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Approximate efficiency in repeated games with side-payments
and correlated signals

Jimmy H. Chan
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Wenzhang Zhang
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Side-payments are common in many long-term relationships. We show that when
players can exchange side-payments, approximate efficiency is achievable in any
repeated game with private monitoring and communication, as long as the play-
ers can observe their own payoffs and are sufficiently patient, the efficient stage-
game outcome is unique, and the signal distribution has full support. Unlike exist-
ing results in the literature, our result does not require deviations to be statistically
detectable.
Keywords. Repeated games, private monitoring, communication.

JEL classification. C73.

1. Introduction

Motivated by the secret-price-cuts problem (Stigler 1964), researchers have studied re-
peated games with private monitoring and communication. A standard approach in
the literature is to require unilateral deviations to be statistically detectable. In this pa-
per, we introduce an alternative approach that exploits information embedded in payoff
functions. We show that approximate efficiency can be achieved if the following condi-
tions are met:

• Each player can observe his own stage-game payoff.

• Any unilateral deviation from the efficient outcome strictly lowers the total payoff.

• Players can exchange side-payments at the end of each period.

• The signal distribution has full support.

The first and second conditions are natural in many economic problems. While side-
payments between players are untypical in repeated games, they are in fact quite com-
mon in reality. For example, employers pay workers monetary bonuses in relational
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contracts (Levin 2003 and Fuchs 2007) and cartels exchange side-payments through in-
terfirm trades (Harrington 2006, Harrington and Skrzypacz 2007, and Harrington and
Skrzypacz 2011). The last condition, which is standard in the literature, ensures that no
player can use his own signal to rule out any signal of another player. Unlike existing
results in the literature, our result does not assume statistical detectability.

To understand our result, notice that statistical detectability is not needed to enforce
an efficient outcome; we can achieve that by simply setting the continuation payoff of
each player equal to the total payoff of the other players (Fudenberg et al. 1994 and Chan
and Zhang 2012). The key issue is how to mitigate the efficiency loss caused by imperfect
monitoring. One approach is to use a T -period delayed-communication mechanism
to link decisions across periods (Compte 1998, Obara 2009, and Fong et al. 2011). In
this paper, we extend this approach to allow for any correlation structure of the private
signals.

The mechanism consists of three components. The first is a delayed-communication
mechanism similar to that in Fong et al. (2011). It requires that when any player j reports
a discounted payoff that is below a target at the end of period T , each player i �= j must
pay a penalty equal to the shortfall. Each player i’s transfer is thus linear in the dis-
counted payoff of each player j �= i up to player j’s target. The targets are set slightly
above the equilibrium expected discounted payoffs so that it is extremely unlikely for
the discounted payoff of any player to exceed his target when T is large. But while un-
likely ex ante, during the mechanism a player may still learn through his own signals
that some player’s payoff is likely to be above target. When that happens, the player may
want to deviate from the efficient action.

The second component of our mechanism, the main contribution of this paper, is
designed to deal with this “learning” problem. It can be loosely described as “side bets”
between each pair of players. The bets have the following properties. In any period and
for each player pair ij, whenever player i believes player j’s total discounted payoff is
likely to be above target, he also believes he will almost surely receive from player j a
bonus equal to the amount of player j’s payoff that is above target; however, regardless
of the signals he has observed, player j always believes that the probability of paying
the bonus is constant and equal to the ex ante probability of paying the bonus. Since the
probability is very low when T is large, player j has little incentive to deviate or misreport
to avoid paying player i. But player i now expects that his transfer is almost always equal
to the total payoff of the other players (minus a constant). Since the efficient outcome
is strict, it is a best response for i to choose the efficient action in every period, regard-
less of whether he is going to lie about his signals. Finally, the third component of our
mechanism is a scoring rule that induces the players to report their signals truthfully.1

We establish our approximate-efficiency result by implementing the T -period
mechanism in a repeated game with private monitoring and communication. Since
the players’ equilibrium discounted payoffs are going to be very close to the mean, they
are unlikely to be punished by the first component. Although the second component is
not fully efficient—the amount player j has to pay is actually greater than what player i

1Nissim et al. (2012) develop a similar approach for approximate implementation in large societies.
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receives—the efficiency loss is small because player j rarely has to pay player i in equilib-
rium. The efficiency loss due to the scoring rule is also very small because the incentive
to misreport is very weak.

A limitation of our mechanism is that it requires negative transfers. In standard re-
peated games without side-payments, one may need to enforce an inefficient outcome
with positive transfers to redistribute payoffs. The availability of side-payments allows
us to redistribute payoffs directly and avoid positive transfers. Without side-payments,
our result may still hold under additional restrictions on the feasible payoff set. We con-
sider the no-side-payment case in Section 5.

1.1 Related literature

Our mechanism is similar to the classic Clarke–Groves mechanism except that it deals
with hidden actions and not private information. Bergemann and Välimäki (2010) and
Athey and Segal (2013) extend the Clarke–Groves mechanism to a dynamic environ-
ment, but their models involve only private information. An early version of Athey and
Segal (2013) allows the agents to take private actions. Their results do not apply to our
model because in their model, the action of one agent does not directly affect the payoffs
of the other agents.

The idea of reducing efficiency loss by linking decisions across periods was first
introduced by Rubinstein and Yaari (1983) and Radner (1985) in one-sided repeated
moral-hazard problems, and by Abreu et al. (1991) in repeated games with imperfect
monitoring.2  Compte (1998) was the first to apply this idea to repeated games with pri-
vate monitoring and communication. Since Compte (1998) assumes the players’ signals
are independent, there is no learning within a T -period block. One way to deal with the
learning problem is to punish the “optimistic” players—those who think they are un-
likely to be punished—more heavily. However, if an optimistic player is punished more
heavily when he honestly reveals his belief, he would have incentives to lie. Zheng (2008)
provides a sufficient condition on the monitoring structure in symmetric games under
which this type of lying can be deterred. Obara (2009) provides a more general condition,
which requires that, for at least one player, deviations and false reports be jointly statis-
tically detectable. Our “side-bets” approach, by contrast, solves the learning problem by
exploiting the correlation that causes the problem in the first place.

Our result extends the technique of reducing efficiency loss through delayed com-
munication. An alternative approach to reduce efficiency loss is due to Kandori
and Matsushima (1998) and Fudenberg et al. (1994).3 Other related works with

2In repeated moral-hazard problems, linking decisions improves efficiency by allowing the mechanism
designer to use the same punishment to motivate the players in multiple periods. In repeated private-
information problems, linking decisions is also useful but through a different channel. See Jackson and
Sonnenschein (2007) and Escobar and Toikka (2013).

3They show that if deviations are pairwise identifiable, it is possible to transfer the punishment of one
player to another so that the total punishment is always zero. Hörner et al. (2013) extend this approach to
incorporate Markovian private information.
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communication include Ben-Porath and Kahneman (1996), Aoyagi (2002), and
Fudenberg and Levine (2007). Efficiency results and folk theorems have also been
proven without communication. Earlier works have focused on the cases where signals
are almost perfect (Sekiguchi 1997, Bhaskar and van Damme 2002, Bhaskar and Obara
2002, Ely and Välimäki 2002, Piccione 2002, Hörner and Olszewski 2006, and Yamamoto
2007), almost public (Mailath and Morris 2002 and Hörner and Olszewski 2009), or inde-
pendent (Matsushima 2004 and Yamamoto 2007). See Kandori (2002) and Mailath and
Samuelson (2006) for excellent surveys of this literature. Two recent advances allow for
correlated signals. Fong et al. (2011) show that approximate efficiency can be attained
in the repeated two-player prisoners’ dilemma game when the monitoring structure is
sufficiently accurate. Sugaya (2012) proves a folk theorem without communication for
general finite-player repeated games under a set of conditions that includes statisti-
cal detectability. Since we do not assume statistical detectability, the result of Sugaya
(2012) does not directly apply. It is an open question whether approximate efficiency is
achievable in our model without communication.

2. The model

A group of n players, denoted by N = {1�2� � � � � n}, play the following stage game G in
each period t = 1, 2, . . . . First, each player i ∈N simultaneously chooses a private action
ai from a finite set Ai. Second, each player i observes a private signal yi from a finite
set Yi.4 Third, each player i simultaneously sends a public message mi ∈Mi to the other
players. We assume that the message space Mi is countable and includes Yl

i for each
l ≥ 1 so that player i can report any finite sequence of private signals in any period t.5

Fourth, each player i simultaneously makes a publicly observable side-payment τij to
each player j.6 Finally, the players observe χ, the outcome of a public randomization
device, which is uniformly distributed between 0 and 1.7

Let a = (a1� � � � � an) denote an action profile and let y = (y1� � � � � yn) denote a sig-
nal profile. Let a−i and y−i denote a minus ai and y minus yi, respectively.8 Denote
the set of action profiles by A and the set of private-signal profiles by Y . Conditional
on a, each y is realized with probability p(y|a). The marginal probabilities of y−i, yi,
and (yi� yj) are denoted, respectively, by p−i(y−i|a), pi(yi|a), and pij(yi� yj|a), and the
marginal probabilities of y−i and yj , conditional on a and yi, are denoted, respectively,
by p−i(y−i|a� yi) and pj(yj|a� yi). We assume that the signal distribution has full support;
that is, p(y|a) > 0 for each y ∈ Y and a ∈ A. This assumption, among other things, rules
out public monitoring.

4Each player i does not observe the others’ actions. Instead, the signal yi serves as an imperfect indicator
of the joint actions taken.

5For any set X , Xl denotes the lary Cartesian power of X .
6We include τii, player i’s payment to himself, to simplify notation. Throughout, we set τii to zero.
7Since we assume that players can communicate, the public randomization device can be replaced by a

series of jointly controlled lotteries and, hence, is dispensable. See Aumann et al. (1968).
8For any variable xi, we use x to denote (x1�x2� � � � � xn) and x−i to denote x with the ith element xi

deleted.
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Player i’s gross payoff in the stage game is

ri(ai� yi)+
n∑

j=1

(τji − τij)�

We refer to ri(ai� yi) as player i’s stage-game payoff. For each player i, the stage-game
payoff function, ri(ai� yi), depends solely on ai and yi. The actions of the other players
affect ri(ai� yi) only through the distribution of yi. Player i’s expected stage-game payoff
conditional on a is

gi(a) ≡
∑
yi∈Yi

ri(ai� yi)pi(yi|a)�

We say that an action profile a∗ is efficient if it maximizes
∑n

i=1 gi(a). Let G0 denote the
stage game G without the last three steps (i.e., reporting private signals, making side-
payments, and observing the outcome of the public randomization device). To save
notation, we assume that G0 has a pure-strategy Nash equilibrium and denote it by aN =
(aN1 � aN2 � � � � � aNn ).9

The players discount future payoffs by a common discount factor δ < 1. Player i’s
average repeated-game payoff is

(1 − δ)

∞∑
t=1

δt−1

(
ri(ai�t � yi�t)+

n∑
j=1

(τji�t − τij�t)

)
�

where ai�t , yi�t , and τij�t are the period-t values of ai, yi, and τij , respectively. At the be-
ginning of each period t, each player i has observed a private history that consists of his
actions and signals in the previous (t−1) periods, as well as a public history that consists
of the signal reports, side-payments, and outcomes of the public randomization device
in the previous (t−1) periods. We use hi�t to denote the history, both private and public,
that player i observes at the beginning of period t. Let Hi denote the set of all finite histo-
ries for player i. A pure strategy σi = (αi�ρi� bi) for player i consists of three components:
an action strategy αi that maps each history hi�t ∈ Hi into an action in Ai, a reporting
strategy ρi that maps each (hi�t � ai�t � yi�t) into a message in Mi, and a transfer strategy
bi = (bi1� bi2� � � � � bin) that maps each (hi�t � ai�t � yi�t �mt) into an n-vector of nonnegative
real numbers. Mixed strategies are defined in the standard way. We will state clearly if
mixing is involved, but for simplicity, we do not introduce separate notations for mixed
strategies. Following Compte (1998) and Obara (2009), we use the solution concept of
perfect T -public equilibrium. A strategy of player i is T -public (for some T ≥ 1) if the
following conditions are satisfied for any positive integer l: (i) at any period t, where
lT < t ≤ (l + 1)T , the stage-game action strategy depends only on the public history at
lT and always prescribes the same action; (ii) at any period t, where lT < t < (l + 1)T ,
the stage-game reporting strategy is always fully mixed and depends only on the public
history at lT ; (iii) at period t = (l + 1)T , the stage-game reporting strategy depends only
on player i’s private signals after period lT . A strategy profile σ = (σ1�σ2� � � � �σn) is a

9All results go through if we replace aN with a mixed-strategy Nash equilibrium of G0.
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perfect T -public equilibrium if each σi is T -public and the continuation strategy pro-
file after any public history at periods lT + 1, for any l ≥ 0, constitutes a Nash equilib-
rium. Perfect T -public equilibrium is weaker than sequential equilibrium in that it does
not require consistency and sequential rationality within a T block. However, given the
full-support assumption, for any perfect T -public equilibrium, there exists a sequential
equilibrium with the same equilibrium outcomes (Lemma 2, Kandori and Matsushima
1998).

3. Result

Approximate efficiency is attainable only if there is a way for the players to monitor each
other. In the literature, the standard monitoring assumption is statistical detectability.
Formally, unilateral deviations from an action profile a are statistically detectable if for
each player i,

p−i(·|a) /∈ co
({p−i(·|a′

i� a−i)|a′
i �= ai}

)
�

While the condition is generic mathematically when the number of signals is sufficiently
large, it does not follow naturally from standard economic assumptions. For example,
in the secret-price-cutting problem where each firm’s private signal is its own demand,
it is unclear what economic restrictions on the demand system would imply statistical
detectability.

In this paper, we propose an alternative approach to achieve approximate efficiency.
We say that an efficient action profile a∗ is locally unique if for each player i ∈ N and each
a′
i ∈ Ai/{a∗

i },

n∑
j=1

gj(a
′
i� a

∗
−i) <

n∑
j=1

gj(a
∗)�

Our main result is the following theorem.

Theorem 1. Suppose there is a locally unique efficient action profile a∗. Then for any
ε > 0, there exists δ̄ < 1 such that for each δ > δ̄, there is a perfect T -public equilibrium
with total average equilibrium payoff greater than

∑n
i=1 gi(a

∗)− ε.

See Appendix B for the proof.
In many economic problems, it is natural to assume that players can observe their

own payoffs and exchange side-payments. Theorem 1 shows that in such problems, sta-
tistical detectability is not necessary for approximate efficiency. If σ is an equilibrium,
then it is also an equilibrium for the players to use a public randomization device to ran-
domize between σ and playing aN forever in the beginning of the game. Hence, given
the conditions in Theorem 1, we could construct equilibrium with total average payoff
anywhere strictly between

∑n
i=1 gi(a

∗) and
∑n

i=1 gi(a
N). Furthermore, since we can use

side-payments to redistribute payoffs, the set of average equilibrium payoff profiles as δ
goes to 1 includes any payoff profile with total payoff strictly between

∑n
i=1 gi(a

N) and
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i=1 gi(a

∗). In equilibrium, a player i with gi(a
∗) < gi(a

N) would receive payments from
the other players to raise his average equilibrium payoff above gi(a

N).
When the players observe their own payoffs, statistical detectability is not neces-

sary because we can enforce an efficient outcome by making the continuation pay-
off of each player equal to the total payoff of the other players.10 To achieve approx-
imate efficiency, we introduce a new solution to the learning problem in a delayed-
communication mechanism with correlated signals. Given a−i, there is a statistical test
that can detect both deviations from ai and false reports of yi if

p−i(·|a� yi) /∈ co
({p−i(·|a′

i� a−i� y
′
i)|(a′

i� y
′
i) �= (ai� yi)}

)
for all yi ∈ Yi. Obara (2009) shows that the learning problem can be solved if deviations
and false reports are jointly statistically detectable for at least one player.11 Our solution,
instead, requires the existence of a locally unique efficient action profile. The require-
ment rules out unilateral deviations that change the payoff distribution for some player
without changing the expected payoff of any player.

We prove Theorem 1 by construction. The availability of side-payments allows us
to construct an equilibrium that involves only a∗ and aN . The equilibrium consists of
two states: a cooperative state and a noncooperative state. The players start off in the
cooperative state. In the cooperative state, the players play a∗ for T periods and send
completely mixed random messages in the first (T − 1) periods. At the end of period
T , they reveal their private signals in all T periods and exchange side-payments. They
then use a public randomization device to determine the state in the next period. If
the players stay in the cooperative state, they repeat the same process and play a∗ for
another T periods. If they switch to the noncooperative state, they play the stage-game
Nash equilibrium aN and send fully mixed random messages forever.

4. Main issues

4.1 A T -period game

To analyze the players’ incentives in the cooperative state, we consider the following T -
period game, which we denote by GT�δ(S). In each period k = 1� � � � �T , the players play
the stage game G0.12 At the end of period T , the players simultaneously report the pri-
vate signals they have received during the T periods. Let ŷTi = (ŷi(1)� � � � � ŷi(T )) denote
a signal report of player i and let ŷT = (ŷT1 � � � � � ŷTn ) denote a signal-report profile. In ad-
dition to his stage-game payoffs, each player i receives a transfer Si(ŷT ) that depends on
the signal-report profile ŷT . Player i’s total discounted payoff in this T -period game is

T∑
k=1

δk−1ri(ai(k)� yi(k))+ Si(ŷ
T )�

where ai(k) is player i’s period-k action and yi(k) is his period-k signal.

10The assumption that payoffs are observable is crucial. See Rahman (2012) for complications that would
arise when this assumption fails.

11Obara (2009) calls such a player an informed player.
12Recall that G0 denotes the stage game G without the last three steps.
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Because there is no external source of payoffs in the original repeated game, we re-
quire that the total transfer be nonpositive; i.e.,

n∑
i=1

Si(ŷ
T )≤ 0� for all ŷT ∈ YT � (1)

For any k ≤ T , let yki ≡ (yi(1)� � � � � yi(k)) denote player i’s signals in the first k periods.
Player i’s strategy consists of two components: an action strategy αT

i that maps each

yki ∈ ⋃T−1
l=0 Yl

i into an action ai ∈ Ai and a reporting strategy ρTi that maps each yTi ∈ YT
i

into a report ŷTi ∈ YT
i .13 Let AT

i and �T
i be player i’s action–strategy set and reporting–

strategy set, respectively. Denote the action strategy that chooses a∗
i in every period

by αT∗
i , the truth-telling reporting strategy by ρT∗

i , and the strategy profile where every
player i chooses (αT∗

i � ρT∗
i ) by (αT∗�ρT∗). We say S enforces a∗ if (αT∗�ρT∗) is a Nash

equilibrium. The total per-period efficiency loss of S conditional on (αT∗�ρT∗) is

WL(T�δ�S) ≡ −
n∑

i=1

1 − δ

1 − δT
EyT [Si(yT )|αT∗]�

To prove Theorem 1, we must show that for any ε > 0, it is possible to find S that satisfies
(1) and enforces a∗ with efficiency loss less than ε.

4.2 Reducing efficiency loss through delayed communication

In this section, we review the independent-signal case. The result was first proved by
Compte (1998). Our argument follows that of Fong et al. (2011).

Let

�j(y
T
j )≡

T∑
k=1

δk−1rj(a
∗
j � yj(k))

denote player j’s discounted stage-game payoff in the T -period game. Hoeffding’s in-
equality provides an upper bound on the probability that �j exceeds a certain value.

Lemma 1 (Hoeffding’s inequality (Hoeffding 1963, Theorem 2)). Let x1�x2� � � � � xl0 be in-
dependent random variables such that |xl| ≤ ν for each l ≤ l0. Then, for any d > 0, we
have

Pr

( l0∑
l=1

xl ≥E

[ l0∑
l=1

xl

]
+ d

)
≤ exp

(
− d2

2ν2l0

)
� (2)

Let c1 ≡ maxj�yj |rj(a∗
j � yj)|. Substituting δk−1rj(a

∗
j � yj(k)) for xl, T 2/3 for d, T for l0,

and c1 for ν into (2), we have

Pr

({
yTj : �j(y

T
j ) >

T∑
k=1

δk−1gj(a
∗)+ T 2/3

}∣∣∣αT∗
)

≤ exp
(

− 1
2c2

1

T 1/3
)
� (3)

13As usual, y0 denotes the null history ∅ and Y 0 denotes the set whose only element is y0.
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Although T 2/3/
∑T

k=1 δ
k−1gj(a

∗) tends to 0 as T goes to infinity and δ goes to 1, the prob-
ability that �j exceeds the mean by more than T 2/3 decreases exponentially in T 1/3. In-
tuitively, as T increases, the support of �j widens, but the distribution becomes increas-
ingly concentrated around the mean.

Consider a vector of transfer functions S∗ ≡ (S∗
1� � � � � S

∗
n). For each player i and each

ŷT ∈ YT ,

S∗
i (ŷ

T ) ≡ −
∑
j �=i

max{Kj −�j(ŷ
T
j )�0}� (4)

where

Kj ≡
T∑

k=1

δk−1gj(a
∗)+ T 2/3� (5)

Under S∗, each player i’s transfer is increasing one-to-one in the reported discounted
payoff of each player j �= i up to a cap Kj , which is set at T 2/3 above the mean discounted
payoff of player j when αT∗ is chosen. It follows from (3) that WL(T�δ�S∗) could be made
arbitrarily small by making T sufficiently large and δ sufficiently close to 1.

The strategy profile (αT∗�ρT∗) is a Nash equilibrium of GT�δ(S∗) when the signals are
independent. As S∗

i does not depend on ρTi , the truthful reporting strategy ρT∗
i is a best

response. For each yki ∈ ⋃T
l=0 Y

l
i , let

UT
i (α

T
i �ρ

T
i ;S� yki ) ≡EyT

[
T∑
l=1

δl−1ri(α
T
i (y

l−1
i )� yi(l))+ Si(ρ

T
i (y

T
i )� y

T
−i)

∣∣∣αT
i �α

T∗
−i � y

k
i

]
(6)

denote player i’s expected payoff conditional on yki when he chooses (αT
i �ρ

T
i ) and other

players choose (αT∗
−i � ρ

T∗
−i ). Write UT

i (α
T
i �ρ

T
i ;S) for UT

i (α
T
i �ρ

T
i ;S� y0

i ). Substitute (4) and
(5) into (6) (with S∗ replacing S) and rearrange terms. We have

UT
i (α

T
i �ρ

T
i ;S∗� yki ) = Vi(α

T
i ; yki )−Ri(α

T
i ; yki )−

∑
j �=i

Kj�

where

Vi(α
T
i ; yki ) ≡ EyT

[
T∑
l=1

δl−1
(
ri(α

T
i (y

l−1)� yi(l))+
∑
j �=i

rj(a
∗
j � yj(l))

)∣∣∣αT
i �α

T∗
−i � y

k
i

]

Ri(α
T
i ; yki ) ≡

∑
j �=i

EyT
[
max{�j(y

T
j )−Kj�0}|αT

i �α
T∗
−i � y

k
i

]
�

The variable Vi is the players’ total expected payoff conditional on yki when player i
chooses αT

i and other players choose αT∗
−i . Because a∗ is locally unique, any deviation

from αT∗
i must strictly lower Vi. Let � denote the minimum loss in total expected stage-

game payoff when a player deviates unilaterally from a∗, and let AT
i (y

k
i ) denote the set

of player i’s action strategies that prescribe ai �= a∗
i after yki in period (k + 1). For any

k< T , yki ∈ Yk
i , and αT

i ∈ AT
i (y

k
i ),

Vi(α
T∗
i ; yki )− Vi(α

T
i ; yki )≥ δk��
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The variable Ri is the part of the payoffs of players j �= i not captured by S∗
i . It mea-

sures the effect of truncating player i’s incentives. When the signals are independent,
player i believes that the truncation effect is very small throughout the mechanism. By
(3),

Pr

({
yTj : �j(y

T
j ) >

T∑
k=1

δk−1gj(a
∗)+ T 2/3

}∣∣∣αT∗� yki

)
≤ exp

(
− 1

2c2
1

T 1/3
)
�

Since �j(y
T
j )≤ c1T and Ri(α

T
i ; yki )≥ 0,

Ri(α
T∗
i ; yki )−Ri(α

T
i ; yki )≤ c1T exp

(
− 1

2c2
1

T 1/3
)
�

which would be less than δk� when T is large and δ is close to 1. Hence, αT∗
i is a best

response against (αT∗
−i � ρ

T∗
−i ) when T is sufficiently large and δ is sufficiently close to 1.

4.3 Solving the learning problem

When the signals are correlated, we can no longer make each player i believe that the
truncation does not matter throughout the T -period game. Even when ex ante it is ex-
tremely unlikely that player j’s discounted payoff will be greater than Kj , there is always
some small chance that player i may learn from his own signals during the T -period
game that the probability is not negligible, and when that happens, the fact that S∗

i de-
pends on �j only up to Kj would affect player i’s incentive to choose a∗

i in the remaining
periods.

The main contribution of this paper is to provide a solution to this learning problem.
The basic idea is to make player j pay player i a reward that cancels out the truncation
effect whenever player i thinks there is a nonnegligible probability that �j is greater than
Kj . However, we cannot directly make player j pay player i whenever �j is larger thanKj ,
because doing so would merely transfer player i’s learning problem to player j—player
j may now want to deviate from a∗

j when �j is large. To avoid this problem, we make
the additional reward dependent on a proxy variable that is uncorrelated with player j’s
private signals but very likely to be large whenever �j is large from the perspective of
player i.

We first introduce the proxy variable. For any i, j �= i and any (yi� yj) ∈ Yi ×Yj , let

zij(yi� yj)≡ Ey ′
j
[rj(a∗

j � y
′
j)|a∗� yi]pi(yi|a∗)pj(yj|a∗)

pij(yi� yj|a∗)
�

Note that zij is always defined due to the full-support assumption. By Bayes’ rule,

pi(yi|a)pi(yj|a)
pij(yi� yj|a) = pi(yi|a)

pi(yi|yj�a) = pj(yj|a)
pj(yj|yi� a) �

Hence, for any (yi� yj) ∈ Yi ×Yj ,

Eyj [zij(yi� yj)|a∗� yi] = Ey ′
j
[rj(a∗

j � y
′
j)|a∗� yi] (7)
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and

Eyi [zij(yj� yi)|a∗� yj] = Ey ′
j
[rj(a∗

j � y
′
j)|a∗]� (8)

These properties extend to the total discounted value of zij over the T -period game. For
any (yTi � y

T
j ) ∈ YT

i ×YT
j , let

�ij(y
T
i � y

T
j )≡

T∑
k=1

δk−1zij(yi(k)� yj(k))�

It follows immediately from (7) and (8) that for any k≤ T and (yki � y
k
j ) ∈ Yk

i ×Yk
j ,

EyTi �y
T
j
[�ij(y

T
i � y

T
j )|αT∗� yki ] = EyTi �y

T
j
[�j(y

T
j )|αT∗� yki ] (9)

and

EyTi �y
T
j
[�ij(y

T
i � y

T
j )|αT∗� ykj ] =EyTi �y

T
j
[�j(y

T
j )|αT∗]� (10)

Equations (9) and (10) mean that throughout the T -period game, player i’s conditional
expectation of �ij is always equal to his conditional expectation of �j , while player j’s
conditional expectation of �ij is always equal to the unconditional expectation of �j .

We add two extra components to S∗ to deal with the learning problem. The first extra
component for player i is

Li(ŷ
T ) ≡

∑
j �=i

max{�j(ŷ
T
j )−Kj�0}fij(ŷT )

−
∑
j �=i

max
{
(�̄i −Ki)− max{Kj −�j(ŷ

T
j )�0}�0

}
fji(ŷ

T )�

(11)

where �̄j ≡ maxŷTj �j(ŷ
T
j ) and

fij(ŷ
T ) ≡

{
1 if �ij(ŷ

T
i � ŷ

T
j ) > Kj − 1

2T
2/3

0 otherwise.

Intuitively, for any player pair ij, we raise player i’s transfer by max{�j(ŷ
T
j )−Kj�0} when

�ij(ŷ
T
i � ŷ

T
j ) is greater than (Kj − 1

2T
2/3) and simultaneously reduce player j’s transfer by

max
{
(�̄j −Kj)− max{Ki −�i(ŷ

T
i )�0}�0

}
�

The first summation term on the right-hand side of (11) is the total extra reward player
i receives, and the second summation term is the total reward he pays. Note that while
we say player j “pays” player i a reward, player j actually pays more than what player i
receives.

The amount deducted from player j’s payoff is made independent of ŷTj to ensure
that player j has no incentive to misreport to reduce the amount he needs to pay. (See
Remark 1 below for more details.) Nevertheless, player i may still try to manipulate Li
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by lying about his signals, as fij and fji both depend on ŷTi . To induce player i to report
truthfully, we add a second component,

Di(ŷ
T ) ≡ T−2

T∑
k=1

logp−i(ŷ−i(k)|a∗� ŷi(k))�

to player i’s transfer. The variable Di is always negative and it is bounded from below as
the signal distribution has full support.

With these two extra components, player i’s total transfer is now

S∗∗
i (ŷT )= S∗

i (ŷ
T )+Li(ŷ

T )+Di(ŷ
T )� (12)

Let S∗∗ = (S∗∗
1 � � � � � S∗∗

n ). Since for any ŷT ∈ YT ,

n∑
i=1

(S∗
i (ŷ

T )+Li(ŷ
T )) ≤ 0 and

n∑
i=1

Di(ŷ
T )≤ 0�

the total transfer is always negative.

Lemma 2. For any ε > 0, there exists a T0 such that, for all T ≥ T0 and all δ≥ 1 −T−2, the
following statements hold:

(i) We have WL(T�δ�S∗∗)≤ ε.

(ii) The strategy profile (αT∗�ρT∗) is a Nash equilibrium of GT�δ(S∗∗).

See Appendix A for the proof.
Part (i) of Lemma 2 comes from the fact that the expected values of both extra com-

ponents are very small when T is large and (αT∗�ρT∗) is chosen. As T goes to infinity,
Di goes to zero. The expected value of Li(y

T ) is small because for any player j, ex ante
it is unlikely for �ji to be greater than (Ki − 1

2T
2/3) when T is large and (αT∗�ρT∗) is

chosen.
We turn to part (ii) of Lemma 2. Substituting (12) into (6) and rearranging terms, we

have

UT
i (α

T
i �ρ

T
i ;S∗∗� yki )= Vi(α

T
i ; yki )−

3∑
l=1

Rl
i(α

T
i �ρ

T
i ; yki )−

∑
j �=i

Kj� (13)

where

R1
i (α

T
i �ρ

T
i ; yki ) ≡

∑
j �=i

EyT
[
max{�j(y

T
j )−Kj�0}(1 − fij(ρ

T
i (y

T
i )� y

T
−i)

)|αT
i �α

T∗
−i � y

k
i

]
R2
i (α

T
i �ρ

T
i ; yki ) ≡

∑
j �=i

EyT
[
(�̄i −Ki)fji(ρ

T
i (y

T
i )� y

T
−i)|αT

i �α
T∗
−i � y

k
i

]
R3
i (α

T
i �ρ

T
i ; yki ) ≡ −EyT

[
Di(ρ

T
i (y

T
i )� y

T
−i)|αT

i �α
T∗
−i � y

k
i

]
�

Note that R1
i , R2

i , and R3
i are always positive.
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The term R1
i in (13) is the net truncation effect. Recall that S∗

i increases linearly in

player j’s payoff up to Kj . Since the first component of Li pays player i an additional
reward max{�j(ŷ

T
j ) − Kj�0} when fij(ŷ

T ) = 1, the cap Kj binds for player i only when

�j >Kj and fij(ŷ
T )= 0. Under truthful reporting, the event occurs when

�ij(y
T
i � y

T
j )+ 1

2T
2/3 <Kj <�j(y

T
j )� (14)

By (9), for any k≤ T and yki ∈ Yk
i ,

EyTi �y
T
j
[�ij(y

T
i � y

T
j )−�j(y

T
j )|αT∗� yki ] = 0�

As T goes to infinity,

Pr
({

(yTi � y
T
j ) : �ij(y

T
i � y

T
j )−�j(y

T
j ) < − 1

2T
2/3

}∣∣αT∗� yki
)

converges to 0. Hence, R1
i (α

T∗
i � ρT∗

i ; yki ) is extremely small when T is large. Roughly

speaking, player i believes he will almost always receive the additional reward when
�j >Kj if he chooses (αT∗

i � ρT∗
i ) and other players choose (αT∗

−i � ρ
T∗
−i ).

The second component of Li deducts

max
{
(�̄i −Ki)− max{Kj −�j(ŷ

T
j )�0}�0

}
from player i’s payoff whenever �ji is greater than (Ki − 1

2T
2/3) for some j �= i. The term

R2
i in (13) denotes the expected amount deducted. By (10),

EyTj �y
T
i
[�ji(y

T
j � y

T
i )|αT∗� yki ] = EyTi

[�i(y
T
i )|αT∗] =Ki − T 2/3

for any k ≤ T and yki ∈ Yk
i . As T becomes large, the probability that �ji is greater than

(Ki − 1
2T

2/3) is extremely low. Therefore, R2
i (α

T∗
i � ρT∗

i ; yki ) is extremely small when T is

large. In other words, player i believes he will almost never have to pay the reward to
player j when (αT∗�ρT∗) is chosen.

We have argued that R1
i (α

T∗
i � ρT∗

i ; yki ) and R2
i (α

T∗
i � ρT∗

i ; yki ) are both extremely small
when T is large. Because Di is bounded from below, R3

i (α
T∗
i � ρT∗

i ; yki ) converges to zero

as T goes to infinity. Since R1
i , R2

i , and R3
i are always positive, as T becomes large, for

any strategy (αT
i �ρ

T
i ) and any yki ∈ Yk

i ,

3∑
l=1

(Rl
i(α

T∗
i � ρT∗

i ; yki )−Rl
i(α

T
i �ρ

T
i ; yki ))

cannot be significantly greater than 0. Hence, using an argument similar to the
independent-signal case, we can show that when T is sufficiently large and δ sufficiently
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close to 1,

Vi(α
T∗
i ; yki )− Vi(α

T
i ; yki )≥

3∑
l=1

Rl
i(α

T∗
i � ρT∗

i ; yki )−
3∑

l=1

Rl
i(α

T
i �ρ

T
i ; yki )

for any yki ∈ Yk
i , αT

i ∈ AT
i (y

k
i ), and ρTi ∈ �T

i . It is, therefore, a best response for player i to
choose αT∗

i when other players choose (αT∗
−i � ρ

T∗
−i ).

Suppose player i chooses αT∗
i . Player i can lower R1

i and R2
i only by lying about his

posterior beliefs in some period l; i.e., reporting ŷi(l) with p−i(·|a∗� ŷi(l)) �=
p−i(·|a∗� yi(l)). The function Di is a scoring rule. It is well known that for any yTi ∈ YT

i ,
ŷTi maximizes

EyT−i
[Di(̃y

T
i � y

T
−i)|αT∗� yTi ]

with respect to ỹTi if and only if p−i(·|a∗� ŷi(l)) = p−i(·|a∗� yi(l)) for any l ≤ T . If player
i lies about his posterior beliefs, R3

i will strictly increase. Since under truth-telling, R1
i

and R2
i converge to zero exponentially faster than R3

i , any decrease in R1
i and R2

i will be
dominated by the increase in R3

i when T is sufficiently large.

Remark 1. We raise player i’s payoff by max{�j(ŷ
T
j )−Kj�0} and reduce player j’s payoff

by

max
{
(�̄j −Kj)− max{Ki −�i(ŷ

T
i )�0}�0

}
(15)

when fij(ŷ
T ) = 1. Since (�̄j − Kj) ≥ max{�j(ŷ

T
j ) − Kj�0}, the total payoff of the play-

ers may be reduced as a result. This does not affect the approximate-efficiency result,
because it is extremely unlikely that fij(ŷT ) = 1 in equilibrium.

Note that we cannot simply reduce player j’s payoff by

max
{
max{�j(ŷ

T
j )−Kj�0} − max{Ki −�i(ŷ

T
i )�0}�0

}
(16)

because doing so may give player j incentives to lie about yTj . The component Dj

ensures only that player j would be strictly worse off if he lies about his posterior
beliefs. However, there may exist yj and y ′

j such that p−j(·|a∗� yj) = p−j(·|a∗� y ′
j) and

rj(a
∗
j � yj) > rj(a

∗
j � y

′
j). In that case, player j would strictly prefer to report y ′

j when he ob-

serves yj if his payoff were reduced by (16) when fij(ŷ
T ) = 1. More generally, the amount

deducted from player j when fij(ŷ
T ) = 1 must satisfy three conditions: (i) the amount

must be big enough so that the total transfer remains nonpositive, (ii) the amount can-
not depend on player j’s report, and (iii) the amount deducted must always be posi-
tive. It is straightforward to see that (15) satisfies all three conditions. To see why the
last requirement is necessary, note that when the amount deducted from player j when
fij(ŷ

T ) = 1 is positive, player j’s incentive is to reduce the chance that fij(ŷT ) = 1. Since
the probability fij(ŷ

T ) = 1 is already extremely close to zero in equilibrium, the poten-
tial gain from any deviation is extremely small. If the amount deducted were negative
(meaning that player j will be rewarded when fij(ŷ

T ) = 1), player j’s incentive would be
to increase the chance that fij(ŷT ) = 1.
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Remark 2. Let λ = (λ1� � � � � λn) denote an n-vector. Consider the constrained maxi-
mization problem

Q(λ�T�δ)≡ max
αT �ρT �S

1 − δ

1 − δT

n∑
i=1

λiU
T
i (α

T
i �ρ

T
i ;S)

subject to
n∑

i=1

λiSi(y
T )≤ 0 for all yT ∈ YT

(αT �ρT ) is a Nash equilibrium of GT�δ(S)�

Lemma 2 says that for any λ such that λ1 = · · · = λn, the value of Q(λ�T�δ) is ε-
close to

∑n
i=1 gi(a

∗) when T is large and δ is close to 1. The same technique can be
used to provide an ε-tight bound on the value of Q(λ�T�δ) for any λ 
 0 when T is
large and δ is close to 1.14 The technique, however, does not apply for λ with λi < 0 for
some i. Recall that we argue that since R1

i , R2
i , and R3

i are close to 0 in equilibrium, no
deviation could reduce these terms significantly. For the argument to work, R1

i , R2
i , and

R3
i must be always positive. If λi < 0 for some i, then we would need to reward player

i by giving him a positive transfer whenever the payoffs of the other players are above
certain thresholds. In that case, the “truncation” terms would be negative.

5. Without side-payments

Following the influential work of Fudenberg and Levine (1994), it is common to prove
folk-theorem-type results by finding a tight lower bound on the value of Q(λ�T�δ) for
all λ with |λ| = 1. Since our technique does not apply to λ where λi < 0 for some i, we
cannot apply their result.

Nevertheless, our method of solving the learning problem may still apply when side-
payments are not allowed. We say that a pure action profile a is locally unique if for each
player i, there is a vector λa�i = (λ

a�i
1 �λ

a�i
2 � � � � �λ

a�i
n ) with λ

a�i
i > 0 such that

n∑
j=1

λa�ij gj(a) >

n∑
j=1

λa�ij gj(a
′
i� a−i) for each a′

i ∈ Ai� (17)

Let αTa denote the action strategy profile in the T -period game where the players always
choose a in each period. Using the techniques developed in the last section, we can
show that for any locally unique action profile a and any ε > 0, there exists a T0 such that,
for all T ≥ T0 and all δ≥ 1−T−2, there is a transfer-function profile S̃a = (S̃a1 � � � � � S̃

a
n) that

enforces a in the T -period game with
∑

i S̃
a
i (y

T ) ≤ 0 for all yT and∣∣∣∣ 1 − δ

1 − δT
EyT [S̃ai (yT )|αTa]

∣∣∣∣< ε

for each player i.

14See Appendix C for details.
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Let B denote a set of locally unique action profiles that contains a∗. Consider a T -
public trigger-strategy profile that contains #B cooperative states, each corresponding
to some a ∈ B. The strategy profile starts off in cooperative state a∗. In each cooperative
state a ∈ B, the players play a for T periods, send completely mixed random messages
during the first (T −1) periods, and reveal their private signals in all T periods at the end
of period T . Conditional on the report profile ŷT , the players switch to each state a′ ∈ B
in the next period with probability μa

a′(ŷT ) and the noncooperative state with probability
μa
N(ŷT ). Once in the noncooperative state, the players play aN and send completely

mixed random messages forever.
Let vTa = (vTa1 � � � � � vTan ) denote the average discounted payoff at the beginning of

state a ∈ B, and let vTN = (vN1 � � � � � vNn ) denote the average discounted payoff at the be-
ginning of the noncooperative state. By construction, vTN = g(aN) for all T . The strat-
egy profile is a perfect T -public equilibrium if the transition probabilities {μa

a′ }a′∈B∪{N}
are chosen such that for all a ∈ B and yT ∈ YT ,

δT

1 − δ

∑
a′∈B∪{N}

μa
a′(yT )(vTa

′ − vTa
∗
)= S̃a(yT )� (18)

Such transition probabilities exist if and only if, for any a ∈ B,{
1 − δ

1 − δT
δ−T S̃a(yT )

∣∣∣yT ∈ YT

}
⊆ co

({
vTa

′ − vTa
∗

1 − δT

∣∣∣a′ ∈ B ∪ {N}
})

� (19)

The left-hand side of (19) is the set of per-period transfers needed to enforce a in a T -
period block, while the right-hand side is the set of feasible per-period transfers that can
be carried out by switching to a different state at the end of the block.

Both the left-hand and right-hand sides of (19) vary with T and δ. Suppose (18) holds
for each a ∈ B and yT ∈ YT . Then

vTai = (1 − δT )(gi(a)+ κa
i (T�δ))+ δT vTa

∗
i �

with

κai (T�δ) ≡ (1 − δ)EyT [S̃ai (yT )|αTa]
1 − δT

�

As δ goes to 1, we can choose T(δ) such that κa
i (T(δ)�δ) goes to 0 and δT(δ) goes to 1.

The right-hand side of (19) would then be approximately equal to

W (B) ≡
⋃

ξ∈R++
co

({w(a)}a∈B ∪ {ξw(aN)})�
where

w(a) ≡ g(a)− g(a∗)�

When κa
i (T(δ)�δ) is close to 0 and δT(δ) is close to 1, the efficiency loss in enforcing a

becomes negligible, and switching from cooperative state a∗ to cooperative state a is



Theoretical Economics 11 (2016) Efficiency in repeated games 69

equivalent to switching from a∗ to a for T periods. Since a switch to aN is permanent,
w(aN) carries an arbitrarily large weight in W (B).

For any i� j ∈ N , i �= j, let

W ij(B)≡ {(xi�xj) ∈R
2 | ∃x′ ∈W (B) : x′

i = xi�x
′
j = xj�x

′
k = 0 for k �= i� j}

denote the subset of W (B) with zero net transfer to all players other than i and j. Given
the full-support assumption, we may need to reward player i and punish player j with-
out changing the continuation payoffs of the other players. Hence, the trigger-strategy
profile could be an equilibrium only if, for any distinct player pair ij, W ij(B) contains a
point with a positive i component and a point with a positive j component.

The following theorem provides sufficient conditions for the trigger-strategy profile
to be an approximately efficient equilibrium.

Theorem 2. For each locally unique Pareto-efficient action profile a and each distinct
player pair ij, let

d
a
ij ≡ n(n− 1)

2
(λa�ii )−1λa�ij

(
max
yj

rj(aj� yj)− gj(a)
)

(20)

daij ≡ n(n− 1)
2

(λa�ii )−1λa�ij

(
min
yj

rj(aj� yj)− gj(a)
)
� (21)

Suppose there is a set of locally unique Pareto-efficient action profiles B that contains the
efficient profile a∗ such that for any players i� j ∈ N with i �= j, and any a ∈ B, there exist
wa
ij , w

a
ji, w

a
ij , and wa

ij such that

wa
ij > d

a
ij� wa

ij < daij� wa
ji > d

a
ji� wa

ji < daji (22)

and

(wa
ij�w

a
ji)� (w

a
ij�w

a
ji)� (w

a
ij�w

a
ji) ∈ int(W ij(B))� (23)

Then for any ε > 0, there exists δ̄ < 1 such that for each δ > δ̄, there is a perfect T -
public equilibrium without side-payments in which the average equilibrium payoff of
each player i is greater than gi(a

∗)− ε.

See Appendix C for the proof.
Note that transferring payoffs through actions is generally inefficient; i.e., it costs

player i more than 1 unit of payoff to raise the payoff of player j by 1 unit. Nevertheless,
the equilibrium is approximately efficient because the total expected transfer goes to 0
as δ goes to 1.

Under our transfer scheme, player i receives a reward when player j’s payoff is above
average and pays a penalty when player j’s payoff is below average. Roughly speaking,
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Figure 1. Illustration of conditions (22) and (23). The shaded area denotes W ij(B).

d
a
ij and daij are, respectively, the maximum and minimum of the part of player i’s transfer

tied to j’s payoffs when a is enforced, multiplied by 1
2n(n − 1).15 Conditions (22) and

(23) require that W ij(B) be large enough so that, first, when player i (j) is rewarded by
d
a
ij (d

a
ji), it is possible to punish player j (i) by daji (daij) or more and, second, it is possible

punish player i by daij and player j by daji simultaneously. See Figure 1. The condition
ensures the transfers between players i and j can be implemented with a “probability
quota” of 2/(n(n− 1)). Since there are 1

2n(n− 1) distinct pairs of players, we can imple-
ment the transfers between every pair of players simultaneously. Note that the left-hand
side of (23) depends on the impact of a player’s private signal on his own payoff given
the action profile, while the right-hand side depends on the impact of different action
profiles on the expected payoffs of the players. Our approach is, therefore, more likely
to apply without side-payments when actions have a greater impact on the payoffs than
do private signals.

To illustrate the restrictions imposed by conditions (22) and (23), consider the fol-
lowing noisy prisoners’ dilemma game. The action sets are A1 = A2 = {0�1} and the
signal sets are Y1 = Y2 ⊂ R. Normalize min{yi ∈ Yi} = 0 and denote max{yi ∈ Yi} by y. The
stage-game payoff for player i = 1�2 is

ri(ai� yi) = ai + yi�

15These terms are multiplied by (λ
a�i
i )−1λ

a�i
j to reflect the different weights assigned to the payoffs of

players i and j in (17).
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The expectation of yi depends only on a−i and not ai.16 For each i = 1�2,

E[yi|a−i = 0] = φ0y

E[yi|a−i = 1] = φ1y�

where φ0�φ1 > 0 and (φ0 −φ1)y > 1. The expected stage-game payoffs are

g(0�0) = (φ0y�φ0y)

g(1�1) = (1 +φ1y�1 +φ1y)

g(0�1) = (φ1y�1 +φ0y)

g(1�0) = (1 +φ0y�φ1y)�

The unique stage-game Nash equilibrium is (1�1) and the efficient outcome is (0�0).
Let B ≡ {(0�0)� (0�1)� (1�0)}. For two-player games, W 12(B) = W 21(B) = W (B). It is

straightforward to check that (x1�x2) ∈ int(W (B)) if and only if

(φ0 −φ1)yx1 + x2 < 0

x1 + (φ0 −φ1)yx2 < 0

x1 − x2 < 1 + (φ0 −φ1)y

−x1 + x2 < 1 + (φ0 −φ1)y�

See Figure 2.
Since a1 = 0 strictly maximizes g1(a1�1) + g2(a1�1) and a2 = 1 strictly maximizes

g2(0� a2), (a1� a2) = (0�1) is locally unique with λ(0�1)�1 = (1�1) and λ(0�1)�2 = (0�1). Simi-
larly, (a1� a2) = (1�0) is locally unique with λ(1�0)�1 = (1�0) and λ(1�0)�2 = (1�1).

Note that for a2 ∈ {0�1} and a1 = 0,

max
y2

r2(a2� y2)− g2(0� a2) = (1 −φ0)y

min
y2

r2(a2� y2)− g2(0� a2) = −φ0y�

Hence, in any state a ∈ B, player 1’s maximum reward and punishment are (1−φ0)y and
−φ0y, respectively. Since the game is symmetric, the same holds for player 2. Following
(20) and (21), we have

a d
a
12 da12 d

a
21 da21

0�0 (1 −φ0)y −φ0y (1 −φ0)y −φ0y

0�1 (1 −φ0)y −φ0y 0 0
1�0 0 0 (1 −φ0)y −φ0y

16Note that this does not imply that y1 and y2 are uncorrelated conditional on (a1� a2).
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Figure 2. The set W (B).

For any ε > 0, setting

wa
ij = wa

ji > (1 −φ0)y + ε

wa
ij = wa

ji <−φ0y − ε

would satisfy condition (22) for any a ∈ B. Conditions (22) and (23), therefore, can be
satisfied for each a ∈ B if

((1 −φ0)y�−φ0y)� (−φ0y� (1 −φ0)y)� (−φ0y�−φ0y) ∈ int(W (B))�

It is clear from Figure 2 that (−φ0y�−φ0y) ∈ int(W (B)). For ((1 − φ0)y�−φ0y) and
(−φ0y� (1 −φ0)y) to belong to int(W (B)), we need

(1 −φ0)y < 1 (24)

y < (φ0 −φ1)y + 1� (25)

Condition (24) ensures that the maximum reward is less than the maximum amount
that can be transferred to player 1 by switching from (0�0) to (0�1). Condition (25) en-
sures that it is possible to implement the punishment for player 2 while paying the max-
imum reward to player 1. Since (φ0 − φ1)y > 1, these conditions are satisfied when y,
the width of the support of the private signals, is less than min{2�1/(1 −φ0)}.
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6. Conclusion

We introduce a new solution to the learning problem associated with delayed com-
munication. Using this solution, we show that in economic problems where players
can observe their own payoffs, statistical detectability is not necessary for approximate
efficiency.

We establish approximate efficiency with side-payments by constructing a trigger-
strategy equilibrium in which only a∗ and aN are played. Since our technique requires
negative transfers, we cannot extend our result to the no-side-payment case by apply-
ing the results of Fudenberg and Levine (1994). In Section 5, we show that approximate
efficiency may still hold without side-payments if the players can carry out the neces-
sary transfers by switching between locally unique action profiles. However, for this
approach to work, the transfers required must be relatively small.

A key step of our analysis is to show that for each player pair ij, it is possible to con-
struct a proxy variable that is highly correlated with player i’s expectation of player j’s
payoff but uncorrelated with player j’s signal. The construction depends on the assump-
tion that the signal distribution has full support. The assumption ensures that no player
can use his own signal to rule out any signal of another player. It is well known that
approximate efficiency may be unattainable when the signals are public (Radner et al.
1986 and Abreu et al. 1991). In future work we plan to investigate whether our method
can be extended to intermediate cases between private monitoring with full support and
imperfect public monitoring.

Appendix A: Proof of Lemma 2

We first derive a bound for each Rl
i(α

T∗
i � ρT∗

i ; yki ). Let

c2 = max
i�j�yi�yj

|rj(a∗
j � yj)− zij(yi� yj)|�

Note that from (9), we have

EyTi �y
T
j
[�j(y

T
j )− �ij(y

T
i � y

T
j )|αT∗� yki ] = 0�

Hence, substituting δl−1(rj(a
∗
j � yj(l))− zij(yi(l)� yj(l))) for xl,

1
2T

2/3 for d, T for l0, and c2
for ν in Hoeffding’s inequality, we have

Pr
({

(yTi � y
T
j ) :�j(y

T
j )− �ij(y

T
i � y

T
j ) >

1
2
T 2/3

}∣∣∣αT∗� yki
)

≤ exp
(

− 1

8c2
2

T 1/3
)
�

Since (14) holds only when �j − �ij >
1
2T

2/3 and since max{�j(ŷ
T
j )−Kj�0} ≤ c1T ,

R1
i (α

T∗
i � ρT∗

i ; yki ) ≤ (n− 1)c1T exp
(

− 1
8c2

2

T 1/3
)
� (26)

Let c3 = maxi�j�yi�yj |zij(yi� yj)|. Since the expected value of �ji conditional on yki is equal

to (Ki − T 2/3), substituting δl−1zji(yi(l)� yj(l)) for xl, T 2/3 for d, T for l0, and c3 for ν in
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Hoeffding’s inequality, we have

Pr
({(yTi � yTj ) : �ji(y

T
i � y

T
j ) > Ki}|αT∗� yki

) ≤ exp
(

− 1
2c2

3

T 1/3
)
�

It follows that

R2
i (α

T∗
i � ρT∗

i ; yki ) ≤ (n− 1)c1T exp
(

− 1
2c2

3

T 1/3
)
� (27)

Let c4 = maxy�i | logp−i(y−i|a∗� yi)|. By definition we have

Di(y
T ) = T−2

T∑
k=1

logp−i(y−i(k)|a∗� yi(k)) ≥ −c4T
−1�

Hence,

R3
i (α

T∗
i � ρT∗

i ; yki ) ≤ c4T
−1� (28)

Combining all these bounds and noting that Rl
i(α

T
i �ρ

T
i ; yki )≥ 0 for each l, we have

3∑
l=1

Rl
i(α

T∗
i � ρT∗

i ; yki )−
3∑

l=1

Rl
i(α

T
i �ρ

T
i ; yki )

≤ (n− 1)c1T exp
(

− 1
8c2

2

T 1/3
)

+ (n− 1)c1T exp
(

− 1
2c2

3

T 1/3
)

+ c4T
−1�

(29)

We have argued in the main text that, for any αT
i ∈ AT (yki ),

Vi(α
T∗
i ; yki )− Vi(α

T
i ; yki )≥ δk��

Set δ∗(T) ≡ 1−T−2. This ensures that (δ∗(T))T tends to 1 as T tends to infinity. Note
that the right-hand side of (29) tends to 0 as T tends to infinity. So we can choose T1 large
enough such that for all T ≥ T1 and δ≥ δ∗(T),

δT� ≥ (δ∗(T))T�

≥ (n− 1)c1T exp
(

− 1
8c2

2

T 1/3
)

+ (n− 1)c1T exp
(

− 1
2c2

3

T 1/3
)

+ c4T
−1�

It follows that

Vi(α
T∗
i ; yki )− Vi(α

T
i ; yki ) ≥

3∑
l=1

Rl
i(α

T∗
i � ρT∗

i ; yki )−
3∑

l=1

Rl
i(α

T
i �ρ

T
i ; yki )�

Thus, for (αT
i �ρ

T
i ) ∈ AT (yki )×�T

i , yki ∈ Yk
i and k = 0�1� � � � � (T − 1),

UT
i (α

T∗
i � ρT∗

i ;S∗∗� yki )≥UT
i (α

T
i �ρ

T
i ;S∗∗� yki )� (30)
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To prove that (αT∗
i � ρT∗

i ) maximizes UT
i (α

T
i �ρ

T
i ;S∗∗) with respect to (αT

i �ρ
T
i ), we still

need to show that, for all ρTi ∈ �T
i ,

UT
i (α

T∗
i � ρT∗

i ;S∗∗� yTi ) ≥UT
i (α

T∗
i � ρTi ;S∗∗� yTi )� (31)

When player i follows αT∗
i the reporting strategy ρTi affects only Rl

i, l = 1�2�3, but not Vi.
Write ŷTi for ρTi (y

T
i ). There are two cases to consider.

Case 1. Suppose p−i(·|a∗� ŷi(k)) = p−i(·|a∗� yi(k)) for each k ∈ {1� � � � �T }. In this case,
for l = 1�2�3,

Rl
i(α

T∗
i � ρTi ; yTi )= Rl

i(α
T∗
i � ρT∗

i ; yTi )�
The case for l = 3 follows immediately from the definition of Di. To see that the values
of R1

i and R2
i are also the same, note that

Ey ′
j(k)

[rj(a∗
j � y

′
j(k))|a∗� yi(k)] = Ey ′

j(k)
[rj(a∗

j � y
′
j(k))|a∗� ŷi(k)]

and

pi(yi(k)|a∗)pj(yj(k)|a∗)
pij(yi(k)� yj(k)|a∗)

= pj(yj(k)|a∗)
pj(yj(k)|a∗� yi(k))

= pj(yj(k)|a∗)
pj(yj(k)|a∗� ŷi(k))

= pi(ŷi(k)|a∗)pj(yj(k)|a∗)
pij(ŷi(k)� yj(k)|a∗)

�

It follows that zij(yi(k)� yj(k)) = zij(ŷi(k)� yj(k)) and zji(yi(k)� yj(k)) = zji(ŷi(k)� yj(k))

for each yj(k). Since R1
i and R2

i depend only on zij , zji, and other players’ reports, they
have the same value under yTi and under ŷTi .

Case 2. Suppose p−i(·|a∗� ŷi(k)) �= p−i(·|a∗� yi(k)) for some k ∈ {1� � � � �T }. It is a stan-
dard result in the scoring-rule literature that

Ey−i(k)[log(p−i(y−i(k)|a∗� ŷi(k)))|a∗� yi(k)]
<Ey−i(k)[log(p−i(y−i(k)|a∗� yi(k)))|a∗� yi(k)]�

Hence,

R3
i (α

T∗
i � ρTi ; yTi )−R3

i (α
T∗
i � ρT∗

i ; yTi )≥ T−2d�

where

d ≡ min
{
Ey−i [log(p−i(y−i|a∗� yi))|a∗� yi] −Ey−i [log(p−i(y−i|a∗� ŷi))|a∗� yi] |

yi� ŷi ∈ Yi and p−i(·|a∗� ŷi) �= p−i(·|a∗� yi)
}
> 0�

We have already shown that

2∑
l=1

Rl
i(α

T∗
i � ρT∗

i ; yki )−
2∑

l=1

Rl
i(α

T∗
i � ρTi ; yki )

≤ (n− 1)c1T exp
(

− 1

8c2
2

T 1/3
)

+ (n− 1)c1T exp
(

− 1

2c2
3

T 1/3
)
�

(32)
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Since the right-hand side of (32) decays faster than T−2d, we can choose T2 large enough
such that for all T ≥ T2 and all δ,

R3
i (α

T∗
i � ρTi ; yTi )−R3

i (α
T∗
i � ρT∗

i ; yTi )≥
2∑

l=1

Rl
i(α

T∗
i � ρT∗

i ; yki )−
2∑

l=1

Rl
i(α

T∗
i � ρTi ; yki )�

We now turn to the first part of the lemma. By definition we have

EyT [S∗∗
i (yT )|αT∗] =

∑
j �=i

EyT [�j(y
T
j )−Kj|αT∗] −

3∑
l=1

Rl
i(α

T∗
i � ρT∗

i ; y0
i )

= −(n− 1)T 2/3 −
3∑

l=1

Rl
i(α

T∗
i � ρT∗

i ; y0
i )�

Since (δ∗(T))T tends to 1 as T tends to infinity, (1 − δ∗(T))(1 − (δ∗(T))T )−1 is of the
order of T−1. It follows that

1 − δ∗(T)
1 − (δ∗(T))T

(n− 1)T 2/3

tends to 0 as T tends to infinity. By (26), (27), and (28), each Rl
i is bounded by a term that

tends to 0 as T tends to infinity. Hence, for any ε, we can choose T3 large enough such
that for all T ≥ T3 and δ≥ δ∗(T), and for each i,

− 1 − δ

1 − δT
EyT [S∗∗

i (yT )|αT∗]< ε

n
� (33)

Set T0 = max{T1�T2�T3}. Then (30) and (31) hold for all T ≥ T0 and δ ≥ δ∗(T), and by
(33), WL(T�δ�S∗∗) ≤ ε.

Appendix B: Proof of Theorem 1

Theorem 1 is obviously true when
∑n

i=1 gi(a
∗) = ∑n

i=1 gi(a
N). Henceforth, we assume

that
∑n

i=1 gi(a
∗) >

∑n
i=1 gi(a

N). We prove Theorem 1 by constructing a Nash-threat
trigger-strategy equilibrium with the desired properties. The basic structure of the equi-
librium strategy profile has already been given in Section 3.

To complete the description of the equilibrium strategy profile, we need to specify
the side-payments and the transition probabilities after T periods in the cooperative
state. Fix ε > 0. By Lemma 2, we can pick T0 so that when T ≥ T0 and δ≥ δ∗(T),

WL(T�δ�S∗∗) < min

{
ε�

n∑
i=1

gi(a
∗)−

n∑
i=1

gi(a
N)

}
� (34)

Pick a vector ζ = (ζ1� ζ2� � � � � ζn) with
∑n

i=1 ζi = 0 such that for each player i,

gi(a
∗)+ 1 − δ

1 − δT
EyT [S∗∗

i (yT )|αT∗] + ζi > gi(a
N)�



Theoretical Economics 11 (2016) Efficiency in repeated games 77

Pick δ̄ ∈ (δ∗(T)�1) such that for each player i, each yT ∈ YT and each δ≥ δ̄,

S∗∗
i (yT )+ 1 − δT

1 − δ
ζi ≥ − δT

1 − δ

(
gi(a

∗)+ 1 − δ

1 − δT
EyT [S∗∗

i (yT )|αT∗] + ζi − gi(a
N)

)
� (35)

Let μ(yT ) denote the probability of switching to the noncooperative state after the play-
ers report yT at the end of period T in the cooperative state, and let βij(y

T ) ≥ 0 denote
the amount player i pays player j. We define μ(yT ) and βij(y

T ) as follows. First, for any
yT ∈ YT , set

μ(yT ) ≡ −δ−T (1 − δ)
∑n

i=1 S
∗∗
i (yT )∑n

i=1(gi(a
∗)+ 1−δ

1−δT
EyT [S∗∗

i (yT )|αT∗] − gi(aN))
� (36)

By (34) and (35), μ(yT ) ∈ [0�1] for all yT .
Next, set

βij(y
T )≡

⎧⎨⎩βnet
i (yT )

min(βnet
j (yT )�0)∑n

k=1 min(βnet
k (yT )�0)

if βnet
i (yT ) > 0

0 otherwise,

where

βnet
i (yT ) ≡

(
−S∗∗

i (yT )− 1 − δT

1 − δ
ζi

)
δ−T+1

− (1 − δ)−1δμ(yT )

(
gi(a

∗)+ 1 − δ

1 − δT
EyT [S∗∗

i (yT )|αT∗] + ζi − gi(a
N)

)
�

(37)

When βnet
i (yT ) > 0,

∑n
j=1 βij(y

T ) = βnet
i (yT ) and

∑n
j=1 βji(y

T ) = 0. When βnet
i (yT ) ≤ 0,∑n

j=1 βij(y
T ) = 0 and

∑n
j=1 βji(y

T ) = −βnet
i (yT ); the last follows from the fact that, by

(36) and (37),
∑n

i=1 β
net
i (yT ) = 0 for all yT ∈ YT . Hence, for any player i and any yT ∈ YT ,

the net side-payment received by player i is always equal to

n∑
j=1

(βji(y
T )−βij(y

T )) = −βnet
i (yT )� (38)

Let v∗
i and vNi denote, respectively, player i’s average discounted payoff at the begin-

ning of the cooperative state and that at the beginning of the noncooperative state un-
der this trigger-strategy profile. It is straightforward to see that vNi = gi(a

N). By standard
arguments and (38), we have

v∗
i = (1 − δT )gi(a

∗)−EyT [βnet
i (yT )|αT∗]δT−1(1 − δ)

+ (
EyT [μ(yT )|αT∗](vNi − v∗

i )+ v∗
i

)
δT �

(39)

Substituting (37) into (39) and rearranging terms, we have

v∗
i = gi(a

∗)+ 1 − δ

1 − δT
EyT [S∗∗

i (yT )|αT∗] + ζi� (40)
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We claim that the trigger-strategy profile constitutes a perfect T -public equilibrium
when T is sufficiently large and δ is sufficiently close to 1. It is obvious that the continu-
ation strategies in the noncooperative state are self-enforcing. Focus on the cooperative
state. Given report profile yT , the discounted continuation payoff of player i at the end
of a T -period block in the cooperative state before side-payments are made is equal to

−βnet
i (yT )+ (μ(yT )(vNi − v∗

i )+ v∗
i )

δ

1 − δ
�

which, by (37) and (40), is equivalent to(
S∗∗
i (yT )+ 1 − δT

1 − δ
ζi

)
δ−T+1 + v∗

i

δ

1 − δ
�

According to the trigger-strategy profile, the players will switch to the noncooperative
state with probability 1 if any player fails to make the required side-payments. It follows
from (35) that when δ is sufficiently close to 1, it is a best response for player i to make
the required side-payments.

Assume player i is to make the equilibrium side-payments at the end of period T .
When players other than i follow the trigger-strategy profile, player i’s discounted payoff
for choosing a T -period action strategy αT

i and a reporting strategy ρTi , at the beginning
of the cooperative state, is equal to

UT
i (α

T
i �ρ

T
i ;S∗∗

i )+ 1 − δT

1 − δ
ζi + v∗

i

δT

1 − δ
�

It follows from Lemma 2 that when T is sufficiently large and δ is sufficiently close to 1, it
is a best response for player i to play the trigger-strategy profile within a T -period block
in the cooperative state. This proves that the trigger-strategy profile is a perfect T -public
equilibrium when T is sufficiently large and δ is sufficiently close to 1.

Finally, each player i’s average continuation payoff at the beginning of the coopera-
tive state, hence, at the beginning of the game, is

gi(a
∗)+ 1 − δ

1 − δT
EyT [S∗∗

i (yT )|αT∗] + ζi�

It follows from (34) that the total expected equilibrium payoff is greater than∑n
i=1 gi(a

∗)− ε.

Appendix C: Proof of Theorem 2

We prove the theorem in two steps.
Step 1. Enforcing the cooperative states in a T -period game. We first introduce trans-

fer functions that implement a ∈ B in a T -period game with efficiency loss less than ε.
Fix a ∈ B and i� j ∈ N , i �= j. Let

Ka
ij ≡

T∑
k=1

δk−1(λa�ii )−1λa�ij gj(a)+ T 2/3
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�a
ij(y

T
j ) ≡

T∑
k=1

δk−1(λa�ii )−1λa�ij rj(aj� yj(k))

zaij(yi� yj) ≡ Ey ′
j
[(λa�ii )−1λa�ij rj(aj� y

′
j)|a� yi]

pi(yi|a)pj(yj|a)
pij(yi� yj|a) �

The second variable is defined for each yTj ∈ YT
j , and the third variable is defined for

each (yi� yj) ∈ Yi× Yj . These variables are the counterparts of Kj , �j , and zij , modified
to reflect the different weights assigned to the players’ stage-game payoff functions in
(17). For any ŷT ∈ YT , let

�a
ij(ŷ

T
i � ŷ

T
j ) ≡

T∑
k=1

δk−1zaij(ŷi(k)� ŷj(k))

f aij (ŷ
T ) ≡

{
1 if �a

ij(ŷ
T
i � ŷ

T
j ) > Ka

ij − 1
2T

2/3

0 otherwise.

We can now introduce the transfer functions. For each a ∈ B, each player i, and each
ŷT ∈ YT , set the transfer for player i to be

S̃ai (ŷ
T ) ≡ Sai (ŷ

T )+
∑
j �=i

L̃a
ij(ŷ

T )+Da
i (ŷ

T )�

where

Sai (ŷ
T ) ≡ −

∑
j �=i

max{Ka
ij −�a

ij(ŷ
T
j )�0}

L̃a
ij(ŷ

T ) ≡ max{�a
ij(ŷ

T
j )−Ka

ij�0}f aij (ŷT )

− max
{∣∣∣∣wa

ij

wa
ji

∣∣∣∣(max
yTi

�a
ji(y

T
i )−Ka

ji

)
− max{Ka

ij −�a
ij(ŷ

T
j )�0}�0

}
f aji(ŷ

T )

Da
i (ŷ

T ) ≡ T−2
T∑

k=1

logp−i(ŷ−i(k)|a� ŷi(k))�

Compared to the original transfer function S∗∗
i , the only difference is that in the def-

inition of L̃a
ij , an extra term |wa

ij/w
a
ji| is inserted in the second maximum term on the

right-hand side. This means that when f aji(ŷ
T ) = 1 (i.e., when player j receives an extra

transfer), the payoff of player i is reduced by an amount equal to∣∣∣∣wa
ij

wa
ji

∣∣∣∣(max
yTi

�a
ji(y

T
i )−Ka

ji

)
�

Since a∗ maximizes total expected payoff, |wa
ij/w

a
ji| ≥ 1. When transferring payoffs

through actions is inefficient, we need to lower the payoff for player i by more than 1
unit for every unit transferred to player j. Since this extra term is a constant, it does not
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affect the incentives of the players. Let αTa
i be player i’s action strategy of always choos-

ing ai in the T -period game and let ρT∗ be the truthful reporting strategy. Following the
argument behind Lemma 2, we have the following lemma.

Lemma 3. For any ε > 0, there exists a T0 such that, for any T ≥ T0, δ ≥ 1 − T−2, and
a ∈ B, the following statements hold:

(i) We have |((1 − δ)/(1 − δT ))EyT [S̃ai (yT )|αTa]| ≤ ε for each i.

(ii) The strategy profile (αTa�ρT∗) is a Nash equilibrium of GT�δ(S̃a).

Step 2. Implementing S̃a in the repeated game. We described the equilibrium strategy
profile in Section 5. Let

κa
i (T�δ) ≡ 1 − δ

1 − δT
EyT [S̃ai (yT )|αTa]

denote player i’s expected per-period transfer in state a. Recall that w(a) ≡ g(a)− g(a∗).
Following the discussion in Section 5, to prove Theorem 2, we need to show that when δ

is sufficiently large, we can choose T such that for all a ∈ B and yT ∈ YT ,

1 − δ

1 − δT
δ−T S̃a(yT )

∈W T�δ(B) (41)

≡ co
(

{w(a)+ κa(T�δ)− κa∗
(T�δ)}a∈B ∪

{
w(aN)− κa∗

(T�δ)

1 − δT

})
�

We first show that we can approximate W T�δ(B) by W (B) when T is sufficiently large
and δ is sufficiently close to 1.

Lemma 4. For any x ∈ int(W (B)), there exists T1 such that for each T ≥ T1 and δ ≥ 1 −
T−2, x ∈W T�δ(B).

Proof. Suppose the lemma were not true. Then there would exist a sequence
(T(1)�δ(1))� � � � � (T (l)�δ(l))� � � � such that for all l ≥ 1, we have T(l + 1) > T(l), δ(l) ≥
1 − (T(l))−2, and x /∈ W T(l)�δ(l)(B). Since each W T(l)�δ(l)(B) is convex, by the theorem
of separating hyperplanes, for each l there would exist θ(l) ∈ R

n with
∑n

k=1(θk(l))
2 = 1

such that for all a ∈ B,

θ(l) · x > θ(l) · (w(a)+ κa(T(l)�δ(l))− κa∗
(T(l)�δ(l))

)
(42)

and

θ(l) · x > θ(l) ·
(
w(aN)− κa∗

(T(l)�δ(l))

1 − (δ(l))T(l)

)
� (43)

Since each θ(l) is contained in the (n − 1)-dimensional unit sphere, there is a sub-
sequence converging to some θ in the unit sphere. Since, for each i ∈ N and a ∈ B,
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κa
i (T(l)�δ(l)) tends to 0 as l tends to infinity, from (42) we have for each a ∈ B,

θ · x≥ θ ·w(a)�

Since w(a∗)= 0, we have θ ·x≥ 0. Since the left-hand side of (43) is bounded from above
for any θ(l) and since 1 − (δ(l))T(l) goes to 0 as l goes to infinity, (43) can hold for all l
only if θ ·w(aN) ≤ 0. Thus, we have for any ξ ≥ 0,

θ · x ≥ θ · (ξw(aN))�

This means that θ defines a hyperplane that separates x and W (B), contradicting the
assumption that x is an interior point of W (B). �

Our next step is to show that we can implement the transfers between each pair of
players i and j with a “probability quota” of 2/n(n− 1) using only the points

(wa
ij�w

a
ji)� (wa

ij�w
a
ji)� (wa

ij�w
a
ji)� (0�0)�

For any i� j ∈ N , i �= j, and for any a ∈ B and yT ∈ YT , define

S̃aij(y
T )≡ −max{Ka

ij −�a
ij(y

T
j )�0} + L̃a

ij(y
T )+ 1

n− 1
Da

i (y
T )�

By construction,

S̃ai (y
T ) =

∑
j �=i

S̃aij(y
T )�

Lemma 5. For any a ∈ B, there exists T2 such that, for any T ≥ T2, δ ≥ 1 − T−2, and
yT ∈ YT ,

n(n− 1)
2

1 − δ

1 − δT
δ−T (S̃aij(y

T )� S̃aji(y
T )) ∈ co({(wa

ij�w
a
ji)� (w

a
ij�w

a
ji)� (w

a
ij�w

a
ji)� (0�0)})� (44)

Proof. We prove the case for a = a∗. Other cases can be established in the same way.
Notice that in this case �a∗

ij (y
T
j ) = �j(y

T
j ) and Ka∗

ij = Kj . To simplify notation, we drop

the superscript a∗ in the variables (e.g., we write S̃ij for S̃a
∗

ij ). It is clear from Figure 1 that
(44) is equivalent to the conditions

1 − δ

1 − δT
δ−T S̃ij(y

T ) ≥ 2
n(n− 1)

wij (45)

1 − δ

1 − δT
δ−T S̃ji(y

T ) ≥ 2
n(n− 1)

wji (46)

S̃ij(y
T )− wij

wji

S̃ji(y
T ) ≤ 0 (47)

−wji

wij

S̃ij(y
T )+ S̃ji(y

T ) ≤ 0� (48)
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Without loss of generality, let i = 1 and j = 2. Consider inequality (45). By the definition
of L̃12,

S̃12(y
T ) = −max{K2 −�2(y

T
2 )�0} + L̃12(y

T )+ 1
n− 1

D1(y
T )

(49)

≥ −max
{∣∣∣∣w12

w21

∣∣∣∣(�̄1 −K1)�K2 −�2

}
+ 1

n− 1
D1(y

T )�

By our choice of wij and wij , for some ε1 > 0,

�̄1 −K1 ≡ 1 − δT

1 − δ

(
max
y1

r1(a
∗
1� y1)− g1(a

∗)
)

− T 2/3

(50)

<
1 − δT

1 − δ

(
2

n(n− 1)
w21 − ε1

)
− T 2/3

and

K2 −�2 ≡ 1 − δT

1 − δ

(
g2(a

∗)− min
y2

r2(a
∗
2� y2)

)
+ T 2/3

(51)

< −1 − δT

1 − δ

(
2

n(n− 1)
w12 + ε1

)
+ T 2/3�

Substituting (50) and (51) into (49), we have

(1 − δ)δ−T

1 − δT
S̃12(y

T ) ≥ 2
n(n− 1)

w12 + (δ−T − 1)
2

n(n− 1)
w12 + δ−T ε1

− (1 − δ)δ−T

1 − δT

(
T 2/3 − 1

n− 1
D1(y

T )

)
�

(52)

We can choose T2 such that for all T ≥ T2 and δ ≥ 1 − T−2, the sum of the last three
terms on the right-hand side of (52) is positive. Inequality (46) follows from the same
argument.

We now turn to (47) and (48). There are four cases to consider, depending on the
values of f12(y

T ) and f21(y
T ).

Case 1: f12(y
T ) = f21(y

T ) = 0. In this case, inequalities (47) and (48) hold as S̃12(y
T )

and S̃21(y
T ) are both negative.

Case 2: f12(y
T ) = 1, f21(y

T ) = 0. In this case, following the definitions of S̃12 and S̃21,

S̃12(y
T ) ≤ −max{K2 −�2(y

T
2 )�0} + max{�2(y

T
2 )−K2�0}

≤ max{�2(y
T
2 )−K2�0}

and

S̃21(y
T ) ≤ −max{K1 −�1(y

T
1 )�0} − max

{∣∣∣∣w21
w12

∣∣∣∣(�̄2 −K2)− max{K1 −�1(y
T
1 )�0}�0

}
≤ w21

w12
(�̄2 −K2)�
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Hence,

S̃12(y
T )− w12

w21
S̃21(y

T ) ≤ max{�2(y
T
2 )−K2�0} − (�̄2 −K2)

≤ 0

and

−w21

w12
S̃12(y

T )+ S̃21(y
T ) ≤ −w21

w12
max{�2(y

T
2 )−K2�0} + w21

w12
(�̄2 −K2)

≤ 0�

Case 3: f12(y
T ) = 0, f21(y

T ) = 1. The proof for this case is similar to that of Case 2
and, hence, is omitted.

Case 4: f12(y
T )= f21(y

T )= 1. In this case,

S̃12(y
T ) ≤ max{�2(y

T
2 )−K2�0} −

∣∣∣∣w12
w21

∣∣∣∣(�̄1 −K1)

S̃21(y
T ) ≤ max{�1(y

T
1 )−K1�0} −

∣∣∣∣w21
w12

∣∣∣∣(�̄2 −K2)�

Inequality (47) holds as

S̃12(y
T )− w12

w21
S̃21(y

T )

≤ max{�2(y
T
2 )−K2�0} −

∣∣∣∣w12
w21

∣∣∣∣(�̄1 −K1)+
∣∣∣∣w12

w21

∣∣∣∣max{�1(y
T
1 )−K1�0} − (�̄2 −K2)

≤ 0�

Inequality (48) follows from the same argument. �

Finally, we show that (41) holds when T is sufficiently large and δ is sufficiently close
to 1.

Lemma 6. There exists T3 such that (41) holds for any T ≥ T3, δ ≥ 1 − T−2, a ∈ B, and
yT ∈ YT .

Proof. Let C denote the set of distinct pairs of players {i� j}. For any {i� j} ∈ C, define for
each yT ∈ YT ,

S̃a�{i�j}(yT )≡ (S̃
a�{i�j}
1 (yT )� � � � � S̃

a�{i�j}
n (yT ))�

where

S̃
a�{i�j}
k (yT )≡

⎧⎪⎨⎪⎩
S̃akj(y

T ) if k = i

S̃aki(y
T ) if k = j

0 if k �= i� j.



84 Chan and Zhang Theoretical Economics 11 (2016)

It is straightforward to check that

1 − δ

1 − δT
δ−T S̃a(yT )=

∑
{i�j}∈C

2
n(n− 1)

(
n(n− 1)

2
1 − δ

1 − δT
δ−T S̃a�{i�j}(yT )

)
�

Hence,

1 − δ

1 − δT
δ−T S̃a(yT )

is a convex combination of{
n(n− 1)

2
1 − δ

1 − δT
δ−T S̃a�{i�j}(yT )

}
{i�j}∈C

�

Recall that the points

(wa
ij�w

a
ji)� (wa

ij�w
a
ji)� (wa

ij�w
a
ji)

are chosen to be in the interior of W (B). Hence, by Lemmas 4 and 5, we can choose T3
such that for any T ≥ T3, δ≥ 1 − T−2, a ∈ B, {i� j} ∈ C, and yT ∈ YT ,

n(n− 1)
2

1 − δ

1 − δT
δ−T S̃a�{i�j}(yT ) ∈W T�δ(B)� �

Given any ε > 0, let T4 = max{T0�T3} and δ̄ = 1 − T−2
4 . Then Lemmas 3 and 6 hold

for T = T4 and δ ≥ δ̄. By Lemma 6, we can choose transition probabilities {μa
l }l∈B∪{N}

such that (18) holds for all a ∈ B and yT ∈ YT . It follows from Lemma 3 that the trigger-
strategy profile that we described in Section 5 constitutes a perfect T -public equilibrium
in which the average equilibrium payoff for each player i is at least gi(a∗)− ε.
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