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Maximal revenue with multiple goods:
Nonmonotonicity and other observations
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Consider the problem of maximizing the revenue from selling a number of goods
to a single buyer. We show that, unlike the case of one good, when the buyer’s
values for the goods increase, the seller’s maximal revenue may well decrease. We
then identify two circumstances where monotonicity does obtain: when optimal
mechanisms are deterministic and symmetric, and when they have submodular
prices. Next, through simple and transparent examples, we clarify the need for
and the advantage of randomization when maximizing revenue in the multiple-
good versus the one-good case. Finally, we consider “seller-favorable” mecha-
nisms, the only ones that matter when maximizing revenue. They are essential
for our positive monotonicity results, and they also circumvent well known non-
differentiability issues.
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1. Introduction

Consider the problem of a seller who wishes to maximize the revenue from selling mul-
tiple goods to a single buyer with private information about his value for the goods. In
contrast to the one-good case where a complete solution has been known for years,1 a
general solution in the case of multiple goods remains elusive and, except under special
circumstances,2 very little is known about even the form of the solution or its properties.
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The present paper highlights some important differences between the one-good and the
multiple-good cases.

In Section 2, we exhibit the surprising phenomenon that the seller’s maximal rev-
enue may well decrease when the buyer’s values for the goods increase.3 This revenue
nonmonotonicity can occur only when there is more than one good: revenue is easily
shown to be nondecreasing in the buyer’s value when there is only a single good. Thus,
the seemingly clear intuition that the seller is able to extract more revenue from buyers
whose valuations for the goods are higher turns out to be false in general.4

Under what circumstances will the seller’s maximal revenue increase when the
buyer’s distribution of valuations increases? In Section 2.3, we identify two such cir-
cumstances: one when the mechanism is deterministic and symmetric, and the other
when payments to the seller can be described by a submodular pricing function.
These positive revenue-monotonicity results are both interesting in their own right
and help explain why counterexamples to monotonicity (ours included) cannot be en-
tirely transparent—they must involve randomizations or asymmetries, and their rev-
enue function cannot be submodular.

In Section 3, we present a simple example where randomization is necessary for rev-
enue maximization, and clarify why randomization is needed only when there are mul-
tiple goods.

In Section 1.2, we formally introduce “seller-favorable” mechanisms, where, when
the buyer is indifferent, the tie is always broken in favor of the seller. These mechanisms
are the only ones that matter when maximizing the seller’s revenue, and also play an
important role in the positive monotonicity results of Section 2.3. In the Appendix, we
characterize the revenue of seller-favorable mechanisms using directional derivatives,
which exist everywhere; this has the additional benefit of circumventing nondifferentia-
bility issues that arise from incentive compatibility, which, while ultimately harmless,
are often a distracting nuisance within the analysis.

The maximal-revenue problem has been shown to be significantly less well behaved
when the values of the goods are not independent; see Hart and Nisan (2013, 2014a,
2014b).5 It is, therefore, important also to obtain (inevitably more subtle) examples with
independent, and even independent and identically distributed (i.i.d.), values. We do so
both for revenue nonmonotonicity and for randomization.

3What we compare is the maximal revenue from two given distributions, one having higher values than
the other (formally, this means first-order stochastic dominance).

4When the mechanism is held fixed, there are well known examples in which the seller’s revenue unex-
pectedly falls; for instance, when the number of bidders increases (Matthews 1984, Menicucci 2009) and
when the seller releases more information (Perry and Reny 1999). But in both of these cases, the seller’s
maximal revenue cannot fall since the seller can always choose to ignore the additional bidders and can
always choose not to release new information. Adams and Yellen (1977) show that a multiple-good monop-
olist, when facing a buyer who can consume at most one good, can sometimes increase profits by using
negative advertising to reduce a consumer’s value for one of the goods. The constraint that buyers can
consume at most one good is important for their example. See footnote 18 in Section 2.2 (we thank an
anonymous referee for bringing the Adams and Yellen paper to our attention).

5It is shown there, for instance, that deterministic mechanisms always ensure at least one-half of the
maximal revenue in the independent case, but only an arbitrarily small fraction in the general (correlated)
case.
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1.1 Preliminaries

The seller possesses k ≥ 1 goods (or “items”), which are worth nothing to him (and
there are no costs). The valuation of the goods to the buyer is given by a vector6

x = (x1�x2� � � � � xk) ∈ R
k+, where xi ≥ 0 is his value for good i. The valuation is assumed

to be additive over the goods: the buyer’s value of a subset L ⊂ {1�2� � � � �k} of goods is∑
i∈L xi. The buyer knows the valuation vector x, whereas the seller knows only that x is

drawn from a given probability distribution F on R
k+. We make no further assumptions

on F . In particular, F may possess atoms, and its support may be finite or infinite and
need not be convex or even connected. The seller and the buyer are risk-neutral and
have quasilinear utilities.

A (direct) mechanism for selling the k goods is given by a pair of functions (q� s),
where q = (q1� q2� � � � � qk) :Rk+ → [0�1]k and s :Rk+ → R. If the buyer reports that his
valuation is x, then qi(x) ∈ [0�1] is the probability that the buyer receives good7 i (for
i = 1� � � � �k), and s(x) is the payment that the seller receives from the buyer. We call q
the allocation function and call s the payment function; the range M := {(q(x)� s(x)) :
x ∈ R

k+} ⊂ [0�1]k × R of the mechanism is referred to as its menu.8 When the buyer re-
ports his valuation x truthfully, his payoff is b(x) = ∑k

i=1 qi(x)xi − s(x) = q(x) · x − s(x)

and the seller’s payoff is9 s(x). A mechanism (q� s) is individually rational (IR) if b(x) ≥ 0
for all x ∈ R

k+, and it is incentive compatible (IC) if b(x) ≥ q(y) · x− s(y) for all x� y ∈ R
k+.

By the revelation principle, the maximal revenue from the distribution F is Rev(F) :=
supEF [s(x)], where x is distributed according to F , and the supremum is over all IC and
IR mechanisms10 (q� s).

1.2 Seller-favorable mechanisms

We now introduce the concept of seller-favorable mechanisms: these are incentive-
compatible mechanisms for which it is not possible to increase the seller’s payment
function while leaving the buyer’s payoff function unchanged, without violating incen-
tive compatibility. Formally, the IC mechanism (q� s) is seller-favorable if there is no
other IC mechanism (q̃� s̃) having the same buyer payoff function, i.e., q̃(x) · x − s̃(x) =
b(x) = q(x) · x − s(x) for all x ∈ R

k+, and a larger payment function, i.e., s̃(x) ≥ s(x)

for every x ∈ R
k+, with strict inequality for some x ∈ R

k+. This implies, in particu-
lar, that when the buyer is indifferent, ties must be broken in favor of the seller, i.e.,
q(y) · x− s(y) = q(x) · x− s(x) implies s(y) ≤ s(x).

6The variable R is the real line, Rk is the k-dimensional Euclidean space, and R
k+ = {x ∈ R

k :x ≥ 0} is its
nonnegative orthant. We follow the standard assumption that valuations are nonnegative; in Section A.1,
we deal with arbitrary valuations.

7The assumption of risk neutrality implies that only the marginal probabilities of getting each good
matter.

8An interpretation is that the seller “posts” the menu and the buyer “chooses” from it.
9In the literature, this is called transfer, cost, price, or revenue, and is denoted by t, c, p, and so on.

We hope that using the mnemonic s for the seller’s final payoff and b for the buyer’s final payoff will avoid
confusion.

10Such that s is measurable. In Section A.1 (footnote 48), we will see that measurability is not an issue.
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When maximizing revenue, these are the only mechanisms that matter. Moreover,
the restriction to seller-favorable mechanisms simplifies the analysis (in particular, it
circumvents nondifferentiability issues; see the Appendix) and, as we will see in Sec-
tion 2.3, it is needed to obtain monotonicity results.

The characterization of IC mechanisms (q� s) as those whose allocation function, q,
is a subgradient of the buyer’s convex payoff function is well known (starting with Rochet
1985). It is an inconvenient and often technically annoying fact that the buyer’s convex
payoff function, while differentiable almost everywhere, need not be differentiable ev-
erywhere. Proofs that are otherwise simple and elegant often require detours through
subgradient measurable selection arguments.11

Such detours can be avoided when one restricts attention to seller-favorable mecha-
nisms. The reason is that the buyer’s payoff function is not differentiable only when he is
indifferent between a number of reports. But if the mechanism (q� s) is seller-favorable,
the buyer’s truthful report must maximize the seller’s payoff among all of the buyer’s
optimal reports. As we will show in the Appendix, this implies that q(x) · x = b′(x;x),
which denotes the directional derivative of b at x in the direction x (see the formal def-
initions after the proof of Lemma 13) for every buyer valuation x. Consequently, in a
seller-favorable mechanism, the buyer’s payoff function b completely determines the
seller’s payoff function s at every x, whether it is a point of differentiability of b or not,
and s(x) = b′(x;x)− b(x) for all x.

Seller-favorable mechanisms are relatively easy to construct from any IC mecha-
nism; moreover, doing so while preserving the menu (up to closure) and so preserving
certain useful properties (such as submodularity; see Section 2.3) turns out to be more
subtle.

Proposition 1. Let (q� s) be an IC mechanism, with buyer payoff function b and
menu M . Then there exists a seller-favorable mechanism (q̃� s̃) with buyer payoff function
b̃ and menu M̃ such that b̃(x) = b(x) and s̃(x) ≥ s(x) for all x ∈R

k+, and12 M̃ ⊂ clM .

Proposition 1 is proved in the Appendix (see Proposition 16), together with a number
of additional useful results.

2. Nonmonotonicity: Increasing values may decrease revenue

When the buyer’s values for the goods increase, what happens to the seller’s maximal
revenue? It stands to reason that the revenue should also increase, as there is now more
value for the seller to “extract.” While this is easily shown to be true when there is one
good (Section 2.1), it is perhaps a surprise that it no longer holds when there are multiple
goods (Sections 2.2 and 2.4).

To see this, consider two situations: in the first, the valuation is given by the (Rk+-
valued) random variable X1 with distribution function F1; in the second, the valuation
is given by the random variable X2 with distribution function F2. Assume that X1 ≤ X2

11For example, Lemma A.4 in Manelli and Vincent (2007); cf. footnote 56 in the Appendix.
12The notation clM denotes the closure of the set M (in [0�1]k ×R).
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everywhere; i.e., in every state ω, the realization X1(ω) of X1 is less than or equal to (in
all k coordinates) the realization X2(ω) of X2. What we will show is that the maximal
revenue that is obtained from X2 may well be smaller than the maximal revenue that
is obtained from13 X1. In terms of distributions, the condition X1 ≤ X2 amounts to
first-order stochastic domination of F1 by14 F2.

2.1 Monotonicity for one good

When there is only one good, i.e., k= 1, incentive compatibility (IC) implies that a buyer
with a higher valuation pays no less than a buyer with a lower valuation. Thus, increas-
ing the valuation of the buyer can only increase the revenue.

Proposition 2. Let F1 and F2 be two distributions on R+. If F2 first-order stochastically
dominates F1, then Rev(F1) ≤ Rev(F2).

Proof. First, we claim that every IC mechanism is monotonic in the sense that the
seller’s payoff increases weakly with the buyer’s value: if x > y ≥ 0, then s(x) ≥ s(y). In-
deed, for all x, y, the IC inequalities at x and at y imply (q(x) − q(y))x ≥ s(x) − s(y) ≥
(q(x)− q(y))y, hence (q(x)− q(y))(x− y) ≥ 0; when x > y, it follows that q(x)− q(y) ≥ 0
and, thus, s(x)− s(y) ≥ 0 (because y ≥ 0).

Second, first-order stochastic dominance implies that EF1[s(x)] ≤ EF2[s(x)] for ev-
ery IC mechanism, since s is a nondecreasing function. �

Remark. Proposition 2 also follows easily from Myerson’s (1981) characterization of the
optimal revenue when there is one good as Rev(F)= supp≥0 p · (1−F(p)). However, the
proof above shows that revenue monotonicity holds not only for optimal mechanisms,
but for any incentive-compatible mechanism.

2.2 Nonmonotonicity for multiple goods

Surprisingly, Proposition 2 does not hold when there is more than one good. That is,
increasing the buyer’s valuations need not yield higher revenue to the seller.

When there are multiple goods, one can easily construct examples of IR and IC
mechanisms that are not monotonic.15 Take, for instance, the mechanism where the
buyer is offered a choice from the following menu of four outcomes: get nothing and pay
nothing (with payoff = 0); or get good 1 for price 1 (with payoff = x1 − 1); or get good 2

13Thus, in applications where the distribution of X2 is not precisely known, and only a certain lower
bound X1 is given, the optimal revenue from X1 does not necessarily provide a lower bound for the optimal
revenue from X2.

14Formally, F2 first-order stochastically dominates F1 if and only if EF1 [u(X)] ≤ EF2 [u(X)] for every non-
decreasing function u :Rk →R. As is well known, this is equivalent to having two random variables X1 and
X2 with distributions F1 and F2, respectively, that are defined on the same probability space and satisfy
X1 ≤ X2 pointwise (this is called coupling ). A comprehensive treatment of stochastic dominance can be
found in Shaked and Shanthikumar (2007).

15Our first such example was constructed together with Noam Nisan.
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Figure 1. The nonmonotonic mechanism (1).

for price 2 (with payoff = x2 −2); or get both goods for price 4 (with payoff = x1 +x2 −4);
thus, the buyer’s payoff is

b(x1�x2)= max{0�x1 − 1�x2 − 2�x1 + x2 − 4}� (1)

See Figure 1 for the regions in the buyer’s valuation space where each outcome is chosen.
If the valuation of the buyer is, say, x = (1� 7

3), then his optimal choice is to pay 2 for
good 2 (so q(x) = (0�1) and s(x) = 2), whereas if his valuation increases to x′ = (2� 7

3)

(where the first good is worth more) or even to x′′ = (2� 8
3) (where both goods are worth

more), then his optimal choice is to pay 1 for good 1 (so q(x′) = q(x′′) = (1�0) and s(x′) =
s(x′′) = 1). Thus the seller receives a lower payment (1 instead of 2) when the buyer’s
values increase.16 What is happening is that the initially unchosen good 1 is acting as an
outside option for the buyer. When the buyer’s value for this outside option increases
sufficiently, he switches away from good 2 toward good 1, which, because it happens to
be cheaper than good 2, causes the seller’s revenue to fall.

The above example, while insightful, ignores the fact that the seller optimally sets
prices. In particular, the seller can optimally adjust prices in response to changes in

16When the value of one good goes up, the probability of getting it cannot go down (i.e., qi(x) is non-
decreasing in xi for each good i; this follows from the convexity of the buyer payoff function b). However,
at the same time, the probabilities of getting other goods may well go down, and in a such a way, more-
over, that the allocation is worth less to the buyer—and so, by incentive compatibility, the seller’s payment
goes down. In our example, for x = (1� 7

3 ) and x′ = (2� 7
3 ), we have q(x) = (0�1) and q(x′) = (1�0), and so

q(x) · x > q(x′) · x′ and s(x) > s(x′).
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the buyer’s value distribution. The difficult question then is whether this nonmono-
tonicity can also occur for the maximal revenue. We provide two examples: a simpler
one (below), where the unique optimal mechanism is exactly the mechanism described
above,17 and a more complicated one (Section 2.4), where the valuations of the two
goods are independent and identically distributed.

One reason that such examples are subtle is because the buyer can consume mul-
tiple goods (in fact, there is always a buyer type who gets the bundle of both goods in
optimal mechanisms). Thus, when the buyer’s value of an inexpensive good that he is
not purchasing increases (as in the above example), the seller may find it optimal to
change the prices so that the buyer purchases a bundle of goods that includes the goods
he originally purchased as well as the inexpensive good whose value increased. Conse-
quently, the substitution away from an expensive good toward a cheaper one—which
causes revenue to fall in the above example—might never occur (cf. our results in Sec-
tion 2.3 below which give sufficient conditions for monotonicity). Thus, having the op-
tion to optimally price bundles of goods makes it more likely that the seller’s maximal
revenue will not fall after an increase in the buyer’s values, and, hence, makes it more
difficult to find an example in which they, in fact, do fall.18

Example 1. For every 0 ≤ α ≤ 1
4 , let Fα be the distribution on R

2:

Fα =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1�1) with probability 1
4

(1�2) with probability 1
4 − α

(2�2) with probability α

(2�3) with probability 1
2 .

As α increases, probability mass is moved from (1�2) to (2�2), and so Fα first-order
stochastically dominates Fα′ when α > α′. Nevertheless, the maximal revenue Rev(Fα)

decreases with α (in the region 0 ≤ α ≤ 1
12 ). ♦

Proposition 3. In Example 1, for every 0 ≤ α ≤ 1
12 ,

Rev(Fα)= 11
4 − α�

17This explains the reason for including the outcome x1 + x2 − 4 in the mechanism.
18In contrast, when the consumer can purchase at most one good—the “unit-demand” setup—the

seller’s maximal revenue can easily fall. For example, suppose the buyer’s valuation is equally likely to be
(1�1) or (1�3), and that he can consume at most one of the two goods. It is then optimal for the seller to
set prices p1 = 1 and p2 = 3, generating revenue 1 + 3 = 4. However, if the buyer’s valuation of (1�3) in-
creases to (2�3), while the valuation (1�1) does not change, it is now optimal to set prices p1 = 1 and p2 = 2,
generating less revenue, namely 1 + 2 = 3 (prices p1 ≥ 2 and p2 = 3 also generate revenue 3). This exam-
ple is a simplification of an example in Adams and Yellen (1977; Figure 9), who consider a buyer who can
consume at most one of two brands (goods) of a single product. In the Adams and Yellen example, the max-
imal revenue decreases after the seller, through advertising, optimally modifies some values of some buyer
types. While this is not a first-order stochastic dominance change in values, by considering first the de-
crease in some values and then the increase in other values, an example of the kind we have provided here
emerges. A caveat with the Adams and Yellen analysis is that they restrict attention to pricing mechanisms
and so they do not show that their mechanisms are fully optimal. However, it can be shown that the pricing
mechanisms in the simplified example that we have given here are fully optimal among all mechanisms.
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Valuation
x= (x1�x2)

Outcome

q(x) = (q1(x)�q2(x)) s(x)

(1�1) (1�0) 1
(2�2) (1�0) 1
(1�2) (0�1) 2
(2�3) (1�1) 4

Table 1. The optimal mechanism for Example 1.

Proof. First, revenue of 11
4 − α is achieved by the mechanism given in Table 1 (whose

buyer payoff function is (1)). Indeed, revenue is 1
4 · 1 + ( 1

4 − α) · 2 + α · 1 + 1
2 · 4 = 11

4 − α.
Second, we show that a higher revenue cannot be obtained. Consider the inequali-

ties

q11
1 + q11

2 − s11 ≥ 0 1

q12
1 + 2q12

2 − s12 ≥ q11
1 + 2q11

2 − s11 1
2

2q22
1 + 2q22

2 − s22 ≥ 2q11
1 + 2q11

2 − s11 3α

2q23
1 + 3q23

2 − s23 ≥ 2q11
1 + 3q11

2 − s11 1
4 − 3α

2q23
1 + 3q23

2 − s23 ≥ 2q12
1 + 3q12

2 − s12 1
4 + α

2q23
1 + 3q23

2 − s23 ≥ 2q22
1 + 3q22

2 − s22 2α

(2)

(the first inequality is IR at (1�1) and the others are various IC constraints). Multiply-
ing these inequalities by the multipliers on the right (which are all nonnegative when
0 ≤ α ≤ 1

12 ) and then adding them up yields

−
(

3
4 − 3α

)
q11

2 − 2αq12
1 +

(
1
4 − 3α

)
q12

2 + 2αq22
1 + q23

1 + 3
2q

23
2

≥ 1
4 s

11 +
(

1
4 − α

)
s12 + αs22 + 1

2 s
23�

The right-hand side is precisely the expected revenue at Fα, and the left-hand side is
at most 0 + 0 + ( 1

4 − 3α) + 2α + 1 + 3
2 = 11

4 − α (since q11
2 � q12

1 ≥ 0 and q12
2 � q22

1 � q23
1 �

q23
2 ≤ 1). Therefore, the revenue cannot exceed 11

4 − α, and so the revenue of 11
4 − α

achieved by Table 1 is indeed maximal. �

Once again, what is happening here is that the value of a good that is unchosen by
one type of buyer—i.e., good 1 for the buyer with valuation (1�2)—increases with posi-
tive probability, to (2�2). This leads that buyer to switch away from the good he is cur-
rently purchasing, namely good 2, toward the previously unchosen good 1. Since good 1
is cheaper than good 2 and because the optimal prices do not change in this example,
the seller’s maximal revenue falls.19

19In fact, for mechanisms (such as those in the examples above) that assign each of the goods with prob-
abilities 0 or 1 only (called deterministic mechanisms below), a necessary condition for nonmonotonicity
of the seller’s maximal revenue is that the value of a good to a buyer to whom the good is not assigned must
rise (with positive probability).
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Remarks. (a) The mechanism Table 1 is the unique optimal mechanism at each Fα with
0 ≤ α < 1

12 ; indeed, to get revenue 11
4 − α, one needs all relevant inequalities to become

equalities (thus q11
2 = q12

1 = 0 and q12
2 = q23

1 = q23
1 = q23

2 = 1, which together with (2) as
equalities can be easily shown to yield q11

1 = 1, q22
2 = 0, s11 = 1, s12 = 2, s22 = 1, s23 = 4,

which is precisely Table 1).
(b) Any small enough perturbation of the example—such as having full support on,

say [0�4]2, or strictly increasing all valuations as α—will not affect the nonmonotonicity,
since the inequality Rev(F0) > Rev(F1/12) is strict. This also implies that nonmonotonic-
ity occurs in similar models, for instance, when the seller has nonzero costs of producing
the goods (consider small enough such costs).

(c) There are special cases where increasing values yields monotonicity of the maxi-
mal revenue. When the valuations are increased uniformly—i.e., each x ∈ R

k+ is replaced
by x+ d for fixed d ∈ R

k+—then the optimal revenue cannot decrease. Indeed, for every
mechanism (q� s), let (q̃� s̃) be the mechanism given by q̃(x+ d) := q(x) and s̃(x+ d) :=
s(x) + q(x) · d; it is immediate to check that if (q� s) is IC, then so is (q̃� s̃). Let X be an
R
k+-valued random variable; then20 Rev(X + d)≥ E[s̃(X + d)] = E[s(X)] +E[q(X)] · d ≥

E[s(X)]; this holds for every IC mechanism (q� s), and so Rev(X + d)≥ Rev(X).
When the valuations are proportionately increased uniformly, i.e., each x ∈ R

k+ is
replaced by c ∗ x = (c1x1� c2x2� � � � � ckxk) for fixed c1� c2� � � � � ck ≥ 1, then, again, the op-
timal revenue cannot decrease. To see this, for every mechanism (q� s), let (q̃� s̃) be
given by q̃i(c ∗ x) := qi(x)/ci, i = 1� � � � �k, and s(c ∗ x) := s(x); if (q� s) is IC, then so is
(q̃� s̃) (since q̃(c ∗ y) · (c ∗ x) − s(c ∗ y) = q(y) · x − s(y) for every x� y ∈ R

k+). Therefore,
Rev(c ∗X) ≥ E[s̃(c ∗X)] = E[s(X)] and so21 Rev(c ∗X) ≥ Rev(X).

To conclude this section, observe that Example 1, whose optimal mechanism is de-
terministic, shows that nonmonotonicity for multiple goods is not due to the need for
lotteries in this case (see Section 3).

2.3 Some classes of monotonic mechanisms

In this section, we identify two natural classes of mechanisms for which monotonicity
is guaranteed to hold in the multiple-good case: mechanisms that are symmetric and
deterministic, and mechanisms whose pricing is submodular.22

20We slightly abuse the notation and write Rev(X) instead of Rev(F) when X is a random variable with
distribution F .

21One cannot get the opposite inequality by interchanging X and c ∗ X , since ci ≥ 1 is needed so as to
guarantee that q̃i ≤ 1. However, if all the ci are equal, say ci = γ, then taking q̂(γx) := q(x) and ŝ(γx) := γs(x)

(instead of (q̃� s̃)) yields Rev(γX) = γRev(X) for every γ ≥ 0. Combining all these, we get

(
min
i

ci

)
Rev(X) ≤ Rev(c ∗X + d)≤

(
max
i

ci

)
Rev(X)+

k∑
i=1

di

for every fixed ci� di ≥ 0 (use ci = c′
iγ where γ = mini ci and c′

i ≥ 1). We thank a referee, whose comment led
us to consider these affine transformations.

22While mechanisms in one or the other of these two classes arise as optimal mechanisms in various
examples within the literature, general conditions on the distributions that yield such optimal mechanisms
are not known. See the concluding paragraph of this section.
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Recall Example 1. The optimal mechanism there, which is deterministic, is not sym-
metric across the goods, since the price of good 1 is different from the price of good 2.
Also, it is not subadditive (or submodular), since the price of the bundle is larger than
the sum of the prices of the separate goods. The results of this section will imply that
any counterexample to nonmonotonicity must satisfy these conditions.

A mechanism (q� s) is deterministic if the range Q := {q(x) : x ∈ R
k+} of the alloca-

tion function q is included in {0�1}k (rather than [0�1]k; recall Section 1.1). Incentive
compatibility implies that to each allocation that appears in the mechanism, i.e., each
g ∈ Q, there is a unique payment: if q(x) = q(y), then s(x) = s(y). Thus the menu
M = {(q(x)� s(x)) :x ∈ R

k+} of a deterministic mechanism is finite (there are at most
2k allocation outcomes), and such a mechanism can be represented by specifying the
payment—or “price”—pI for each subset I of goods, i.e., for each23 I ⊂K := {1�2� � � � �k}:
thus, b(x) = maxI⊂K{∑i∈I xi − pI}. A deterministic mechanism is symmetric if pI de-
pends only on the size |I| of I, i.e., the price depends only on the number of goods (and
so the function b is symmetric, i.e., invariant under permutations of the coordinates
x1� � � � � xk).

Theorem 4. Let F1 be a distribution on R
k+ such that there is a deterministic and sym-

metric IC mechanism that is optimal for F1. Then Rev(F1) ≤ Rev(F2) for every distribu-
tion F2 on R

k+ that first-order stochastically dominates F1.

The proof makes use of the notion of “seller-favorable” mechanisms introduced in
Section 1.2 (see the Appendix for details). We show, first, that deterministic and sym-
metric seller-favorable mechanisms have monotonic payment functions, and, second,
that from any optimal deterministic and symmetric mechanism, one obtains a similar
mechanism that is, in addition, seller-favorable.24

Proposition 5. Let (q� s) be a deterministic and symmetric seller-favorable IC mecha-
nism on R

k+. Then the payment function s is nondecreasing.

Proof. With a slight abuse of notation, we will write pi instead of pI for all I ⊂ K with
|I| = i. For x ∈ R

k+, let x# denote the vector obtained by permuting the coordinates of x
so that they are in nonincreasing order, i.e., x#

1 ≥ x#
2 ≥ · · · ≥ x#

k ; symmetry implies that
s(x) = s(x#). Let y� z ∈R

k+ be such that y ≤ z; then it easily follows that y# ≤ z# and so we
need to show that s(y#) ≤ s(z#). Put ηi := y#

1 + · · · + y#
i −pi and ζi := z#

1 + · · · + z#
i −pi;

then b(y#) = max1≤i≤k ηi and b(z#) = max1≤i≤k ζi (since, for the same price, the buyer al-
ways prefers the highest-valued goods). Let s(y#) = pj and s(z#) = p	; then these max-
ima are attained at j and 	, respectively, and, in particular, we have ηj ≥ η	 and ζ	 ≥ ζj .
If 	 ≥ j, then p	 − pj = (ηj − η	) + (y#

j+1 + · · · + y#
	 ) ≥ 0 (since y# ≥ 0) and so p	 ≥ pj . If

	 < j, then ζj − ζ	 = (ηj − η	) + (z#
	+1 − y#

	+1) + · · · + (z#
j − y#

j ) ≥ 0 (since z# ≥ y#); but

ζ	 ≥ ζj , and so ζ	 = ζj . Therefore, ζj is also a maximizer for b(z#); since s(z#) = p	, the
seller-favorable condition implies that p	 ≥ pj , which completes the proof. �

23If I is not a possible outcome of the mechanism, put pI = ∞.
24While there is always a seller-favorable optimal mechanism, it is not immediately clear that there is a

deterministic and symmetric such mechanism.
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Corollary 6. Let DSRev denote the optimal revenue obtained when restricted to deter-
ministic and symmetric mechanisms. If F2 first-order stochastically dominates F1, then
DSRev(F1) ≤ DSRev(F2).

Proof. Let (q� s) be a deterministic and symmetric mechanism, and let M be its menu,
which is finite. Apply Proposition 16 in Section A.1 to get a seller-favorable IC mecha-
nism (q̃� s̃) that is symmetric (use the construction in the proof there for x with x1 ≥ x2 ≥
· · · ≥ xk, and then extend to all x by (q̃(x)� s̃(x)) = (q̃(x#)� s̃(x#)); that is, break ties so
that symmetry is preserved). Since the menu M̃ of (q̃� s̃) satisfies M̃ ⊂ clM =M (as M is
a finite set), the new mechanism is also deterministic. Thus (q̃� s̃) is deterministic and
symmetric. Because s̃(x) ≥ s(x) for all x, it follows that DSRev is, in fact, the optimal rev-
enue over deterministic, symmetric, and seller-favorable mechanisms. Proposition 5
says that the payment function s̃ of such a mechanism is monotonic, which implies that
EF1[s̃(x)] ≤ EF2[s̃(x)] by stochastic dominance, and, hence, our result. �

Proof of Theorem 4. We have

Rev(F1)= DSRev(F1) ≤ DSRev(F2) ≤ Rev(F2)

(the first equality by assumption, the second by Corollary 6, and the third since DSRev
considers only a subclass of mechanisms). �

Remark. Each of the three conditions in Proposition 5—deterministic, symmetric, and
seller-favorable—is indispensable: dropping any one of them allows mechanisms with
nonmonotonic s. Indeed, Example 2 in Section 2.4 below is not deterministic, Exam-
ple 1 in Section 2.2 is not symmetric, and the mechanism with buyer payoff function
b(x1�x2) = max{0�x1 − 2�x2 − 2�x1 + x2 − 3} and q(2�1) = (1�1), s(2�1) = 3, q(3�1) =
(1�0), and s(3�1) = 2—thus, nonmonotonic s—is not seller-favorable.25

A deterministic mechanism is submodular (Manelli and Vincent 2006) if the pay-
ments satisfy pI +pJ ≥ pI∪J +pI∩J for all subsets of goods I� J ⊂ K := {1�2� � � � �k} (this
is a generalization of subadditivity, which obtains when I and J are disjoint); alterna-
tively, pI∪L−pI is monotonically decreasing in I ⊂K \L, which is a standard decreasing
marginal price property. We now generalize this condition to arbitrary (i.e., nondeter-
ministic) mechanisms.

Let (q� s) be an IC mechanism with buyer payoff function b :Rk+ → R. A pricing func-
tion p : [0�1]k → R∪ {∞} associates a price p(g) to every lottery g ∈ [0�1]k (we allow in-
finite prices for lotteries that are not used). Given a pricing function p, consider offering
to the buyer the choices (g�p(g)) for all possible lotteries g ∈ [0�1]k; the resulting payoff
to the buyer is bp(x) := supg∈[0�1]k(g · x − p(g)). We say that p is a pricing function for
the mechanism (q� s) if it yields the same choices and payoffs, i.e., p(q(x)) = s(x) and
b(x) = bp(x) for every x ∈R

k+. Thus,

b(x) = q(x) · x− s(x) = q(x) · x−p(q(x)) = sup
g∈[0�1]k

(g · x−p(g)) (3)

25This example, whose payments are subadditive, shows that seller favorability is indispensable also for
the result of Proposition 8 below.
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for every x ∈ R
k+. While the price of each lottery q(x) that is used in (q� s) is deter-

mined,26 there is freedom in choosing the prices of the other lotteries. However, as we
will show in Section A.2, there is a canonical pricing function for (q� s), namely, the low-
est one possible; it is given by the function p0, defined as27 p0(g) := supx∈Rk+

(g ·x−b(x)).

We say that the mechanism (q� s) is submodular if it has a pricing function p that
satisfies

p(g)+p(g′) ≥ p(g ∨ g′)+p(g ∧ g′) (4)

for all g and g′ in the range, i.e., g�g′ ∈ Q := q(Rk+), where g ∨ g′ and g ∧ g′ denote,
respectively, the coordinatewise maximum and minimum of the two vectors g and g′.
In Appendix A.2, we will show that this is equivalent to requiring the canonical pricing
function p0 to satisfy (4).

Theorem 7. Let F1 be a distribution on R
k+ such that there is a submodular IC mecha-

nism that is optimal for F1. Then Rev(F1)≤ Rev(F2) for every distribution F2 on R
k+ that

first-order stochastically dominates F1.

The proof will use the following proposition.

Proposition 8. Let (q� s) be a submodular seller-favorable IC mechanism. Then the
payment function s is nondecreasing.

Proof. Let p be a pricing function for (q� s) (thus (3) holds for every x ∈ R
k+) that sat-

isfies (4) for every g�g′ ∈ Q = q(Rk+). Let y� z ∈ R
k+ be such that y ≤ z. We will show that

s(y) ≤ s(z).
Put gy := q(y) and gz := q(z). Then s(y) = p(gy) and s(z) = p(gz). From (3), for y we

get, in particular,

gy · y −p(gy) ≥ (gy ∧ gz) · y −p(gy ∧ gz)� (5)

and from (3), for z we get in particular

gz · z −p(gz) ≥ (gy ∨ gz) · z −p(gy ∨ gz)� (6)

Subtracting gz · (z− y) from the left-hand side of (6) and subtracting the larger (gy ∨gz) ·
(z − y) from its right-hand side (it is larger since gy ∨ gz ≥ gz and z − y ≥ 0) gives

gz · y −p(gz) ≥ (gy ∨ gz) · y −p(gy ∨ gz)� (7)

Adding (5) and (7), and using gy + gz = gy ∨ gz + gy ∧ gz (this equality holds for each
coordinate) implies

0 ≥ p(gy)+p(gz)−p(gy ∨ gz)−p(gy ∧ gz)�

26The graph of p restricted to Q := q(Rk+) is precisely the menu M = (q� s)(Rk+).
27Thus p0 is the Fenchel conjugate of the function b (with the usual convention that b(x) = ∞ for x

outside the domain, i.e., x /∈ R
k+; or, as in Section A.1, extend b to all Rk).
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which must, therefore, be an equality by the submodularity condition (4). Therefore, we
must have equalities throughout, in particular in (6):

b(z)= gz · z −p(gz)= (gy ∨ gz) · z −p(gy ∨ gz)� (8)

Hence, the maximum in b(z) is attained also at g = gy ∨gz . Hence, the mechanism (q′� s′)
that is identical to (q� s) except at z, where we put (q′(z)� s′(z)) := (gy ∨ gz�p(gy ∨ gz)),
is IC and has the same buyer payoff function b (by (3) and (8)). Since (q� s) is seller-
favorable, it follows that s′(z) ≤ s(z) or

p(gy ∨ gz)≤ p(gz)� (9)

Finally, gy ·y−p(gy) ≥ (gy ∨gz) ·y−p(gy ∨gz)≥ gy ·y−p(gy ∨gz) (the first inequality
is from (3) for y, and the second is since gy ∨ gz ≥ gy and y ≥ 0); hence,

p(gy ∨ gz) ≥ p(gy)� (10)

Combining (9) and (10) yields s(y) = p(gy) ≤ p(gz)= s(z). �

Remark. The proof of Proposition 8 shows that p(gz) ≥ p(gy ∨ gz) and b(z) = gz · z −
p(gz) = (gy ∨ gz) · z − p(gy ∨ gz) (recall that gy = q(y) and gz = q(z)), from which it
follows that (gy ∨gz) ·z ≤ gz ·z. Therefore, we have equality (since gy ∨gz ≥ gz and z ≥ 0),
which implies that (gy ∨ gz)i = (gz)i, i.e., qi(y) ≤ qi(z), for every coordinate i such that
zi > 0. Thus, q is coordinatewise nondecreasing on R

k++. Moreover, q can be adjusted
on the boundary of Rk+ without changing b or s, while maintaining IC, and such that the
redefined q is coordinatewise nondecreasing on all of28

R
k+.

Corollary 9. Let SbRev denote the optimal revenue obtained when restricted to sub-
modular mechanisms. If F2 first-order stochastically dominates F1, then SbRev(F1) ≤
SbRev(F2).

Proof. Given any submodular IC mechanism (q� s), Corollary 20 (with D = R
k+) yields

a submodular seller-favorable IC mechanism (q̃� s̃) with s̃(x) ≥ s(x) for every x ∈ R
k+.

Therefore, SbRev is, in fact, the optimal revenue over submodular seller-favorable mech-
anisms. Since the payment function s̃ for such mechanisms is monotonic by applying
Proposition 8 to (q̃� s̃), the result follows. �

Proof of Theorem 7. Similar to the proof of Theorem 4, using Corollary 9,

Rev(F1) = SbRev(F1)≤ SbRev(F2)≤ Rev(F2)� �
28Redefine q(y) for y on the boundary of Rk+ by making its ith coordinate zero if yi = 0. Hence, for y ≤ z,

if zi = 0, then yi = 0 and so qi(y) = 0 ≤ qi(z). Therefore, qi(y) ≤ qi(z) holds now for all coordinates i when y ,
z ∈ R

k+ are such that y ≤ z. Since the probabilities qi(y) have only gone down and q(y) · y has not been
affected, the redefined mechanism (q� s) remains IC on R

k+, and the buyer’s payoff function is unchanged.
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The results of this section imply that monotonicity holds in every case where one
can prove that there are optimal mechanisms that are either deterministic and symmet-
ric, or submodular. Thus, Rev(F2) ≥ Rev(F1) when F2 first-order stochastically domi-
nates F1, and F1 = F × F is the distribution of two i.i.d. goods with F that is (i) uniform
(where the optimal mechanism is deterministic, symmetric, and submodular; Manelli
and Vincent 2006); (ii) Pareto with index ≥ 1

2 (where bundling, which is a deterministic
and symmetric mechanism, is optimal; Hart and Nisan 2014a, Theorem 28; or 2014b,
Theorem 6); (iii) the conditions of Theorems 2 and 4 in Manelli and Vincent (2006) are
satisfied (yielding a submodular deterministic optimal mechanism).

2.4 Nonmonotonicity for independent and identically distributed goods

We now provide an example of nonmonotonicity where two goods are independent and
identically distributed, and we increase the values of both goods; that is, we compare the
optimal revenue of F1 × F1 with that of F2 × F2, where F1 and F2 are one-dimensional
distributions such that F2 first-order stochastically dominates F1.

The example must be more complicated than Example 1, for two main reasons. First,
its optimal mechanisms cannot be submodular (by Theorem 7), and if it is unique,29 it
cannot be deterministic (since an i.i.d. distribution is symmetric and, thus, there al-
ways exists a symmetric optimal mechanism, to which we apply Theorem 4). Second,
because the two distributions are i.i.d., it is not enough to find an optimal mechanism
whose payment function s is nonmonotonic at a single point, since, by independence,
a change in a value of one good applies to all values of the other good. To understand
this last point, assume that we increase a value x̄1 of good 1 to x̄1 + δ for some δ > 0; the
(x̄1�x2) valuations now become (x̄1 + δ�x2) for all x2. While s may be nonmonotonic
at some (x̄1�x2), it need not be nonmonotonic at all (x̄1�x2); what is needed is that the
expectation of s(x̄1�x2) over x2 be nonmonotonic in30 x̄1.

Example 2. Let F1 and F2 be the one-dimensional distributions

F1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

10 with probability 4
15

46 with probability 1
90

47 with probability 1
3

80 with probability 7
30

100 with probability 7
45

F2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10 with probability 2,399
9,000

13 with probability 1
9,000

46 with probability 1
90

47 with probability 1
3

80 with probability 7
30

100 with probability 7
45 .

Clearly F2 first-order stochastically dominates F1 (since F2 is obtained from F1 by mov-
ing a probability mass of 1

9,000 from 10 to 13), which of course implies that F2 × F2 first-
order stochastically dominates F1 ×F1. However, the optimal revenue from F1 ×F1 turns
out to be higher than the optimal revenue from F2 × F2. ♦

29Which, for discrete distributions, is generically true (i.e., for small perturbations of the distribution, the
optimal mechanism is unique).

30This “accounting” is not entirely correct, as we also need to consider the valuations (x2�x
0
1) for all x2,

and then (x0
1�x

0
1) is counted twice.
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Valuations
x

Outcome

q(x) s(x)

(10�10)� (10�13)� (13�10)� (13�13),
(10�46)� (46�10)� (13�46)� (46�13)� (46�46),

(13�47)� (47�13)� (10�47)� (47�10)
(0�0) 0

(46�47) ( 32
1,187 �

384
13,057 )

34,240
13,057 ≈ 2�6

(47�46) ( 384
13,057 �

32
1,187 )

34,240
13,057 ≈ 2�6

(47�47) ( 35
1,187 �

35
1,187 )

3,258
1,187 ≈ 2�7

(13�80) ( 32
1,187 �

5,647
5,935 )

90,672
1,187 ≈ 76�4

(80�13) ( 5,647
5,935 �

32
1,187 )

90,672
1,187 ≈ 76�4

(46�80) ( 35
1,187 �

5,647
5,935 )

90,810
1,187 ≈ 76�5

(80�46) ( 5,647
5,935 �

35
1,187 )

90,810
1,187 ≈ 76�5

(10�80)� (10�100)� (13�100) (0�1) 80
(80�10)� (100�10)� (100�13) (1�0) 80

(46�100)� (100�46),
(47�80)� (80�47)� (47�100)� (100�47),
(80�80)� (80�100)� (100�80)� (100�100)

(1�1) 126

Table 2. The unique optimal mechanism for F2 × F2.

Proposition 10. In Example 2, F2 first-order stochastically dominates F1 and

Rev(F2 × F2) < Rev(F1 × F1)�

Proof. Maximizing revenue for a distribution with finite support is a linear program-
ming problem (the unknowns are the qi(x) and s(x) for all x in the support, the con-
straints are the IR and IC inequalities, and the objective function is the expected rev-
enue). Using Maple yields the following situation.31

The (unique32) optimal mechanism for F2 × F2 consists of 11 outcomes; see Table 2
(the outcomes are ordered according to increasing payment to the seller s). For F1 × F1,
the same mechanism is optimal; however, the fifth and sixth outcomes are not used (the
value 13 has probability 0) and may be dropped. This yields

Rev(F1 × F1)= 408,189,937
5,875,650

and Rev(F2 × F2) = 30,614,162,731
440,673,750

�

and so indeed Rev(F1 × F1) > Rev(F2 × F2) (these revenues are 69�47145 � � � and
69�47126 � � �). The nonmonotonicity of the payments can be seen at33 s(10�80) >

s(13�80)� s(46�80) and s(80�10) > s(80�13)� s(80�46). �

31The fractions appearing in the solutions below are exact.
32Uniqueness is proved using the dual linear progamming problem as in Section 2.2.
33Recall, however, that s being a nonmonotonic function, while necessary, is not sufficient; cf. the second

paragraph of this section.
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3. Lotteries and revenue

To maximize revenue in the one-good case (i.e., k = 1), it suffices to consider determin-
istic mechanisms (specifically, “posted-price” mechanisms; see Myerson 1981). That is
not so in the multiple-good case. Examples where the optimal mechanism requires ran-
domization (i.e., in some of the outcomes the probability of getting a good is strictly
between 0 and 1) have been provided by Thanassoulis (2004) (in the slightly different
context of “unit demand,” where the buyer is limited to one good), Pycia (2006), Manelli
and Vincent (2006, 2007), Briest et al. (2010) (for unit demand), and Pavlov (2011, Exam-
ple 3(ii)). However, most of these examples are relatively complicated and require non-
trivial computations, and it is not clear how and why randomization helps only when
there are multiple goods.

We will provide two examples that are simple and transparent enough that the need
for randomization becomes clear. In the first, the values of the two goods are correlated;
in the second, the values are independent and identically distributed.34

3.1 Lotteries for multiple goods

Consider the following example with two goods and three possible valuations35 (the val-
ues of the two goods are correlated).

Example 3. Let F be the two-dimensional probability distribution

F =

⎧⎪⎨
⎪⎩
(1�0) with probability 1

3

(0�2) with probability 1
3

(3�3) with probability 1
3 . ♦

Proposition 11. The mechanism (q� s) defined by Table 3 with buyer payoff function

b(x1�x2)= max
{

0� 1
2x1 − 1

2 �x2 − 2�x1 + x2 − 5
}

(11)

is the unique revenue-maximizing IC and IR mechanism for F of Example 3.

Thus, the buyer can get both goods for price 5, or get good 2 for price 2, or get good 1
with probability 1

2 for price 1
2 ; the optimal revenue is 5

2 = 2�5. If the seller were restricted

34Manelli and Vincent (2007) provide an example (Example 1) of an “undominated mechanism” that
uses lotteries. While they prove that an undominated mechanism is optimal for some distribution F , it is
also claimed there (Theorem 9) that any undominated mechanism is optimal for some distribution with
independent goods (i.e., a product distribution). However, there is an error in the proof of Theorem 9, as
the set of product distributions (specifically, the set G in their proof) is not convex. See the corrigendum in
Manelli and Vincent (2012).

35Pycia (2006) solves the seller’s problem when there are exactly two valuations and shows that random-
ization may be needed. For instance, when the valuations are (2�3) and (6�1) with equal probabilities, the
unique optimal mechanism gives the (2�3) buyer good 2 and a 1

2 chance of getting good 1, for the total price
of 4, and gives the (6�1) buyer both goods for the total price of 7. However, we have found that Example 3,
with three possible valuations, provides more transparent insights (as there is a clearer separation between
the IC and IR constraints).
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Valuation
x

Outcome

q(x) s(x)

(1�0) ( 1
2 �0) 1

2
(0�2) (0�1) 2
(3�3) (1�1) 5

Table 3. The unique optimal mechanism for Example 3.

to deterministic mechanisms (where each qi is either 0 or 1), then the optimal revenue
would decrease to 7

3 = 2�33 � � � (attained, for instance, by selling separately, at the optimal
single-good prices of 3 for good 1 and 2 for good 2; see below). A detailed explanation
of the role of randomization and why it is needed only when there are multiple goods,
follows the proof below.

Proof of Proposition 11. Let 〈(α1�β1);σ1〉, 〈(α2�β2);σ2〉, and 〈(α3�β3);σ3〉 be the
outcome 〈(q1(x)�q2(x)); s(x)〉 at x = (1�0)� (0�2), and (3�3), respectively (thus αi�βi ∈
[0�1]). The objective function is S := σ1 + σ2 + σ3 (this is three times the revenue). Con-
sider the relaxed problem of maximizing S subject only to the individual-rationality con-
straints at (1�0) and (0�2), and to the two incentive-compatibility constraints at (3�3),
i.e.,

α1 − σ1 ≥ 0

2β2 − σ2 ≥ 0

3α3 + 3β3 − σ3 ≥ 3α1 + 3β1 − σ1

3α3 + 3β3 − σ3 ≥ 3α2 + 3β2 − σ2�

These inequalities can be rewritten as

σ3 + 3α1 + 3β1 − 3α3 − 3β3 ≤ σ1 ≤ α1

σ3 + 3α2 + 3β2 − 3α3 − 3β3 ≤ σ2 ≤ 2β2�

Therefore, so as to maximize S = σ1 +σ2 +σ3, we must take σ1 = α1 and σ2 = 2β2, which
gives

σ3 ≤ 3α3 + 3β3 − 2α1 − 3β1

σ3 ≤ 3α3 + 3β3 − 3α2 −β2�

Thus, we must take α3 = β3 = 1, β1 = α2 = 0, and then σ3 = min{6 − 2α1�6 −β2}, and so
S = α1 + 2β2 + min{6 − 2α1�6 − β2} = min{2β2 − α1�β2 + α1} + 6. Since S is increasing
in β2, we must take β2 = 1, and then S = min{2 −α1�1 +α1}+ 6 is maximized at36 α1 = 1

2 .

36For deterministic mechanisms (i.e., αi�βi ∈ {0�1}), everything is the same up to this point, but now S is
maximized at both α1 = 0 and α1 = 1; the optimal revenue for deterministic mechanisms is thus S/3 = 7

3 .
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x q(x) s(x) q(1)(x) s(1)(x) q(2)(x) s(2)(x)

(1�0) ( 1
2 �0) 1

2 (1�0) 1 (0�0) 0
(0�2) (0�1) 2 (0�1) 2 (0�1) 2
(3�3) (1�1) 5 (1�1) 4 (1�1) 5

Table 4. Replacing a lottery outcome when there are two goods.

This is precisely the mechanism in Table 3, which is easily seen to satisfy also all the
other IR and IC constraints. �

To understand the use of randomization, consider the outcome 〈( 1
2 �0); 1

2 〉 at x =
(1�0) in Table 3: it is a lottery ticket that costs 1

2 and gives a 1
2 probability of getting

good 1; alternatively,37 it is a 1
2 − 1

2 lottery between getting good 1 for the price 1 (i.e.,
〈(1�0);1〉) and getting nothing, and paying nothing (i.e., 〈(0�0);0〉). It is thus the aver-
age of these two deterministic outcomes, and we now consider what happens when we
replace the lottery by either one of them (see Table 4). It turns out that in both cases,
the revenue strictly decreases. In the first case, replacing 〈( 1

2 �0); 1
2 〉 by 〈(1�0);1〉 forces

the price of the bundle to decrease to 4 (otherwise, the (3�3) buyer would switch from
paying 5 for the bundle to paying 1 for good 1); therefore, the net change in the revenue
is 1

3 · (1 − 1
2) + 1

3 · (4 − 5), which is negative.38 In the second case, replacing 〈( 1
2 �0); 1

2 〉
by 〈(0�0);0〉 results in the loss of the revenue from the (1�0) buyer, without, however,
increasing the revenue from the (3�3) buyer: indeed, if we were to increase the bundle
price, then (3�3) would switch to 〈(0�1);2〉, i.e., would get good 2 for price 2 (and, if we
were to drop this outcome 〈(0�1);2〉 altogether so as to increase the bundle price to 6,
the total revenue would again decrease).39

It is instructive to compare this with a similar example, but with a single good. As-
sume the values are x = 1�0�3, with equal probabilities of 1

3 each (just like good 1 in
Example 3). Take the mechanism with outcomes 〈 1

2 ; 1
2 〉, 〈0;0〉, 〈1;2〉 (see Table 5); it is

easy to see that it is IC and IR, and its revenue is 5
6 . The lottery outcome 〈 1

2 ; 1
2 〉—getting

the good with probability 1
2 for price 1

2 —is the average of 〈0;0〉 and 〈1;1〉. Replacing the
lottery 〈 1

2 ; 1
2 〉 with 〈1;1〉 lowers the revenue to 2

3 : the 3 buyer switches to 〈1;1〉. Replacing
the lottery 〈 1

2 ; 1
2 〉 with 〈0;0〉 increases the revenue to 1: the 3 buyer is now offered, and

chooses, 〈1;3〉. The revenue of 5
6 of the original mechanism, which used the lottery out-

come, is precisely the average of the revenues from these two resulting mechanisms, 2
3

and 1 (this averaging property holds at each valuation x).
This is a general phenomenon when there is only one good: the revenue from a

mechanism that includes an outcome that is a probabilistic mixture of two outcomes
(a “lottery outcome”) is the average of the revenues obtained by replacing the lottery

37Because of risk neutrality.
38The buyer’s payoff function in this mechanism is b(1)(x) = max{x1 − 1�x2 − 2�x1 + x2 − 4}.
39The buyer’s payoff function in this mechanism is b(2)(x) = max{0�x2 − 2�x1 + x2 − 5}.
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x q s q(1) s(1) q(2) s(2)

1 1
2

1
2 1 1 0 0

0 0 0 0 0 0 0
3 1 2 1 1 1 3

Table 5. Replacing a lottery outcome when there is one good.

with each one of these two outcomes and then adapting the remaining outcomes.40 For-
mally, this is the counterpart of expressing the corresponding buyer payoff function b as
an average of two such functions; in the example above, b(x) = max{0�x/2 − 1

2 �x − 2}
is the 1

2 − 1
2 average of b(1)(x) = max{0�x − 1} and b(2)(x) = max{0�x − 3} (i.e., b(x) =

(b(1)(x) + b(2)(x))/2 for all x). Thus, lotteries are indeed not needed when there is only
one good.

Example 3 illustrates why this is not the case for multiple goods: replacing the lottery
outcome with 〈(0�0);0〉 yields the mechanism (q(2)� s(2)), whose revenue is lower than
that of (q� s) (whereas replacing 〈 1

2 ; 1
2 〉 with 〈0;0〉 yields a higher revenue). In fact, the

function b of (11) is an extreme point in the set of buyer payoff functions (in particular,
it is not the average of the buyer functions in footnotes 38 and 39).

This is exactly where having more than one good matters. In the case of one good,
there is only one binding constraint per value x, namely, the outcome chosen by the
next lower value. Consequently, removing an outcome (such as a lottery outcome) that is
chosen by x enables the seller to increase the revenue obtained from all higher-valuation
buyers (i.e., with values y > x), as they can no longer switch to the outcome that has
been removed and they strictly prefer their own outcome to any of the outcomes chosen
by values below x. In contrast, when there are multiple goods, such an increase in rev-
enue may not be possible because there may be multiple binding constraints for each
valuation x (in our example, buyer (3�3) is indifferent between reporting truthfully and
reporting either (1�0) or (0�2)). These buyer types may switch to other outcomes that
involve other goods, and so the total revenue may well decrease.

Next, how does a lottery outcome increase revenue? The seller would like to earn
positive revenue from selling good 1 to the (1�0) buyer, but without jeopardizing the
higher revenue obtained from selling the bundle of both goods to the (3�3) buyer (and,
as we have seen, he cannot increase the price of the bundle because of the “good 2 for
price 2” alternative, i.e., 〈(0�1);2〉). If the price of good 1 is above 1, then (1�0) will not
buy it; if it is below 1, then (3�3) will switch from buying the bundle to buying good 1
(since his payoff will increase from 1 to 2 or more).41 Thus, selling good 1 does not help.
What does help is selling only a fractional part of good 1, which has the effect of mak-
ing this option less attractive to the high-valuation buyer (3�3) (since his possible gain

40This statement, which is easily proved in general—even when the two outcomes that are averaged
are not necessarily deterministic—provides another proof of Myerson’s result that in the one-good case, it
suffices to consider deterministic mechanisms (use this “local decomposition” repeatedly).

41As we saw above, lowering the price of the bundle to 4 (while keeping the price of good 1 at 1) will not
help either, because the total revenue decreases.
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Valuations
x

Outcome

q(x) s(x)

(1�1) (0�0) 0
(2�1) ( 1

2 �0) 1

(1�2) (0� 1
2 ) 1

(1�4)� (4�1)� (2�2)� (2�4)� (4�2)� (4�4) (1�1) 4

Table 6. The unique optimal mechanism for Example 4.

is smaller: it is only that fraction of the difference in values). Thus, the two conflicting
desiderata—getting some revenue from a low-valuation buyer and not jeopardizing the
higher revenue from a higher-valuation buyer—are reconciled by offering to sell frac-
tions of the goods, i.e., lotteries. In the present example, that optimal fraction turns out
to be 1

2 ; it comes from balancing the incentives between the two goods (specifically, 1
2 is

the ratio of two value differences, 3 − 2 for good 2 and 3 − 1 for good 1; see the Proof of
Proposition 11 above).42

Finally, we note that mechanism design is a sequential game, with the seller moving
first. In such games, the use of randomization may, in general, be strictly advantageous
to the first mover (take, for instance, the sequential matching pennies game). Thus,
the surprising fact here is not that randomization can increase revenue (when there are
multiple goods), but that it cannot do so when there is only one good.43�44

3.2 Lotteries for independent and identically distributed goods

We now provide a simple example where lotteries are necessary to achieve the maximal
revenue for two goods that are independent and identically distributed.

Example 4. Let F be the one-dimensional probability distribution

F =

⎧⎪⎨
⎪⎩

1 with probability 1
6

2 with probability 1
2

4 with probability 1
3 ,

and take two independent F-distributed goods, i.e., F = F × F . ♦

Proposition 12. The mechanism (q� s) defined by Table 6 with buyer payoff function

b(x1�x2) = max
{

0� 1
2x1 − 1� 1

2x2 − 1�x1 + x2 − 4
}

is the unique optimal mechanism for F = F × F of Example 4.

42Thus, one can easily get other probabilities by changing the values. Moreover, the example is highly
robust: it has a large neighborhood of distributions for which any optimal mechanism requires lotteries.

43We thank Bob Aumann for this comment.
44Pycia (2006) shows how, in the multiple-goods case, nondeterministic mechanisms are generically

needed to maximize revenue.
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Proof. First, the revenue from the mechanism in Table 6 is easily computed: it is 61
18 .

Second, consider the following inequalities, which are various individual rationality
and incentive-compatibility constraints:45

q11
1 + q11

2 − s11 ≥ 0 3

q12
1 + 2q12

2 − s12 ≥ 0 8

2q21
1 + q21

2 − s21 ≥ 0 8

2q22
1 + 2q22

2 − s22 ≥ 0 17

q12
1 + 2q12

2 − s12 ≥ q11
1 + 2q11

2 − s11 1

2q21
1 + q21

2 − s21 ≥ 2q11
1 + q11

2 − s11 1

2q22
1 + 2q22

2 − s22 ≥ 2q12
1 + 2q12

2 − s12 3

2q22
1 + 2q22

2 − s22 ≥ 2q21
1 + 2q21

2 − s21 3

q14
1 + 4q14

2 − s14 ≥ q12
1 + 4q12

2 − s12 3

4q41
1 + q41

2 − s41 ≥ 4q21
1 + q21

2 − s21 3

2q22
1 + 2q22

2 − s22 ≥ 2q14
1 + 2q14

2 − s14 1

2q22
1 + 2q22

2 − s22 ≥ 2q41
1 + 2q41

2 − s41 1

2q24
1 + 4q24

2 − s24 ≥ 2q22
1 + 4q22

2 − s22 8

4q42
1 + 2q42

2 − s42 ≥ 4q22
1 + 2q22

2 − s22 8

4q44
1 + 4q44

2 − s44 ≥ 4q24
1 + 4q24

2 − s24 2
4q44

1 + 4q44
2 − s44 ≥ 4q42

1 + 4q42
2 − s42 2

(12)

Multiplying each inequality by the weight on the right and adding up yields

s11 + 3s12 + 3s21 + 9s22 + 2s14 + 2s41 + 6s24 + 6s42 + 4s44

≤ 2q22
1 + q14

1 + 10q41
1 + 8q24

1 + 24q42
1 + 16q44

1 (13)

+2q22
2 + 10q14

2 + q41
2 + 24q24

2 + 8q42
2 + 16q44

2 �

The left-hand side turns out to be precisely 36 times the expected revenue of the seller
for the distribution F = F × F , i.e., 36EF [s(x)], and the right-hand side is bounded
from above by 122 (replace all q1 and q2 there by their upper bound of 1). Therefore,
EF [s(x)] ≤ 122

36 = 61
18 . Recalling that 61

18 is precisely the revenue of the mechanism in Ta-
ble 6 shows that Table 6 is optimal.

Finally, to see that Table 6 is the only optimal mechanism, by the proof above, for the
maximal revenue of 61

18 to be achieved, all the inequalities must become equalities. First,
all the q1 and q2 appearing on the right-hand side of (13) must equal 1:

1 = q22
1 = q14

1 = q41
1 = q24

1 = q42
1 = q44

1
(14)

= q22
2 = q14

2 = q41
2 = q24

2 = q42
2 = q44

2 �

45These specific inequalities and their corresponding multipliers below were obtained by solving the
dual of the linear programming problem of maximizing revenue.
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Second, the inequalities in (12), which are now equalities, yield, after substituting (14),

s44 = s24 = s42 = s22 = s14 = s41 = 4� s12 = s21 = 1� s11 = 0�

q11
1 = q11

2 = q12
1 = q21

2 = 0� q21
1 = q12

2 = 1
2 �

Together with (14) this yields precisely the mechanism in Table 6. �

It can be checked that the maximal revenue achievable by a deterministic mecha-
nism is 10

3 (obtained by the mechanism with price 2 for each good).

Appendix

A.1 Seller-favorable mechanisms

This appendix deals with incentive-compatible and seller-favorable mechanisms, intro-
duced in Section 1.2. The main results are collected in Theorem 17; see also Remarks (a)
and (b) after Corollary 18 for a discussion of implementation issues.

To be as general as possible, we will work here with an arbitrary domain D ⊂ R
k

of valuations; D could be R
k+, or it may be finite or infinite, and, in general, need

not be convex or even connected. A mechanism is thus (q� s) :D → [0�1]k × R and
the buyer’s payoff function is b(x) = q(x) · x − s(x). The range M := (q� s)(D) =
{(q(x)� s(x)) :x ∈ D} of the mechanism, also called the menu of the mechanism, con-
sists of all those combinations of allocations g ∈ [0�1]k and payments t ∈R that are used
(M is a subset of [0�1]k × R). The mechanism is incentive-compatible (IC) if b(x) =
maxy∈D(q(y) ·x− s(y)) = max(g�t)∈M(g ·x− t) for every x ∈D. It is seller-favorable if there
is no other incentive-compatible mechanism (q̃� s̃) on D having the same buyer payoff
function, i.e., q̃(x) · x − s̃(x) = b(x) = q(x) · x − s(x) for all x ∈ D, and a larger payment
function, i.e., s̃(x) ≥ s(x) for every x ∈ D, with strict inequality for some x ∈ D. This im-
plies, in particular, that when the buyer is indifferent, ties must be broken in favor of the
seller, i.e., q(y) · x− s(y) = q(x) · x− s(x) implies s(y) ≤ s(x).

The first lemma shows that one may extend any IC mechanism to a larger domain,
even all Rk, and without increasing the menu M beyond its closure, which we denote by
clM .

Lemma 13. Let (q� s) be an IC mechanism on a domain D ⊂ R
k, with menu M =

(q� s)(D). Then (q� s) can be extended to an IC mechanism (q̄� s̄) on the whole space R
k,

with menu M = (q̄� s̄)(Rk) that satisfies M ⊂M ⊂ clM .

Proof. Defining b(x) := sup(g�t)∈M(g · x− t) for every x ∈ R
k extends the buyer’s payoff

function from D to R
k. The function s is bounded from below (since b(x) = q(x) ·x−s(x)

is finite for x ∈ D), and so there is τ such that t ≥ τ for all (g� t) ∈ M . Fix some element
(g0� t0) ∈ M ; then, for every x ∈ R

k, only those (g� t) in M with t ≤ ‖x‖1 + t0 matter for
b(x) (since g · x − t ≥ g0 · x − t0 implies t ≤ (g − g0) · x + t0 ≤ ‖x‖1 + t0). Therefore, for
every x ∈ R

k, the supremum in the definition of b(x) is attained, say at (q̄(x)� s̄(x)) ∈
clM ; for x ∈ D, we take (q̄(x)� s̄(x)) = (q(x)� s(x)). Thus b(x) = q̄(x) · x − s̄(x) =
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max(g�t)∈clM(g · x− t)= maxy∈Rk(q̄(y) · x− s̄(y)) for every x ∈R
k, which says that (q̄� s̄) is

IC on R
k. �

We shall thus consider without loss of generality mechanisms on R
k. The buyer’s

payoff function b, as the pointwise supremum of affine functions, is a convex function
on R

k, finite everywhere (since, as we have seen, for every x ∈ R
k, the supremum is

attained).
We recall a few useful concepts for convex functions.46 Let f :Rk → R be a real

convex function defined on R
k (and so dom f = R

k). The directional derivative of f

at x ∈ R
k in the direction y ∈ R

k is f ′(x; y) := limδ→0+(f (x + δy) − f (x))/δ. Since f

is convex, f ′(x; y) always exists. A vector g ∈ R
k is a subgradient of f at x ∈ R

k if
f (y) − f (x) ≥ g · (y − x) for all y ∈ R

k. The set ∂f (x) of subgradients of f at x is a
nonempty compact set, and f ′(x; y) = max{g · y :g ∈ ∂f (x)} for every x� y ∈ R

k. Finally,
if 0 ≤ f (x+ z)− f (x) ≤ ∑k

i=1 zi holds for every x�z ∈R
k with z ≥ 0, then the function f is

nondecreasing and nonexpansive.47

Let Bk be the collection of all real functions on R
k that are nondecreasing, nonex-

pansive, and convex.

Lemma 14. Let (q� s) be an IC mechanism on R
k. Then the buyer’s payoff function b

belongs to Bk, and for every x ∈ R
k, the vector q(x) is a subgradient of b at x and s(x) ≤

b′(x;x)− b(x).

Proof. Let M = (q� s)(Rk) be the menu of (q� s); then b(x) = q(x) · x − s(x) =
max(g�t)∈M(g · x− t), as a supremum of affine functions, is a convex function. For every
x� y ∈R

k, we get

b(y)− b(x)≥ (q(x) · y − s(x))− (q(x) · x− s(x)) = q(x) · (y − x)� (15)

which says that q(x) is a subgradient of b at x. Thus, q(x) · x ≤ sup{g · x :g ∈ ∂b(x)} =
b′(x;x) and so s(x) = q(x) · x− b(x)≤ b′(x;x)− b(x) for every x ∈R

k. Finally, taking y =
x+ z with z ≥ 0 in (15) implies that 0 ≤ q(x) · z ≤ b(x+ z)− b(x) ≤ q(x+ z) · z ≤ ∑k

i=1 zi,
and so b is nondecreasing and nonexpansive. �

Lemma 15. Let b be a function in Bk. Then there exists an IC mechanism (q� s) on R
k

such that the buyer’s payoff function is b.

Proof. Being nondecreasing, nonexpansive, and convex on R
k, the function b satisfies

0 ≤ b(x) − b(x − z) ≤ g · z ≤ b(x + z) − b(x) ≤ ∑k
i=1 zi for every x ∈ R

k, every g ∈ ∂b(x),
and every z ∈R

k+. In particular, ∂b(x) ⊂ [0�1]k, and so we choose for each x some q(x) ∈
∂b(x) and put s(x) := q(x) · x− b(x). Then q(y) · y − s(y) = b(y) ≥ b(x)+ q(x) · (y − x) =
q(x) · y − s(x) (the inequality since q(x) ∈ ∂b(x)) and so (q� s) is IC. �

46See Rockafellar (1970) for convex functions, their derivatives, and (sub)gradients.
47For convex f , this is equivalent to 0 ≤ ∂f (x)/∂xi ≤ 1 for all i and all x, where the derivative exists (i.e.,

for a.e. x).
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Proposition 16. Let (q� s) be an IC mechanism on a domain D⊂ R
k, with buyer payoff

function b and menu M = (q� s)(D). Then there exists a seller-favorable IC mechanism
(q̃� s̃) on R

k such that48

(i) q̃(x) · x− s̃(x) = b(x) = q(x) · x− s(x) for every x ∈D

(ii) s̃(x) = b′(x;x)− b(x)≥ s(x) for every x ∈D

(iii) M̃ := (q̃� s̃)(Rk) ⊂ cl((q� s)(D)) = clM .

Remark. Since b′(x;x) = maxg∈∂b(x) g · x, choosing in the proof of Lemma 15 a q̃(x) in
∂b(x) where this maximum is attained yields (q̃� s̃) that satisfies (i) and (ii), and so it is
seller-favorable (by Lemma 14). However, the additional conclusion (iii) that the menu
does not change (up to closure) is needed so as to guarantee that certain properties of
the mechanism, such as submodularity, are preserved by seller-favorability (as in Corol-
lary 20 in Section A.2 below); (iii) requires a somewhat more elaborate proof.

Proof of Proposition 16. Applying Lemma 13 allows us to assume without loss of
generality that the domain of (q� s) is the whole space, i.e., D = R

k (the result for the
extended mechanism clearly implies the result for the original one; note that if M is the
menu of the extended mechanism, then M̃ ⊂ clM implies M̃ ⊂ clM because M ⊂ clM).

For every x ∈ R
k, define (q̃(x)� s̃(x)) to be any limit point of the bounded sequence

of points (q(xn)� s(xn)) ∈ [0�1]k × R, where xn := (1 + 1/n)x for each positive integer n
(the sequence s(xn) is bounded because s(xn) = q(xn) · xn − b(xn) and b is continuous).
Thus (q̃� s̃) satisfies (i) (again, because b is continuous) and (iii), and it is IC because
(q� s) is IC. Now for any x and n, Lemma 14 implies that q̃(x) ∈ ∂b(x) and q(xn) ∈ ∂b(xn).
In particular,49 for every g ∈ ∂b(x), we have 0 ≤ (q(xn)− g) · (xn − x) = (q(xn)− g) · x/n.
Multiplying by n and taking the limit gives q̃(x) · x ≥ g · x, and so q̃(x) · x =
maxg∈∂b(x) g · x = b′(x;x). The equality in (ii) follows because s̃(x) = q̃(x) · x − b(x) =
b′(x;x)−b(x) by (i), and the inequality in (ii) follows from Lemma 14, which also implies
that (q̃� s̃) is seller-favorable. �

It is useful to gather the above results into one theorem.

Theorem 17. Let (q� s) :D → [0�1]k × R be a mechanism defined on a domain D ⊂ R
k,

with menu M := (q� s)(D) = {(q(x)� s(x)) :x ∈ D} and buyer payoff function50 b :Rk → R

given by b(x) := supy∈D(q(y) · x − s(y)) = sup(g�t)∈M(g · x − t) for every x ∈ R
k. Then the

following statements hold:

(i) The mechanism (q� s) is an IC mechanism if and only if it is the restriction to D of
an IC mechanism (q̄� s̄) on R

k with the same buyer payoff function b and menu
M := (q̄� s̄)(Rk) that satisfies M ⊂ M ⊂ clM .

48As the proof below shows, (i) and (ii) hold, in fact, for all x ∈ R
k, with b the buyer payoff function of the

extension of (q� s) from D to R
k obtained by Lemma 13. The equality in (ii) implies, in particular, that the

payment function s̃ of a seller-favorable mechanism is a Borel-measurable function on R
k.

49If f is a convex function, then (g − g′) · (x − y) ≥ 0 for all x, y , all g ∈ ∂f (x), and g′ ∈ ∂f (y) (add the
inequalities f (y)− f (x) ≥ g · (y − x) and f (x)− f (y) ≥ g′ · (x− y)).

50The buyer’s payoff function b is always taken to be defined on the whole space R
k.
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(ii) The mechanism (q� s) is an IC mechanism if and only if b ∈ Bk and, for every x ∈D,
we have q(x) ∈ ∂b(x) and s(x) = q(x) · x− b(x) ≤ b′(x;x)− b(x).

(iii) The mechanism (q� s) is, in addition, seller-favorable if and only if for every x ∈D,
we have s(x) = b′(x;x)− b(x).

(iv) If (q� s) is IC, then there is a seller-favorable IC mechanism (q̃� s̃) on R
k with the

same buyer payoff function b, with menu M̃ := (q̃� s̃)(Rk) satisfying M̃ ⊂ clM , and
such that s̃(x) = b′(x;x)− b(x) ≥ s(x) for all x ∈D.

Consider now the problem of maximizing the seller’s expected revenue subject to
individual rationality (IR) for the buyer (i.e., b ≥ 0). Since, by Theorem 17(iv), it is with-
out loss of generality to restrict attention to seller-favorable mechanisms, we get the
following corollary.

Corollary 18. The seller’s maximal expected revenue is

Rev(F) = sup
b∈Bk�b≥0

EF [b′(x;x)− b(x)]�

Remarks. (a) Full implementation of approximate seller-favorable payoffs. Given an
IC mechanism (q� s), the buyer may have more than one optimal choice at some val-
uation x in which case the seller’s revenue may be above or below s(x). However,
we can modify the mechanism so that all optimal choices of the buyer yield (almost)
the seller-favorable payment. The idea is simple: the seller gives a small fixed pro-
portional discount on all payments. Consequently, whenever the buyer was indiffer-
ent, he will now strictly prefer the choice with the higher payment (where he gets the
higher discount). Formally, consider an arbitrary IC mechanism (q� s) on a domain D,
let M := (q� s)(D) be its menu, and take a small ε > 0. Let (qε� sε) be an IC mecha-
nism that is obtained from the menu of (q� (1 − ε)s), i.e., the buyer’s payoff function is
bε(x) := supy∈D(q(y) · x − (1 − ε)s(y)) and (qε(x)� sε(x)) ∈ cl{(q(y)� (1 − ε)s(y)) :y ∈ D}
for every x ∈D. We claim that such a mechanism (qε� sε) guarantees to the seller, for any
optimal choice of the buyer at x, a payment of at least (1−ε)(b′(x;x)−b(x)), i.e., a (1−ε)

proportion of the seller-favorable payoff, for every51 x ∈ D. To see this, assume for sim-
plicity that the menu M is already a closed set.52 Then given x ∈ D, there is z ∈ D such
that (q(z)� s(z)) is the seller-favorable choice (q̃(x)� s̃(x)) at x, i.e., b(x) = q(z) · x − s(z)

and s(z)= b′(x;x)−b(x) (see Theorem 17(iv)). Then, in (qε� sε), for every optimal choice
(q(y)� (1 − ε)s(y)) at x we have

q(y) · x− (1 − ε)s(y) ≥ q(z) · x− (1 − ε)s(z) = b(x)+ εs(z)

≥ q(y) · x− s(y)+ εs(z)

51Thus, the tie-breaking rule in favor of the seller is obtained as the limit of any optimal behavior of the
buyer in the perturbed mechanisms. Moreover, this result holds starting with any IC mechanism (q� s).

52Otherwise one takes appropriate sequences zn ∈ D and yn ∈ D instead of z and y below.
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(the last inequality by IC of (q� s)). Hence s(y) ≥ s(z) (subtract and divide by ε),
and so the seller’s payoff, sε(x) = (1 − ε)s(y), is indeed at least (1 − ε)s(z) =
(1 − ε)(b′(x;x)− b(x)), i.e., (1 − ε) of the seller-maximal payoff at x.

(b) Unique equilibrium. Given any IC mechanism (q� s), there are various ways to
eliminate, at arbitrarily small cost, the problem of the buyer having only weak incentives
to report truthfully. For example, one can introduce an arbitrarily small positive proba-
bility that, after the buyer reports his valuation, the given (IC) mechanism is replaced by
a random reserve price on each good (independently).53

(c) Boundary points. Let (q� s) be a seller-favorable mechanism on a domain D⊂R
k

and let x be a boundary point of D. Let h �= 0 belong to the normal cone to D at x, i.e.,
h · x ≥ h · y for every y ∈ D (such an h always exists if D is convex or if x is a boundary
point of the convex hull of D). We claim that if h · x > 0, then g := q(x) must be maximal
in the direction h in [0�1]k, i.e., gλ := g + λh /∈ [0�1]k for every λ > 0. The reason is that
if gλ ∈ [0�1]k, then the mechanism (q̂� ŝ) on D that is identical with (q� s) except at x,
where we put q̂(x) := gλ and ŝ(x) := b(x)−gλ ·x= s(x)−λh ·x, which is larger than s(x)

(because h · x > 0), is IC (since for every y ∈ D, we have q̂(x) · y − ŝ(x) ≤ q(x) · y − s(x)

because h · y ≤ h · x) and has the same buyer payoff function b, which contradicts the
seller favorability of (q� s). If h · x = 0, then ŝ(x) = s(x) in the construction above, and so
we can assume without loss of generality that g is maximal in the direction h.

In particular, we may conclude the following:

• Without loss of generality, qi(x) = 0 when xi = 0 (take h = −e(i), where e(i) ∈ R
k is

the ith unit vector).

• We have qi(x) = 1 when xi = max{yi :y ∈ D} > 0 (for instance, if D = [0�1]k, then
qi(x) = 1 when xi = 1; take h= e(i)).

• We have maxi qi(x) = 1 when
∑

i xi = max{∑i yi :y ∈ D} > 0 (for instance, when D

is the unit simplex in R
k+; take h= (1�1� � � � �1)).

(d) Nonnegative revenue. If b(0) = 0 (which, when maximizing revenue, can always
be assumed when54 D ⊂ R

k+), then55 s(x) ≥ 0 (i.e., there are no positive transfers from
seller to buyer), and so b′(x;x) ≥ b(x).

(e) We have that s(x) = b′(x;x) − b(x) is the right derivative of the function t →
b(tx)− tb(x) at t = 1 (because b′(x;x) = limδ→0+(b((1+δ)x)−b(x))/δ is the right deriva-
tive of the function t → b(tx) at56 t = 1; these functions relate to the local returns to scale
of b).

53Thus, in the case of a single buyer, the possibility of multiple optimal reports for the buyer, which is
sometimes described as problematic (see, for instance, footnote 3 in Manelli and Vincent 2007), in fact is
not problematic.

54If b(0) > 0, then the revenue from b̃(x) = b(x) − b(0) is higher by the amount b(0) than the revenue
from b.

55Since 0 = b(0) ≥ b(x)+ q(x) · (0 − x) = −s(x) as q(x) ∈ ∂b(x).
56In the one-dimensional case (k = 1), we have b′(x;x) = xb′+(x). A useful property (for any k ≥ 1)

is
∫ t2
t1
b′(tx;x)dt = ∫ t2

t1
−b′(tx;−x)dt = b(t2x) − b(t1x) (take f (t) := b(tx) and use Corollary 24.2.1 in

Rockafellar 1970), from which we get
∫ t2
t1
q(tx) · xdt = b(t2x) − b(t1x) for any IC mechanism (q� s) (recall

Theorem 17(ii): q(tx) ∈ ∂b(tx) and so −b′(tx;−x) ≤ q(tx) · x ≤ b′(tx;x)). No measurability is needed here:
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(f) Nonnegative production costs. Suppose it costs the seller ci ≥ 0 to produce good
i and put c := (c1� � � � � ck). The seller’s expected profits are now π(x) = s(x)− q(x) · c.
Since, as we have seen, q(x) ∈ ∂b(x) and s(x) = q(x) · x − b(x), it follows that π(x) =
q(x) · (x− c)− b(x) ≤ maxq∈∂b(x) q · (x− c)− b(x)= b′(x;x− c)− b(x). Arguments anal-
ogous to those above establish that an IC mechanism with buyer payoff function b and
seller costs c is seller favorable (where favorability is in terms of profits π not revenue
s) if and only if π(x) = b′(x;x − c) − b(x), which reduces to the characterization above
when c = 0.

A.2 Pricing functions and submodularity

A function p : [0�1]k → R∪ {∞} is a pricing function for the IC mechanism (q� s) on the
domain D if for all x ∈ D, we have p(q(x)) = s(x) and57 b(x) = q(x) · x − p(q(x)) =
maxg∈[0�1]k(g · x−p(g)); thus, the choice function (q� s) obtains from the menu consist-

ing of all lotteries g ∈ [0�1]k, each one priced at p(g). A pricing function always exists:
take p(g) = s(x) for g = q(x) ∈Q := q(D) and p(g) = ∞ otherwise.

Lemma 19. Let (q� s) be an IC mechanism on a domain D ⊂ R
k. Then the function

p0 : [0�1]k → R∪ {∞} given by p0(g) := supx∈D(g · x − b(x)) for all g ∈ [0�1]k is the min-
imal pricing function for (q� s); i.e., p0 is a pricing function for (q� s), and any pricing
function p for (q� s) satisfies p(g) ≥ p0(g) for all g ∈ [0�1]k.

Proof. The function p0 is a pricing function for (q� s) since for g = q(x) with x ∈ D,
we have g · x − p(g) = b(x) and g · y − p(g) ≤ b(y) for all y ∈ D, and so the sup in the
definition of p0(g) is attained at x and equals s(x). If p is any pricing function, then for
each g ∈ [0�1]k, we have g · x−p(g) ≤ b(x) for every x ∈D, and so supx∈D(g · x− b(x)) ≤
p(g), i.e., p0(g) ≤ p(g). �

We refer to this minimal p0 as the canonical pricing function of (q� s) (it is the
Fenchel conjugate b∗ of the buyer payoff function58 b :Rk → R), in particular in view
of the following discussion.

The mechanism (q� s) is submodular on D if it has a pricing function p that satisfies

p(g)+p(g′) ≥ p(g ∨ g′)+p(g ∧ g′) (16)

for all g�g′ ∈ Q = q(D). In this case, the minimal pricing function p0 also satisfies (16)
(because, for p0, the left-hand side is the same, and the right-hand side can only be

the function q can be any selection from the subgradient correspondence (unlike Krishna and Maenner
2001 and Manelli and Vincent 2007).

57Recall that if q(x) = q(y), then s(x) = s(y) (by IC). Thus the menu M = (q� s)(D) of (q� s) is precisely the
graph of the restriction of p to Q := q(D) (and the value p(g) for g /∈ Q can be taken to be arbitrary in the
range p0(g) ≤ p(g) ≤ ∞, where p0 is given in Lemma 19).

58It can be shown that p0 is also the only closed convex pricing function p (since p∗ = b = p∗
0). Con-

vexity is a natural requirement on pricing functions, as a risk-neutral buyer can always randomize between
choices and pay the expected price.
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smaller by Lemma 19). Therefore, (q� s) is submodular if and only if its minimal pricing
function p0 satisfies (16), i.e.,

p0(g)+p0(g
′) ≥ p0(g ∨ g′)+p0(g ∧ g′) (17)

for all g�g′ ∈Q.
We now show that submodularity is preserved for seller-favorable mechanisms with

the same b.

Corollary 20. Let (q� s) be a submodular IC mechanism on a domain D ⊂ R
k. Then

there exists a seller-favorable submodular IC mechanism (q̃� s̃) on D with the same buyer
payoff function (and so s̃(x) ≥ s(x) for all x ∈D).

Proof. Let (q̄� s̄) be the extension of (q� s) to R
k given by Theorem 17(i), and apply The-

orem 17(iv) to (q̄� s̄) to obtain a seller-favorable IC mechanism (q̃� s̃). Since the buyer’s
payoff function on D is the same for (q� s) and (q̃� s̃), the corresponding function p0

is also the same. However, the set Q to which g and g′ belong is now replaced by the
set Q̃ := q̃(D). We will now show that if p0 satisfies (17) on Q, then it satisfies (17) also
on Q̃.

Let g̃ = q̃(x) ∈ Q̃. Theorem 17(iv) implies that there is a sequence (gn� tn) ∈ (q� s)(D)

converging to (g̃� s̃(x)), and so, by the definition of p0, we have p0(gn) = tn and
p0(g̃) ≥ g̃ · x− b(x) = s̃(x) = limn tn = limn p0(gn) (in fact, we have equality here, namely
p0(g̃) = limp0(gn), since p0 is a lower-semicontinuous function59). Therefore, given
g̃� g̃′ ∈ Q̃, take appropriate sequences gn�g

′
n ∈ Q such that gn → g̃, g′

n → g̃′, and then
we have

p0(gn)+p0(g
′
n) ≥ p0(gn ∨ g′

n)+p0(gn ∧ g′
n)

for every n by (17) on Q. The limit of the left-hand side is (at most) p0(g̃)+p0(g̃
′), and the

lim inf of the right-hand side is at least p0(g̃∨ g̃′)+p0(g̃∧ g̃′) by the lower-semicontinuity
of p0, which proves that p0 satisfies (17) on Q̃. �

References

Adams, William J. and Janet L. Yellen (1977), “What makes advertising profitable?” Eco-
nomic Journal, 87, 427–449. [894, 899]

Armstrong, Mark (1996), “Multiproduct nonlinear pricing.” Econometrica, 64, 51–75.
[893]

Briest, Patrick, Shuchi Chawla, Robert Kleinberg, and S. Matthew Weinberg (2010), “Pric-
ing randomized allocations.” In SODA ’10 Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, 585–597, SIAM, Philadelphia, PA. [908]

59The function p0, as the sup of a collection of affine—hence, continuous—functions, is lower-
semicontinous: if gn → g, then lim infn p0(gn) ≥ p0(g).

http://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/a77&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/a96&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/bckw10&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/a77&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/bckw10&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/bckw10&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G


Theoretical Economics 10 (2015) Maximal revenue with multiple goods 921

Hart, Sergiu and Noam Nisan (2013), “The menu-size complexity of auctions.” Available
at http://arxiv.org/abs/1304.6116. [894]

Hart, Sergiu and Noam Nisan (2014a), “Approximate revenue maximization with multi-
ple items.” Available at http://arxiv.org/abs/1204.1846. [893, 894, 906]

Hart, Sergiu and Noam Nisan (2014b), “How good are simple mechanisms for selling
multiple goods?” DP-666, The Hebrew University of Jerusalem, Center for Rationality.
[893, 894, 906]

Krishna, Vijay and Eliot Maenner (2001), “Convex potentials with an application to
mechanism design.” Econometrica, 69, 1113–1119. [919]

Manelli, Alejandro M. and Daniel R. Vincent (2006), “Bundling as an optimal selling
mechanism for a multiple-good monopolist.” Journal of Economic Theory, 127, 1–35.
[893, 903, 906, 908]

Manelli, Alejandro M. and Daniel R. Vincent (2007), “Multidimensional mechanism de-
sign: Revenue maximization and the multiple-good monopoly.” Journal of Economic
Theory, 137, 153–185. [893, 896, 908, 918, 919]

Manelli, Alejandro M. and Daniel R. Vincent (2012), “Multidimensional mechanism de-
sign: Revenue maximization and the multiple-good monopoly. A corrigendum.” Journal
of Economic Theory, 147, 2492–2493. [893, 908]

Matthews, Steven A. (1984), “Information acquisition in discriminatory auctions.” In
Bayesian Models in Economic Theory (Marcel Boyer and Richard E. Kihlstrom, eds.),
181–207, North-Holland, Amsterdam. [894]

Menicucci, Domenico (2009), “Competition may reduce the revenue in a first price auc-
tion with affiliated private values.” The B.E. Journal of Theoretical Economics: Advances,
9, 1–17, Article 38. [894]

Myerson, Roger B. (1981), “Optimal auction design.” Mathematics of Operations Re-
search, 6, 58–73. [893, 897, 908]

Pavlov, Gregory (2011), “Optimal mechanism for selling two goods.” The B.E. Journal of
Theoretical Economics: Advances, 11, Article 3. [893, 908]

Perry, Motty and Philip J. Reny (1999), “On the failure of the linkage principle in multi-
unit auctions.” Econometrica, 67, 895–900. [894]

Pycia, Marek (2006), “Stochastic vs deterministic mechanisms in multidimensional
screening.” Technical report, MIT. [893, 908, 912]

Rochet, Jean-Charles (1985), “The taxation principle and multi-time Hamilton–Jacobi
equations.” Journal of Mathematical Economics, 14, 113–128. [896]

Rockafellar, R. Tyrrell (1970), Convex Analysis. Princeton University Press, Princeton, NJ.
[915, 918]

Shaked, Moshe and J. George Shanthikumar (2007), Stochastic Orders. Springer, New
York. [897]

http://arxiv.org/abs/1304.6116
http://arxiv.org/abs/1204.1846
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/km01&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/mv06&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/mv07&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/mv12&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/m09&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/m81&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/p11&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/pr99&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/r85&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/r70&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/ss10&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/km01&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/mv06&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/mv07&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/mv07&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/mv12&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/mv12&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/m09&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/m09&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/m81&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/p11&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/pr99&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/r85&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/ss10&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G


922 Hart and Reny Theoretical Economics 10 (2015)

Thanassoulis, John (2004), “Haggling over substitutes.” Journal of Economic Theory, 117,
217–245. [893, 908]

Submitted 2013-4-22. Final version accepted 2014-10-21. Available online 2014-10-23.

http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/t04&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G
http://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/t04&rfe_id=urn:sici%2F1933-6837%28201509%2910%3A3%3C893%3AMRWMGN%3E2.0.CO%3B2-G

	Introduction
	Preliminaries
	Seller-favorable mechanisms

	Nonmonotonicity: Increasing values may decrease revenue
	Monotonicity for one good
	Nonmonotonicity for multiple goods
	Some classes of monotonic mechanisms
	Nonmonotonicity for independent and identically distributed goods

	Lotteries and revenue
	Lotteries for multiple goods
	Lotteries for independent and identically distributed goods

	Appendix
	Seller-favorable mechanisms
	Pricing functions and submodularity

	References

