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Rationalizable partition-confirmed equilibrium

Drew Fudenberg
Department of Economics, Harvard University

Yuichiro Kamada
Haas School of Business, University of California, Berkeley

Rationalizable partition-confirmed equilibrium (RPCE) describes the steady-state
outcomes of rational learning in extensive-form games when rationality is com-
mon knowledge and players observe a partition of the terminal nodes. RPCE al-
lows players to make inferences about unobserved play by others. We discuss
the implications of this using numerous examples, and discuss the relationship
of RPCE to other solution concepts in the literature.
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1. Introduction

Most applications of game theory suppose that the observed outcomes will correspond
to equilibria, so it is important to consider which sorts of equilibrium concepts are ap-
plicable to various situations. The most compelling general explanation for equilibrium
is that it arises as the long-run outcome of some sort of nonequilibrium process of learn-
ing and adjustment. If the game in question is simply one round of simultaneous moves
and participants observe the outcome each time the game is played, then if play con-
verges, we expect the long-run outcomes to correspond to Nash equilibria.1 However,
when the game has a nontrivial extensive form, observed play need not reveal the ac-
tions that would be taken at information sets that have never been reached, so even
if play converges, incorrect beliefs may persist and play may not converge to a Nash
equilibrium.2
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Self-confirming equilibrium (SCE) formalizes the idea that incorrect off-path beliefs
can persist for settings where players observe the terminal node of the game each time
it is played, and the only restrictions placed on the players’ beliefs is that they be consis-
tent with the equilibrium distribution on terminal nodes. However, because SCE places
no a priori restrictions on the players’ beliefs, it does not capture the idea that play-
ers use prior information about opponents’ payoff functions to predict the opponents’
play. To capture such predictions, Dekel, Fudenberg, and Levine (1999) (hereafter DFL)
define “rationalizable self-confirming equilibrium” (RSCE), which requires that players
make certain inferences based on their knowledge of the other players’ payoff functions
and observation structure. For example, RSCE requires that player 1’s conjecture about
how player 2 thinks player 3 is playing be consistent with player 1’s information about
what player 2 observes.

Both SCE and RSCE apply to situations where all participants see the realized ter-
minal node at the end of each play of the game. In some cases, though, players do not
observe the exact terminal node that is reached. For example, in a sealed-bid uniform-
price k-unit auction for a good of known value, the terminal node is the entire vector
of submitted bids, but agents might only observe the winning price and the identity of
the winning bidders. Alternatively, this information might only be made available to
those who submitted nonzero bids, with the others only told that their bid was not high
enough. Terminal node partitions are also natural when there are many agents in each
player role: If we model each agent as a distinct player, then a given agent in the role of
player i need not observe the play of other agents in that role.

The rationalizable partition-confirmed equilibrium (RPCE) defined in this paper
generalizes RSCE by supposing that each player has a partition over terminal nodes and
that players’ beliefs are consistent with the observed distribution over the partition but
not necessarily consistent with the true distribution on terminal nodes. We should stress
that both of these equilibrium concepts implicitly suppose that equilibrium play cor-
responds to an objective distribution; the main difference is that in RSCE, all players
observe the distribution over terminal nodes, while RPCE allows each player to have a
different partition of the terminal nodes and supposes that each player sees the objec-
tive distribution over the cells of their own partition. In this case, there is no longer a
publicly observed outcome path, so the implications of common knowledge of the ob-
servation structure are less immediate. Roughly speaking, RPCE describes situations
where players know that the outcome of play has converged, even when they do not ob-
serve all aspects of this outcome themselves. RPCE is of interest in its own right; it also
serves to provide additional support for the use of Nash and subgame perfect equilib-
rium in games where it coincides with one or the other. In particular, we will see that
players can do a fair bit of reasoning about play they do not observe, even when we do
not assume that players know one another’s strategies.

and no strategic links between repetitions. See Fudenberg and Levine (1993b) and Fudenberg and Taka-
hashi (2011) for examples of the sorts of learning models we have in mind, and see Fudenberg and Levine
(2009) for a survey of related work. As this literature shows, incorrect beliefs are more of an issue when play-
ers are relatively impatient and so have less incentive to “experiment” with off-path actions; very patient
players will experiment enough to rule out non-Nash outcomes (although not necessarily enough to justify
backward induction; see Fudenberg and Levine 2006.)
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Figure 1. The dots connecting payoffs denote terminal node partitions.

Before proceeding to the formal part of the paper, we provide an informal illustration
of RPCE in the two extensive-form games in Figure 1 (Example 1). In game A, player 1
moves first, choosing between In and Out . If he chooses In, players 2 and 3 play match-
ing pennies, with player i choosing between Hi and Ti. Player 1’s payoffs are the amount
that player 2 gets plus an “extra” of 0�1 if player 1 plays In. When player 1 plays Out , all
players obtain the payoff of 0. At the end of each play of the game, players observe the
exact terminal node that is reached, as in self-confirming equilibrium.

In game B, player 1 moves first, again choosing between In and Out . Instead of play-
ers 2 and 3 only acting when player 1 plays In, now they play the matching pennies
game regardless of player 1’s action. The map from action profiles to payoffs is exactly
the same as in game A. The important assumption is that if 1 plays Out , she observes
only her own action and payoff but not the action of the other player: the correspond-
ing cell of her terminal node partition contains four elements corresponding to the four
possible choices of players 2 and 3. Players 2 and 3 observe the exact terminal nodes.
Note that the observation structures for player 1 are the same in games A and B.

Note that even though player 1 receives the same information in these games, the
observation structures of players 2 and 3 differ. In game A, players 2 and 3 do not observe
each other’s play when player 1 plays Out , so there is no reason for player 1 to expect
their play to resemble a Nash equilibrium. Consequently, an impatient player 1 might
choose to play Out , fearing that player 2 would lose to player 3. In game B, however,
players 2 and 3 observe each other’s play, whatever player 1’s action is. Thus they should
be playing as in the Nash equilibrium of the matching pennies game, and player 1 knows
this, so she should play In.

In what follows, we give a formal definition of RPCE, and provide results to show
that RPCE behaves as expected and to relate it to past work, but much of our contribu-
tion comes from examples that illustrate various implications of RPCE. Many (but not
all) of these examples use what we call participation games; we explore the impact of
different terminal node partitions in these games and also compare them to closely re-
lated games with sequential moves. The distinguishing feature of participation games
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is that some players have the option of an action called Out : If a player plays Out , his
payoff is 0 regardless of the play of the others, and he observes only his own action and
payoff. Roughly speaking, the idea of RPCE is that if player 1 (say) always plays Out ,
but knows that players 2 and 3 play every period and observe the terminal node at the
end of each round, and player 1 believes that play has converged, then she can use her
knowledge of the payoff functions and observation structure to place restrictions on the
(unobserved) play of her opponents; in particular, player 1’s belief about their play must
be concentrated on the set of Nash equilibria of the “subgame” between them. In con-
trast, if player 1’s choice of Out ends the game and prevents players 2 and 3 from acting,
then when player 1 always plays Out , players 2 and 3 do not have the chance to learn;
here the only restriction on player 1’s belief when she plays Out is that the play of 2 and
3 is rationalizable.

In addition to the partition over terminal nodes, this paper differs from DFL by al-
lowing players to have correlated beliefs about unobserved play of their opponents, as
advocated by Fudenberg and Kreps (1988). As we argue in Example 8, terminal node
partitions make the restriction to independent beliefs less compelling, even as a simpli-
fying assumption: When a player knows that her opponents have repeatedly played a
coordination game, but she has not seen their actions, it seems odd to require that the
player’s beliefs about the opponents correspond to a product distribution. Put differ-
ently, with partitions on terminal nodes, play of the game on its own may provide some
of the players access to a common signal that is not observed by others.

Hahn’s (1977) conjectural equilibrium is a forerunner of SCE in a specific setting, as
it allows firms to misperceive demand at out-of-equilibrium prices. Battigalli (1987) de-
fines what we call self-confirming equilibrium with independent, unitary beliefs, where
“unitary” means that every action in the support of a player’s mixed strategy is a best
response to the same belief about play of the opponents, and “independent” means
that each player’s subjective uncertainty about the play of the others corresponds to a
product distribution. Fudenberg and Kreps (1988) give the first example where this sort
of SCE has an outcome that cannot arise in Nash equilibrium. In the large-population
learning models used to provide foundations for SCE, it is natural (though not neces-
sary) to allow different agents to have different beliefs. The general definition of SCE,
due to Fudenberg and Levine (1993a), allows beliefs to be heterogeneous as well as
correlated.3

Allowing for heterogenous beliefs about play when players use payoff information to
make predictions is more complicated, so DFL restrict attention to unitary beliefs. This
paper too restricts attention to unitary beliefs, so as to cut down on the number of new
issues that need to be addressed at one time; note that unitary beliefs correspond to
steady states of large-population learning systems when all agents in a given player role
pool their information. Alternatively one can view our solution concept as providing
predictions as a result of repeated interactions among a fixed set of players when the

3Kalai and Lehrer (1993) give a version that corresponds to independent, unitary beliefs. Lehrer’s (2012)
“partially specified equilibrium” is similar as it also allows players to only partially know their opponents’
strategies. Ryall (2003) and Dekel, Fudenberg, and Levine (2004) develop SCE variants that in our terminol-
ogy have specific sorts of partitions over terminal nodes.
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discount factor is small. In the companion paper Fudenberg and Kamada (2015), we
allow for heterogeneous beliefs.

The paper is organized as follows. Section 2 defines a model of extensive-form games
with terminal node partitions. Section 3 revisits Example 1 and analyzes other examples
to show the implications of RPCE. Section 4 further motivates the RPCE definition by
exploring the consequences of alternative specifications. Section 5 explains the con-
nection between RPCE and other concepts from the literature, notably the rationaliz-
able conjectural equilibrium (RCE) of Rubinstein and Wolinsky (1994). Appendixes A–C
follow. Additional Appendixes D–F are available in a supplementary file on the journal
website, http://econtheory.org/supp/1362/supplement.pdf.

2. The model

2.1 Extensive-form games with terminal node partitions

Let X denote the finite set of nodes, with Z ⊆ X being the set of terminal nodes. The
set of players is I = {1� � � � � n}; Hi is the collection of player i’s information sets, H =⋃

i∈I Hi, and H−i = H \ Hi. Let A(h) be the set of available actions at h ∈ H, and let
Ai = ×h∈Hi

A(h), A = ×i∈I Ai, and A−i = ×j �=i Aj . For each z ∈ Z, player i’s payoff is
ui(z).

In the main text, we restrict attention to “one-move games,” in which for any path
of play, each player moves at most once and there are no moves by Nature. In addition,
we assume that for every h, h′, if there is x ∈ h and x′ ∈ h′ such that x < x′ (where < is
the precedence order on nodes), then there is no x′′ ∈ h and x′′′ ∈ h′ such that x′′′ < x′′.
We then say that h′ is after h if some x′ ∈ h′ is after some x ∈ h, and we assume that this
partial order on information sets is transitive.

To model what players observe at the end of each round of play, let Pi = (P1
i � � � � �P

Li
i )

be a partition over Z and let P = (P1� � � � �Pn). We assume that the extensive form has
perfect recall in the usual sense, and we extend perfect recall to terminal node parti-
tions by requiring that two terminal nodes must be in different cells of Pi if they can be
reached by different sequence of pure actions by player i. If every terminal node is in
a different cell of Pi, the partition Pi is said to be discrete. If the cell player i observes
depends only on i’s actions, the partition is called trivial. Except where otherwise noted,
we will require that ui(z) = ui(z

′) if terminal nodes z and z′ are in the same partition cell,
so that payoffs are measurable with respect to terminal node partitions.

Because we want to model equilibrium as an objective, steady-state distribution,
while maintaining the simplicity of “unitary” beliefs (defined below), we need to allow
for mixed strategies as outcomes of play. Here we adopt the simplest method, namely
to let the players use mixed strategies, as in Rubinstein and Wolinsky (1994) and DFL.4

Player i’s behavioral strategy πi is a map from Hi to probability distributions over ac-
tions, satisfying πi(h) ∈ �(A(h)) for each h ∈Hi, where and subsequently, for any set X ,
we let �(X) denote the set of probability distributions on X with finite support. The

4In Fudenberg and Kamada (2015), we show that we can replace mixed strategies with a distribution of
players each of whom uses a pure strategy.

http://econtheory.org/supp/1362/supplement.pdf
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set of all behavioral strategies for i is �i, and the set of behavioral strategy profiles is
�= ×i∈I �i. Let �−i = ×j �=i �j and �−i�k = ×j �=i�k �j , with typical elementsπ−i and π−i�j ,
respectively. Say that an information set h ∈ Hi is reachable under π−i if there exists πi

such that h has a positive probability under (πi�π−i).
A strategy profile π completely determines a probability distribution over terminal

nodes; let d(π)(z) be the probability of reaching z ∈ Z given π, and let Di(π)(P
l
i ) =∑

z∈Pl
i
d(π)(z) for each cell Pl

i of player i’s partition.

2.2 Beliefs, consistency, and best responses

We will impose some restrictions on beliefs about off-path play, so we will need to spec-
ify assessments at off-path information sets: Player i’s assessment at h ∈ Hi is a proba-
bility distribution over nodes in h, so that the assessment at h is an element of �(h). For
any h ∈ Hi, i’s assessment at h and her opponents’ behavioral strategies π−i completely
determine i’s expected payoff for playing any strategy πi, conditional on h. Denote by
μi ∈ �(�−i) × [×h∈Hi

�(�(h) × �−i)] the belief held by player i. That is, player i’s belief
consists of two terms. The first is a finite-support probability distribution over the oppo-
nents’ strategy profiles, and the second is a vector that specifies, at each information set
h of player i, a probability distribution over the product space of pairs of the form (as-
sessments at that information set, opponents’ strategy profiles). We denote by b(μi) the
marginal of the belief μi on the first coordinate, and denote by (μi)h the marginal of μi

on the coordinate for information set h. Note that the belief has sufficient information
to calculate conditional expected payoffs at each information set.

We allow b(μi) to be any distribution on �−i (with finite support), as opposed to a
product of independent mixed strategies. Example 8 explains why this is desirable. We
allow assessments to be correlated with the beliefs over opponents’ strategies; Example 9
explains why.

Definition 1. Belief μi is an independent belief if the following conditions hold:

(i) For each π̂−i in the support of b(μi), we require

b(μi)(π̂−i) =
∏
j �=i

( ∑
π−i�j s�t� ∃πj s�t� (πj�π−i�j)∈supp(b(μi))

b(μi)(π̂j�π−i�j)

)
�

(ii) For each h and each (âi� π̂−i) in the support of (μi)h, we require

(μi)h(âi� π̂−i)

=
( ∑
π−i s�t� ∃ai s�t� (ai�π−i)∈supp((μi)h)

(μi)h(âi�π−i)

)

·
∏
j �=i

( ∑
(ai�π−i�j) s�t� ∃πj s�t� (ai�(πj�π−i�j))∈supp((μi)h)

(μi)h(ai� (π̂j�π−i�j))

)
�
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That is, μi is independent if b(μi) and the (μi)h are all product measures. We allow i’s
belief to vary with i’s information sets, because the posterior belief about which element
in the support of b(μi) has been used may be different from the prior belief. Example 10
explains why such variability is desirable.

Definition 2. A belief μi satisfies accordance if it satisfies the following conditions.

(i) Belief (μi)h is derived by Bayes rule if there exists π−i in the support of b(μi) such
that h is reachable under π−i.5

(ii) For all h ∈ Hi, if (μi)h assigns positive probability to π̂−i, then there exists π̃−i ∈
supp(b(μi)) such that π̂−i(h

′)= π̃−i(h
′) for each h′ after h.

The first part of the definition restricts the belief at on-path information sets, and
the second part does so for off-path information sets. Given our restriction to one-move
games, the information sets h′ referred to in part (ii) belong to players who did not move
before h; part (ii) imposes a form of consistency between player i’s “initial” beliefs b(μi)

about what these players will do and player i’s beliefs conditional on unexpectedly ar-
riving at h.

There are other reasonable alternatives for off-path restrictions on beliefs, both to
weaker conditions that allow for the sort of correlation we discuss in the next example
and to conditions that impose additional restrictions in games where some players can
act multiple times on a path of play. We do not examine these alternatives here, because
refining off-path beliefs is not our focus. Instead, we assume accordance throughout
the paper. Accordance is an easy-to-check condition, and, in particular, implies that if
b(μi) has a singleton support, then b(μi) and (μi)h coincide. For example, consider the
extensive form in Figure 2.

If b(μ2) assigns probability 1 to (u�U), then under accordance, player 2’s belief
(μ2)h2 at his information set h2 must assign probability 1 to player 3 playing U . Note,
though, that if we did not impose part (ii) of Definition 2, then when player 2 un-
expectedly sees player 1 play r, she could change her belief about the future play of
player 3 from U to D, which would make her want to play b. This sort of change in be-
liefs can arise if deviations occur as the result of correlated trembles or payoff shocks.
In particular, the outcome (u�U) is a c-perfect equilibrium (Fudenberg, Kreps, and
Levine (1988)), because b for player 2 is a best response to the correlated distribution
((1 − ε)(u�U)� ε(r�D)). However, this cannot occur when the trembles are required to
be independent across players as in trembling-hand perfection and sequential equilib-
rium, and (u�U) is not a sequential equilibrium outcome. We implicitly impose “in-
dependent trembles” in the accordance condition for simplicity, but as noted above,
alternative conditions may be reasonable as well.

5For each π−i in the support of b(μi) such that h is reachable under π−i , let a(x|h�π−i) be the probability
that node x ∈ h ∈ Hi is reached conditional on the event that π−i is used and h is reached. Since h is
reachable under π−i, this conditional probability is well defined. If π−i is in the support of b(μi), define

(μi)h(a�π−i) = b(μi)(π−i) · Prob(h|π−i)∑
π′

−i∈supp(b(μi))
b(μi)(π

′
−i) · Prob(h|π′

−i)
�

where a= a(·|h�π−i); otherwise we define (μi)h(a�π−i)= 0.
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Figure 2. Example for accordance.

The following result is immediate and is stated without a proof, and together with
Theorem 2 below will establish that a RPCE exists.

Theorem 1. Suppose that an assessment–strategy pair (ã� π̃) satisfies Kreps and Wilson’s
(1982) consistency, b(μi)(π̃−i) = 1 for all i and that (μi)h(ã� π̃) = 1 for each h. Then μi

satisfies accordance.

We say that πi ∈ �i is a best response to a belief μi at h ∈ Hi if the restriction of πi

to the subtree starting at h maximizes player i’s expected payoff against (μi)h in that
subtree.6

2.3 Versions, conjectures, and belief models

To facilitate comparison with DFL, we model the beliefs of the players about the beliefs
and play of others—their “interactive beliefs”—in the same way as DFL, using the idea
of versions vi of each player i. Only one of these versions represents the way player i

actually behaves; the other versions vi of player i are descriptions of player i that some
player j thinks are possible.7 In DFL, vi specifies player i’s strategy, her assessment, and
her belief about the opponents’ play. The definition of a version in our context will be

6Note that for the purpose of computing this best response, the relevant part of (μi)h is the distribution
of play at successors of h. Formally, suppose that there are K points in the support of (μi)h, and index them
by superscript k to write (aki �π

k
−i). An assessment ai at h and a strategy profile π together induce a unique

probability distribution over terminal nodes, denoted f (ai(h)�π)). The restriction of a strategy π∗
i to the

subtree starting at h maximizes player i’s expected payoff against (μi)h if

π∗
i ∈ arg max

πi∈�i

K∑
k=1

(
(μi)h(a

k
i �π

k
−i) ·

∑
z∈Z

[
f (aki � (πi�π

k
−i))(z) · ui(z)

])
�

7An alternative approach would be to use the notion of an “epistemic structure” as in Ben-Porath (1997),
Battigalli and Siniscalchi (2002), and Battigalli and Friedenberg (2012). That approach would facilitate com-
parison with some of the literature on rationalizability, but complicate the comparison with DFL.
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slightly different, as instead of specifying beliefs, we associate with each version a prob-
ability distribution over opponents’ versions that we call a conjecture. We use these con-
jectures below to formalize an analog of the usual belief-closed condition—the idea that
the play that player i expects to see is generated by the versions he expects are present.
To introduce the notion of conjectures formally, we first need to specify a profile of sets
of versions.

A belief model is a collection V = (V1� � � � � Vn), where each Vi is a finite set of player i’s
versions. In our setting, version vi of player i is denoted by vi = (πi�pi), where the first
element is version vi’s strategy πi ∈ �i, and the second element is her conjecture pi ∈
�(×j �=i Vj).

Notice that the specification of conjectures allows correlated beliefs, as otherwise
pi must lie in the space ×j �=i �(Vj). We do not require that pi assigns probability 1 to a
single version profile of the opponents: Even if player i is sure that there is only a single
agent in player j’s player role, she may not be sure whether this single agent is of version
v′
j or v′′

j .
Finally, we will associate with each Vi in a belief model an actual version v∗

i ∈ Vi,
which is the version that is objectively present. Any other versions of player i are called
hypothetical versions, as they exist only in the minds of the other players.

2.4 Rationalizable partition-confirmed equilibrium

For notational simplicity, let πj(vj), π(v), and π−i(v−i) denote the strategy (profile) gen-
erated by vj ∈ Vj , v ∈ ×j∈I Vj , and v−i ∈ ×j �=i Vj , respectively.

Definition 3. A belief μi is coherent with a conjecture pi if b(μi) assigns probability∑
π−i(v−i)=π̃−i

pi(v−i) to each π̃−i ∈�−i.

In the definition of RPCE, we require that all versions in a belief model have a coher-
ent belief; this is analogous to requiring the belief model be belief-closed, as defined in
DFL.

Definition 4. Given a belief model V , version vi = (πi�pi) ∈ Vi is self-confirming with
respect to π∗ if for all v−i in the support of pi, Di(πi�π−i(v−i)) =Di(πi�π

∗
−i).8

In the defining equality, the left hand side is the distribution over i’s terminal node
partition generated by version vi’s strategy and the belief about the opponents’ play that
is induced by vi’s conjecture. The right hand side is the distribution that version vi ob-
serves if the actual distribution of the play is π∗. That is, this equality says that vi’s ob-
servation (the left hand side) is equal to the actual play (the right hand side).

Definition 5. Given a belief model V , π∗ ∈ � is generated by a version profile v =
(vi)i∈I = (πi�pi)i∈I ∈ ×j∈I V if for each i, πi = π∗

i .

8Because each version vi = (πi�pi) views π−i(v−i) as possible for each v−i in the support of pi , every
such π−i(v−i) must be consistent with the version’s observations.
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Definition 6. Given a belief model V , vi = (πi�pi) is observationally consistent if
pi(ṽ−i) > 0 implies, for each j �= i, that ṽj is self-confirming with respect to π(vi� ṽ−i).

Remark 1. (a) If ṽj is self-confirming with respect to π(vi� ṽ−i), then by Definition 4,
for all v̂−j in the support of p̃j , Dj(πj(ṽj)�π−j(v̂−j)) = Dj(πj(ṽj)�π−j(vi� ṽ−i�j)) =
Dj(πi�π−i(ṽ−i)). Hence Definition 6 is equivalent to the statement, “Given a
belief model V , vi = (πi�pi) is observationally consistent if pi(ṽ−i) > 0 implies,
for each j �= i, Dj(πj(ṽj)�π−j(v̂−j)) = Dj(πi�π−i(ṽ−i)) for all v̂−j in the support
of p̃j .” The left hand side in this equality is what ṽj expects to observe given
his belief under the partition given by Dj . The right hand side describes what
vi thinks ṽj is observing under the partition given by Dj . Thus the equality re-
quires that vi believes that ṽj ’s belief is consistent with what ṽj observes. Thus
this definition incorporates the idea that players know (i) the terminal node par-
titions of other players and (ii) that the opponents satisfy the self-confirming
condition.

(b) To better understand observational consistency, consider the following example:
Suppose that v′

1 believes that (v′
2� v

′
3) and (v′′

2� v
′′
3) are possible, and that no other

profiles are possible. Then we require that v′
1 thinks what v′

2 would be observing
is consistent with v′

2’s play, v′
1’s play, and also v′

3’s play. It is important to note that
we do not require that v′

1 thinks v′
2’s belief is consistent with v′′

3 ’s play. This is be-
cause, even though v′

1 thinks each of v′
2 and v′′

3 is possible, she thinks (v′
2� v

′′
3) is

impossible.

(c) Note that the condition in Definition 6 only needs to hold when vi thinks the
profile ṽ−i has positive probability; otherwise, vi need not believe that ṽj ’s obser-
vation is consistent with her belief. Note also that, even if vi thinks ṽj has positive
probability and ṽj thinks version vk has positive probability, vi’s belief need not
be consistent with what vk observes. This is because vi might think that ṽj has
positive probability, and ṽj incorrectly conjectures that vk has positive probabil-
ity. Finally, if ṽj is self-confirming with respect to π∗, then in the left hand side
of the equation of the alternative definition in Remark 1(a), Dj(πj(ṽj)�π(v̂−j))can
be replaced with Dj(πj(ṽj)�π

∗
−j).

(d) The rationale for requiring observational consistency is that player i knows j’s ter-
minal node partition and knows that j’s belief is consistent with what j observes.
In the model developed so far, this knowledge is informal. In Appendix E (in the
supplement), we make this interpretation precise by constructing an epistemic
model.

Definition 7. The strategy profile π∗ is a rationalizable partition-confirmed equilib-
rium (RPCE) if there exist a belief model V and an actual version profile v∗ such that the
following conditions hold:

(i) Strategy profile π∗ is generated by v∗.
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(ii) For each i and vi = (πi�pi), there exists μi such that (a) μi is coherent with pi and
(b) πi is a best response to μi at all h ∈ Hi.

(iii) For all i, v∗
i is self-confirming with respect to π∗.

(iv) For all i and vi, vi is observationally consistent.

One consequence of the definition of RPCE is that the set of RPCE shrinks if terminal
node partitions become coarser.9 Since the belief model that supports a strategy profile
as a RPCE under finer partitions can support the same strategy profile under coarser
partitions, the following comparative statics is immediate.

Theorem 2. If the terminal node partitions P are coarser than P′, then any strategy pro-
file that is RPCE under partition P′ is also a RPCE under P.

Theorem 1 implies that with discrete terminal node partitions for each player, ev-
ery sequential equilibrium is a RPCE with a single version for each player and correct
beliefs.10 Hence, all sequential equilibria are RPCE under the discrete terminal node
partitions. Combining this observation with Theorem 2 and the fact that every game
has a sequential equilibrium Kreps and Wilson (1982) yields the following result.

Corollary 1. In any extensive-form game, a RPCE exists.

3. Implications of RPCE

In this section, we consider several examples to illustrate the implications of RPCE. One
theme will be the difference between situations where player 1 (say) prevents other play-
ers from acting (and thus from learning) and situations where the other players do act
but player 1 does not observe their play. First, we revisit Example 1 to show how the
RPCE definition delivers the desired conclusion there. Example 2 adds a player to game
B to study the assumption of higher order knowledge of rationality. In Example 3, RPCE
implies that belief about unobservable play should assign probability 1 to actions that
are not only rationalizable but also Nash. Appendix B generalizes this result to a class of
“participation games.” Example 4 provides an example that shows that some RPCE out-
comes can only be sustained with belief models in which multiple versions of a given
player play the same strategy. In that example, player 1 and player 2 each has a sin-
gle version, and their beliefs involve differing implicit models of the beliefs of player 4.
However, there is a strong restriction on the versions to which actual versions can assign
positive probability: Lemma 1 in Appendix A shows that in a RPCE, any version profile to

9The supplement provides further examples to illustrate the effects of changes of terminal node parti-
tions.

10Note that this applies even to sequential equilibria that are ruled out by strategic stability (Kohlberg and
Mertens 1986). Thus RPCE corresponds to sequential equilibrium’s assumption that players view deviations
as trembles, as opposed to the “forward induction” view that, whenever possible, deviations should be
viewed as a deliberate choice.
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which an actual version assigns positive probability is the actual version profile of some
RPCE.

Terminal node partitions have various effects on the set of strategies that a player can
play in a RPCE. Example 5 demonstrates that a player need not expect unobservable play
by the opponents to resemble a Nash equilibrium if their terminal node partitions are
not discrete. Example 6 shows how giving a player a more refined terminal node parti-
tion can change his RPCE play even though that player’s beliefs were correct in the RPCE
for the coarser partition: The effect comes from the fact that with the finer partition,
other players know that the player’s beliefs are correct. The supplement also provides
examples to illustrate how the terminal node partitions change the set of strategies in
RPCE.

Example 1 (Revisited). Here we show that in game A, it is possible for player 1 to play
Out in RPCE, but this is not possible in game B.

Consider game A, in which players 2 and 3 play matching pennies if and only if
player 1 plays In. We argue that player 1 can play Out in a RPCE with the belief model
and actual versions11

V1 = {v′
1}� v′

1 = (Out� (v′
2� v

′
3))

V2 = {v′
2� v

′′
2}� v′

2 = (H2� (v
′
1� v

′′
3))� v

′′
2 = (T2� (v

′
1� v

′
3))

V3 = {v′
3� v

′′
3}� v′

3 = (T3� (v
′
1� v

′
2))� v

′′
3 = (H3� (v

′
1� v

′′
2))

The actual version profile is (v′
1� v

′
2� v

′
3)�

Here, v′
2 can believe that player 3 plays H3 because she never gets to observe

player 3’s play, while v′′
3 plays H3 because he believes that player 2 plays T2, which again

is justified by the fact that he is not observing player 2’s play. Since v′
1 never observes

player 2’s and player 3’s play, and she knows that they do not get to play on the path so
do not observe each other’s play, she can believe that they can have such mutually in-
consistent beliefs, hence can entertain a belief that the opponents play (H2�T3), which
is consistent with the self-confirming condition.

Now we turn to game B, where players 2 and 3 play matching pennies regardless
of player 1’s action but player 1 only observes their play when she chooses In. Fix a
RPCE π∗, with an associated belief model V . Suppose that some version of player 1’s
conjecture assigns positive probability to a version profile (ṽ2� ṽ3) such that π(ṽ2) and
π(ṽ3) are not best responses to each other. Suppose without loss of generality that π(ṽ2)

is not a best response to π(ṽ3). Notice that by the observational consistency condi-
tion, we have D2(π̃2�π−2(v−2)) = D2(π̃2� ·�π(ṽ3)) for all v−2 in the support of p̃2. Since
player 2 observes the exact terminal node reached, this implies that p̃2 assigns probabil-
ity 1 to v3 such that π3(v3) = π3(ṽ3). But this means that any belief μ̃2 coherent with p̃2

11The notation that we use when presenting belief models in examples involves a slight abuse of nota-
tion. In particular, when a player’s conjecture is a point mass on a particular version profile v−i , we write
that profile in place of the Dirac measure concentrated on v−i.
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has a property that b(μ2) assigns probability 1 to π3(ṽ3), so the best response condition
is violated for player 2.

Therefore, it must be the case that for any v1 = (π1�p1), any belief μ1 coherent with
p1 assigns probability 1

2 to each of H2 and H3. The best response condition then implies
that π1 assigns probability 1 to In, as playing In gives her the expected payoff of 0�1,
while playing Out gives her 0. Because this is true for any version v1 of player 1 and π∗
is generated by the actual versions, we conclude that π∗

1 assigns probability 1 to In, that
is, player 1 plays In with probability 1. ♦

Example 2. Consider a modification of game B, where we add “player 0” at the top of
the extensive-form game. Specifically, player 0 moves first, choosing between In and
Out . Whatever action is played, the game goes on and game B is played, where only
player 1 knows the action taken by player 0. The map from the action profile for play-
ers 1, 2, and 3 to their payoffs are exactly the same as in game B, while player 0 gets 0 if
he plays Out , 1 if he plays In and player 1 also plays In, and −1 if he plays In and player 1
plays Out . The terminal node partitions are the same as in game B, where everyone
knows the move by player 0, and player 0 observes everything if he plays In and does not
observe anything if he plays Out .

In any RPCE of this game, player 0 must play In, because player 0 must infer that
player 1 plays In. Remember that in game B of Example 1, all versions of player 1 must
play In; the coherent belief condition ensures that player 0 believes that 1 plays In with
probability 1.

This example shows that RPCE assumes that a player not only believes that the play
by the opponents has converged, but she also believes that an opponent believes that
the play by these opponents has converged. ♦

Example 3. Consider the game in Figure 3. Everyone observes the exact terminal node
reached, except that player 1 cannot distinguish between the opponents’ action profiles
if she plays Out .

Player 1’s action has no effect on the information or payoffs of players 2 and 3, so it
makes sense to talk of the subgame involving just those two players. Notice that H2 is a
best response to H3, which is a best response to T2, which is a best response to T3, which
in turn is a best response to H2, so all actions in the subgame are rationalizable, but it
has a unique Nash equilibrium, namely (N2�N3).

In this game, RPCE requires not only that player 1 expects players 2 and 3 to play
rationalizable actions, but also that she expects their play to be a Nash equilibrium of
the subgame. Hence player 1 should expect the payoff of 1 from playing In, so player 1
should play In. The proof of this is exactly the same as in Example 1: if player 1’s con-
jecture assigns a positive probability to a version profile such that player 2 is not best
responding to player 3, the observational consistency condition for player 1 implies that
the best response condition for player 2 should be violated.

It is important here that players 2 and 3 do not observe player 1’s action before they
move, as otherwise player 1 can play Out , believing that players 2 and 3 play Hi or Ti

after In. This example shows that in RPCE, beliefs about unobserved actions on the
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Figure 3. Example 3.

path of play should assign probability 1 to actions that are not only rationalizable but
also Nash. We generalize this in Theorem 5 in Appendix B. ♦

Example 4 (Need for duplicate versions). The game depicted in Figure 4 is a modifica-
tion of the “horse” example in Fudenberg and Kreps (1988). Instead of having player 3
move only when player 1 or player 2 plays down, we now suppose that player 3 moves
whenever player 4 plays a dominant action at the root node, and players 1 and 2 do not
know player 3’s play as long as both play “across.” The terminal node partitions are such
that everyone observes the terminal node reached, except that if (A1�A2) is taken, then
player 1’s and players 2’s partitions do not reveal player 3’s choice.

This game has a RPCE in which (A1�A2) is chosen. Specifically, consider the belief
model and actual versions

V1 = {v′
1}� v′

1 = (A1� (v
′
2� v

′
3� v

′
4))

V2 = {v′
2}� v′

2 = (A2� (v
′
1� v

′′
3� v

′′
4))

V3 = {v′
3� v

′′
3}� v′

3 = (R3� (v
′
1� v

′
2� v

′
4))� v

′′
3 = (L3� (v

′
1� v

′
2� v

′′
4))

V4 = {v′
4� v

′′
4}� v′

4 = (R4� (v
′
1� v

′
2� v

′
3))� v

′′
4 = (R4� (v

′
1� v

′
2� v

′′
3))

The actual version profile is (v′
1� v

′
2� v

′
3� v

′
4)�

Notice that V4 has two versions, both of which play the same strategy. This is a nec-
essary feature of any belief model that supports the outcome involving (A1�A2). This is
because this (A1�A2) can happen only when players 1 and 2 disagree about player 3’s
play, and know that player 4 observes player 3’s play. This means players 1 and 2 must
also disagree about what player 4 believes, which requires there be (at least) two versions
of player 4, and both versions need to play R4 as it is a dominant action.12

12A formal proof is as follows: Suppose that there is only one version v̂4 in V4, and that v̂4 believes that
L3 is played with probability p ∈ [0�1]. By coherency, all versions of players 1 and 2 must have a conjecture
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Figure 4. Example 4.

This need for two versions that play the same strategy is a new feature that arises
with nondiscrete terminal node partitions; such duplicate versions do not enlarge the
set of RSCE, because in RSCE, players can only disagree about play off of the equilibrium
path.13 ♦

Example 5 (Participation game with unobservable actions). Consider the game in Fig-
ure 5. Player 1 does not observe the exact terminal node if she plays Out1, and she
observes the exact terminal node reached if she plays In1. The other players’ terminal
node partitions always reveal player 1’s move but only reveal the exact terminal node if
they play Ini.

that assigns probability 1 to v̂4. Then observational consistency implies that all versions of players 1 and 2
must believe that L3 is played with probability p ∈ [0�1]. But since p > 1

3 implies that D1 is strictly better
than A1 and p< 2

3 implies that D2 is strictly better than A2, (A1�A2) cannot be played.
13Fix a belief model used to justify a RSCE π∗ in the DFL model, and suppose that it has m versions

(v(1)i � � � � � v(m)
i ) that use the same strategy in a single player role i. Now consider a new belief model formed

by eliminating (v
(2)
i � � � � � v

(m)
i ). If a version of some opponent player role j has a mixture over (v(2)i � � � � � v

(m)
i )

in DFL’s belief-closed condition, then the belief-closed condition will be satisfied in the new belief model
by assigning the sum of probabilities on (v(1)i � � � � � v(m)

i ) in the original mixture to v(1)i in the new mixture.
Thus the new belief model supports the RPCE π∗.
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Figure 5. Example 5.

Notice that for any Nash equilibrium of player 2’s and player 3’s simultaneous move
game, player 1 expects a payoff of at least 1

2 from playing In1. Thus if player 1 believes
that players 2 and 3 play a Nash equilibrium of the subgame, she must play In1. We
argue, however, that in RPCE it is possible for player 1 to play Out1. Specifically, consider
the belief model and actual versions

V1 = {v′
1}� v′

1 = (Out1� (v
′
2� v

′
3))

V2 = {v′
2� v

′′
2}� v′

2 = (Out2� (v
′
1� v

′′
3))� v

′′
2 = (In2� (v

′
1� v

′
3))

V3 = {v′
3� v

′′
3}� v′

3 = (Out3� (v
′
1� v

′′
2))� v

′′
3 = (In3� (v

′
1� v

′
2))

The actual version profile is (v′
1� v

′
2� v

′
3)�

In this belief model, player 1 believes that both players 2 and 3 play Out i. Although Out2

is not a best response against Out3, player 2 does not observe player 3’s play when he is
playing Out2, and so he can believe that player 3 plays In3. Likewise, player 3 can play
Out3, believing that player 2 plays In2. Player 1 plays Out1 because she believes that
(Out2�Out3) is played as a result of such mutually inconsistent beliefs.

We note that Out1 could not be played in any RPCE if the terminal node partitions
for players 2 and 3 were discrete. This is because player 1’s payoff is 1

2 in every Nash
equilibrium of the game between players 2 and 3, so by Theorem 5 in Appendix B, she
should play In. Hence, nondiscrete terminal node partitions allow an action to be played
even if the action is outside the support of equilibria under finer partitions. In other
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Figure 6. Example 6.

words, the conclusion of Theorem 5 may fail if the hypothesis that player 1’s opponents
have discrete partitions is weakened.

To sum up, this example shows that a player need not expect unobserved play to be
a Nash equilibrium if these opponents do not observe the exact terminal nodes and, as
a consequence, she may play an action that she would not play otherwise. ♦

Example 6 (Terminal node partitions and learning one player’s actions from those of
another). Here we provide an example in which the difference in terminal node par-
titions affects learning. If one player’s terminal node partition is finer than another
player’s, then the latter can learn by observing the play of the former and can respond
accordingly, while if the partitions are the same, then there is nothing to learn.

In the game in Figure 6, all players observe the exact terminal node reached, except
that player 1’s and player 2’s partitions do not reveal player 3’s action if 1 plays R1.

First, we show that player 1 can play R1 in a RPCE. To see this, consider the belief
model and actual versions

V1 = {v′
1}� v′

1 = (R1� (v
′
2� v

′
3))

V2 = {v′
2}� v′

2 = (L2� (v
′
1� v

′′
3))

V3 = {v′
3� v

′′
3}� v′

3 = (R3� (v
′
1� v

′
2))� v

′′
3 = (L3� (v

′
1� v

′
2))

The actual version profile is (v′
1� v

′
2� v

′
3)�

Notice that players 1 and 2 disagree about player 3’s action, which neither of them ob-
serve when player 1 plays R1, which is why player 2 can play L2 even though player 1 is
playing R1.
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Now we show that if player 1’s partition is discrete, she can no longer play R1 in a
RPCE. In such a situation, because player 1 has a discrete terminal node partition and
player 2 does not, player 2 can learn player 3’s play by observing player 1’s play. For
this reason, player 1 cannot play R1 in a RPCE, while player 1 could play R1 if players
are not required to believe that other players act rationally.14 To see that R1 cannot be
played, suppose the contrary. The best response condition for player 1 and observa-
tional consistency applied to player 2 imply that b(μ2) assigns probability at least 1

2 to
R3. By accordance, player 2’s belief (μ2)h2 at his information set h2 assigns probability
at least 1

2 to R3. Then the best response for player 2 is to play R2 with probability 1. How-
ever, this implies that player 1’s payoff from playing L1 is 0�1 > 0, so she cannot play R1.
Alternatively, if player 1 does not know player 2’s payoff function, the fact that player 2’s
behavior reflects her belief about player 3’s play does not convey any information to
player 1. So player 1 can believe (L2�R3) is played with probability 1, making R1 pos-
sible. The key is the observational consistency condition: player 2 knows that player 1
observes player 3’s play, so player 2’s belief about player 3’s play must match with what
player 2 thinks player 1 is best-responding against.

Notice that player 1’s belief in the RPCE we constructed for the original terminal
node partitions is, in fact, correct. However, when player 1’s terminal node partition
is discrete, player 1 can no longer play R1: With a discrete terminal node partition for
player 1, player 1 knows player 2 can and should learn player 3’s play by observing
player 1’s play. But this is impossible when player 1’s and player 2’s terminal node parti-
tions coincide. ♦

4. Justification of the RPCE definition

In this section, we discuss several examples of a game and a RPCE outcome that we think
is a plausible consequence of rational learning, and study whether the outcome would
still be a RPCE under alternative definitions that might seem natural to some readers.

Specifically, Example 7 explains why the self-confirming condition should not be
imposed on hypothetical versions, Example 8 argues that we should allow for correlated
beliefs in our model, Example 9 justifies our specification of the space of beliefs, and
Example 10 discusses the role of accordance.

Example 7 (Self-confirming condition for hypothetical versions). Consider the game in
Figure 7. The terminal node partitions are such that everyone observes the exact termi-
nal node reached, except that player 1 does not observe player 2’s and player 3’s play if
she plays Out .

Intuitively, if player 1 thinks that players 2 and 3 coordinate on the (R2�R3) equilib-
rium, she has an incentive to play Out , which makes her unable to observe how players 2
and 3 play. Indeed, the outcome (Out�L2�L3) is possible in RPCE. To see this, consider

14The supplementary Appendix develops the concept of partition-confirmed equilibrium (PCE), which
extends SCE to games with nondiscrete terminal node partitions. Roughly speaking, PCE weakens condi-
tion (ii)(b) of RPCE (Definition 7) and also drops the coherency condition in condition (ii)(a).
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Figure 7. Example 7.

the belief model and actual versions

V1 = {v′
1}� v′

1 = (Out� (v′′
2� v

′′
3))

V2 = {v′
2� v

′′
2}� v′

2 = (L2� (v
′
1� v

′
3))� v

′′
2 = (R2� (v

′
1� v

′′
3))

V3 = {v′
3� v

′′
3}� v′

3 = (L3� (v
′
1� v

′
2))� v

′′
3 = (R3� (v

′
1� v

′′
2))

The actual version profile is (v′
1� v

′
2� v

′
3)�

Notice that v′′
2 and v′′

3 are hypothetical versions, and they do not satisfy the self-
confirming condition. Version v′

1 plays Out because she conjectures that these hypo-
thetical versions exist, and her conjecture is never falsified because she plays Out .

Now we show that the outcome (Out�L2�L3) is impossible if we require the self-
confirming condition with respect to the equilibrium strategy profile for hypothetical
versions. To see this, suppose that we strengthen Definition 7 by replacing condition
(iii) with the condition that for all i and vi, vi is self-confirming with respect to π∗. If
(Out�L2�L3) is a RPCE under this stronger condition, the best response condition im-
plies that all versions of player 2 should play L2 and that all versions of player 3 should
play L3, so player 1 must believe that players 2 and 3 play (L2�L3). But then by the best
response condition, player 1 must play In.15 ♦

15Without knowledge of opponents’ payoff functions (as in the partition-confirmed equilibrium concept
in the supplementary Appendix), player 1 may still play Out , believing that players 2 and 3 play R2 and R3,
respectively.
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Figure 8. Example 8.

Example 8 (Correlated beliefs). Our formulation of beliefs is more complicated than
DFL, because we allow for correlated beliefs, while DFL restricted attention to indepen-
dent beliefs. In this example, player 1 can play an action only when she has correlated
beliefs about the play at information sets that she does not observe.

Consider the game depicted in Figure 8. This game is similar to Example 7, but
player 1 has two actions that make the terminal nodes observable for her: her deci-
sion amounts either to betting on the action that players 2 and 3 will coordinate on or to
declining to bet. The terminal node partitions are such that everyone observes the ex-
act terminal node reached except that player 1 cannot distinguish among four terminal
nodes that are caused by the action Out .

To capture the long-run consequences of rational learning, RPCE should allow for
the possibility that 1 plays Out . Intuitively, since players 2 and 3 get to play on the path,
they should play as in a Nash equilibrium of their coordination game. Hence, it makes
sense for player 1 to believe that players 2 and 3 coordinate on either (L2�L3) or (R2�R3),
and each is equally likely.16 Given this belief, the expected payoff from playing action
A is the average of 1 and −2, which is − 1

2 , and the payoff for action B is also − 1
2 in

the same way. Hence, with this belief, playing Out is optimal, as it leads to the payoff
of 0.

Player 1 can play Out in RPCE as shown by the system17

V1 = {v′
1}� v′

1 =
(

Out�
(

1
2(v

′
2� v

′
3)�

1
2(v

′′
2� v

′′
3)

))

V2 = {v′
2� v

′′
2}� v′

2 = (L2� (v
′
1� v

′
3))� v

′′
2 = (R2� (v

′
1� v

′′
3))

16Note that with this belief, player 1 is certain that the actual play of players 2 and 3 is deterministic and,
hence, independent; the correlation here is in player 1’s subjective uncertainty about which pure strategies
players 2 and 3 are using. This is the same sort of subjective correlation that SCE allows for in beliefs about
off-path play.

17Version vi’s conjecture (pv′
−i� (1 −p)v′′

−i) denotes the probability distribution with probability p on v′
−i

and 1 −p on v′′
−i.
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V3 = {v′
3� v

′′
3}� v′

3 = (L3� (v
′
1� v

′
2))� v

′′
3 = (R3� (v

′
1� v

′′
2))

The actual version profile is (v′
1� v

′
2� v

′
3)�

Just as with SCE, one can refine the set of RPCE by requiring independent beliefs. In
some cases, this might be viewed as an innocuous simplifying assumption, but we think
the restriction would be problematic here, because the fact that players 2 and 3 observe
each other’s play means that the extensive form and terminal node partitions provide
them with a particular sort of correlating device.18

Moreover, if player 1 is restricted to hold an independent belief, the action Out can-
not be played in a RPCE. To see this, notice that for Out to be at least as good as playing
A for a version of player 1, her belief has to assign probability at least 1

3 to (R2�R3). In the
same way, for Out to be at least as good as playing B for a version of player 1, her belief
has to assign probability at least 1

3 to (L2�L3). However, any independent randomiza-
tion by players 2 and 3 leads to the situation where the minimum of the probabilities
assigned to (L2�L3) and (R2�R3) is no more than 1

4 . Hence, for any independent beliefs,
Out cannot be a best response.

We note that, as in Example 5, if the terminal node partitions were discrete,
player 1 could not play Out . However, the reason behind this effect of terminal
node partitions is different: Here it is that player 1 can entertain a correlated belief,
which she would be unable to have if she actually observes player 2’s and player 3’s
play.19 ♦

Example 9 (Assessment–strategies correlation). We have allowed vi’s belief at h, (μi)h,
to lie in the space �(�(h)×�−i) and not necessarily in �(h)×�(�−i). Here we provide
an example that justifies this specification.

Consider the extensive-form game depicted in Figure 9. All players observe the ex-
act terminal node reached, except that players 1 and 4 do not distinguish among those
terminal nodes that are caused by R4.

We first show that R4 is compatible with RPCE. For example, consider the belief
model and actual versions

V1 = {v′
1}� v′

1 =
(

Out�
(

1
2(v

′
2� v

′
3� v

′
4)�

1
2(v

′′
2� v

′′
3� v

′
4)

))

V2 = {v′
2� v

′′
2}� v′

2 = (L2� (v
′
1� v

′
3� v

′
4))� v

′′
2 = (R2� (v

′
1� v

′′
3� v

′
4))

V3 = {v′
3� v

′′
3}� v′

3 = (L3� (v
′
1� v

′
2� v

′
4))� v

′′
3 = (R3� (v

′
1� v

′′
2� v

′
4))

V4 = {v′
4}� v′

4 = (R4� (v
′
1� v

′
2� v

′
3))

The actual version profile is (v′
1� v

′
2� v

′
3� v

′
4)�

18If players 2 and 3 have trivial terminal node partitions (and so do not observe their own ex post payoffs),
then there is no reason for player 1 to think their play has converged. In this case too, RPCE would allow
player 1 to have correlated beliefs about the actions of players 2 and 3, but absent the explicit correlating
device of own past moves, the restriction to independent beliefs strikes us as less problematic.

19A similar argument can be made in Example 9 below to show that, with the discrete terminal node
partition, player 1 cannot play Out and so player 4 cannot play R4.
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Figure 9. Example 9.

To support R4, it must be possible that player 4 believes player 1 plays Out once
her information set is reached. For this play to satisfy the best response condition at
this information set, we should allow for player 1 to believe that player 2’s and player 3’s
play is correlated, just as in Example 8. Specifically, suppose a belief μ′

1 of v′
1 is such

that b(μ′
1) assigns equal probabilities to (L2�L3�R4) and (R2�R3�R4), and (μ′

1)h assigns
equal probabilities to (xL� (L2�L3�R4)) and (xR� (R2�R3�R4)), where h is player 1’s in-
formation set. This belief satisfies coherency and accordance, and it makes player 1
playing Out a best response. Notice that player 1 knows that players 2 and 3 are actually
playing the coordination game on the path of play because player 4 plays R4, thus this
correlated belief seems plausible, and it is possible in RPCE when each profile of oppo-
nents’ strategies is associated with a different assessment. However, it is impossible if
only a single assessment is used for a distribution of the opponents’ strategies. Indeed,
for any single assessment at player 1’s information set, player 1’s expected payoff from
playing either A or B is at least 1

4 , so playing Out can never be a best response. Hence,
player 4 should expect the payoff of 1 by playing L4, which means that player 4 cannot
play R4.

Because the belief model underlying the play of R4 seems sensible, we would not
want to refine the set of RPCE by insisting that each version has a point distribution
on assessments. The definition of RPCE allows each version to have a non-degenerate
distribution on assessments and, in particular, it enables player 4 to play R4 in this
example. ♦

Example 10 (Accordance). We use Figure 10 to explain why the accordance condition
allows for a belief (μi)h to have different marginals over continuation strategies across
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Figure 10. Example 10.

different h’s. All players observe the exact terminal node reached, except that player 3
does not observe player 4’s choice when player 3 plays Out . Intuitively, if player 1 plays
Out1 and player 3 thinks that players 2 and 4 play either the (A2�A4) or (B2�B4) equilib-
ria regardless of player 1’s play, then player 1’s deviation to In1 would inform player 3
of which equilibrium players 2 and 4 are coordinating on. To model this inference,
player 3’s belief about the continuation play has to vary across information sets, which
the definition of accordance allows.

We show here that (Out1�A2�Out ′′
3�A4) is a RPCE outcome while it would not be if

we strengthened the definition by replacing part (ii) by the following condition: For all
h ∈Hi,

(μi)h(π̂−i)=
∑

π̃−i(h′)=π̂−i(h′) forall h′ after h

b(μi)(π̃−i)� (1)

This stronger condition requires that the continuation play has to agree with b(μ) as
opposed to merely having a weakly smaller support.

First we show that (Out1�A2�Out ′′
3�A4) is a RPCE. In particular, it satisfies accor-

dance. To see this, consider the belief model and actual versions

V1 = {v′
1� v

′′
1}� v′

1 = (Out1� (v
′
2� v

′
3� v

′
4))� v

′′
1 = (Out1� (v

′′
2� v

′
3� v

′′
4))

V2 = {v′
2� v

′′
2}� v′

2 = (A2� (v
′
1� v

′
3� v

′
4))� v

′′
2 = (B2� (v

′′
1� v

′
3� v

′′
4))

V3 = {v′
3}� v′

3 =
(
(In3� In′

3�Out ′′
3)�

(
1
2(v

′
1� v

′
2� v

′
4)�

1
2(v

′′
1� v

′′
2� v

′′
4)

))

V4 = {v′
4� v

′′
4}� v′

4 = (A4� (v
′
1� v

′
2� v

′
3))� v

′′
2 = (B4� (v

′′
1� v

′′
2� v

′
3))

The actual version profile is (v′
1� v

′
2� v

′
3� v

′
4)�

In this belief model, player 3 assigns probability 1
2 to each of (A2�A4) and (B2�B4).

Then, when player 1 plays Out1, RPCE allows for a belief in which (i) player 3 at h3
thinks that player 4 will play A4, (ii) player 3 at h′

3 thinks that player 4 will play B4, and
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(iii) player 3 at h′′
3 thinks that player 4 will play A4 after A2 and B4 after B2. Given this

belief, (In3� In′
3�Out ′′

3) is a best response for player 3.
If player 1 thinks that player 3’s version is as above, then player 1 would expect payoff

−2 from playing In1 and 0 from playing Out1. So Out1 is a best response.
Now we show that (Out1�A2�Out ′′

3�A4) is not a RPCE outcome with the stronger
version of accordance that imposes condition (1).

To see this, note that player 3’s belief about player 2’s and player 4’s play can only
assign positive probability to the strategy profiles (A2�A4), (B2�B4), or (( 1

2A2�
1
2A4)�

( 1
2B2�

1
2B4)). Some observations about player 3’s incentives are in order. First, for A′′

3

not to be strictly better than Out ′′
3 at h′′

3 , player 3 cannot assign probability more than 5
6

to (B2�B4), while for B′′
3 not to be strictly better than Out ′′

3 at h′′
3 , player 3 cannot assign

probability more than 5
6 to (A2�A4).20

Next, for Out1 to be a best response for player 1, player 1 has to think that player 3
plays In3 or In′

3 with a positive probability. This means that player 1 thinks that either
player 3 at h3 thinks that player 4 would play A4 with probability at least 11

12 ,21 or player 3
at h′

3 thinks that player 4 would play B4 with probability at least 11
12 . But this is impossible

under the strengthened definition of accordance because, given the conclusion above,
player 3’s belief about player 4’s continuation strategy can assign probability at most
maxp[ 5

6 · (1 −p)+ 1
2 ·p] = 5

6 to each of A4 and B4, where p in the maximand denotes the
probability that player 3 attaches to the mixed equilibrium play by players 2 and 4. ♦

5. RPCE, RSCE, and RCE

In this section, we compare RPCE with other concepts from the literature. In Section 5.1,
we compare RPCE with RSCE, and show that RPCE “reduces” to RSCE if the terminal
node partitions are discrete and beliefs are independent. In Section 5.2, we compare
RPCE with RCE Rubinstein and Wolinsky (1994), and show that when the signal function
specified in the definition of RCE gives the same information as the partitions of the
terminal nodes, RPCE is equivalent to RCE if moves are simultaneous.

5.1 Rationalizable self-confirming equilibrium

In this subsection, we show that RPCE is implied by RSCE if we require independent
beliefs. One part of this argument is that any independent beliefs can be reduced to a
single behavior strategy profile for the opponents, as shown by Fudenberg and Kreps
(1995); the idea is that Kuhn’s theorem allows us to associate a behavior strategy to any
probability distribution on strategies, and that with independence, the profile of these
associated behavior strategies is equivalent to the original belief.

To see this formally, let us first define RSCE (notations are adjusted to accord with
ours). This concept is defined for games with discrete terminal node partitions.

20If (B2�B4) is assigned probability 5
6 , then playing A′′

3 ensures the payoff of 1 × 5
6 + (−5)× 1

6 = 0 because
−2 is the worst payoff that player 3 can get given Out1. A similar computation applies to the play of B′′

3 at h′′
3 .

21If A4 is assigned probability 11
12 , then playing In3 ensures the payoff of 1× 11

12 + (−11)× 1
12 = 0. A similar

computation applies to the expected payoff of player 3 at h′
3.
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Definition 8. The strategy profile π∗ is a rationalizable self-confirming equilibrium if
there exist a belief model V and an actual version profile v∗ such that the following three
conditions hold:22

(i) Strategy profile π∗ is generated by v∗.

(ii′) For each i and vi = (πi�pi), there exists μi such that (a) μi is coherent with pi,
(b) πi is a best response to μi at all h ∈Hi, and (c) μi is an independent belief.23

(iii′) For all i and vi = (πi�pi), d(πi�π−i(v−i)) = d(π∗) for all v−i in the support of pi.

There are two main differences between this definition and that of RPCE, namely
that Definition 8(iii′) (every version expects the same distribution over terminal nodes)
is stronger than Definition 7(iii), and that observational consistency Definition 7(iv) is
not directly imposed in RSCE. Even with a discrete terminal node partition, the way Def-
inition 7(iii) is stated is somewhat different than Definition 8(iii′),24 but as the next result
shows, this difference is irrelevant.

Theorem 3. Fix a game with discrete terminal node partitions.

(i) If an actual version profile v∗ and a belief model V satisfy Definition 7(iii) and Def-
inition 7(iv), then there exists a belief model V̂ such that v∗ and V̂ satisfy Defini-
tion 8(iii′) and Definition 7(iv).

(ii) Definition 8(iii′) implies Definition 7(iv).

The proof of this result is given in the Appendix C. Part (ii) is not surprising: Since
the terminal node partitions are discrete, Definition 8(iii′) essentially requires that the
terminal node reached is common knowledge, so observational consistency holds. Part
(i) says that in the presence of the observational consistency condition, requiring the
self-confirming condition for hypothetical versions does not further restrict the set of
equilibria. Notice that this conclusion was not true when we considered RPCE with
nondiscrete terminal node partitions (see Example 7).

Corollary 2. In games with discrete terminal node partitions, any outcome of a RSCE
is the outcome of a RPCE with independent beliefs.

In the next example, which is taken from DFL’s Example 3.2, we show that the set of
possible outcomes can expand if we relax the definition of RSCE equilibrium by replac-
ing Definition 8(iii′) with Definition 7(iii).

22DFL allow all π̂ that have the same distribution over terminal nodes as π∗ to be RSCE, but this differ-
ence is not important for our purpose.

23DFL required optimality only at the information sets that have positive probability under πi, but the
difference is immaterial in one-move games.

24If vi is self-confirming, then d(πi�π−i(v−i)) equals d(πi�π
∗
−i) for all v−i in the support of pi , but Defi-

nition 8(iii′) states that it is equal to d(π∗
i �π

∗
−i).
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1 r

u

2
a

b

0�1�0

3

3
U 1�1�1

D 0�0�0

U 2�2�2

D 4�−4�10

Figure 11. Example 11.

Example 11 (DFL). Consider the game depicted in Figure 11, where all players’ termi-
nal node partitions are discrete. DFL argue that the outcome (u�U) is impossible in
RSCE, because if player 3 chooses U , then player 2 should play a since he observes the
terminal node, and then player 1 should take r. However, if we replace Definition 8(iii′)
by Definition 7(iii) in Definition 8, where observational consistency is not imposed, this
outcome becomes possible. To see this, consider the belief model and actual versions

V1 = {v′
1� v

′′
1}� v′

1 = (u� (v′′
2� v

′
3))� v

′′
1 = (r� (v′

2� v
′′
3))

V2 = {v′
2� v

′′
2}� v′

2 = (a� (v′
1� v

′
3))� v

′′
2 = (b� (v′

1� v
′′
3))

V3 = {v′
3� v

′′
3}� v′

3 = (U� (v′
1� v

′
2))� v

′′
3 = (D� (v′′

1� v
′′
2))

The actual version profile is (v′
1� v

′
2� v

′
3)�

Here all the conditions in the definition of RSCE other than Definition 8(iii′) hold, as
does Definition 7(iii). Notice that v′′

1 , v′′
2 , and v′′

3 are not self-confirming with respect to
the actual distribution π(v′

1� v
′
2� v

′
3), and they are hypothetical versions and not actual

ones.
The key is that the actual version of player 1, v′

1, conjectures that player 2 be-
lieves that player 3 plays D, and this conjecture is ruled out by observational consis-
tency: The equation in Remark 1(a) of observational consistency applied to v′

1’s belief is
d(b� (u�D)) = d(b� (u�U)). But this equation is false. ♦

Notice that the set of SCE is the same with Definition 7(iii) or Definition 8(iii′), thus
requiring optimality at off-path information sets is the key to this example.

Finally, we have shown in Section 2 that Kreps and Wilson’s (1982) consistency im-
plies our restriction on beliefs. Since our restrictions do not imply consistency, the con-
verse of Corollary 2 need not hold.
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5.2 Rationalizable conjectural equilibrium

The main difference between RPCE and RCE is that RPCE, like RSCE, requires players
believe others will play rationally (maximize the presumed payoff functions) as long as
they have not behaved irrationally in the past, while RCE is designed to model normal-
form games and places no restrictions on play at off-path information sets.25�26 Because
of this difference, RPCE makes stronger predictions than RCE in most extensive-form
games. If all information sets are on every path, this distinction becomes moot and the
two concepts become equivalent. In particular, in one-shot simultaneous-move games,
we can state the precise connection between RCE and RPCE. To do so, we first define
RCE.

Consider a normal-form game with players I = {1� � � � � n}, the action set Ai, A =
×i∈I Ai, and A−i = ×j �=i Aj , and the payoff function ui : A → R. The set of mixed strate-
gies is Mi = �(Ai), M = ×i∈I Mi, and M−i = ×j �=i Mj . There is a set of private signals Si,
and a signal function gi : A → Si. gi(a) is the signal that i privately observes when the
action profile is a ∈A. With an abuse of notation, we write gi(m) for a probability distri-
bution over Si given the mixed profile m ∈ M , called a random signal. Let σi ∈ �(Si) be
the general element of the set of random signals.

The strategy–signal pair (mi�σi) is said to be g-rationalized by γ ∈ �(M−i) if
(i) gi(mi�m−i) = σi for all m−i ∈ supp(γ) and (ii) mi is a best response against γ.

The sets of strategy–signal pairs B1� � � � �Bn are g-rationalizable if for all i, every
(mi�σi) ∈ Bi is g-rationalized by some γ such that for all m−i ∈ supp(γ) and all j,
(mj�gj(mi�m−i)) ∈ Bj .

An RCE is m∗ ∈ M such that there exists g-rationalizable sets B1� � � � �Bn such that
(m∗

i � gi(m
∗)) ∈ Bi for each i.

For an extensive-form game 
 with terminal node partitions P = (P1� � � � �Pn), let
(A
�gP) be the pair of normal-form representation of 
 and the profile of signal func-
tions (denoted by gP := (gP

1 � � � � � g
P
n )) such that gP

i (a) = Pi(a) for each action profile
a ∈ A
. Conversely, given any (A�g) with g = (g1� � � � � gn) such that gi(m) = gi(m

′) im-
plies mi =m′

i (so that the (extended notion of) perfect recall assumption is satisfied), we
define the related simultaneous-move extensive-form game 
A and endow it with the
terminal node partition Pg such that Pg

i (a) = gi(a) for each action profile a ∈A
.
Finally, we say that a behavioral strategy π is equivalent to a mixed strategy profile

m or a mixed strategy profile m is equivalent to a behavioral strategy π if π is generated
by m according to the Kuhn’s theorem.

Now we are ready to state the formal connection between the two concepts. We omit
the proof.

Theorem 4. (i) Any RPCE in (
�P) is equivalent to some RCE in (A
�gP).

(ii) Any RCE in (A�g) is equivalent to some RPCE in (
A�Pg).

25See the example in Figure 2.1 of DFL.
26Gilli (1999) proposes a related solution concept; Battigalli (1999) shows it is equivalent to RCE.
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One consequence of this equivalence is that RCE, like RPCE, requires that in games
like Example 3 when player 1 plays Out1, she believes the play of the others is a Nash
equilibrium of the subgame.27 In particular this is true even in a three-player game
where players 2 and 3 play the game of Shapley (1964), where fictitious play and smooth
fictitious play do not converge.28 Because the long-run joint distribution over actions in
the Shapley cycle is a correlated equilibrium, this example may suggest an alternative
equilibrium concept in which players expect that the empirical distribution of unob-
served on-path play is a correlated equilibrium in the subgame. We do not define this
alternative here because it is typically too inclusive.

6. Conclusion

Like RCE and RSCE, RPCE combines the idea that players have partial but objective in-
formation about equilibrium play with the idea that players reason about the observa-
tions and incentives of others. RSCE applies to extensive-form games where players see
the realized terminal node at the end of each play of the game; RPCE generalizes this to
situations where players see only a partition of the terminal nodes. In addition, RPCE
relaxes the independent-beliefs condition of RSCE to allow for correlation.

The examples show that (i) under RPCE, a player’s belief about the actions of others
can depend on whether those others get to act along the equilibrium path, (ii) unob-
served on-path play provides a natural form of correlating device, (iii) a player can learn
about the unobserved actions of a second player from the actions of a third, and, finally,
(iv) the precise implications of all of the above depend on the nature of the terminal
node partitions. In general, coarsening a player’s terminal node partition cannot restrict
the set of that player’s RPCE strategies, but it can enlarge it. We identified four reasons
that this enlargement can occur, and provided a sufficient condition under which coars-
ening a player’s terminal partition has no effect on his RPCE strategies. We also showed
how RPCE reduces to RCE and RSCE in the appropriate special cases.

The supplementary Appendix discusses three additional topics: The definition of
partition-confirmed equilibrium (PCE), the epistemic interpretation of observational
consistency, and the effect of changes in terminal node partitions on the outcomes un-
der RPCE.

Appendix A: Lemma 1

The next lemma shows that in a RPCE, any version profile to which an actual version
assigns positive probability is the actual version profile of some RPCE.

27Appendix B gives a formal definition of the class of “player-1 participation games” and proves this
claim.

28Brown (1951) introduced fictitious play as a way to compute Nash equilibria. Fudenberg and Kreps
(1993) give fictitious play a descriptive interpretation in strategic form games, and point out some problems
with that interpretation when the process cycles instead of converging to constant play of a fixed pure
action profile.
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Lemma 1. Fix a RPCE π∗, a belief model V , and actual versions v∗ that support it. For
every player i, if v∗

i ’s conjecture assigns positive probability to ṽ−i, then π(v∗
i � ṽ−i) is also a

RPCE.

Proof. Pick player i and ṽ−i to which v∗
i assigns positive probability. We will use the be-

lief model V to support a π(v∗
i � ṽ−i) as a RPCE. Conditions (ii) and (iv) of the definition of

RPCE (Definition 7) hold for all versions in V , so they hold for strategy π(v∗
i � ṽ−i) and the

belief model V as well. So it remains to show that if (v∗
i � ṽ−i) is the actual version profile,

then v∗
i satisfies the self-confirming condition with respect to π(v∗

i � ṽ−i) and that ṽj for
each player j �= i does as well. First, since v∗

i satisfies the self-confirming condition in
the original RPCE and since ṽ−i is in the support of the conjecture of v∗

i by assumption,
v∗
i is self-confirming with respect to π(v∗

i � ṽ−i). Second, since v∗
i satisfies observational

consistency in the original RPCE, Dj(πj(ṽj)�π−j(v̂−j)) = Dj(π(v
∗
i � ṽ−i)) for all v̂−j in the

support of the conjecture of ṽj . Thus ṽj satisfies the self-confirming condition with re-
spect to π(v∗

i � ṽ−i). �

Remark 2. The proof of Lemma 1 shows that even the hypothetical version ṽj must sat-
isfy the self-confirming condition with respect to π(v∗

i � ṽ−i) if v∗
i assigns positive prob-

ability to ṽ−i. This does not imply that ṽj is self-confirming with respect to π∗. Indeed,
imposing that condition (i.e., imposing Definition 7(iii) for all versions and not just the
actual ones) would be unduly restrictive, as we show in Example 7.

Appendix B: A theorem for participation games

The class of participation games generalizes some of the examples from the text. Intu-
itively, this is a game in which player 1 has an option to play Out at the root node that
prevents her from observing the consequence of the opponents’ actions at the terminal
nodes, and other players play a game, not knowing player 1’s action. Formally, a player-1
participation game 
 (with a payoff function u and the set of players I) is an extensive-
form game with the following properties: Fix player 1’s set of actions A1 such that one of
its element is Out , and fix another extensive-form game 
′ with a payoff function v and
the set of players I \ {1}. Denote by n(x�a) the node in 
 that corresponds to x in 
′ after
action a ∈A1 is taken.

• At the root node, player 1 moves, choosing between In and Out .

• Whichever action is taken, 
′ is played after player 1’s decision.

• Nodes n(x�a) and n(x′� a′) for x�x′ ∈ X \ Z are in the same information set in 
 if
and only if x and x′ are in the same information set in 
′.

• Terminal nodes n(z�a) and n(z′� a′) for z� z′ ∈Z are in the same cell of the terminal
node partition of player i if and only if z and z′ are in the same cell for i and a = a′,
except for the following exception.
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• Terminal nodes n(z�Out) and n(z′�Out) for z� z′ ∈ Z are in the same cell of the
terminal node partition of player 1.

• For all i, ui(n(z� In)) = vi(z), ui(n(z�Out)) = vi(z) for all i �= 1, and
u1(n(z�Out)) = 0.

Theorem 5. Fix a player-1 participation game 
. If player 1 plays Out with probability 1
in a RPCE, then there is a convex combination of RPCE of 
′ such that no action of player 1
has a strictly positive payoff.

Proof. Fix a RPCE in which player 1 plays Out with probability 1. Pick a version pro-
file for player 1’s opponents ṽ−1 to which the conjecture of v∗

1 assigns positive probabil-
ity. By Lemma 1, π(v∗

1� ṽ−1) is a RPCE of 
, and it is clear from the proof of the lemma
that the same belief model V that supports the original RPCE can be used to support
π(v∗

1� ṽ−1) as a RPCE, where the actual version profile is (v∗
1� ṽ−1). By the definition of a

player-1 participation game, player 1’s action does not affect any opponent’s payoff or
observation. Thus π−1(ṽ−1) is trivially a RPCE of 
′, with the belief model simply delet-
ing player 1. Since this is true for any ṽ−1 in the support of the conjecture of v∗

1 , and the
strategy of the actual version of player 1 is a best response to her belief in the original
RPCE, the proof is complete. �

Corollary 3. Fix a player-1 participation game 
 such that 
′ is a simultaneous-move
game with discrete terminal node partitions and a unique Nash equilibrium. If player 1
plays Out with probability 1 in a RPCE of 
, then no action of player 1 gives her a positive
payoff against this unique Nash equilibrium.

Appendix C: Proof of Theorem 3

Proof. Part (i). Fix an actual version v∗ and a belief model V that satisfies Defini-
tion 7(iii) and Definition 7(iv). Construct a new belief model V̂ that is identical to the
original one, except that all versions that do not satisfy the equality in Definition 8(iii′) in
V are eliminated and each version’s conjecture assigns the same weight to the versions
that are still in V̂ . Specify the same actual version profile as in V (such versions are not
eliminated because of Definition 7(iii)). By construction, Definition 8(iii′) holds. Hence
by part (ii) that we prove below, Definition 7(iv) holds as well. Finally, we check that the
sum of probabilities assigned by the conjecture of any remaining version is unity. To
see this, note first that Definition 7(iii) implies that the actual version v∗

i = (π∗
i �p

∗
i ) must

satisfy (π∗
i �π−i(v−i)) = d(π(v∗)) for all v−i in the support of p∗

i . Also, for ṽj = (π̃j� p̃j),
whenever d(π̃j�π−j(v−j)) = d(π(v∗)) for all v−j in the support of p̃j , observational con-
sistency implies that for any version of j’s opponent v̂k = (π̂k� p̂k) in the support of p̃j ,
d(π̂k�π−k(v−k)) = d(π(v∗)) for all v−k in the support of v̂k. This means that no version
who is assigned a positive probability by any remaining version is eliminated, implying
that the sum of probabilities is still unity.
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Part (ii). Since terminal node partitions are discrete, the observational consistency
condition for version vi = (πi�pi) reduces to the requirement that pi(v−i) > 0 implies,
for each j �= i, d(πj(vj)�π−j(v−j)) = d(πi�π−i(v−i)) for all v−j in the support of vj ’s con-
jecture. But the conclusion of this requirement is implied by Definition 8(iii′), as Defini-
tion 8(iii′) implies that both sides of the equality are equal to d(π∗). �
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