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Characterizing the limit set of perfect and public equilibrium
payoffs with unequal discounting

Takuo Sugaya
Stanford Graduate School of Business

We study repeated games with imperfect public monitoring and unequal dis-
counting. We characterize the limit set of perfect and public equilibrium payoffs
as discount factors converge to 1 with the relative patience between players fixed.
We show that the pairwise and individual full rank conditions are sufficient for the
folk theorem.
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1. Introduction

In this paper, we characterize the equilibrium payoffs in repeated games with imperfect
public monitoring and unequal discounting as discount factors converge to 1 with rel-
ative patience fixed. In particular, we show that the pairwise and individual full rank
conditions are sufficient for the folk theorem.

Lehrer and Pauzner (1999) (henceforth LP) analyze two-player repeated games with
perfect monitoring and unequal discounting. They define the set of feasible and sequen-
tially individually rational (henceforth SIR) payoffs and show that in two-player games
with perfect monitoring, the limit set of subgame perfect equilibrium payoffs coincides
with that of SIR payoffs as discount factors converges to 1 with the relative patience fixed
(the folk theorem). Recently, Chen and Takahashi (2012) extend the result to n-player
games with perfect monitoring.

This paper extends their results to imperfect public monitoring. While the proofs of
both Lehrer and Pauzner (1999) and Chen and Takahashi (2012) are constructive, we em-
ploy a nonconstructive approach using the recursive structure of the perfect and public
equilibrium (henceforth PPE). Specifically, we attain a characterization of the set of PPE
payoffs as discount factors converge to 1. In addition, we characterize SIR payoffs. Given
these characterizations, we show that if the pairwise and individual full rank conditions
are satisfied, these two sets coincide, that is, the folk theorem holds.
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The characterization of limit PPE payoffs with equal discounting is provided by
Fudenberg and Levine (1994) (henceforth FL). Using this characterization, we can prove
the folk theorem in repeated games with equal discounting and imperfect public mon-
itoring, which is first shown by Fudenberg et al. (1994) (henceforth FLM). That is, if the
pairwise and individual full rank conditions are satisfied, then the set characterized by
FL coincides with the set of feasible and individually rational payoffs.1

In the current paper, we extend the characterization of the limit PPE set to unequal
discounting, and through this characterization, we prove the folk theorem in repeated
games with unequal discounting and imperfect public monitoring. A challenge to ex-
tend FL to unequal discounting comes from the fact that unequal discounting compli-
cates the relationship between equilibrium payoffs and continuation payoffs.

Assume δi = δ for each i (equal discounting) and let v be an equilibrium payoff pro-
file. As in Abreu et al. (1990) (henceforth APS), we can decompose the equilibrium payoff
profile into the instantaneous utility profile g(α) given the equilibrium action α and the
continuation payoff profile w: v = (1 − δ)g(α)+ δw. Imagine now that the continuation
payoff profile is changed from w to w′, keeping the equilibrium action fixed. Then the
effect on the equilibrium payoff profile is δ(w′ − w), which is parallel to the change in
the continuation payoff profile w′ −w.

Alternatively, consider unequal discounting: Player i’s discount factor is δi and
let v be an equilibrium payoff profile. The equilibrium payoff vi is decomposed as
vi = (1 − δi)gi(α) + δiwi for each player i. If the continuation payoff profile is changed
from w to w′, then the effect on player i’s equilibrium payoff is δiwi, that is, the effect
on the equilibrium payoff profile is (δ1(w

′
1 −w1)� � � � � δn(w

′
n −wn)) with n players, which

is not parallel to w′ − w. This complication of the relationship between the equilib-
rium payoff and the continuation payoff prevents us from applying the analysis of FL
straightforwardly.

To prove the folk theorem, we need to identify conditions under which the limit PPE
payoff set we characterize coincides with the limit set of SIR payoffs. To this end, we
identify the “right” way to characterize SIR payoffs. As LP point out, the characterization
of limit SIR payoffs is different from the feasible and individually rational payoff set in
the stage game because of the intertemporal trade: It is efficient to play actions prefer-
able to impatient players first and then play actions preferable to patient players later.
As discount factors change, since the room for the intertemporal trade changes, the SIR
payoff set also changes. A novelty of this paper is to obtain the “right” characterization
of SIR payoffs that can be related to the characterization of PPE payoffs. Based on the
characterizations of PPE and SIR payoffs, we show that the pairwise and individual full
rank conditions are sufficient to attain the folk theorem with unequal discounting.2

1Although FLM originally proved the folk theorem directly without relying on the characterization, it
is more usual to derive the folk theorem through the characterization by FL. See, for example, Proposi-
tion 9.2.1 of Mailath and Samuelson (2006).

2LP attain the characterization of SIR payoffs in games with two players. However, their characterization
is hard to extend to games with more than two players.

With more than two players, Chen and Takahashi (2012) define that a payoff profile is SIR if it is attained
by a sequence of action profiles such that each player obtains a payoff more than her individually rational
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The rest of the paper is organized as follows. Section 2 defines the model. In Sec-
tion 3, we state our main result: sufficient conditions (individual and pairwise full rank)
for the folk theorem. In Section 4, we obtain the recursive characterization of the set of
PPE payoffs à la APS for a fixed discount factor. Section 5 derives the limit characteriza-
tion of PPE payoffs as the players get more and more patient. In Section 6, we prove the
folk theorem: We first obtain the limit characterization of the SIR payoffs; then we show
that with the pairwise and individual full rank conditions, the characterizations for limit
PPE payoff set and limit SIR payoff set coincide. Section 7 discusses possible extensions
and concludes. Some proofs are relegated to the Appendix.

2. Model

2.1 The stage game

We consider a stage game with n players, 1�2� � � � � n. In the stage game, players move
simultaneously and player i chooses an action ai from a set Ai. We restrict our attention
to a finite game, that is, |Ai| < ∞ for all i. Let a ∈ A ≡ ∏n

i=1 Ai be an action profile. An
action profile induces a probability distribution over a possible public outcome y ∈ Y ,
where Y is a finite set. Let ρ(y | a) be the probability of y given a. Each player i’s realized
payoff ri(ai� y) depends only on her action ai and the public outcome y. Player i’s ex-
pected payoff from a is given by gi(a) ≡ ∑

y∈Y ρ(y | a)ri(ai� y). Define g(A) ≡ {g(a)}a∈A
as the set of pure-action payoff profiles.

Letting Ai ≡ �(Ai) be the set of probability distributions over Ai, a mixed ac-
tion αi for each player i is an element of Ai. Let αi(ai) be the probability that αi as-
signs to ai. Given an independent mixture α ≡ (α1�α2� � � � �αn) ∈ A ≡ ∏n

i=1 Ai, define
ρ(y | α) ≡ ∑

a∈A ρ(y | a)α(a) and gi(α) ≡ ∑
y∈Y

∑
a∈A ρ(y | a)α(a)ri(ai� y) with α(a) ≡

α1(a1)α2(a2) · · ·αn(an).
As usual, we define a−i ≡ (a1� � � � � ai−1� ai+1� � � � � an) ∈ A−i ≡ ∏

j �=i Aj and α−i ≡
(α1� � � � �αi−1�αi+1� � � � �αn) ∈ A−i ≡ ∏

j �=iAj .
Let iri be the individually rational payoff for player i: iri ≡ minα−i∈A−i

maxai∈Ai
gi(ai�

α−i). Let IRi denote the set of individually rational payoffs, that is, IRi ≡ {v ∈ Rn :vi ≥ iri}
and IR ≡ ⋂n

i=1 IRi. Note that the set of feasible payoffs of the stage game is co(g(A)), and
the set of feasible and individually rational payoffs of the stage game is co(g(A)) ∩ IR.
Throughout the paper, given a set X , co(X) is defined to be a convex hull of X .

2.2 The repeated game

The stage game is played infinitely many times and in each period t = 1�2� � � � , each
player observes the resulting public signal yt . Given a sequence of probability distribu-
tions over the stage-game payoff vectors and players’ discount factors δ ≡ (δ1� � � � � δn),

payoff after all the periods. Since we consider imperfect public monitoring and the characterization of PPE
payoffs is nonconstructive, their constructive definition of SIR payoffs is not tractable.
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player i’s utility in the repeated game is the average of the discounted sum of the ex-
pected payoff stream, that is, letting {gti}∞t=1 be player i’s sequence of expected stage-
game payoffs, her total payoff is given by

(1 − δi)

∞∑
t=1

δt−1
i gti �

2.2.1 Feasible and sequentially individually rational payoffs The payoff is feasible and
sequentially individually rational (henceforth SIR) if it is attainable by a sequence of
correlated actions and continuation payoff profiles such that, for each player and each
period, her continuation payoff is greater than her individually rational payoff. Let
μ ∈ �(A) be a generic element of correlated actions, let μ(a) be the probability that μ
assigns to a, let ρ(y | μ) ≡ ∑

a∈A ρ(y | a)μ(a) be the probability distribution over public
outcomes, and let gi(μ) ≡ ∑

y∈Y
∑

a∈A ρ(y | a)μ(a)ri(ai� y) be player i’s expected payoff.
The formal definition of SIR payoffs is given as follows.

Definition 1. A payoff profile v is feasible and sequentially individually rational (SIR)
if there exists {μt}∞t=1 with μt ∈ �(A) for all t such that, for all i,

vi = (1 − δi)

∞∑
t=1

δt−1
i gi(μ

t)

and (1 − δi)
∑∞

t=τ δ
t−τ
i gi(μ

t)≥ iri for all τ ≥ 1.

Let F(δ) be the set of SIR payoff profiles. As LP point out, if the discount factors are
unequal, F(δ) may be larger than the set of feasible and individually rational payoffs of
the stage game. Let F be the set of payoff profiles such that each player’s payoff is no less
than iri and no more than maxa∈A gi(a):

F ≡
{
v ∈Rn : For each i = 1� � � � � n� we have iri ≤ vi ≤ max

a∈A
gi(a)

}
�

In general, from LP, we have the relationship

F ⊃ F(δ) ⊃ co(g(A))∩ IR�

2.2.2 Perfect and public equilibrium We restrict our attention to perfect and pub-
lic equilibrium henceforth (PPE) in this paper. Since ai is player i’s private infor-
mation and y is a public outcome, the public history at the beginning of period t is
ht ≡ (∅� y1� � � � � yt−1) and player i’s private history is ht

i ≡ (∅� a1�i� � � � � at−1�i). The set of
public histories is H ≡ ⋃∞

t=0 Y
t and the set of histories for player i is Hi ≡ ⋃∞

t=0(Ai ×Y)t .
Player i’s public strategy is a mapping from H to Ai. We concentrate on PPE, where
player i’s strategy σi is a public strategy and the strategy profile σ forms a Nash equilib-
rium after any public history. Let E(δ) be the set of PPE payoffs.
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2.3 A sequence of discount factors

In this paper, we consider the limit where each player gets more and more patient, that
is δi → 1. With discount factors converging to 1, we keep the relative patience fixed for
all the pairs of players.

Except for Section 7.1, whenever we consider the limit, we fix the relative patience in
a certain way, that is, we consider the limit of δi = 1/(1 + riε) for all i as ε converges to 0.
This is equivalent to keeping ((1−δi)/δi)/((1−δn)/δn) = ri/rn fixed for all i. This means
that the ratio of the relative importance of instantaneous utilities against continuation
payoffs is constant. We normalize r1 ≥ · · · ≥ rn = 1 and, for notational convenience, we
define R as an n × n diagonal matrix whose ith diagonal element is ri. In addition, let I
be the n× n identity matrix. Note that R= I corresponds to equal discounting.

Given this limit, except for Section 7.1, we use FR(ε) and ER(ε) to represent F(δ)
and E(δ) with δi = 1/(1 + riε) for all i, respectively, and we consider limε→0 F

R(ε)

and limε→0 E
R(ε). In Section 7.1, we will extend our results to a more general limit:

(1 − δi)/(1 − δn)→ ri and δi → 1 for all i.

3. Folk theorem

In this section, we state the folk theorem. To this end, it is useful to define the pairwise
full rank condition and individual full rank condition.

Assumption 1 (Pairwise full rank). For each i� j ∈ {1� � � � � n} with i �= j and each pure
action profile a ∈ A, we have

rank

([
Ri(a)

Rj(a)

])
= |Ai| + |Aj| − 1�

where Ri(a) is an |Ai| × |Y | matrix with elements [Ri(a)]aiy = ρ(y | ai�a−i).

Assumption 2 (Individual full rank). For all i, there exists an action minmaxing i, de-
noted by αi, such that, for all j �= i, we have rank(Rj(α

i)) = |Aj|.

In addition, we also assume that the set of feasible and individually rational payoffs
of the stage game has full dimension:

Assumption 3 (Stage-game full dimensionality). The set of feasible and individually ra-
tional payoffs of the stage game has full dimension:

dim
(
co(g(A))∩ IR

) = n�

With the two rank conditions and the stage-game full dimensionality condition, the
folk theorem holds:

Theorem 1 (Folk theorem). If Assumptions 1, 2, and 3 are satisfied, then

lim
ε→0

ER(ε) = lim
ε→0

FR(ε)�
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The proof follows from Theorem 2, Lemma 3, Lemma 4, and Lemma 5.
See Section 7.2 for the discussion about the existence of limε→0 E

R(ε) and
limε→0 F

R(ε).
Note that the conditions we need for the folk theorem with imperfect public mon-

itoring and unequal discounting are exactly the same as those FLM need for the folk
theorem with imperfect public monitoring and equal discounting. Let us comment on
each of these three conditions.

First, the pairwise full rank condition guarantees that public signals statistically in-
dicate, between player i and j, which player is more likely to have deviated from the pre-
scribed action a. As FLM note, by transferring the continuation payoff from the player
who is more likely to be guilty to the other player, we can incentivize players to take
a without efficiency loss. This logic is valid with unequal discounting. Note that the
pairwise full rank condition is imposed only on pure-action profiles.

Second, the individual full rank implies that when players −i minmax player i, pub-
lic signals can statistically indicate whether or not player j �= i has deviated from the
prescribed action αi. This is sufficient to incentivize player j to punish player i, as
in FLM. Again, this logic is valid with unequal discounting. Since the individual full
rank is imposed for the specific mixture (minmaxing), Assumption 1 does not imply
Assumption 2.

Third, it is common to assume the stage-game full dimensionality condition in the
literature with equal discounting: Fudenberg and Maskin (1986) is the first paper to in-
troduce the assumption with perfect monitoring.3 With imperfect public monitoring,
FLM assume the condition.

The basic intuition of the necessity of the stage-game full dimensionality condition
for the folk theorem with equal discounting is as follows:4 If the stage-game full dimen-
sionality condition is violated, then it implies that more than one players share the same
preference. To give incentives to punish a player, we must give “carrots” for the other
players after the punishment phase. However, if the punished player shares the same
preference with one of the punishers, the punished player also gets carrots, which re-
duces the severity of the punishment.

With perfect monitoring, increasingly general results have been obtained in the lit-
erature with unequal discounting and without stage-game full dimensionality. As Chen
(2008) points out, with unequal discounting, even if the static preferences are the same,
the intertemporal preferences are different. Therefore, it might be possible to attain the
folk theorem without the stage-game full dimensionality. Guéron et al. (2011) show
the folk theorem for the specific example in Fudenberg and Maskin (1986) without the
stage-game full dimensionality. Chen and Takahashi (2012) obtain a general folk theo-
rem without stage-game full dimensionality.

However, all of these papers assume that monitoring is perfect. With imperfect pub-
lic monitoring, it is an open question if the folk theorem holds without Assumption 3.

3Abreu et al. (1994) relax the assumption and Wen (1994) characterizes the equilibrium payoff set when
the full dimensionality condition is violated.

4Precisely, the following explanation is based more on the Non-Equivalent Utility (NEU) condition of
Abreu et al. (1994) than the full dimensionality.
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The road map of proving the folk theorem is as follows. First, in Section 4, we derive
the recursive characterization of E(δ), which is valid for each δ without any assumption.

Second, in Section 5, using this recursive characterization, we derive a simpler char-
acterization of limε→0 E

R(ε), which is valid with Assumption 4 but without Assump-
tions 1 and 2. (We will define Assumption 4 in Section 5.)

Third, in Section 6, we derive the characterization of an upper bound of
limε→0 F

R(ε).
Finally, we prove that, with Assumptions 1 and 2, the characterization for

limε→0 E
R(ε) and that for the upper bound for limε→0 F

R(ε) coincide, and that As-
sumptions 1, 2, and 3 imply Assumption 4. Therefore, the folk theorem holds with
Assumptions 1, 2, and 3.

4. Recursive characterization

In this section, we recursively characterize the set of PPE payoff profiles, E(δ), as Abreu
et al. (1990) (henceforth APS). Since the PPE preserves the recursive structure with un-
equal discounting, APS is readily extended.

We start with the following two definitions.

Definition 2 (Enforceability). For v ∈ Rn, α ∈ A, and {w(y)}y∈Y , the continuation pay-
off {w(y)}y∈Y enforces 〈v�α〉 if the following two conditions are satisfied:

1. For all i and ai ∈Ai such that αi(ai) > 0, we have

vi = (1 − δi)gi(α)+ δiE[wi(y) | α] = (1 − δi)gi(ai�α−i)+ δiE[wi(y) | ai�α−i]�

2. For all i and ai ∈Ai such that αi(ai) = 0, we have

vi = (1 − δi)gi(α)+ δiE[wi(y) | α] ≥ (1 − δi)gi(ai�α−i)+ δiE[wi(y) | ai�α−i]�

Definition 3 (Decomposability). A vector v ∈ Rn is decomposable on W ⊂ Rn if there
exist α ∈A and {w(y)}y∈Y with w(y) ∈W for all y such that {w(y)}y∈Y enforces 〈v�α〉. Let
B(W �δ) be the set of all decomposable payoff profiles on W ⊂Rn.

In words, v is decomposable on W if there exist a mixed action α and a continuation
payoff w(y) ∈W for each y ∈ Y such that the expected total payoff is equal to v.

Definition 4 (Self-generation). A set of payoffs W ⊂ Rn is self-generating if W ⊂
B(W �δ).

Proposition 1. The set E(δ) is the largest self-generating set included in F and E(δ) is
compact.

The proof is exactly the same as APS and so is omitted.
Since we consider δ with δi = 1/(1+riε) for all i when we take the limit, let B(W �R�ε)

denote B(W �δ) with δi = 1/(1 + riε) for all i.
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5. Characterization of limε→0 E
R(ε)

5.1 Definition of the set QR

In this section, based on the recursive characterization of PPE payoffs, we character-
ize the limit set of PPE payoffs: limε→0 E

R(ε). To this end, we recursively define the
set QR ⊂ Rn, which will turn out to contain limε→0 E

R(ε) and is equal to this set with
Assumption 4 (to be defined).

The set QR is defined to be the largest fixed point of a mapping B(·�R) ⊂ F . We first
define the mapping B(·�R) from subsets of Rn to itself and then prove the existence of
the largest fixed point in F .

To define B(·�R), it is useful to consider the set of Pareto weights, denoted by 
 ≡
{λ ∈ Rn :‖λ‖ = 1}. Throughout the paper, we use the Euclidean norm. Given W ⊂Rn, the
result of the mapping B(W �R) is defined to be

B(W �R) ≡
⋂
λ∈


H(λ�W �R)�

Here, given λ, W , and R, we define a set H(λ�W �R) ⊂ Rn as the half-plane

H(λ�W �R) ≡ {v ∈R :λ · v ≤ k(λ�W �R)}� (1)

where we define a score k(λ�W �R) ∈R as follows.
Given W , the score k(λ�W �R) is defined as the solution for the problem

k(λ�W �R) ≡ sup
v∈W�α∈A�{w(y)}y∈Y

λ · v

subject to the following two constraints:

1. The incentive compatibility is satisfied for two subcases:

(a) For all i and ai ∈ Ai such that αi(ai) > 0, we have vi = (1 − δi)gi(ai�α−i) +
δiE[wi(y) | ai�α−i].

(b) For all i and ai ∈ Ai such that αi(ai) = 0, we have vi ≥ (1 − δi)gi(ai�α−i) +
δiE[wi(y) | ai�α−i].

2. The continuation payoff w(y) is lower than the equilibrium payoff v with respect to
the Pareto weight λ after each realization of y: 0 ≥ λ · (w(y)− v) for all y ∈ Y .

Note that the value v is restricted to v ∈W .
Equivalently, with xi(y) ≡ (δi/(1 − δi))(wi(y)− vi), the score k(λ�W �R) is the supre-

mum of λ · v with

v ∈W (2)

such that there exist α ∈A and {x(y)}y∈Y such that the following statements hold:

1. The incentive compatibility is satisfied for two subcases:
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(a) For all i and ai ∈Ai such that αi(ai) > 0, we have

vi = gi(ai�α−i)+E[xi(y) | ai�α−i]� (3)

(b) For all i and ai ∈Ai such that αi(ai)= 0, we have

vi ≥ gi(ai�α−i)+E[xi(y) | ai�α−i]� (4)

2. The set x(y) is lower than 0 with respect to the relative-patience-adjusted Pareto
weight Rλ after each realization of y:

0 ≥Rλ · x(y) for all y ∈ Y� (5)

Since we have defined k(λ�W �R), by (1), we are done with defining the mapping
B(·�R).

Let us now prove the existence of QR, the largest fixed point of B(·�R) in F . Since
B(·�R) is weakly decreasing by (2), W ⊂ F ⇒ B(W �R) ⊂ F . Hence, by Tarski’s fixed point
theorem, there exists the largest fixed point QR.

Moreover, B(W �R) is convex and compact for each W and R. Hence, QR is convex
and compact.

5.2 Full dimensionality for equal discounting

Note that QI (QR with R = I) is the limit equilibrium payoff set for equal discount-
ing. It will turn out to be the case that a sufficient condition for our characterization
of limε→0 E

R(ε) is that QI has full dimension.

Assumption 4 (Full dimensionality for equal discounting). The characterized set for
equal discounting has full dimension: dim(QI)= n.

Although, in general, QR is defined as the fixed point for the mapping B(·�R), with
equal discounting R = I, we can show that the characterization can be simplified. This
simplification is useful when we verify Assumption 4.

For R = I, define the score k(λ) as the solution for the linear programming intro-
duced by FL,

k(λ) ≡ sup
v∈Rn�α∈A�{x(y)}y∈Y

λ · v� (6)

subject to the following two constraints:

1. The incentive compatibility constraints (3) and (4) are satisfied.

2. Equation (5) is satisfied (with R= I):

0 ≥ λ · x(y) for all y ∈ Y� (7)
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Compared to k(λ�W �R), we omit the condition v ∈W . As in (1), we define

H(λ)≡ {v ∈ R :λ · v ≤ k(λ)}�

We can show that

QI =
⋂
λ∈


H(λ)�

Lemma 1. With equal discounting, we have QI = ⋂
λ∈
H(λ).

Proof. Note that the definitions of k(λ�W �I) and k(λ) are the same except that we
omit v ∈ W in k(λ). Hence, QI ⊂ ⋂

λ∈
H(λ). Alternatively, FL shows that in the lin-
ear programming to define k(λ), we can make sure that the solution v satisfies v ∈⋂

λ∈
H(λ). Hence,
⋂

λ∈
H(λ) is the fixed point for B(·� I) and so QI ⊃ ⋂
λ∈
H(λ). �

Two remarks are in order. First, k(λ�W �R) is the supremum of λ · v such that
v ∈ H(Rλ) ∩ W . To see this, note that for each W and R, the incentive compatibility
constraints (3) and (4) are the same between k(λ�W �R) and k(λ). In addition, (5) is
the same if we replace λ with Rλ in (7). Further, v ∈ W is the additional constraint in
k(λ�W �R). Hence, the constraint for k(λ�W �R) is equivalent to

v ∈H(Rλ)∩W � (8)

Second, one may wonder if we can get a characterization without a fixed point in-
volved for a general R. Note that Lemma 1 ensures that QI = ⋂

λ∈
H(λ), and
⋂

λ∈
H(λ)

is calculated without a fixed point argument. Alternatively, QR is defined to be the
largest fixed point of B(·�R) for a general relative patience R.

One possibility is to modify the calculation of k(λ) for a general R. We show that this
approach does not work because of the possibility of the intertemporal trade with un-
equal discounting. Let k(λ�R) ≡ supv∈Rn�α∈A�{w(y)}y∈Y λ · v subject to the following con-
straints.

1. The incentive compatibility is satisfied: For all i and ai ∈Ai, we have

vi ≥ (1 − δi)gi(ai�α−i)+ δiE[wi(y) | ai�α−i]�

with equality for ai with αi(ai) > 0,

2. The continuation payoff w(y) is lower than the equilibrium payoff v with respect to
the Pareto weight λ after each realization of y: 0 ≥ λ · (w(y)− v) for all y ∈ Y .

Here, we use w(y) instead of using x(y) with xi(y) ≡ (δi/(1 − δi))(wi(y)− vi).
However, this algorithm always gives us k(λ�R)= ∞ if λ is not parallel to Rλ. To clar-

ify the problem, let us consider the two-player case with λ = (1/
√

2�1/
√

2) and r1 > r2 = 1
(i.e., δ1 < δ2). Suppose we have a bounded solution with (α∗� v∗� {w∗(y)}y∈Y ). Then
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α = α∗, w1(y) = w∗
1(y) − K, and w2(y) = w∗

2(y) + K for all y satisfy all the conditions.
The effect on λ · v is

1√
2
(δ2 − δ1)K > 0�

Hence, we can increase k(λ�R) without bounds. The key observation is that since
player 1 is less patient than player 2, the total effect of subtracting K from the continua-
tion payoff of player 1 and giving it to player 2 is strictly positive.

Of course, the true condition is w(y) ∈ ER(ε) for all y ∈ Y . To maximize
( 1√

2
� 1√

2
) · v, we should use w(y) + (−K�K) instead of w(y) if we can find K > 0 with

w(y) + (−K�K) ∈ ER(ε). The existence of such K, which is called the gain from the in-
tertemporal trade by LP, depends not only on the hyperplane tangential to ER(ε) with
the normal vector λ, but also on the global shape of the limit of ER(ε). This is why we
need the recursive characterization with the constraint (2).

5.3 Characterization of limε→0 E
R(ε)

Given the above definition of QR and QI , we have the following main result.

Theorem 2. (i) For all ε > 0 and R, we have ER(ε) ⊂ QR.

(ii) If Assumption 4 is satisfied, then for each R, we have limε→0 E
R(ε)= QR.

The proof follows from Propositions 2 and 3.
Let us compare our result with the equal-discounting counterpart by FL. Fudenberg

and Levine show that, with equal discounting, that is, with R = I, we have the following
cases:

1. For all ε > 0, we have EI(ε) ⊂QI .

2. If Assumption 4 is satisfied, then we have limε→0 E
I(ε) =QI .

Hence, we show that the result in FL can be extended to unequal discounting.
A sufficient condition for the characterization of this paper and that of FL is that

QI has full dimension. Fudenberg et al. (2007) characterize the equilibrium payoff set
when QI does not have full dimension. See Section 7 for the discussion about a possible
extension of our results à la Fudenberg et al. (2007).

From now on, we provide the sketch of the proof of Theorem 2. First, we explain
ER(ε)⊂ QR for each ε > 0. Second, we derive QR ⊂ limε→0 E

R(ε) with Assumption 4.

5.3.1 Proof of ER(ε) ⊂ QR Since QR is defined as the largest fixed point of B(·�R) in-
cluded in F , it suffices to show that ER(ε) ⊂ B(ER(ε)�R). For each Pareto weight λ, take
the equilibrium payoff v that maximizes λ · v′ among equilibrium payoffs. Since v is
the equilibrium payoff, there should exist α and {w(y)}y∈Y such that {w(y)}y∈Y enforces
〈v�α〉 and that self-generation is satisfied: w(y) ∈ ER(ε) for all y ∈ Y . Since v maximizes
λ · v′, we have λ ·w(y) ≤ λ · v. In addition, by definition, we have v ∈ ER(ε). The triple v,
α, and {w(y)}y∈Y satisfies all the conditions for the problem to define k(λ�R�W ) with
W =ER(ε). Hence, we have ER(ε) ⊂ B(ER(ε)�R).
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Proposition 2. For all ε > 0 and R, we have ER(ε) ⊂QR.

See Appendix A.1 for the proof.

5.3.2 Proof of QR ⊂ limε→0 E
R(ε) The proof of the other direction of Theorem 2 is more

involved.

Proposition 3. If Assumption 4 is satisfied, then we have limε→0 E
I(ε) ⊃ QI .

See Appendix A.3 for the proof.
We will sketch the proof of QR ⊂ limε→0 E(δ), highlighting what are elements of the

proof unique to unequal discounting compared to FL (equal discounting).
Given QR, we take a smooth and convex set E ⊂ int(QR) and o ∈ int(E), and let

E(t) ≡ {v ∈Rn :∃v′ ∈E such that v = (1− t)v′ + to} be the radial contraction of E by t with
respect to o. We want to show that E(t) ⊂ B(E(t)�R�ε) for all t ∈ (0�1] for sufficiently
small ε.

Fix λ ∈ 
 and v(t) ∈ arg maxv′∈E(t) λ · v′ arbitrarily. By definition of H(λ�W �R), there
exist v ∈QR, α ∈ A, and {x(y)}y∈Y such that λ · v ≥ maxv′∈E λ · v′, and that (3), (4), and (5)
are satisfied.

Defining x(y)(t)= x(y)+ v(t)− v, we have two scenarios:

1. Incentive compatibility. For all i and ai ∈Ai,

vi(t) ≥ gi(ai�α−i)+E[xi(y)(t) | ai�α−i]� (9)

with equality for ai with αi(ai) > 0,

2. Self-generation with the hyperplane. We have Rλ · (v(t) − v) ≥ Rλ · x(y)(t) for all
y ∈ Y .

Suppose that we have ē(t) > 0 such that

−ē(t) ≥Rλ · x(y)(t) for all y ∈ Y� (10)

Then we can show that E(t) ⊂ B(E(t)�R�ε) for sufficiently small ε as follows.
Defining

wi(y)(t) = vi(t)+ 1 − δi
δi

xi(y)(t)�

we have two scenarios:

1. Incentive compatibility. For all i and ai ∈Ai,

vi(t) ≥ (1 − δi)gi(ai�α−i)+ δiE[wi(y)(t) | ai�α−i]�

with equality for ai with αi(ai) > 0,
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2. Self-generation with the hyperplane with a slack. By (10), we have

λ · v(t) ≥ λ ·w(y)(t)−Rλ · x(y)(t)
≥ λ ·w(y)(t)+ εē(t) for all y ∈ Y�

Heuristically speaking, since v(t) ∈ arg maxv′∈E(t) λ · v′, and we have εē(t) slack be-
tween v(t) and w(y)(t), we can show that w(y)(t) ∈ E(t) for sufficiently small ε. That is,
we have proven E(t) ⊂ B(E(t)�R�ε). This part of the proof is the same as FL.

Hence, the proof goes through as FL once we have established (10). The key differ-
ence between equal discounting and unequal discounting arises in the proof of (10).

If R were I (equal discounting), then (10) is implied by the fact that E(t) is the radial
contraction of E and v ∈ arg maxv′∈E λ ·v′. However, since R �= I, the fact that v maximizes
λ · v on E does not guarantee that v(t) is below v with respect to Rλ.

Therefore, to guarantee (10), we need to show the following lemma.

Lemma 2. If Assumption 4 is satisfied, then there exist o ∈ int(QR) and ē > 0 such that,
for any compact set E ⊂ int(QR) and η > 0, there exists a compact and convex E′ such
that the following statements hold:

1. The set E is in the interior of E′: E ⊂ int(E′).

2. For each λ ∈ 
, v ∈ arg maxv′∈E′ λ · v′, and vR ∈ arg maxv′∈QR λ · v′, we have

Rλ · (v − vR) < η� (11)

3. For each λ and v ∈ maxv′∈E′ λ · v′,

Rλ · (v − o) > ē� (12)

See Appendix A.2 for the proof in the Appendix.
We first explain why this lemma implies (10) and then offer the intuition of the proof

of this lemma.
To see why this lemma is sufficient for (10), consider the radial contraction of E′ with

respect to o: E′(t) ≡ {v :∃v′ ∈E′ such that v = (1− t)v′ + to}. To show QR ⊂ limε→0 E
R(ε),

it suffices to show that E′(t) ⊂ B(E′(t)�R�ε) for t = 2η/ē since η can be arbitrarily small.
Take λ ∈ 
 and v(t) ∈ arg maxv′∈E′(t) λ ·v′ arbitrarily. By definition of E′(t), there exists

v ∈ arg maxv′∈E′ λ · v′ such that v(t) = (1 − t)v + to. That is, v is the “original” point that
is “contracted” to v(t). Alternatively, we know that there exist vR ∈ arg maxv′∈QR λ · v′,
α ∈ A and {x(y)}y∈Y with (3), (4), and (5). Defining x(y)(t) = x(y) + v(t) − vR, we have
the incentive compatibility (9) and

Rλ · (v(t)− vR)≥Rλ · x(y)(t) for all y ∈ Y�

By (11) and (12), together with t ≥ 2η/ē, the last condition implies

Rλ · (v(t)− vR) =Rλ · (v(t)− v + v − vR) ≤ −tē+η≤ −η� (13)
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Therefore,

−η≥Rλ · x(y)(t) for all y ∈ Y�

Since this is equivalent to (10), we are done.
In short, due to unequal discounting, it is more difficult to relate the operation of the

equilibrium payoff to that of the continuation payoff. Nonetheless, Lemma 2 shows that
Assumption 4 is sufficient for Theorem 2.

Now, we intuitively explain how to prove Lemma 2.
Consider (11) first. Here, we concentrate on a two-player case for simplicity. For

each λ, if there is a unique maximizer v = arg maxv′∈QR λ · v′, then QR ⊂ B(QR�R) implies
that (11) is satisfied for E′ = QR. Hence, we are left to consider the case where there is
a facet C on QR with some normal vector λ: C = {v ∈ arg maxv′∈QR λ · v′}. For simplicity,
assume that there is a unique maximizer for all λ′ �= λ. We define two important objects:

1. Let v∗ = arg minv′∈C Rλ · v′. That is, on the facet with the normal vector λ, the value
v∗ is the “lowest” point with respect to Rλ. Note that v∗ satisfies

Rλ · (v∗ − vR)≤ 0 (14)

for each vR ∈ arg maxv′∈QR λ · v′.

2. Consider the hyperplane passing v∗ with the normal vector λ+ eRλ, where e > 0 is
a sufficiently small number. Let E′ ≡ QR ∩ {v′ ∈ Rn : (λ + eRλ) · v′ ≤ (λ + eRλ) · v∗}
be the set of payoffs in QR that are “below” v∗ with respect to λ+ eRλ. Note that E′
has only one facet C ′ with the normal vector λ+ eRλ.

Then we have the following three important properties (see Figure 1 for the
illustration):

1. Since v∗ is a unique maximizer for maxv′∈E′ λ · v′, (11) for λ follows from (14).

2. If e is sufficiently small, for λ + eRλ, almost all the points on C ′ are below v∗∗ ≡
arg maxv′∈QR(λ+ eRλ) · v′ with respect to R(λ+ eRλ).

3. For λ′ �= λ, λ+ eRλ, we have one of the following two cases since arg maxv′∈QR λ′ · v′
and arg maxv′∈E′ λ′ · v′ are singletons: (i) Two vectors arg maxv′∈E′ λ′ · v′ and
arg maxv′∈QR λ′ · v′ are close to each other for small e or (ii) we have v∗ =
arg maxv′∈E′ λ′ · v′ and this maximizer v∗ is below arg maxv′∈QR λ′ · v′ with respect
to Rλ′.

Therefore, for sufficiently small e, for each λ′, v ∈ arg maxv′∈E′ λ′ · v′ and vR ∈
arg maxv′∈QR λ′ · v′, we have shown that Rλ′ · (v − vR) is sufficiently small, as desired.

Second, let us consider (12). Equation (12) is used to show (13): When we take the
radial contraction of E′ with respect to o, the payoff v is pushed down to v(t). Since λ is
the normal vector of E′ at v, we have λ · v(t) < λ · v. However, unless R= I, this does not
imply Rλ · v(t) < Rλ · v. The question is whether we can guarantee Rλ · v(t) < Rλ · v by
taking o properly.
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Figure 1. Hyperplanes and maximizers. The thick solid line is C, the facet of QR with the nor-
mal vector λ. The dotted line is C ′, the facet of E′ with the normal vector λ+ eRλ.

On the one hand, the larger the unequality in discounting is (that is, the larger the
difference between I and R), the larger the difference between λ and Rλ. Therefore, the
requirement for o is tightened as R becomes farther away from I. On the other hand,
the larger is the unequality in discounting, the larger is the room for the intertemporal
trade. Therefore, the equilibrium payoff set is expanded and there is more freedom to
pick o.

Equation (12) of Lemma 2 implies that these two effects cancel each other out, and
as long as dim(QI) = n (that is, as long as we can take such o with equal discounting), we
can take such o with unequal discounting.

6. Proof of the folk theorem

Now that we have proven that given Assumption 4, we have QR = limε→0 E
R(ε), to prove

the folk theorem, we are left to prove the following two claims:
First, with Assumptions 1 and 2, we have limε→0 F

R(ε) ⊂ QR.
Second, with Assumptions 1 and 2, Assumption 3 implies Assumption 4.
We proceed in the following two steps. The first step is to characterize limε→0 F

R(ε)

and prove that with Assumptions 1 and 2, the characterization of limε→0 F
R(ε) is equal

to QR.
Second, we prove that Assumptions 1, 2, and 3 imply Assumption 4.

6.1 Characterization of limε→0 F
R(ε)

With unequal discounting, as ε converges to zero, the room for the intertemporal trade
increases and so FR(ε) gets larger. Hence, we need to characterize an upper bound of
limε→0 F

R(ε). As we first recursively characterize E(δ) for a given δ and then character-
ize limε→0 E

R(ε), we first characterize F(δ) for a given δ and then characterize the upper
bound of limε→0 F

R(ε).
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6.1.1 Recursive characterization of the SIR payoffs First, we give a recursive character-
ization of F(δ). As LP point out, since F(δ) depends on discount factors with unequal
discounting, this characterization is different from the set of feasible and individually
rational payoffs in the stage game.

The following two notions are useful.

Definition 5 (SIR decomposability). A payoff vector v ∈ IR is sequentially individually
rationally (SIR) decomposable on W ⊂ Rn if there exist μ ∈ �(A) and w ∈ W ∩ IR such
that vi = (1 − δi)gi(μ) + δiwi for all i. Let BF(W �δ) be the set of all SIR decomposable
payoffs on W ⊂Rn, that is,

BF(W �δ) = {v ∈ IR :∃μ ∈ �(A) and w ∈W ∩ IR such that vi = (1 − δi)gi(μ)+ δiwi}�

Definition 6 (SIR self-generating). A set of payoffs W ⊂ Rn is SIR self-generating if W ⊂
BF(W �δ).

In words, v is SIR-decomposable on W if there exist a correlated action μ and a con-
tinuation payoff w ∈ W ∩ IR such that the total payoff is equal to v. Note that we allow
players to take a correlated action and require continuation payoffs to be in IR, which
guarantees that F(δ) is the largest SIR self-generating set in F .

Proposition 4. The set of SIR payoffs F(δ) is the largest SIR self-generating set included
in F , and F(δ) is compact and convex.

The proof is a straightforward application of APS without incentive compatibility
and so is omitted. The convexity holds from the fact that we allow the correlation μ and
do not consider the incentive compatibility.

Since we consider δ with δi = 1/(1 + riε) for all i, let BF(W �R�ε) denote BF(W �δ)

with δi = 1/(1 + riε) for all i.

6.1.2 Characterization of limε→0 F
R(ε) The characterization of limε→0 F

R(ε) is similar
to that of limε→0 E

R(ε) except that we do not impose the incentive compatibility: Given
a compact W and λ, we calculate

kF(λ�W �R) = sup
v∈IR�μ∈�(A)

λ · v

subject to the following three constraints: (i) vi = (1 − δi)gi(μ) + δiwi for all i, (ii) 0 ≥
λ · (w− v), and (iii) v ∈W . By defining xi ≡ (δi/(1 − δi))(wi − vi) for all i, the constraints
are equivalent to the following statements: There exists x ∈Rn such that (i) vi = gi(μ)+xi
for all i, (ii) 0 ≥ Rλ · x, and (iii) v ∈ W .

Define

HF(λ�W �R) ≡ {v :λ · v ≤ k(λ�W �R)}
BF(W �R) ≡

⋂
λ

HF(λ�W �R)�
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Since BF(·�R) is weakly decreasing, we have W ⊂ F ⇒ BF(W �R) ⊂ F . In addition,
BF(W �R) is convex, compact, and monotone. Therefore, there exists a largest fixed
point of BF(·�R) ⊂ F , and any fixed point is convex and compact. Let FR be the largest
fixed point of BF(·�R) ⊂ F .

As Proposition 2, we can show that limε→0 F
R(ε) ⊂ FR.

Lemma 3. For each R, we have limε→0 F
R(ε)⊂ FR.

The proof is the same as Proposition 2 and so is omitted.
Given this characterization, to prove limε→0 F

R(ε) ⊂ QR, we are left to show that for
each W ⊂ F , we have kF(λ�W �R) ≤ k(λ�W �R). That is, if we start from the same set W ,
the algorithm for PPE payoffs results in a set no smaller than that for SIR.

Lemma 4. If Assumptions 1 and 2 are satisfied, then limε→0 F
R(ε) ⊂QR.

Proof. Given Lemma 3, it suffices to show that for each W ⊂ F , we have kF(λ�W �R) ≤
k(λ�W �R). The algorithm to calculate kF(λ�W �R) is relaxed compared to k(λ�W �R) in
the following two ways.

First, the action profile μ ∈ �(A) can use a correlated mixture among players in
kF(λ�W �R) while the action profile α ∈ A should use an independent mixture. How-
ever, for feasible payoffs, we can take μ ∈A, and for minimax payoffs, we can take α ∈A.
Hence, without loss, we can assume that α ∈ A in kF(λ�W �R). Hence, this difference
does not decrease k(λ�W �R).

Second, we do not have the incentive compatibility constraint in kF(λ�W �R). As
FLM, we can show that imposing the incentive compatibility on k(λ�W �R) does not
reduce k(λ�W �R) with Assumptions 1 and 2.

We classify λ ∈ 
 into two categories: coordinate directions and noncoordinate di-
rections. We say that λ is a coordinate direction if there exists i ∈ {1� � � � � n} such that
λ = ±ei. Here, ei is the vector such that the ith element of ei is 1 and all the other ele-
ments are 0. If λ is not a coordinate direction, then λ is a noncoordinate direction.

If λ = −ei, by Claim 2 of Proposition 9.2.1 of Mailath and Samuelson (2006),5
 As-

sumption 2 implies kF(λ�W �R) = k(λ�W �R).
If λ = ei, by Proposition 9.2.1 of Mailath and Samuelson (2006), Assumption 1 im-

plies kF(λ�W �R) = k(λ�W �R).
If λ is a noncoordinate direction, by Claim 4 of Lemma 8.1.1 and Lemma 9.2.2 of

Mailath and Samuelson (2006), Assumption 1 implies kF(λ�W �R) = k(λ�W �R). �

6.2 Relationship between Assumptions 3 and 4

In the previous subsection, we have proven that limε→0 F
R(ε) ⊂ FR ⊂ QR. To prove that

limε→0 E
R(ε) = limε→0 F

R(ε), given Theorem 2, we are left to prove that Assumptions 1,
2, and 3 imply Assumption 4.

5The lemmas and propositions we quote from Mailath and Samuelson (2006) are all based on FLM.
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Lemma 5. Assumptions 1, 2, and 3 imply Assumption 4.

Proof. Given Lemma 3, given Assumptions 1 and 2, with R = I, we have
limε→0 F

I(ε) ⊂ QI . With equal discounting, we have limε→0 F
I(ε) = co(g(A)) ∩ IR.

Hence, co(g(A))∩ IR ⊂ QI . Therefore, Assumption 3 implies Assumption 4. �

7. Extension and discussion

7.1 A path of convergence

One interpretation of the limit of δi → 1 is that δ is fixed and the interval between two
consecutive repetitions of the stage game goes to 0.6 As LP point out, this approach
is equivalent to taking a path of discount factors that converge to 1 while keeping the
patience ratio ri = logδi/ logδn for all i fixed. While we take a particular convergence
sequence such that δi = 1/(1 + riε) for all i with ε converging to 0 in the previous
sections, we can extend the results for any convergence sequence {δm}∞m=1 that satis-
fies limm→∞ δmi = 1 and limm→∞(1 − δmi )/(1 − δmn ) = ri for all i. Since logδi/ logδn ≈
(1 − δi)/(1 − δn) in the limit, the sequence in LP is a special case of our generalized
convergence sequence.

Theorem 3. If Assumption 4 is satisfied, then for all {δm}∞m=1 with limm→∞ δmi = 1 and
limm→∞(1 − δmi )/(1 − δmn ) = ri for all i, we have limm→∞ E(δm)= QR.

See Appendix A.4 for the proof.
As a corollary, we can extend Theorem 1.

Theorem 4 (Folk theorem). If Assumptions 1, 2, and 3 are satisfied, then for all {δm}∞m=1
with limm→∞ δmi = 1 and limm→∞(1−δmi )/(1−δmn ) = ri for all i, we have limm→∞ E(δm) =
limm→∞ F(δm) = FR.

The proof is the same as Theorem 1 with Theorem 2 replaced with Theorem 3.

7.2 Existence of limε→0 F
R(ε) and limε→0 E

R(ε)

Since FR(ε) is convex by Proposition 4, Proposition 7.3.4 of Mailath and Samuelson
(2006) ensures that FR(ε) is monotone. Hence, limε→0 F

R(ε) always exists.
Let us now discuss the existence of limε→0 E

R(ε). Since limε→0 F
R(ε) exists, by The-

orem 1, if Assumptions 1, 2, and 3 are satisfied, then limε→0 E
R(ε) exists. In addition,

by Theorem 2, if Assumptions 1, 2, and 4 are satisfied, then limε→0 E
R(ε) exists. Fur-

ther, if public randomization devices are available, then ER(ε) is convex.7 Then Propo-
sition 7.3.4 of Mailath and Samuelson (2006) ensures that ER(ε) is monotone. Hence,

6With imperfect monitoring, we need to keep the informativeness of signals per stage. See Abreu et al.
(1991).

7Note that the folk theorem (Theorem 1) and the characterization (Theorem 2) are valid whether or not
public randomization devices are available.
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limε→0 E
R(ε) exists. However, without a public randomization device, ER(ε) is not

necessarily monotonic with respect to ε8 and the existence of limε→0 E
R(ε) is an open

question.

7.3 Full dimensionality

In this paper, we offer the limit characterizations of the PPE and SIR payoffs, respectively,
with unequal discounting. In addition, we show that the pairwise and individual full
rank conditions are sufficient for the folk theorem.

One remaining question is how to characterize the set of PPE payoffs when the full
dimensionality condition (Assumption 4) is not satisfied (or to prove the folk theorem
when Assumption 3 is not satisfied.) Fudenberg et al. (2007) answer this question with
equal discounting.

To review Fudenberg et al. (2007), suppose that we know that PPE payoffs and con-
tinuation payoffs are in a subspace of Rn denoted by X . Remember that, with equal
discounting, the characterization (6) is as follows:

1. Incentive compatibility. For all i and ai ∈ Ai, we have vi ≥ gi(ai�α−i) +
E[xi(y) | ai�α−i] with equality for ai with αi(ai) > 0.

2. Self-generation with the hyperplane. We have 0 ≥ λ · x(y) for all y ∈ Y .

If dim(QI) = n, then we are done. Otherwise, QI ⊂ X1, where X1 is a linear subspace
of Rn. By Proposition 2, we have limε→0 E

I(ε) ⊂ X1 (note that Proposition 2 does not
require Assumption 4). Since the PPE payoffs are recursive, the continuation payoff w(y)

should also be in X1. From the definition of x(y) = (δ/(1 − δ))(w(y) − v), we conclude
that we should have x(y) ∈X1.

Hence, we can proceed inductively. Calculate the FL problem with the additional
constraint such that x(y) ∈ X1 for all y ∈ Y , and derive the characterized set QI(X1).
Since v ∈X1 in the initial problem, v ∈X1 in the problem with the additional constraint.
If dim(QI(X1)) = dim(X1), then by applying the proof of FL to the subspace X1, we can
show that QI(X1) = limε→0 E

I(ε) and we are done. Otherwise, QI ⊂ X2, where X2 is a
linear subspace of Rn. Repeat the algorithm with X1 replaced with X2. Keep iterating
until we get dim(QI(Xk)) = dim(Xk). Since we initially have n dimensions, the iteration
continues at most for n times.

Alternatively, with unequal discounting, even if dim(QI) < n, it is possible to have
dim(QR) = n because of the intertemporal trade. For example, Chen and Takahashi
(2012) have an example such that even if the dimension of co(g(A)) ∩ IR is less than n

(and so dim(QI) ≤ dim(co(g(A))∩ IR) < n), the dimension of QR is equal to n.
When dim(QI) < n and dim(QR) = n, we do not know whether we have QR =

limε→0 E
R(ε). The reason is that it is hard to verify QR ⊂ limε→0 E

R(ε) since the proof
of Lemma 2, which we use in the proof of Proposition 3, relies on dim(QI) = n. Alterna-
tively, it is hard to extend Fudenberg et al. (2007) to prove that limε→0 E

R(ε)�QR, since
dim(QR) = n does not provide an immediate constraint on the dimensionality of x(y).
We leave this question for the future research.

8See the discussion on page 247 of Mailath and Samuelson (2006).
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Appendix

A.1 Proof of Proposition 2

Take λ ∈ 
 arbitrarily. Since ER(ε) is compact, there exists v ∈ arg maxv′∈E(ε) λ · v′. Fix
such v. Since ER(ε) is the fixed point of B(·�R�ε), there exist α ∈ A and {w(y)}y∈Y such
that {w(y)}y∈Y enforces 〈v�α〉 and that w(y) ∈ ER(ε) for all y ∈ Y . Hence, we have the
following characterizatioins:

1. Incentive compatibility. For all i and ai ∈ Ai, we have vi = (1 − δi)gi(ai�α−i) +
δiE[wi(y) | ai�α−i], with equality for ai with αi(ai) > 0.

2. Self-generation. We have w(y) ∈ ER(ε) for all y ∈ Y . Since v ∈ arg maxv′∈ER(ε) λ · v′,
this implies 0 ≥ λ · (w(y)− v) for all y ∈ Y .

Therefore, defining x(y) = (δn/(1 − δn))R
−1(w(y) − v) for all y ∈ Y , such v, α,

and {x(y)}y∈Y satisfy (3), (4), (5), and (2) with W = ER(ε). Hence, we have ER(ε) ⊂
B(ER(ε)�R).

A.2 Proof of Lemma 2

First, we construct E′ such that (11) holds. Approximate QR by an n-dimensional convex
polygon Q̄R. For any η > 0, we can take Q̄R such that Q̄R consists of finite (n − 1)-
dimensional facets {Ck}Kk=1 and, for each λ and v ∈ arg maxv′∈QR λ · v′, there exists v̄ ∈
arg maxv′∈Q̄R λ · v′ such that ‖v − v̄‖ < ζ. Since ζ is arbitrary, it suffices to construct E′

such that, for each λ, v ∈ arg maxv′∈E′ λ · v′ and v̄R ∈ arg maxv′∈Q̄R λ · v, we have

Rλ · (v − v̄R) < η� (15)

Let λk be the unique normal vector for Ck.9 For each k and e > 0, let

H̄k ≡
{
v ∈Rn : (λk + eRλk) · v ≤ min

v′∈Ck
(λk + eRλk) · v′}�

In words, H̄k is the hyperplane that is constructed by rotating Ck and intersects with Ck

at the point that is lowest among all the points on Ck with respect to λk + eRλk. This H̄k

corresponds to C ′ in Figure 1 in Section 5.3.2.
Define

Q̄e = Q̄R ∩ H̄1 ∩ · · · ∩ H̄K�

We can guarantee that for all λk, maxv′∈Q̄R∩H̄k(λk + eRλk) · v′ = maxv′∈Q̄e(λk + eRλk) · v′

by taking e sufficiently small. That is, no facet Q̄R ∩ H̄k is completely excluded by other
hyperplanes {H̄k′ }k′ �=k. Let {C̄k}Kk=1 be the set of facets of Q̄e.10 We show that E′ = Q̄e

satisfies (15) for sufficiently small e.

9Note that each (n− 1)-dimensional facet has a unique normal vector.
10Since no facet Q̄R ∩ H̄k is excluded, the number of facets for Q̄e is K.
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1. First, we show that (15) holds for

λ = λk + eRλk

‖λk + eRλk‖ �

If λk = ±ei for some i = 1� � � � � n, this is obvious since λk and Rλk are parallel.
Therefore, we assume λk �= ±ei for any i.

Suppose (15) does not hold. Then, for sufficiently small ē > 0, there exist e ∈
(0� ē), v(e) ∈ C̄k, and vR(e) ∈ arg maxv′∈Ck(λk + eRλk) · v′ such that

R
λk + eRλk

‖λk + eRλk‖ · v(e)≥R
λk + eRλk

‖λk + eRλk‖ · vR(e)+η� (16)

Since λk · v′ is constant for all v′ ∈ Ck, vR(e) ∈ arg maxv′∈Ck(λk + eRλk) · v′ implies
vR(e) ∈ arg maxv′∈Ck Rλk · v′. Since λk �= ±ei for any i, λk and Rλk are not parallel.
Hence, since λk is the normal vector of Ck, arg maxv′∈Ck Rλk · v′ is unique and we
can say vR(e) = arg maxv′∈Ck Rλk · v′ ≡ vR. Note that vR is independent of e.

In addition, since Q̄R ⊃ Q̄e ⊃ C̄k � v(e), maxv′∈Q̄R λk · v′ ≥ λk · v(e). At the same

time, as e goes to 0, {C̄k}Kk=1 uniformly converges to {Ck}Kk=1. Hence, λk · v(e) ≥
maxv′∈Ck λk · v′ −O(e) = maxv′∈Q̄R λk · v′ −O(e).11 The equality follows from the fact

that Ck is the facet of Q̄R with the normal vector λk. In summary,

max
v′∈Q̄R

λk · v′ ≥ λk · v(e) ≥ max
v′∈Q̄R

λk · v′ −O(e)� (17)

Note that since vR is on the facet Ck,

λk · vR = max
v′∈Ck

λk · v′ = max
v′∈Q̄R

λk · v′� (18)

Note also that

v(e) ∈ Ck ⊂ Q̄R� (19)

Taking a subsequence if necessary, (16), (17), (18), and (19) give us

Rλk · v ≥ Rλk · vR +η (20)

λk · v = max
v′∈Q̄R

λk · v′ = λk · vR (21)

v ∈ Q̄R� (22)

with v = lime→0 v(e). Since (20), (21), and vR = arg maxv′∈Ck Rλk · v′ imply v /∈ Q̄R,
this is a contradiction to (22).

Since the number of facets K is finite, we are done.

11Here, for a sequence {Xe}e, we say Xe = O(e) if there exists k > 0 such that |Xe| ≤ ke for sufficiently
small e.
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2. Consider the case with

λ �= λk + eRλk

‖λk + eRλk‖
for any k = 1� � � � �K. That is, λ is not tangential to any facet C̄k. Then λ is par-
allel to the convex combination of normal vectors of at most n facets neighbor-
ing each other. Mathematically, λ is parallel to

∑ñ
i=1 αi(λ

ki + eRλki) with ñ ≤ n,
αi > 0 for all i = 1� � � � � ñ,

∑ñ
i=1 αi = 1, λki + eRλki being tangential to C̄ki , and

C̄ki ∩ C̄kj �= ∅. For sufficiently small e, since no facet Q̄R ∩ H̄k is excluded, there
exists vR ∈ ⋂ñ

i=1(arg maxv∈Q̄R λki · v′). Consider any ṽR ∈ arg maxv′∈Q̄R λ · v′. Then,
since

0 ≥ λ · (vR − ṽR)

= 1

‖∑ñ
i=1 αi(λki + eRλki)‖

(
ñ∑

i=1

αiλ
ki · (vR − ṽR)+ eRλ̃ · (vR − ṽR)

)

≥ e

‖∑ñ
i=1 αi(λki + eRλki)‖R

(
ñ∑

i=1

αiλ
ki

)
· (vR − ṽR)�

we have R(
∑ñ

i=1 αiλ
ki) · (vR − ṽR) ≤ 0.

Alternatively, we can take {λki + eRλki}ñi=1 such that for any v ∈ arg maxv′∈Q̄e λ · v′,
this v is on C̄ki for all i = 1� � � � � ñ. That is, v ∈ ⋂ñ

i=1(arg maxv∈Q̄e(λki + eRλki) · v′).

Hence, from the first step, Rλki · (v − vR) ≤ η for all i = 1� � � � � ñ. Therefore,

R

∑ñ
i=1 αiλ

ki

‖∑ñ
i=1 αiλki‖

· (v − ṽR)

= 1

‖∑ñ
i=1 αiλki‖

(
ñ∑

i=1

αiRλ
ki

)
· (v − vR + vR − ṽR) ≤ n

‖∑ñ
i=1 αiλki‖

η�

Since n/‖∑ñ
i=1 αiλ

ki‖ is uniformly bounded, we are done with proving (11).

Second, we prove (12). Since Assumption 4 is satisfied, we can take o ∈ intQI , where
QI is the solution for the FL problem. That is,

o ∈ int
(⋂

λ

H(Rλ)

)
�

It suffices to show that (12) holds for QR.12 Suppose not. Then, since QR and 
 are
compact, there exist λ∗ and v∗ ∈ arg maxv∈QR λ∗ · v such that

Rλ∗ · v∗ ≤Rλ∗ · o�
12By construction of Q̄e, if (12) holds for QR, then it holds for E′ = Q̄e with sufficiently small e.



Theoretical Economics 10 (2015) Characterizing the limit set of PPE payoffs 713

Therefore, since maxv∈QI Rλ∗ · v > Rλ∗ · o, there exists η> 0 such that

max
v′∈QI

Rλ∗ · v′ −Rλ∗ · v∗ >η� (23)

We shift v∗ up by γλ∗: vγ = v∗ + γλ∗ with γ > 0. We are left to show that for suf-
ficiently small γ, for any ζ and e, co({vγ} ∪ E′) satisfies that for each λ, there exists
v ∈ arg maxv′∈co({vγ}∪E′) λ · v′ with v ∈ H(Rλ). Note that this is a contradiction since this
implies that co({vγ} ∪ E′) �⊂ QR is a fixed point of B(·�R) while QR is the largest fixed
point of B(·�R). (Recall that, from (8), the constraint for k(λ�W �R) is equivalent to
v ∈ H(Rλ) ∩W .) Here, co({vγ} ∪E′) �⊂ QR holds for sufficiently small ζ and e compared
to γ.

Take λ arbitrarily. There are two cases: (i) arg maxv′∈co({vγ}∪E′) λ · v′ ⊂ E′ and (ii) vγ ∈
arg maxv′∈co({vγ}∪E′) λ · v′. For case (i), there exists v ∈ H(Rλ) ∩ arg maxv′∈co({vγ}∪E′) λ · v′
since E′ ⊂ QR. For case (ii), for sufficiently small γ, both ‖λ − λ∗‖ and ‖vγ − v∗‖ are
sufficiently small. Hence, we have

|Rλ∗ · v∗ −Rλ · vγ| < η

2∣∣∣max
v′∈QI

Rλ∗ · v′ − max
v′∈QI

Rλ · v′
∣∣∣ < η

2
�

which implies, together with (23),

max
v′∈QI

Rλ · v′ −Rλ · vγ

= max
v′∈QI

Rλ · v′ − max
v′∈QI

Rλ∗ · v′ + max
v′∈QI

Rλ∗ · v′ −Rλ∗ · v∗ +Rλ∗ · v∗ −Rλ · vγ > 0�

that is, vγ ∈H(Rλ) as desired.

A.3 Proof of Proposition 3

The following lemma is helpful.

Lemma 6. Let W ⊂ Rn be convex and compact. If there exist ε and η > 0 such that W ∩
Bη(v) ⊂ B(W �R�ε), then, for all ε′ < ε, we have W ∩ Bη(v) ⊂ B(W �R�ε′). Here, Bη(v) ≡
{x ∈Rn :‖x− v‖<η} is an open ball with center v and radius η.

Proof. For ε and ε′ > ε, define δ = (δi)
n
i=1 with δi = 1/(1 + riεi) and δ′ = (δ′

i)
n
i=1 with

δ′
i = 1/(1 + riε

′
i).

Since W ∩Bη(v)⊂ B(W �R�ε), for all v′ ∈W ∩Bη(v), there exist α and {w(y)}y∈Y such
that { {w(y)}y∈Y enforces 〈v′�α〉

w(y) ∈W for all y ∈ Y .

Defining

w(y�ε′) ≡
(

δ′
i − δi

δ′
i(1 − δi)

v′
i +

δi(1 − δ′
i)

δ′
i(1 − δi)

wi(y)

)n

i=1
�
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{w(y�ε′)}y∈Y enforces 〈v′�α〉 for δ′. Therefore, it suffices to show that w(y�ε′) ∈ W for all
y ∈ Y .

Since

δi(1 − δ′
i)

δ′
i(1 − δi)

−
δj(1 − δ′

j)

δ′
j(1 − δj)

=
(

δi
1 − δi

/ δn

1 − δn

)
δn

1 − δn

(
1 − δ′

i

δ′
i

/1 − δ′
n

δ′
n

)
1 − δ′

n

δ′
n

−
(

δj

1 − δj

/ δn

1 − δn

)
δn

1 − δn

(1 − δ′
j

δ′
j

/1 − δ′
n

δ′
n

)
1 − δ′

n

δ′
n

= 0�

w(y�ε′) is a convex combination of v′ and w(y). Since W is convex, w(y�ε′) ∈ W for all
y ∈ Y . �

Given this lemma, we are ready to show Proposition 3.
Take any compact E ⊂ intQR. It suffices to show that there exist ε̄ < 1 and Ē such

that for any ε < ε̄, E ⊂ Ē ⊂ B(Ē�δ).
From Lemma 2, there exist o ∈ intQR and ē > 0 such that there exists a compact and

convex Ê such that the following statements hold:

1. There exists t > 0 such that E ⊂ Ê(t) ≡ {v ∈Rn :∃v′ ∈ Ê such that v = (1 − t)v′ + to}.

2. For each λ, v ∈ arg maxv′∈Ê(t) λ ·v′, and vR ∈ arg maxv′∈QR λ ·v′, we have Rλ ·(v−vR) <
1
4 tē.

3. For all λ and v ∈ maxv′∈Ê(t) λ · v′, we have Rλ · (v − o) > ē.

Consider Ē ≡ ⋃
v∈Ê(t) B(1/4)tē(x). Note that Ē satisfies the following statements:

1. We have E ⊂ Ē.

2. For any λ, v ∈ arg maxv′∈Ē λ ·v′, there exists vR ∈QR such that the following subcases
hold:

(a) Incentive compatibility. For all i and ai ∈ Ai, we have vRi ≥ gi(ai�α−i) +
E[xi(y) | ai�α−i] with equality for ai with αi(ai) > 0.

(b) Self-generation with the hyperplane. We have 0 ≥Rλ · x(y) for all y ∈ Y .

(c) Slack. We have Rλ · (v − vR) <− 1
2 tē.

Hence, we have the following cases:

(a) Incentive compatibility. For all i and ai ∈ Ai, we have vi ≥ gi(ai�α−i) +
E[xi(y)+ vi − vRi | ai�α−i] with equality for ai with αi(ai) > 0.

(b) Self-generation with the hyperplane with a slack. For all y ∈ Y , we have − 1
2 tē ≥

Rλ · (x(y)+ v − vR).
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The rest of the proof is analogous to FL. See Proposition 9.1.2 of Mailath and Samuel-
son (2006) for the details.

A.4 Proof of Theorem 3

Given the proof of Theorem 2, it suffices to show that QR is continuous in R if Assump-
tion 4 is satisfied. Fix R arbitrarily. We will show that QR ⊂ limε→0

⋂
R′ : ‖R−R′‖≤ε Q

R′
.

From Lemma 2, there exist o and ē > 0 such that, for any compact set E ⊂ int(QR)

and η> 0, there exists a compact and convex E′ ⊃ E such that the following statements
hold:

1. For each λ, v ∈ arg maxv′∈E′ λ ·v′ and vR ∈ arg maxv′∈QR λ ·v′, we have Rλ ·(v−vR) < η.

2. For all λ and v ∈ maxv′∈E′ λ · v′, we have Rλ · (v − o) > ē.

Fix t ∈ (0�1) arbitrarily, let η = 1
4 tē, and let E′(t) ≡ {v ∈ Rn :∃v′ ∈ E′ such that v =

(1 − t)v′ + to} be the radial contraction of E′ with respect to o. Then, by the same proof
as Proposition 4, we can show that for each λ and vλ ∈ arg maxv′∈E′(t) λ · v′, there exists
{xλ(y)}y∈Y such that the following statements hold:

1. Incentive compatibility. For all i and ai ∈ Ai, we have vλi ≥ gi(ai�α−i) +
E[xλi (y) | ai�α−i] with equality for ai with αi(ai) > 0.

2. Self-generation with the hyperplane. We have 0 ≥Rλ · xλ(y) for all y ∈ Y .

Since E and t are arbitrary, it suffices to show that for each t ′ ∈ (0� t), there exists
ε > 0 such that E(t ′) ⊂ QR′

for all R′ with ‖R − R′‖ ≤ ε. That is, we will show that for
each λ, there exists vλ(t ′) such that vλ(t ′) ≥ maxv′∈E′(t ′) λ · v′ and vλ(t ′) ∈H(R′λ).

Consider λ′ = R−1R′λ. From (12), incentive compatibility, and self-generation with
the hyperplane, for each vλ

′
(t ′) ∈ arg maxv′∈E′(t ′) λ′ · v′, there exists {xλ′

(y)(t ′)}y∈Y such
that the following statements hold:

1. Incentive compatibility. For all i and ai ∈ Ai, we have vλ
′

i (t ′) ≥ gi(ai�α−i) +
E[xλ′

i (y)(t
′) | ai�α−i] with equality for ai with αi(ai) > 0.

2. Self-generation with the hyperplane. We have −(t − t ′)ē ≥ Rλ′ · xλ′
(y)(t ′) for all

y ∈ Y . Since Rλ′ =R′λ, this condition is equivalent to

−(t − t ′)ē≥R′λ · xλ′
(y)(t ′) for all y ∈ Y�

Therefore, defining vλ(t ′) = vλ
′
(t ′)+ eλ and xλ(y)(t ′) = xλ

′
(y)(t ′)+ eλ, we have

λ · vλ(t ′)= λ · vλ′
(t ′)+ e

and the following cases:

1. Incentive compatibility. For all i and ai ∈ Ai, we have vλi (t
′) ≥ gi(ai�α−i) +

E[xλi (y)(t ′) | ai�α−i] with equality for ai with αi(ai) > 0.
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2. Self-generation with the hyperplane. We have −(t − t ′)ē+R′λ(eλ)≥R′λ · xλ(y)(t ′)
for all y ∈ Y . Since R′ is diagonal, r ′1 is the maximum element of R′. In addition,
since λ ∈ 
, ‖λ‖ = 1. Hence, this condition implies

R′λ · xλ(y)(t ′)≤ −(t − t ′)ē+ r′1e�

Hence, for

e≤ (t − t ′)ē ≤ (t − t ′)ē
r′1

� (24)

we have vλi (t
′) ∈H(R′λ). In addition, since vλ

′
(t ′) ∈ arg maxv′∈E′(t ′) λ′ · v′, we have

max
v′∈E′(t ′)

λ · v′ ≤ λ · vλ′
(t ′)+ ‖λ′ − λ‖max

x∈F
‖x‖�

Hence, for

e > ‖λ′ − λ‖max
x∈F

‖x‖� (25)

we have λ · vλ(t ′) ≥ maxv′∈E′(t ′) λ · v′.
Since r ′1 → r1 and λ′ → λ as R′ → R, for any t ′ < t, (24) and (25) are satisfied. There-

fore, we have vλ(t ′) ∈H(R′λ), as desired.
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