�p). Thus, for each

i ∈N ′, D(R ′
i �p)�M ′ and D(R ′

i �p)∩M ′ 
=∅. Then

∣∣{i ∈N :D(R ′
i �p)⊆ M ′}∣∣ ≤ ∣∣{i ∈ N :D(Ri�p)⊆M ′}∣∣ ≤ |M ′| and∣∣{i ∈N :D(R ′

i �p)∩M ′ 
=∅}∣∣ ≥ ∣∣{i ∈ N :D(Ri�p)∩M ′ 
= ∅}∣∣ > |M ′|�

That is, no set is overdemanded or weakly underdemanded at p for R′. Thus, (a) follows
from Theorem 1. Then (b) follows from Proposition 2. �

Proof of Lemma 12.

Step 1. We show that for each j /∈ N(R�p)∪N ′, f xj (R
′)= 0.

Suppose that for some j /∈ N(R�p) ∪ N ′, x ≡ f xj (R
′) 
= 0. By D(R′

j�p) = 0, individual
rationality implies f tj (R

′)≤ CV j(x; 0) < px. This contradicts (12-i).

Step 2. Let z′ ≡ (x′� t ′) be such that for each i ∈ N ′, x′
i ≡ f xi (R

′) and t ′i ≡ px′
i , and for each

i ∈N \N ′, z′
i ≡ fi(R

′). We show z′ ∈Zmin(R
′).

First, we show that z′ satisfies (WE-i) in Definition 3 for R′. Note that by R′
N ′ ∈

RI(z∗)|N ′|, for each i ∈N ′ and each z′′
i ∈ B(p), z′

i I
′
i z

′′
i . Thus, for each i ∈N ′, x′

i ∈D(R ′
i �p).

By the definition of z′, for each i ∈ N ′, t ′i = px′
i . Therefore, it is sufficient to prove

that for each i ∈ N \ N ′, f xi (R
′) ∈ D(Ri�p) and f ti (R

′) = py , where y = f xi (R
′). Let

i ∈ N \ N ′ and y ≡ f xi (R
′). By (z∗�p) ∈ Wmin(R), R′

N ′ ∈ RI(z∗)|N ′|, and by Lemma 11(b),
f ti (R

′) ≤ CV i(y;z∗
i ). By x∗

i ∈ D(Ri�p), CV i(y;z∗
i ) ≤ py , where py = 0 if y = 0. If y = 0, by

Lemma 3, f ti (R
′) = 0 = py . If y 
= 0, by (12-i), py ≤ f ti (R

′). Then, by f ti (R
′) ≤ CV i(y;z∗

i ) ≤
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py ≤ f ti (R
′), CV i(y;z∗

i ) = py = f ti (R
′). Thus, fi(R

′) Ii z∗
i . By x∗

i ∈ D(Ri�p), for each
z′′
i ∈ B(p), fi(R′) Ii z∗

i Ri z
′′
i . Then, by f ti (R

′)= py , f xi (R
′) ∈D(Ri�p).

Next, we show that z′ satisfies (WE-ii) in Definition 3. Since R ≡ RC and n > m, for
each x ∈ M , px > 0. By Lemma 4, for each x ∈M , there is i ∈N such that x′

i ≡ f xi (R
′) = x.

Thus, (z′�p) ∈ W (R′). By (z∗�p) ∈ Wmin(R), R′
N ′ ∈ RI(z∗)|N ′|, and Lemma 11(a), p =

pmin(R
′). Hence, z′ ∈Zmin(R

′).

Step 3. Let M ′ ≡ {x ∈ M : for some j ∈ N ′� f xj (R
′) = x}. By (12-ii) and 1 ≤ |N ′|, M ′ 
= ∅.

Let x ∈ M ′. Since R ≡ RC and n >m, for each y ∈ M , py > 0. Then, by Step 2 and Corol-

lary 2, there is a sequence {ik}K′
k=1 of K′ distinct agents such that (i) x′

i1
= 0 or p

x′
i1 = 0,

(ii) for each k ∈ {2� � � � �K′ − 1}, x′
ik


= 0 and p
x′
ik > 0, (iii) x′

iK′ = x, and (iv) for each
k ∈ {1� � � � �K′ − 1}, {x′

ik
� x′

ik+1
} ⊆ D(R′

ik
�p). Since for each y ∈ M , py > 0, then x′

i1
= 0.

By (12-ii), i1 /∈ N ′. By Step 1, for each k ∈ {1� � � � �K′}, ik ∈ N ′′ ∪N ′. Note that by iK′ ∈ N ′,
{k : ik ∈ N ′} 
= ∅. Let K ≡ min{k : ik ∈ N ′}. Then, for each k ∈ {1� � � � �K − 1}, ik ∈ N ′′ and
iK ∈N ′. Thus, the sequence {ik}Kk=1 satisfies (i), (ii), (iii), (iv), and (v) of Lemma 12. �

Proof of Lemma 13. Suppose that f xj (R) = 0. By Lemma 3, f tj (R) = 0. By (13-i),
f tj (R) − CV i(0; fi(R)) < CV j(x; fj(R)) − f ti (R) and fi(R) Pj fj(R). By CV i(0; fi(R)) < 0,
fi(R) Pi fj(R). Then, by x 
= 0 and Lemma 5, there is z′ ∈ Z that Pareto-dominates f (R)

at R, which contradicts efficiency. �

Proof of Lemma 14. Let z′ ∈Z be defined by setting z′
iK

≡ (0�CV iK (0; fiK (R))), z′
iK−1

≡
(xiK � f

t
iK
(R) − CV iK (0; fiK (R))) for each k ∈ {1� � � � �K − 1}, z′

ik
≡ fik+1(R), and for each

i ∈ N \ {ik}Kk=1, z′
i ≡ fi(R). (See Figure 4.)

We show that z′ Pareto-dominates f (R) at R. By the definition of CV iK (0; fiK (R)),
z′
iK

IiK fiK (R). Also,

z′
iK−1

PiK−1
def� of z′

iK−1
and (d)

(xiK �p
xiK ) IiK−1

(c)
fiK−1(R)�

For each k ∈ {1� � � � �K − 2}, by (c) and z′
ik

= fik+1(R), z′
ik
Iik fik(R). Note that

∑
i∈N

t ′i = CV iK (0; fiK (R))+ f tiK (R)− CV iK (0; fiK (R))+
K−2∑
k=1

f tik+1
(R)+

∑
i∈N\{ik}Kk=1

f ti (R)

= f tiK (R)+
K−1∑
k=2

f tik(R)+
∑

i∈N\{ik}Kk=1

f ti (R)

=
∑
i∈N

f ti (R) by (b).

Thus, z′ Pareto-dominates f (R) at R. �

Proof of Proposition 3. Let R′ ≡ (R′
N ′�R−N ′). Without loss of generality, let N ′ ≡

{1�2� � � � � n′}. We only show that if f x1 (R
′) = x ∈ M , then f t1(R

′) ≥ px since we can treat
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Figure 4. Illustration of z′ in Lemma 14 for K = 4.

similarly the other agents in N ′. Let f x1 (R
′) ≡ x ∈ M . By contradiction, suppose that

f t1(R
′) < px. Let N ′′ ≡N(R�p) \N ′.

We derive a contradiction in two steps.

Step 1. There is R̄N ′ ∈ RI(z∗)|N ′| such that the following statements hold:

(a) For each i ∈N ′ and each zi ≡ (y� t) ∈M ×R with t < py , −CV i(0;zi) < py − t.

(b) For some j ∈N ′, f xj (R̄N ′�R′
−N ′) ≡ y 
= 0 and f tj (R̄N ′�R′

−N ′) < py .

Proof. We replace the preference R ′
i of each agent i in N ′ with R̄i, inductively. Since

f x1 (R
′) ≡ x 
= 0 and f t1(R

′) < px, there is R̄1 ∈ RI(z∗)∩RNCV(f1(R
′)) such that

for each z1 ≡ (y� t) ∈M ×R with t < py�−CV 1(0;z1) < py − t�

Then, by Lemma 8, f1(R̄1�R
′
−1) = f1(R

′). Since f x1 (R
′) ≡ x 
= 0 and f t1(R

′) < px,
f x1 (R̄1�R

′
−1) = x 
= 0 and f t1(R̄1�R

′
−1) < px.

Induction argument. Let s ≤ |N ′|−1. As induction hypothesis, assume that there are
S �N ′ and R̄S ∈ RI(z∗)|S| such that |S| = s.

(3-a) For each i ∈ S and each zi ≡ (y� t) ∈M ×R with t < py , −CV i(0;zi) < py − t.
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(3-b) For some js ∈ S, f xjs (R̄S�R
′
−S)≡ ys 
= 0 and f tjs (R̄S�R

′
−S) < pys .

Then, by (3-a), (3-b), and Lemma 13, for each i ∈ N ′, f xi (R̄S�R
′
−S) 
= 0. Thus, (12-ii)

of Lemma 12 holds for (R̄S�R
′
−S). By (3-i) of Proposition 3, (12-i) of Lemma 12 holds

for (R̄S�R
′
−S). Thus, by Lemma 12, there is a sequence {ik}Kk=1 of K distinct agents

such that (i) 2 ≤ K, (ii) f xi1(R̄S�R
′
−S) = 0, (iii) for each k ∈ {2� � � � �K}, f xik(R̄S�R

′
−S) 
= 0,

(iv) for each k ∈ {1� � � � �K − 1}, ik ∈ N ′′ and iK ∈ N ′, and (v) for each k ∈ {1� � � � �K − 1},
{f xik(R̄S�R

′
−S)� f

x
ik+1

(R̄S�R
′
−S)} ⊆ D(R′

ik
�p).

We show f tiK (R̄S�R
′
−S) < px̄iK , where x̄iK ≡ f xiK (R̄S�R

′
−S). If iK = js , f tiK (R̄S�R

′
−S) <

px̄iK follows from (3-b). Thus, let iK 
= js . By Lemma 11(b), f tiK (R̄S�R
′
−S) ≤ px̄iK . By con-

tradiction, suppose that f tiK (R̄S�R
′
−S) = px̄iK . Then we construct a sequence of agents

satisfying the assumption of Lemma 14 by adding agent js to the above sequence {ik}Kk=1
as the (K + 1)th agent. Thus, there is an allocation z′ that Pareto-dominates f (R̄S�R

′
−S)

at (R̄S�R
′
−S). This contradicts efficiency. Thus, f tiK (R̄S�R

′
−S) < px̄iK .

Next, we show iK /∈ S. By contradiction, suppose that iK ∈ S. Then, by f tiK (R̄S�R
′
−S) <

px̄iK , the above sequence {ik}Kk=1 satisfies the assumptions of Lemma 14. Thus, there is
an allocation z′ that Pareto-dominates f (R̄) at R̄, which contradicts efficiency. Thus,
iK /∈ S and so iK ∈N ′ \ S.

Let js+1 ≡ iK and S′ ≡ S ∪ {js+1}. Then, by iK /∈ S, |S′| = s + 1, and f xjs+1
(R̄S�R

′
−S) ≡

ys+1 
= 0 and f tjs+1
(R̄S�R

′
−S) < pys+1 . Note that f tjs+1

(R̄S�R
′
−S) < pys+1 implies that there is

R̄js+1 ∈ RI(z∗)∩RNCV(fjs+1(R̄S�R
′
−S)) such that

for each zjs+1 ≡ (y� t) ∈M ×R with t < py�−CV js+1(0;zjs+1) < py − t�

Thus, by (3-a),

for each i ∈ S′ and each zi ≡ (y� t) ∈ M ×R with t < py�−CV i(0;zi) < py − t�

By Lemma 8, fjs+1(R̄S′�R′
−S′) = fjs+1(R̄S�R

′
−S).

Since f xjs+1
(R̄S�R

′
−S) ≡ ys+1 
= 0 and f tjs+1

(R̄S�R
′
−S) < pys+1 , we have f xjs+1

(R̄S′�R′
−S′) ≡

ys+1 
= 0 and f tjs+1
(R̄S′�R′

−S′) < pys+1 . �

Step 2. Concluding that f t1(R
′) ≥ px.

By (a) and (b) of Step 1, and Lemma 13, for each i ∈ N ′, f xi (R̄N ′�R′
−N ′) 
= 0. Then it

follows from (3-i) of Proposition 3 that (12-i) and (12-ii) of Lemma 12 hold for the pro-
file (R̄N ′�R′

−N ′). Thus, by Lemma 12, there is a sequence {ik}Kk=1 of K distinct agents
such that (i) 2 ≤K, (ii) f xi1(R̄N ′�R′

−N ′)= 0, (iii) for each k ∈ {2� � � � �K}, f xik(R̄N ′�R′
−N ′) 
= 0,

(iv) for each k ∈ {1� � � � �K − 1}, ik ∈ N ′′ and iK ∈ N ′, and (v) for each k ∈ {1� � � � �K − 1},
{f xik(R̄N ′�R′

−N ′)� f xik+1
(R̄N ′�R′

−N ′)} ⊆ D(R′
ik
�p). Therefore, similarly to Step 1, we can

show iK /∈N ′, which contradicts iK ∈N ′. �
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Appendix C: Proof for Section 5 (Proposition 1)

Proof of Proposition 1. Let R ⊆ RE and R ∈ Rn. Consider the simultaneous ascend-
ing (SA) auction defined in Section 5. By the definition of the auction, the price path p(·)
is nondecreasing with respect to time. For each x ∈ M , let p̄x > C1(R�x). Then, for each
x ∈ M , each p−x, and each i ∈ N , x /∈ D(Ri� (p̄

x�p−x)). This implies that each x ∈ M is
not in a minimal overdemanded set whenever its price is p̄x. Thus, the price path p(·) is
bounded above by p̄, that is, for each time s ∈ R+, p(s) ≤ p̄. Note that prices are raised
at a speed at least d > 0. Thus, there is a price vector p∗ such that the price path p(·)
converges to p∗ in a finite time.

Let T be the termination time of the SA auction. We show that the final price
p(T) = pmin(R). By the definition of the SA auction, no overdemanded set exists at the
price p(T). If no weakly underdemanded set exists at p(T), then the desired conclusion
follows from Theorem 1. Thus, we show that no weakly underdemanded set exists at
p(T). The proof is in two steps.

Step 1. Let time s′ ∈ (0�T ]. Assume that there is a set M ′ that is weakly underdemanded
at p(s′). Let N ′ ≡ {i ∈ N :D(Ri�p(s

′)) ∩M ′ 
= ∅}. Then (1-a) |N ′| ≥ 2 and (1-b) there exist
time s′′ ∈ (0� s′) and M ′′ �M ′ such that N ′′ ≡ {i ∈N :D(Ri�p(s

′′))∩M ′′ 
= ∅}�N ′ and M ′′
is underdemanded at p(s′′).

Proof. Since M ′ is weakly underdemanded at p(s′), for each x ∈ M ′, px(s′) > 0 and
|N ′| ≤ |M ′|. For each i ∈ N , let x′

i ∈ D(Ri�p(s
′)) and z′

i ≡ (x′
i�p

x′
i (s′)). Note that

for each i ∈ N \ N ′ and each x ∈ M ′, CV i(x;z′
i) < px(s′). For each x ∈ M ′, let qx ≡

max{CV i(x;z′
i) : i ∈ N \N ′} ∪ {0}. Let e > 0 be such that for each x ∈M ′, qx < px(s′)− e ≡

px. Let s′′ ≡ max{s ∈ R+ : for some x ∈ M ′�px(s) ≤ px}. Then there is x′ ∈ M ′ such that
dpx′

(s′′)/ds > 0 and px′
(s′′) = px′

. By dpx′
(s′′)/ds > 0, there is a minimal overdemanded

set M̂ at p(s′′) that includes x′.
Let M̂ ′ ≡ M̂ ∩ M ′ and M̂ ′′ ≡ M̂ \ M ′. Then (i) M̂ ′′ ∪ M̂ ′ = M̂ and M̂ ′′ ∩ M̂ ′ = ∅. By

x′ ∈M ′, (ii) M̂ ′ 
= ∅. Let

N̂ ′ ≡ {
i ∈N :D(Ri�p(s

′′))∩ M̂ ′ 
= ∅ and D(Ri�p(s
′′)) ⊆ M̂

}
�

and let N̂ ′′ ≡ {i ∈N :D(Ri�p(s
′′)) ⊆ M̂ ′′}. Then, by (i), we have (iii) N̂ ′′ ∩ N̂ ′ = ∅.

Note that for each x ∈ M ′ and each i ∈ N \N ′, CV i(x;z′
i) ≤ qx < px ≤ px(s′′), and for

each x ∈M ′, px(s′′)≤ px(s′). Thus, for each i ∈N \N ′ and each x ∈M ′,

(x′
i�p

x′
i (s′′)) Ri

p
x′
i (s′′)≤p

x′
i (s′)

(x′
i�p

x′
i (s′)) = z′

i Ri
CV i(x;z′

i)≤qx
(x�qx) Pi

qx<px(s′′)
(x�px(s′′))�

By M̂ ′ ⊆ M ′, this implies that (iv) for each i ∈ N \N ′, D(Ri�p(s
′′)) ∩ M̂ ′ = ∅. Thus, N̂ ′′ =

{i ∈N :D(Ri�p(s
′′))∩M̂ ′ = ∅ and D(Ri�p(s

′′)) ⊆ M̂} and (v) N̂ ′ ⊆ N ′. The former implies
(vi) N̂ ′′ ∪ N̂ ′ = {i ∈N :D(Ri�p(s

′′)) ⊆ M̂}.
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Note that

|N̂ ′′| + |N̂ ′| = |{i ∈N :D(Ri�p(t
′′)) ⊆ M̂}| (by (iii) and (vi))

> |M̂| (since M̂ is overdemanded at p(s′′))

= |M̂ ′′| + |M̂ ′| (by (i)).

Since (i) and (ii) imply M̂ ′′ � M̂ , and since M̂ is a minimal overdemanded set at p(s′′),
M̂ ′′ is not overdemanded at p(s′′), that is, |N̂ ′′| ≤ |M̂ ′′|. Thus, by |N̂ ′′|+ |N̂ ′| > |M̂ ′′|+ |M̂ ′|,
we have (vii) |N̂ ′| > |M̂ ′|.

Notice that 1 ≤
(ii)

|M̂ ′| <
(vii)

|N̂ ′| ≤
(v)

|N ′|. Thus, (1-a) holds.

Next, we establish (1-b). Let M ′′ ≡ M ′ \ M̂ ′. Since M̂ ′ � M ′,49 M ′′ 
= ∅. By (ii),
M ′′ � M ′. First, we show that N ′′ ⊆ N ′ \ N̂ ′, that is, for each i ∈ N ′′, i ∈ N ′, and i /∈ N̂ ′.
Let i ∈ N ′′. Then D(Ri�p(s

′′)) ∩ M ′′ 
= ∅. By (iv), this implies i ∈ N ′. Since M̂ ′ = M ′ ∩ M̂

implies M ′′ = M ′ \ M̂ , D(Ri�p(s
′′)) ∩ M ′′ 
= ∅ implies D(Ri�p(s

′′)) \ M̂ 
= ∅. Since
N̂ ′ ⊆ {j ∈N :D(Rj�p(s

′′)) ⊆ M̂}, this implies i /∈ N̂ ′. Therefore, N ′′ ⊆ N ′ \ N̂ ′.
Since (ii) and (vii) imply |N̂ ′| > |M̂ ′| ≥ 1, we have |N̂ ′| ≥ 2, and so N ′′ �N ′. Finally, it

follows from the inequalities below that M ′′ is underdemanded at p(s′′).

|N ′′| ≤ |N ′| − |N̂ ′| (by (v))

< |N ′| − |M̂ ′| (by (vii))

≤ |M ′| − |M̂ ′| (by |N ′| ≤ |M ′|)
= |M ′′| (by M ′′ =M ′ \ M̂ ′)� �

Step 2. There is no weakly underdemanded set at p(T).

Proof. By contradiction, suppose that there is a set M1 that is weakly underdemanded
at p(T). Let N1 ≡ {i ∈ N :D(Ri�p(T)) ∩ M1 
= ∅}. Then, by Step 1, |N1| ≥ 2, and there
exist time s1 < T and M2 � M1 such that N2 ≡ {i ∈ N :D(Ri�p(s1)) ∩ M2 
= ∅} � N1

and M2 is underdemanded at p(s1). Since M2 is underdemanded at p(s1), Step 1
also implies that |N2| ≥ 2, and there exist time s2 < s1 and M3 � M2 such that N3 ≡
{i ∈N :D(Ri�p(s2))∩M3 
= ∅}�N2 and M3 is underdemanded at p(s2). Proceeding with
this argument inductively, we obtains a sequence {Nk} � N1 such that for each k ≥ 2,
|Nk| < |Nk−1| and |Nk| ≥ 2. However, since N1 is finite and for each k ≥ 2, Nk �N1, this
is a contradiction. �
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