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Reputation without commitment in finitely repeated games
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In the reputation literature, players have commitment types, which represent the
possibility that they do not have standard payoffs, but instead are constrained to
follow a particular plan. In this paper, we show that arbitrary commitment types
can emerge from incomplete information about the stage payoffs. In particular,
any finitely repeated game with commitment types is strategically equivalent to a
standard finitely repeated game with incomplete information about the stage pay-
offs. Then classic reputation results can be achieved with uncertainty concerning
only the stage payoffs.
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1. Introduction

The reputation literature relies on the existence of commitment types. These types are
not strategic, but are certain to follow a particular plan. Since the seminal work of Kreps
et al. (1982) (henceforth, the Gang of Four), it has been well established that inclusion
of commitment types may alter predicted outcomes dramatically, as this may entice the
original “rational” types to imitate the commitment types, so as to form a reputation for
playing according to the committed plan. Building on this insight, a large literature has
emerged, with applications in a wide range of areas.1

Of course, commitment types can be modeled by using a payoff function that re-
wards a player who follows a specific plan. For example, the tit-for-tat types used by
the Gang of Four in the analysis of the finitely repeated prisoner’s dilemma could be as-
signed payoff 1 if they follow tit-for-tat and 0 otherwise. However, such payoffs cannot
arise in a standard repeated game, i.e., as a discounted sum of stage-game payoffs. The
only commitment types that arise directly from modified stage-game payoffs, within a
standard repeated-game structure, are those who commit to playing the same action
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throughout the game. In some models, such types have very significant effects,2 but
unlike tit-for-tat types, they have no effect on the repeated prisoner’s dilemma game.

The form of commitment types is important for the interpretation of reputation re-
sults. When commitment types must be restricted by fiat to follow a certain plan or
to have payoffs that are not a discounted sum of stage-game payoffs, the literature has
sometimes referred to them as “crazy” types. A more generous characterization, more in
keeping with the current tone of the literature, would say that commitment types reflect
psychological anomalies and motivations that lie outside the game, such as maintaining
reputation in the context of a supergame. Alternatively, if commitment types arise solely
from heterogeneity in stage-game payoffs and beliefs about these payoffs, then reputa-
tion formation can occur with full rationality and without resorting to such supergame
concerns.

In this paper, we show that for any given plan, a commitment type who is required
to follow this plan can be mimicked by a utility-maximizing type, which we call a twin.
The twin knows it is common knowledge that they play a repeated game (i.e., he comes
from a type space in which only the stage-game payoff functions can vary by type), but
his unique rationalizable action is to follow the given plan. Moreover, by embedding a
collection of such twins into a single type space, every game with commitment types
can be converted to a standard repeated game with incomplete information about the
stage-game payoff function, such that the twins have prior probabilities almost identi-
cal to the commitment types. Therefore, any model of reputation formation in finitely
repeated games, where players form a reputation for commitment, can be converted to
a strategically equivalent model in which they form a reputation for certain beliefs about
the stage-game payoffs. This construction requires that we allow sufficient variations in
stage-game payoffs and consider a rich set of information structures.

Of course, one may also wish to restrict the stage-game payoff functions. For exam-
ple, in a standard prisoner’s dilemma game, one might want to assume that it is com-
mon knowledge that cooperation is not dominant. Under such restrictions, twins may
not exist for some commitment types. Indeed, we also prove an opposing benchmark,
showing that one needs some amount of variations in the stage-game payoffs so as to
have any reputational effect. We show that if the stage game is dominance-solvable and
the stage-game payoffs are restricted to a sufficiently small neighborhood of the origi-
nal stage-game payoff function, then the unique sequential equilibrium of the repeated
game with incomplete information prescribes all players to repeat the stage-game so-
lution throughout the game (as in the subgame-perfect equilibrium of the complete-
information version), regardless of the length of the game.

Therefore, one needs to allow some substantial amount of variation in stage-game
payoffs so as to provide an incomplete-information foundation for the commitment
types. While the amount of necessary variation may depend on the details of the game
and the commitment types at hand, our main result shows that one can always provide

2For example, the existence of such commitment types is sufficient for the seminal analyses of the re-
peated entry-deterrence models by Kreps and Wilson (1982) and Milgrom and Roberts (1982), and for the
Fudenberg and Levine (1989) result that the informed player’s payoff is within his Stackelberg payoffs when
the uninformed player is short-lived (best replying myopically).
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such a foundation as long as there is enough variation in allowable stage-game payoff
functions.

One limitation is worth emphasizing here. Our construction makes fundamental
use of players who do not know their own payoffs. Some of the literature has focused on
models with common knowledge that each player knows his own payoffs; Fudenberg
et al. (1988) call this a model with “personal types.” We believe an important future step
is to determine the extent to which our results can be recovered in a model with personal
types.

2. Preview of results

In this section, we preview our main result more carefully on the example analyzed by
the Gang of Four: the finitely repeated prisoner’s dilemma game in which player 1 may
be committed to tit-for-tat, though this has small ex ante probability.

Consider the repeated game in which the following prisoner’s dilemma is repeated t̄

times:

Cooperate Defect

Cooperate 5�5 0�6

Defect 6�0 1�1
(PD)

All the previous moves are publicly observable (perfect monitoring), and the payoff of a
player in the repeated game is the sum of his payoffs in the stage game above. A simple
application of backward induction in this game yields the play of (Defect�Defect) at
every history. Indeed, it is well known that the only Nash equilibrium outcome is playing
(Defect�Defect) at every period.

The Gang of Four consider an incomplete-information game G in which player 1
may be committed to playing tit-for-tat. Player 1 has two types, a “rational” type τ∗

1 ,
whose payoffs and available moves are as in the repeated prisoner’s dilemma game
above, and a commitment type τT4T

1 , who can only play tit-for-tat. That is, the latter
type must play Cooperate in the first round and imitate the last move of player 2 in the
subsequent periods. The prior probability of τT4T

1 is some small ε > 0. Player 2 still has
one type τ∗

2 , which is “rational” as in the original game. The Gang of Four shows that in
any sequential equilibrium of the new game, each rational type τ∗

i must play Cooperate
at all but a few periods.

As we mentioned in the Introduction, one can replicate the above equilibrium be-
havior with payoff uncertainty by assigning the payoff function of τT4T

1 as 1 at histories
at which player 1 plays according to tit-for-tat and 0 at all other histories. Here, the so-
lution concept is sequential equilibrium with the restriction that player 2 assigns prob-
ability 1 on τ∗

1 off the path. Such a payoff function is incompatible with the repeated-
game payoff structure, and one cannot replicate the commitment to tit-for-tat by sim-
ply modifying the stage-game payoff function for τT4T

1 . Indeed, such modifications can
lead to only two commitment types: the type that plays Cooperate throughout and the
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type that plays Defect throughout. Commitment to cooperation can be justified by the
stage-game payoff function

Cooperate Defect

Cooperate 1 1

Defect 0 0
(CC)

for example. The inclusion of such simple commitment types cannot affect the behavior
of rational types in this game.

However, the austere information structure above is not the only structure we can
consider. Our main result (Proposition 1) uses richer type spaces to replicate arbitrary
commitment types by payoff types. For any ε′ > ε, applying our main result to the game
G in the Gang of Four generates a game G′ with the following properties.

Ex Ante Proximity. The prior probability of the rational type profile (τ∗
1� τ

∗
2) is at least

1 − ε′, and each τ∗
i knows that his stage-game payoffs are as in (PD).

Repeated-Game Structure. All types can play all strategies and maximize the sum of
stage-game payoffs, which need not be as in (PD).

Strategic Equivalence. The games G and G′ are strategically equivalent in the fol-
lowing sense:

1. The game G′ contains types τ∗
1 , τ∗

2 , a twin τ̂T4T
1 of the tit-for-tat type τT4T

1 in G, and
a number of other new types (of both players) that we use to encode the beliefs of
type τ̂T4T

1 .

2. Though τ̂T4T
1 is allowed to play any plan of action, tit-for-tat is his unique rational-

izable plan.

3. The interim beliefs of rational types are equivalent in G and G′: rational type τ∗
1

is certain that he faces the rational type τ∗
2 , and the rational type τ∗

2 in turn puts
probability 1 − ε on τ∗

1 and probability ε on the twin τ̂T4T
1 of τT4T

1 .

By the strategic equivalence property, the strategic situation the rational types face
is the same as in G, except now τ∗

2 thinks that τ̂T4T
1 plays tit-for-tat as a result of some

rational reasoning under incomplete information rather than as a result of commitment
or an unconventional payoff function. Therefore, under the broad set of solution con-
cepts that are invariant to such changes, the solution sets for rational types (τ∗

1� τ
∗
2) are

identical in G and G′. The conditional probabilities specified above are achieved by a
prior distribution in G′ putting probability 1 − ε′ on (τ∗

1� τ
∗
2) and ε(1 − ε′)/(1 − ε) on

(τ̂T4T
1 � τ∗

2), and the remaining small probability (ε′ −ε)/(1 −ε) on the newly constructed
types.

Two points about this construction are worth emphasizing. First, when ε′ −ε is small
compared to ε, the prior probabilities of (τ∗

1� τ
∗
2) and (τ̂T4T

1 � τ∗
2) are approximately 1 − ε
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and ε, respectively, with much smaller probability on the new types. Hence, the type
spaces of G and G′ are nearly identical, and the twin τ̂T4T

1 assigns much larger prob-
ability to the standard type τ∗

2 than to the new types. Despite this, τ̂T4T
1 has a unique

rationalizable plan because τ̂T4T
1 believes that his own plan has a nonnegligible impact

on his payoff only if he faces one of the newly constructed types. He finds these types
unlikely, but they are likely enough to be his main concern. Second, the unique ratio-
nalizable plan emerges under intricate beliefs that require a large number of new types
for encoding, especially when the game is long. Nonetheless, we are able to encode such
beliefs by putting only a negligible amount of prior probability on the new types.

Our results build on our previous work on nonrobustness in repeated games. In
Weinstein and Yildiz (2013), we showed that, in any infinitely repeated game, any indi-
vidually rational and feasible outcome is the unique rationalizable outcome of an ap-
propriately chosen perturbation that maintains common knowledge of the repeated-
game structure and discounting criterion. A key lemma leading to this result showed
that for any plan whatsoever, there is a type who follows this plan as a unique rational-
izable action, although he believes in common knowledge of the repeated-game struc-
ture. An extension of this lemma to finitely repeated games plays an important role in
our construction.

Aside from the obvious differences in motivation and applications, there are two ma-
jor technical distinctions from our work in Weinstein and Yildiz (2013). First, extending
the above lemma from infinitely repeated games to finitely repeated games requires a
more difficult construction, as we cannot use future incentives in the last period of a
finitely repeated game. Second, the perturbations allowed here are more constrained.
Here, as in the traditional reputation literature, we create a perturbed model that assigns
high ex ante probability to the original model. This is also similar to the perturbations in
Kajii and Morris (1997) and other papers on robustness. This ex ante notion of pertur-
bation commonly gives very different results from our interim framework in Weinstein
and Yildiz (2013) and earlier papers, where we allow arbitrary perturbations of interim
beliefs in the universal type space.3 One reason the results here can be achieved with ex
ante perturbations is that our construction centers around perturbing the commitment
types, who do not have set beliefs. The main difficulty turns out to be embedding types
constructed in the lemma into a common-prior model without affecting the types’ ra-
tionalizable actions, while keeping the ex ante probabilities of the new types arbitrarily
small.

We introduce the basic definitions and formulations in Section 3. In Section 4, we
present our construction of a new type space in which the commitment types are re-
placed by types for which the committed action plan is uniquely rationalizable. In Sec-
tion 5, we show that, for the original rational types, the constructed game is strategically
equivalent to the model with commitment types, under a very broad set of solution con-
cepts. In Section 6, we generalize our result to n-player games in which all players may

3The key difference is that the ex ante perturbations under a common prior impose additional common-
belief restrictions (Kajii and Morris 1997), which are crucial in extending the equilibria of the original game
to the perturbed one (Monderer and Samet 1989).
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have commitment types. After presenting our continuity result in Section 7, we offer
further remarks on the literature in Section 8 and conclude in Section 9. Some of the
more complicated proofs are relegated to the Appendix.

3. Basic definitions

We begin with a standard two-player finitely repeated game with perfect monitoring and
normal-form stage games; see Section 6 for the n-player case. We write N = {1�2} for the
set of players, T = {0�1� � � � � t̄} for the set of dates t, and fix a finite set A = A1 × A2 of
stage-game action profiles a = (a1� a2).4 Note that since we have perfect monitoring,
the non-initial histories in the repeated game are of the form ht = (a0� � � � � at−1), where
as denotes the stage-game strategy profile played at date s ∈ T . We write h0 for the empty
initial history and write H for the set of all nonterminal histories. An outcome path, or
terminal history, is a list (a0� � � � � at̄); the set of all terminal histories is denoted by Z.

The payoff vector from an outcome path (a0� a1� � � � � at̄) in a repeated game is simply
the sum5 of the stage-game payoffs,

u(a0� a1� � � � � at̄ | g) = g(a0)+ g(a1)+ · · · + g(at̄)� (1)

where the function u = (u1�u2) denotes the payoffs from the repeated game and the
function g = (g1� g2) denotes the payoffs from the stage game. While the particular stage
payoffs are not necessarily known, this formula will be common knowledge throughout
the games we study here. That is, it is common knowledge that the stage payoff function
g is fixed throughout the game and that the players simply maximize the sum of these
payoffs.

We write G = [0�1]A for the set of all possible stage-game payoff functions gi : A →
[0�1]. Here, we put a uniform bound on the stage-game payoffs so that small variations
of the probability distributions on stage payoffs lead to small variations in expected pay-
offs, as in the reputation literature. This restriction strengthens our results.

We fix a complete-information repeated game in which it is common knowledge that
the stage-game payoffs are a fixed (g∗

1� g
∗
2). The payoff function in the repeated game is

u(· | g∗), given by the formula in (1). This could, for example, be the repeated prisoner’s
dilemma game, with g∗ defined as in (PD).

In the complete-information game, a strategy of a player i is a mapping si : H →
Ai, which maps each nonterminal history to a strategy in the stage game. Because we
analyze incomplete-information games, however, we will avoid the word “strategy” for
this mapping and call it instead an action plan, reserving the word strategy for mappings
from types to action plans. (We refer to the strategies in the stage game as moves.) The
set of all action plans is denoted by Si. The outcome path induced by a profile (s1� s2) is
denoted by z(s1� s2). We also allow (behavioral) mixed strategies and write �i for the set
of mixed action plans σi : H → �(Ai) for player i.

4Following the convention in game theory, we write −i for the player j �= i and drop the subscript to
denote profiles, e.g., x = (x1�x2) ∈X = X1 ×X2 and X−1 = X2.

5Discounting would not affect our results; setting the discount rate to 1 simplifies our derivations.
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We consider two kinds of elaboration, corresponding to two distinct ways in which
the common-knowledge assumption in the complete-information game may be re-
laxed. The first notion of elaboration uses commitment types, as is standard in the repu-
tation literature.

Definition 1. An ε-elaboration with (one-sided) commitment types (C�π) is a Bayesian
game such that the following statements hold:

• The sets of types for players 1 and 2 are {τ∗
1} ∪ C and {τ∗

2}, respectively, where
C ⊂ S1.

• Player 2’s belief π about player 1’s type satisfies π(τ∗
1) = 1 − ε.

• The set of plans available to τ∗
i is as in the repeated game above, while the only

available plan for type c ∈ C is c.

• The payoffs are as in the complete-information game.

Here, each action plan c ∈ C corresponds to a type of player 1 who can only play c.
The incomplete information is only about whether player 1 can play all action plans or
has committed to a particular action plan. The type τ∗

1 who can play all plans is called
the rational type, while the types c ∈ C who can play only according to one plan of action
are called commitment types. Observe that since C ⊂ S1, we confine ourselves to pure
commitment types.6

The second notion of elaboration allows richer type spaces and two-sided incom-
plete information, but does not allow any payoff function outside of the additive struc-
ture in (1). Toward stating this notion formally, we define a type space as a list (G�T �π),
where G ⊂ G∗ is a finite set of payoff function profiles g, T = T 1 × T2 is the set of type
profiles τ = (τ1� τ2), and π ∈ �(G × T ) is the common prior.7 We define a Bayesian re-
peated game (without commitment types) as a list (N�A�(G�T �π)). We should empha-
size that this notation suppresses many important common-knowledge assumptions,
such as the fact that the game is repeated, all previous actions are publicly observable
(i.e., perfect monitoring), and the payoffs in the repeated game are given by the formula
(1).

Definition 2. An ε-elaboration without commitment types of a complete-information
game g∗ is a Bayesian repeated game (N�A�(G�T �π)) with distinguished types τ∗

1 , τ∗
2 ,

where

1. (g∗� τ∗) ∈ G × T

2. π(g∗� τ∗) = 1 − ε

3. π(g∗
i | τ∗

i ) = 1.

6This is without loss of generality because a belief in a commitment type that plays a mixed strategy in
the repeated game is equivalent to a belief in a mixture of pure commitment types (see Section 9 below).

7Here, �(X) denotes the set of all probability measures on the finite set X .
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The first and second conditions state that the original complete-information game
is embedded in the elaboration and has a high ex ante probability of 1 − ε. The last
condition states that the rational types (τ∗

1� τ
∗
2) know their payoffs, and their payoffs are

as in the original complete-information game. The novelty in this definition is that the
elaboration is required to be a Bayesian repeated game, i.e., the structure given by the
formula (1) is common knowledge. In that sense, all the types in an elaboration without
commitment types are rational, although we reserve the term “rational” for types (τ∗

1� τ
∗
2)

as in the elaborations with commitment types.
Both elaborations above fall under the category of ε-elaborations as defined by Kajii

and Morris (1997). An ε-elaboration without commitment types is a Kajii–Morris elabo-
ration with the additional restriction that the formula (1) is common knowledge. While
ε-elaborations with commitment types were presented above in terms of uncertainty
about the set of available strategies, they could also be represented as Kajii–Morris elab-
orations with a specific simple type space in which the formula (1) fails.

Finally, we review a couple of standard concepts in game theory. First, a strategy
of a player i in a Bayesian repeated game (N�A�(G�T �π)) is a mapping σi: Ti → �i.
Second, interim correlated rationalizability (henceforth ICR) is the outcome of iterated
elimination of action plans for types that are never a weak best response, as defined by
Dekel et al. (2007). We write S∞

i [τi | G] for the set of all interim correlated rationalizable
action plans for type τi ∈ Ti in game G = (N�A�(G�T �π)). We will give a more detailed
definition of ICR later in the construction. We just note here that ICR is the weakest
known rationalizability concept for Bayesian games, and all the action plans that are
played by a type with positive probability in any equilibrium are ICR for that type.

Third, we say that action plans si and s′i are equivalent if z(si� s−i) = z(s′i� s−i) for
all action plans s−i ∈ S−i, i.e., they lead to the same outcome no matter what strategy
the other player plays. Note that si and s′i are equivalent if and only if si(ht) = s′i(h

t)

for every history ht in which i played according to si throughout; they may differ only in
their prescriptions for histories that they preclude. Hence, in reduced form, action plans
can be represented as mappings from the history of other players’ play to own stage-
game actions. We write S̄i for the set of reduced-form action plans s̄i; these map each
(al−i)0≤l<t to some action ai ∈ Ai in the stage game. Finally, we introduce the following
notation for sets of equivalent action plans: Given any two sets X , Y of action plans, we
write X � Y if for every x ∈ X , there exists y ∈ Y that is equivalent to x, and for every
y ∈ Y , there exists x ∈ X that is equivalent to y. In particular, X � {xi} means that X
consists only of strategies that are equivalent to xi.

4. Irrelevance of commitment types

In this section, we state and outline the proof of our main result: any ε-elaboration with
commitment types can be transformed, for any ε′ > ε, into an ε′-elaboration without
commitment types, where each commitment type c is replaced with a payoff type τc1
for which c is uniquely rationalizable. These payoff types follow c not because they are
committed or have payoffs that are inconsistent with playing a repeated game, but be-
cause their reasoning under their information leads them to do so. Moreover, from the
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point of view of the rational types, these are the only types with positive probability, mir-
roring the elaboration with commitment types. From the point of view of rational types
who believe in the ICR concept, the two elaborations are identical. Hence, under ICR (as
well as a broader set of solution concepts), the set of solutions for each rational type is
identical in the two elaborations.

Proposition 1. For any ε�ε′ ∈ (0�1) with ε′ > ε and for any ε-elaboration G with com-
mitment types (C�π), there exists an ε′-elaboration G′ = (N�A�(G�T �π ′)) without com-
mitment types in which the commitment types are replaced by types with unique ratio-
nalizable action plans, meaning

1. π′(g∗� τ∗
2 | τ∗

1) = 1 and π′(g∗� τ∗
1 | τ∗

2) = π(g∗� τ∗
1 | τ∗

2)= 1 − ε

2. for every c ∈ C, there exists τc1 ∈ T1 such that

S∞
i [τc1] � {c}�

and π ′(τc1 | τ∗
2) = π(c | τ∗

2) = π(c).

Here, the first condition states that the interim beliefs of rational types regarding
their own payoffs and “rationality” of their opponents are identical in the two elabo-
rations. The second condition states that each commitment type c is replaced by a
type τc1 for which following c is uniquely rationalizable in reduced form (i.e., S∞

i [τc1] �
{c}), and that the rational type of player 2 in G′ assigns the same probability to the
type τc1 as the rational type in G assigns to the commitment type c (i.e., π ′(τc1 | τ∗

2) ≡∑
g1
π ′((g1� g

∗
2)� τ

c
1 | τ∗

2)= π(c | τ∗
2)= π(c)).

The equivalence of G′ with G is established despite the following constraints:

1. The repeated-game payoff structure is maintained throughout G′. That is, it is
common knowledge throughout that the payoff in the repeated game is the sum
of the payoffs in the stage game, and that the stage game is fixed throughout the
game. Type τc1 knows all this and yet follows c as its unique rationalizable plan.

2. The ex ante distribution π ′ in G′ can be arbitrarily close to the distribution π in G,
in that ε′ can be arbitrarily close to ε.

Proof of Proposition 1. The first step in our construction is the following lemma,
which establishes that any given action plan si is the only rationalizable action for a type
τ
si
i from some common-prior model. (The proof of Lemma 1 is the lengthiest step of the

proposition and is relegated to the Appendix; we provide a detailed intuition for it later
in this section.)

Lemma 1. For any si ∈ Si, there exists a Bayesian repeated game Gsi = (N�A�

(Gsi �T si �πsi)) with a type τ
si
i ∈ T si

i such that

1. πsi(g� τ) > 0 for every (g� τ) ∈ Gsi × T si

2. S∞
i [τsii | Gsi ] � {si}.
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By relabeling if necessary, we take all of the types in the type spaces T si above to
be distinct from each other and from τ∗, fixing also a unique type τ

si
i for each si. We

construct G′ = (N�A�(G′�T ′�π ′)) by setting

G′ = {g∗� (0� g∗
2)} ∪

⋃
c∈C

Gc

T ′
i = {τ∗

i } ∪
⋃
c∈C

T c
i (∀i ∈N)

π ′(g� τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − ε′ if (g� τ) = (g∗� τ∗)
1−ε′
1−ε π(c) if (g� τ) = ((0� g∗

2)� (τ
c
1� τ

∗
2))

ε′−ε
(1−ε)|C|π

c(g�τ) if (g� τ) ∈ Gc × T c

0 otherwise,

where

0(a) = 0 (∀a ∈ A)�

We now observe that G′ satisfies the properties in the proposition. Indeed, rational
type τ∗

1 of player 1 assigns probability 1 on (g∗� τ∗
2). Likewise, we have

π ′(G′ × {τ∗
2}) = 1 − ε′ + 1 − ε′

1 − ε

∑
c∈C

π(c) = 1 − ε′ + 1 − ε′

1 − ε
ε = (1 − ε′)/(1 − ε)

and, therefore, in the interim, τ∗
2 assigns probability 1−ε to (g∗� τ∗

1) and probability π(c)

to τc1 for each c. Since the beliefs of type τc1 altered substantially when (Gc�T c�πc) was
incorporated in G′, it is not clear that τc1 follows c as the unique ICR action. The next
lemma states that this is indeed the case.

Lemma 2. For any c ∈ C, i ∈ N , and any τi ∈ Tc
i , S∞

i [τi | G′] = S∞
i [τi | Gc]; in particular,

S∞
1 [τc1 | G′] = c.

This lemma completes the proof of the proposition; its proof is given in the
Appendix. �

Our proof has two main steps. The first, found in Lemma 1, is to construct a type
space in which a given action plan is uniquely rationalizable for a type. We constructed
such a type space in Weinstein and Yildiz (2013) for infinite-horizon repeated games, but
without requiring that the constructed type space have a common prior, a property that
is essential for our proposition here. In this paper, using the ideas in that construction,
we first construct such a type space for finite-horizon games without common prior and
then convert it to a common-prior type space using the ideas and the results developed
by Lipman (2003) and Weinstein and Yildiz (2007).

The main economic ideas involved in these constructions come from social learn-
ing and reward/punishment mechanisms in repeated games. Our first construction in-
volves types who know their stage-game payoff is a function of their own action alone,



Theoretical Economics 11 (2016) Reputation without commitment 167

but do not initially know their optimal action. They will learn their optimal action from
the actions of others. Only some plans are consistent with such beliefs; for instance, no
such player could play move a0 in period 0 and the same move a1 �= a0 in all continua-
tions. For infinite-horizon games, we extended the result to all action plans (including
plans that contradict the condition for individual learning) using a reward and punish-
ment mechanism in Weinstein and Yildiz (2013). It is harder to come up with effective
reward and punishment mechanisms for finite-horizon games. After all, one cannot
provide any future incentive in the last period. Hence, here, we use a more nuanced
construction that combines social learning with a reward and punishment mechanism
to extend the result to all action plans in finitely repeated games. In our construction,
the player’s stage payoffs are additively separable in his action and others’ actions. In all
periods before the last, his incentives are dominated by the desire to be rewarded by the
other players, while in the last period, he has learned his own optimal action and acts
accordingly.

The second main step is to incorporate the above type spaces into one common-
prior model, replacing each commitment type with one of these type spaces. One must
do this in such a way that (i) the original complete-information game still has high prior
probability (1−ε′), (ii) the interim beliefs of the rational types are as in the original elab-
oration with commitment types, and (iii) the types’ rationalizable behavior in the con-
structed type space remain the same after incorporating them into the common-prior
model. Conditions (ii) and (iii) oppose each other, making the construction more diffi-
cult. To see this, note that (i) and (ii) require that the common prior π ′ puts a high prob-
ability on τc1, requiring that probability to be ((1−ε′)/(1−ε))π(c) as in our proof. When
ε and ε′ are close, this probability is approximately π(c). When ε and ε′ are close, this
also requires that π ′ puts a very small probability on T c , the original type profiles in the
constructed type space in the first step. That probability can be at most (ε′ − ε)/(1 − ε),
which is negligible with respect to ((1 − ε′)/(1 − ε))π(c) when ε and ε′ are close. These
constraints make the belief of type τc1 in game G′ substantially different from the belief
of the type τc1 in game Gc . In our construction, type τc1 in game G′ assigns probability

pc = |C|(1 − ε′)π(c)
|C|(1 − ε′)π(c)+ (ε′ − ε)πc(τ)

(2)

on type τ∗
2 . Note that, for fixed π(c), when ε′ − ε approaches 0, pc approaches 1.8 In

contrast, τc1 in game Gc assigns zero probability on τ∗
2 . Consequently, the belief hierar-

chies of the types in G′ can be quite different from the belief hierarchies of the types in
Gc with the same label, which could lead to a distinct set of ICR actions. We circum-
vent this problem with the following trick. We set the beliefs such that whenever player
2 has type τ∗

2 , the payoff of type τc1 is 0 for every move in the stage game, making him
indifferent among all outcomes. Since pc < 1, his best responses are identical to his best
responses conditional on the type of player 2 being other than τ∗

2 , thereby replicating
the best responses of his twin in Gc . Since this was the only difference between the two

8Note also that the technique we use in transforming the model without common prior to the one with
common prior also renders πc(τc1) small, bringing pc near 1 even when ε and ε′ are far apart.
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type spaces, the rationalizable actions turn out to be identical in games Gc and G′, as
shown formally by Lemma 2.

Roughly speaking, from the point of view of rational types, Proposition 1 replaces
commitment types by types who follow the same plans as their unique rationalizable
plan. Hence, under any rationalizable solution concept, the rational types face the same
strategic uncertainty in both games, leading to the same set of possible behavior. We
will next establish such strategic equivalence formally.

5. Strategic equivalence

In this section, we show that the elaborations G with commitment types and G′ without
commitment types described in Proposition 1 are “strategically equivalent” for rational
types. By this we mean that, for a broad set of solution concepts, the sets of solutions for
each rational type are identical in games G and G′. Therefore, the same set of behavior
can be supported by reputational models regardless of whether one allows commitment
types. In other words, the same set of behavior is supported whether one allows payoff
functions that are inconsistent with the repeated-game structure or imposes this struc-
ture throughout.

Our result here applies to any solution concept that is invariant to replacing commit-
ment types with types that have unique rationalizable action plans (in reduced form). In
general Bayesian games, this invariance condition is somewhat stronger than elimina-
tion of nonrationalizable strategies, because the new game contains some new types,
encoding the beliefs of the types with unique rationalizable plans. We first establish our
result for a general class of such invariant solution concepts. We also establish the same
strategic equivalence for sequential equilibrium; this requires an additional off-path be-
lief restriction commonly imposed in the reputation literature.

5.1 Strategic equivalence under invariant solutions

The following definitions are standard: A solution concept � maps every Bayesian game
G to a set �(G) of mixed strategies in game G. For any type spaces T and T ′ with T ⊂ T ′
and any strategy profile σ on T ′, σT denotes the restriction of σ to T . In the follow-
ing definitions, we also use the convention that two probability distributions that have
common support and agree on this support are identical, ignoring any difference in do-
mains.

Definition 3. A solution concept � is said to be invariant to elimination of nonra-
tionalizable strategies if

�(G) = �(G′)

for any two games G and G′ with identical type spaces satisfying (i) if an action plan si
is available for a type τi in game G, then si is available for τi in G′, and (ii) if si is not
available for τi in G, then si /∈ S∞

i [τi |G′].
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Definition 4. A solution concept � is said to be invariant to trivial enrichments of the
type spaces if

�(G) = {σT | σ ∈ �(G′)}
for any two games G and G′ with type spaces T and T ′ such that (i) T ⊂ T ′, (ii) every
type in T has an identical set of available action plans in games G and G′, and (iii) any
type in T with multiple action plans has identical interim beliefs in games G and G′.

Note that the transformation in the first definition allows only elimination of nonra-
tionalizable actions and the transformation in the second definition allows only inclu-
sion of new types such that the types who put positive probability to the new types are
trivial in that they can play only according to one plan. Proposition 1 implies that under
any solution concept that is invariant to the above transformations, elaborations with or
without commitment types have the same strategic implications for rational types. Due
to its importance, we state this corollary as a proposition.

Proposition 2. Let � be a solution concept that is invariant to elimination of non-
rationalizable strategies and to trivial enrichment of the type spaces. Then, for any
ε�ε′ ∈ (0�1) with ε′ > ε and for any ε-elaboration G with commitment types, there exists
an ε′-elaboration G′ = (N�A�(G�T �π ′)) without commitment types such that

{σ(τ∗) | σ ∈ �(G)} = {σ(τ∗) | σ ∈ �(G′)}�
i.e., the sets of solutions for rational types are identical in games G and G′.

Proof. Note that, in Proposition 1, the elaboration G′ can be obtained from G by
(i) introducing new types such that only committed types believe in the new types, and
(ii) allowing commitment types to play any action plan in the repeated game. The first
step is a trivial enrichment as in Definition 3 and the second step undoes an elimination
covered by Definition 4, so the conclusion follows. �

5.2 Strategic equivalence under sequential equilibrium

We will next establish the same strategic equivalence under sequential equilibrium,
which is defined as follows. Given any Bayesian repeated game with a type space
(G�T �π), a belief structure is a list μ = (μi�τi�h)i∈N�τi∈Ti�h∈H of type-specific beliefs
μi�τi�h ∈ �(G × T−i) regarding the underlying payoffs and the other player’s types, be-
liefs that vary with the history of play.9 An assessment is a pair (σ̃�μ) of strategy profile
σ̃ : T → � and a belief structure μ. An assessment (σ̃�μ) is said to be sequentially ra-
tional if σ̃i(· | τi) is a sequential best response to μi�τi�h and σ̃−i, i.e., the restriction of
σ̃i(· | τi) to the continuation game after every history h is a best response to σ̃−i and the
beliefs μi�τi�h in the continuation game. An assessment (σ̃�μ) is said to be consistent
if there exists a sequence (σ̃n�μn) → (σ̃�μ) such that σ̃n assigns positive probability to

9A more general definition of a belief structure would also specify the beliefs regarding past actions, but
those beliefs are trivial because of perfect monitoring.
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each available move at every history and μn is derived from Bayes’ rule and σ̃n. An as-
sessment (σ̃�μ) is said to be a sequential equilibrium if it is sequentially rational and
consistent.

In an ε-elaboration without commitment types, sequential equilibria are defined as
above. In an ε-elaboration with commitment types, the definition of course depends
on how one formalizes the commitment types. In particular, the definition above im-
plies that player 2 puts probability 1 on the rational type of player 1 if the history is not
consistent with any commitment type—even when the history is also inconsistent with
the strategy of the rational type. This is because the commitment types have only one
action, so that only the rational types may tremble. This is an additional assumption
when the commitment types are represented by payoff perturbations (violating the ad-
ditive repeated-game structure). In general, the possible off-the-path beliefs can vary
depending on the way the commitment types are formulated, but the above assump-
tion is usually maintained. We will keep this additional assumption in our definition for
sequential equilibrium without commitment types.

Assumption 1. For every history h= (a0� � � � � at−1),

μ2�τ∗
2 �h

(g∗� τ∗
1) = 1

whenever h has zero probability under every type τ1 �= τ∗
1 .

In our analysis, we will focus on the behavior of the rational types under sequential
equilibrium, which is formally defined as follows.

Definition 5. For any elaboration G (with or without commitment types), we write

SE∗(G) = {σ(· | τ∗) | (σ�μ) is a sequential equilibrium of G that satisfies Assumption 1}
for the set of sequential equilibrium action plans for the rational types in G.

We are now ready to state the strategic equivalence result for sequential equilibrium.

Proposition 3. For any ε�ε′ ∈ (0�1) with ε′ > ε and for any ε-elaboration G with com-
mitment types (C�π), there exists an ε′-elaboration G′ = (N�A�(G�T �π ′)) without com-
mitment types such that

SE∗(G) = SE∗(G′)�

i.e., under Assumption 1, the set of sequential equilibrium action plans for the rational
types is the same in games G and G′.

Proof. We take G′ as in Proposition 1. We will show that both conditions σ(· | τ∗) ∈
SE∗(G) and σ(· | τ∗) ∈ SE∗(G′) are characterized by the following conditions (SR1) and
(SR2). First, (σ�μ) is a sequential equilibrium of G if and only if the following three
conditions are satisfied. The consistency condition for τ∗

2 is

μ2�τ∗
2 �h

(c) = μ
σ(·|τ∗

1)

h (c) ≡
{

π(c)
Pr(h|σ(·|τ∗

1))(1−ε)+∑
c′∈Ch π(c′) if c ∈ Ch

0 otherwise
(∀h�c)� (C)
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where Ch is the set of commitment plans c ∈ C that is consistent with history h. Of

course, μ
σ(·|τ∗

1)

h (τ∗
1) = 1 − ∑

c∈C μ
σ(·|τ∗

1)

h (c). The consistency condition for player 1 is triv-

ial, as player 2 has only one type. Note that μ
σ(·|τ∗

1)

h is a function of σ(· | τ∗
1) and, hence,

the following sequential rationality conditions are solely on σ(· | τ∗).

(SR1) The term σ(· | τ∗
1) is a sequential best response to σ(· | τ∗

2) under g∗
1 .

(SR2) At each history h, σ(· | τ∗
2) is conditional best response to the mixed strategy

σ̃ ≡ μ
σ(·|τ∗

1)

h (τ∗
1)σ(· | τ∗

1)+
∑
c∈C

μ
σ(·|τ∗

1)

h (c)c

under g∗
2 .

Since all the other types are committed to a single plan, there are no other condi-
tions. This shows that σ(· | τ∗) ∈ SE∗(G) if and only if (SR1) and (SR2) are satisfied.

To show that σ(· | τ∗) ∈ SE∗(G′) implies the conditions (SR1) and (SR2), consider
any sequential equilibrium (σ�μ′) of G′ that satisfies Assumption 1. First, since type τ∗

1
puts probability 1 on (g∗� τ∗

2), the sequential rationality condition for that type is (SR1).
Second, since c is the unique rationalizable action plan of τc1 in G′ (by Lemma 2) on all
histories h consistent with c,

σ(c(h) | h�τc1) = 1 (∀c ∈ Ch�∀h)� (4)

Hence, by Assumption 1 and consistency,

μ′
2�τ∗

2 �h
(τc1) = μ

σ(·|τ∗
1)

h (c) (∀h�c)� (5)

which of course also implies that μ′
2�τ∗

2 �h
(τ∗

1) = μ
σ(·|τ∗

1)

h (τ∗
1). By (4) and (5), under the

belief of type τ∗
2 , player 1 plays according to σ̃ above, and the sequential rationality con-

dition for type τ∗
2 is (SR2).

To show that (SR1) and (SR2) are sufficient for σ(· | τ∗) ∈ SE∗(G′), take any σ(· | τ∗)
that satisfies (SR1) and (SR2). We will construct a sequential equilibrium (σ�μ′) of G′

that satisfies Assumption 1. Set μ′
1�τ∗

1 �h
(g∗� τ∗

2) = 1 and μ′
2�τ∗

2 �h
= μ

σ(·|τ∗
1)

h . For each c ∈ C,

consider a sequential equilibrium (σc�μc) of the game in which the action plan of type
τ∗

2 is fixed as σ(· | τ∗
2)—as moves of nature—and the type space is T c with the interim

beliefs in G′. Set σ(· | τi) = σc(· | τi) and μ′
i�τi�h

≡ μc
i�τi�h

for every τi ∈ T c
i and c ∈ C. We

now show that (σ�μ′) is a sequential equilibrium of G′ and satisfies Assumption 1. Since
Lemma 2 applies to the case g∗

2 = 0, in which case σ(· | τ∗
2) is rationalizable for type τ∗

2 ,

σc(c(h) | h�τc1) = 1 (∀c ∈ Ch�∀h)� (6)

Hence, μ′
2�τ∗

2 �h
is consistent and satisfies Assumption 1. The sequential rationality con-

ditions for rational types are (SR1) and (SR2) by construction and (6). The sequential
rationality and consistency for types in T c immediately follow from the construction
and the fact that (σc�μc) is a sequential equilibrium in the auxiliary game. �
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The strategic equivalence under sequential equilibrium is somewhat subtle, requir-
ing the lengthy proof above. This is because of the issues relating to the off-the-path
beliefs, which play a central role in sequential equilibrium while not being relevant for
ICR. If a type τc1, who plans to follow c, deviates from c, then his subsequent behavior
may be different from c, as ICR cannot restrict the behavior at the contingencies that
are precluded by one’s own strategy. In that case, off-path beliefs of player 2 at the his-
tories that are not consistent with any type could be different. Moreover, consistency
may result in unforeseen restrictions on those beliefs, as it is applied for types in T c

and τ∗
2 simultaneously. Assumption 1 ensures that player 2 assigns zero probability to

τc1 whenever player 1 deviates from c, resulting in beliefs that are identical to those with
commitment types, as we show in the proof. Of course, at the histories that are consis-
tent with commitment types, the rational types in the games G and G′ face the same
uncertainty regarding all relevant aspects, such as whether the other player is rational
and which c ∈ C he is playing if he is not rational. This leads to the same set of solutions
for rational types in both games.

Remark 1. The strategic equivalence above implies that the testable predictions with
or without commitment types are nearly indistinguishable. Imagine that an empiri-
cal or experimental researcher observes outcomes of games that essentially look like
a fixed repeated game, as in g∗, but she does not know the players’ beliefs about pos-
sible commitments or payoff variations. Using the data, she can obtain an empirical
distribution on outcome paths—with some noise. The above strategic equivalence im-
plies that the equilibrium distributions for elaborations with or without commitment
types can be arbitrarily close, making it impossible to rule out one model without ruling
out the other given the sampling noise (see the supplementary file on the journal web-
site, http://econtheory.org/supp/1893/supplement.pdf, for a formal result along these
lines).

6. General case

In this section, we will present the result for the n-player case, allowing commitment
types for all players. The definitions for the n-player case mirror the case of n = 2, and
we will not repeat them here. Since we will allow commitment types for all players, an
ε-elaboration with commitment types is now defined as a Bayesian game, with common
prior π, such that the set of types for each player i is {τ∗

i }∪Ci, where Ci ⊂ Si can be empty,
type τi can play any action plan while a type ci ∈ Ci can play only ci, and the probability
π(τ∗) of the rational type profile is 1 − ε. Note that when ε > 0, some Ci is nonempty.
Note also that the distribution of commitment type is not restricted; they can be cor-
related, for example. Such a Bayesian game can be denoted by (C1� � � � �Cn�π), where
π ∈ �(({τ1} ∪C1)× · · · × ({τn} ∪Cn)) is the prior on the type profiles. Finally, we write �∗
for the set of solution concepts that are (i) invariant to the elimination of nonrational-
izable plans, (ii) invariant to trivial enrichments of the type spaces, and (iii) include all
solutions generated by the sequential equilibria that satisfy Assumption 1. The result is
generalized to this case as follows.

http://econtheory.org/supp/1893/supplement.pdf
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Proposition 4. For any ε�ε′ ∈ (0�1) with ε′ > ε and for any ε-elaboration G with
commitment types (C1� � � � �Cn�π), there exists a strategically equivalent ε′-elaboration
G′ = (N�A�(G�T �π ′)) without commitment types in which the commitment types are
replaced by types with unique rationalizable action plans:

1. For every i ∈N , π ′(g∗� τ∗
−i | τ∗

i )= π(τ∗
−i | τ∗

i ).

2. For every i ∈ N and ci ∈ Ci, there exists τcii ∈ Ti such that all ICR action plans of τcii
are equivalent to ci, and π ′(τcii | τ∗

j ) = π(ci | τ∗
j ) for every j �= i.

3. For every � ∈ �∗,

{σ(τ∗) | σ ∈ �(G)} = {σ(τ∗) | σ ∈ �(G′)}�

The first two conditions all together state that each commitment type is replaced by
a type that follows the committed action profile as his uniquely rationalizable plan, and
the interim beliefs of the rational types remain intact under rationalizability. The last
condition states that the two games are strategically equivalent for rational types under
any invariant solution concept, including sequential equilibria that put probability 1 on
rational types off the path. An outline of the proof for this result can be found in the
Appendix.

7. Necessity of commitment under common knowledge

of approximate payoffs

In the previous sections, while we imposed the constraint that it is always common
knowledge that the payoffs are the sum of identical stage-game payoffs, we allowed
those payoffs to lie anywhere in the interval [0�1]. In this section, by contrast, we
make the stricter requirement that it is common knowledge that payoffs lie within ε

of those in the complete-information game. Under this stricter requirement, we show
that commitment types are not dispensable in reputation models. When the stage
game is dominance-solvable, there is a unique sequential Nash equilibrium outcome
in which the unique rationalizable strategy profile of the stage game is played through-
out. Here, ε is uniform over all type spaces and number of repetitions. For example,
in the repeated prisoner’s dilemma, one cannot have any cooperation without commit-
ment types when it is common knowledge that the payoffs are approximately those in
the prisoner’s dilemma.

Define the distance between two stage-game payoff functions via the sup norm:

d(g′� g) = max
a

|g′(a)− g(a)|�

Proposition 5. Fix a complete-information stage game g∗ that has unique rational-
izable profile a∗. Then there exists ε > 0 such that for any ε′ > 0 and any t̄, every ε′-
elaboration (N�A�(G�T �π)) without commitment types, satisfying the additional re-
quirement that d(g�g∗) < ε for all g ∈ G, has a unique sequential equilibrium in which
a∗ is played by all types at all histories.
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Proof. The elimination process for the finite stage game g∗ is finite. Each time an
action is eliminated (again by finiteness), it must be that for some δ > 0, it is never
within δ of being a best reply. Choose ε > 0 so that 2ε is smaller than the minimum
of these δ.

Now suppose there is a sequential equilibrium strategy profile s∗ that contradicts
the result. Consider one of the latest histories at which any violation of the profile a∗
occurs, and of the violations at this history, consider an action a′

i that is eliminated first
in the elimination process for g∗, say at stage k. When player i takes this action, he
must believe that (a) the profile a∗ is played at all future dates regardless of his action
and (b) no action eliminated at stage k − 1 or earlier is played at the current history.
But then by (b), the fact that a′

i is eliminated at stage k, and the choice of ε, his action
is suboptimal in the stage game; and by (a), his action cannot affect future play. This
contradicts the concept of sequential equilibrium. �

For example, in a repeated prisoner’s dilemma game, if it is common knowledge that
payoffs are close to the prisoner’s dilemma, then in any sequential equilibrium, the play-
ers defect throughout the game regardless of the number of repetitions. At some level
this is a reflection of general continuity properties of Bayesian Nash equilibrium payoffs
with respect to the perturbations of payoffs. Indeed, it is well known that, for any given
t̄, as ε → 0, the Bayesian equilibrium payoffs in ε-elaborations of repeated prisoner’s
dilemma with commitment types approach the payoffs from defection throughout the
game. This is in line with the continuity results for Nash equilibrium payoffs with re-
spect to the prior distributions. Hence, for a given t̄, our result here differs from the
existing continuity results only in terms of the perturbations it considers, making the
stage payoffs approach to the original game instead of making the probability of types
with unrelated payoffs go to zero. Our result has a major strength however: ε is uniform
with respect to the number of repetitions. In contrast, for any ε probability of a tit-for-
tat type, cooperation prevails whenever the number of repetitions are sufficiently large,
as famously established by the Gang of Four.

8. Remarks

Continuity and robustness of equivalence

Since interim correlated rationalizability is upper hemicontinuous (Dekel et al. 2007),
each type τ

ci
i with unique rationalizable action ci has the same unique rationalizable

action on a open neighborhood of parameters and beliefs. Hence, in the elaboration
constructed in Proposition 1, we can perturb parameters such as the stage-game payoff
functions and beliefs for the newly constructed types as long as the beliefs of rational
types are fixed. So, relative to the set of elaborations with the same set of types, where
rational players have fixed beliefs, we obtain an open set of ε′-elaborations G′ without
commitment types that are strategically equivalent to G. In particular, type τ

ci
i need not

be exactly indifferent between his actions conditional on meeting a rational type; this
was only a simplifying aspect in our construction.
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Our result is silent, through, on the other hand, about continuity with respect to vari-
ation of the beliefs of the rational types. Such continuity is directly tied to the continuity
properties of the solution concept in the original game G, by our strategic equivalence
result. Of course, since ε′ must be larger than ε (albeit arbitrarily close), our result and
the reputation result that it is applied to are relevant only when the solution concept on
the original model G is continuous with respect to small variations in ε when the com-
mitment types and their relative probabilities with respect to each other are fixed. This
is indeed the case for most existing models.10

Sensitivity to the set of commitment types

Despite the continuity in the previous paragraph, the equilibrium predictions of repu-
tational models are highly sensitive to the set of commitment types one considers: by
varying the set of commitment types, one can obtain a rich set of behavior as equi-
librium outcomes in long but finitely repeated games. Indeed, Fudenberg and Maskin
(1986) obtain a folk theorem in this way. Once again, such sensitivity to the set of com-
mitment types will be inherited by our newly constructed reputation models without
commitment types, due to strategic equivalence.

Short-lived players

The above sensitivity is muted when the uninformed player is short-lived (i.e., she my-
opically best responds to her belief about the other player’s move at every history). In
that case, in any Bayesian Nash equilibrium, the payoff of the rational player with com-
mitment types is near his Stackelberg payoff, provided that he is sufficiently patient and
has a type that always plays his Stackelberg move (Fudenberg and Levine 1989). Since
our players are all long-lived, such an independence result does not hold in the reputa-
tion models we consider here. For example, in the repeated prisoner’s dilemma game,
the Stackelberg type always plays Defect, and the presence of such a type would not have
any qualitative impact on the equilibrium behavior. When there is a tit-for-tat type, we
would still have cooperation in all but a few rounds. Here, the payoff of the rational
type exceeds his Stackelberg payoffs, but his payoff could be lower than his Stackelberg
payoffs in other games.11

We must emphasize that our main result for two-player games would still be true
if we assumed that player 2 is short-lived instead. In that case, for player 2, we could
still generate any action plan that is consistent with her stage payoff being a function of
her own action only (as in Lemma 3 in the Appendix). Since this is all we need for our
Lemma 4 in the Appendix, all of our results would go through as is.

10For example, sequential equilibrium is upper hemicontinuous with respect to such scaling of the prob-
abilities of commitment types. Bayesian Nash equilibrium behavior of the rational types is also upper hemi-
continuous with respect to all variations of priors (with possibly varying commitment types and relative
probabilities) because such variations can be represented as an ex ante payoff perturbation.

11This fact has been demonstrated in infinitely repeated games, but we suspect that it can also be shown
in long but finitely repeated games.
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Infinitely repeated games

In this paper, we have focused on finitely repeated games. It is actually easier to con-
struct types that are committed to a particular plan of action up to an arbitrary finite
horizon as the unique rationalizable plan in infinite-horizon games if one does not in-
sist on the common-prior assumption. Indeed we provided such a result in Weinstein
and Yildiz (2013) in another context as we discussed before. It also seems feasible to ex-
tend our construction within a common-prior assumption to infinitely repeated games,
using finite-horizon truncations. Hence, it seems feasible to obtain a similar result for
infinite-horizon games allowing only arbitrarily long but finite-horizon commitments.
We do not pursue such results here mainly because the most major results in infinite-
horizon reputation literature, such as the above result of Fudenberg and Levine (1989),
are based on types that commit to playing a fixed move, and such types can easily be
justified within the repeated-game framework.12

Commitment to mixed strategies

In some reputation models, the commitment types are allowed to play a mixed action
plan. For the natural case that only the realized moves are observable, such mixed com-
mitment types are incorporated in our paper as follows. A mixed commitment type σi

induces a probability distribution μσi on pure action plans of the player in reduced form.
From the point of view of the rational type τ∗

j of the other player, the commitment type
σi can be replaced by pure commitment types in the support of μσi by putting prob-
ability π(σi)μ

σi(si) on each si in the support of μσi , where π(σi) is the probability of
σi in the original elaboration G and μσi(si) is the probability of si under μσi . Applica-
tion of Proposition 4 to the resulting elaboration with pure commitment types yields an
elaboration G′ without commitment types that is strategically equivalent for the rational
types.

Other games

The applications in reputation formation are not confined to the repeated-games frame-
work. Indeed, an important strand of literature explores the role of reputation in bar-
gaining considering types that commit to dynamic plans (see, for example, Abreu and
Gul 2000, Abreu and Pearce 2007, and Wolitzky 2012). Of course, understanding the
scope of reputation within the structural assumptions of those models is also very im-
portant. Here, as a first step, we established a strategic equivalence result for finitely
repeated games.

How much variation in stage-game payoffs and type spaces do we need
to support a commitment?

Our main result establishes that arbitrary commitment types can result from ICR with-
out any restriction on the stage-game payoffs and the type spaces. Moreover, our con-

12When the commitment type plays a mixed move, the resulting pure action plans involve commitment
to dynamically varying action plans. An extension of our results could be useful in that case.
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struction uses only a couple of simple stage-game payoff functions.13 Feasibility of such
stage-game payoff functions is sufficient for supporting arbitrary commitment types by
introducing uncertainty on stage-game payoffs. However, Proposition 5 shows that in
the limit as the maximal variation in stage-game payoffs is taken to 0, commitment types
cannot be generated.

Personal types

Our construction (in the first part of the proof of Lemma 1) makes fundamental use of
players who do not know their own payoffs. Some of the literature has focused on mod-
els with common knowledge that each player knows his own payoffs; Fudenberg et al.
(1988) call this a model with “personal types.” We do not know precisely to what ex-
tent our results can be recovered in a model with personal types. There are multiple
difficulties. The first is the construction of a type with unique rationalizable plan, as in
Lemma 1. This is considerably more difficult when using personal types, and while it
is possible to generate commitment types for some nontrivial plans, we do not know
if it is possible for all plans. The second difficulty arises when putting the types into a
common-prior type space. The technique we used for Lemma 2 relied on the commit-
ment types of player 1 believing that their payoff is always identically zero when player
2 is a normal type. With commitment types, this technique cannot be used, as payoffs
cannot be correlated with the opponent’s type. It is an open question whether some
other technique would be successful. Note that this second difficulty only arises if we
assume personal types and a common prior.

9. Conclusion

The reputation literature, one of the main accomplishments of game theory, relies on
the existence of commitment types. It is important for the interpretation of the results in
this literature whether one can obtain the same results within a rationalistic framework
in which all types can follow the plans that are available to rational types and all types’
payoffs satisfy the structural payoff assumptions of the underlying model. If one can
obtain the same results within such a framework, we can interpret the results as coming
from incomplete information about payoffs. Otherwise, the result must be interpreted
as stemming from the factors that are outside of the model, such as irrationality, psycho-
logical anomalies, and supergame concerns. In this paper, within the context of finitely
repeated games, we have established that one can obtain all results within a rationalis-
tic framework, allowing an interpretation based on incomplete information. This is the
case when all stage-game payoffs are allowed. For games with dominance-solvable stage
games, though, we show that reputation cannot have an impact when the stage-game
payoffs are sufficiently restricted. Hence, the scope of reputation within a rationalistic
framework depends on the severity of the additional structural assumptions imposed
when there are such assumptions.

13More precisely, it uses the family g
a∗
i �a

∗−i�λ

i = λ1a∗
i
+ (1 − λ)1a∗

−i
, a∗

i ∈ Ai, a∗
−i ∈ A∗

−i, λ ∈ [0�1], where 1a∗
j

is the characteristic function of a∗
j , taking the value of 1 when a∗

j is played and 0 otherwise.
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Appendix: Omitted proofs

A.1 Preliminary definitions

In this Appendix, we will also consider type spaces without a common prior. Such a type
space is a list (G�T �π(· | ·)), where π(· | τi) ∈ �(G × T−i) is the probability distribution
of τi. Here, there need not be a single π ∈ �(G × T ) that leads to these interim beliefs
by Bayes’ rule. Fix any G = (N�A�(G�T �π(· | ·))). For each i ∈ N and for each belief
β ∈ �(G × S−i), we write BRi(β) for the set of actions si ∈ Si that maximize the expected
value of ui(z(si� s−i) | g) under the probability distribution β.

Interim correlated rationalizability (ICR) is computed by the following elimination
procedure: For each i and τi, set S0

i [τi | G] = Si, and define sets Ski [τi | G] for k > 0 it-
eratively by setting si ∈ Ski [τi | G] if si ∈ BRi(margG×S−i

β) for some β ∈ �(G × T−i × S−i)

such that margG×T−i
β = π(· | τi) and β(s−i ∈ Sk−1

−i [τ−i | G]) = 1. That is, si is a best re-

sponse to a belief of τi that puts positive probability only to the actions that survive the
elimination in round k− 1. We write Sk[τ | G] = Sk1 [τ1 | G] × Sk2 [τ2 | G]. Then

S∞
i [τi | G] =

∞⋂
k=0

Ski [τi |G]�

The following class of action plans will play an important role in our construction.

Definition 6. A plan si is said to be sure-thing compliant if there is no partial history h

and move ai ∈Ai such that si(h� (si(h)�a−i)) = ai for every a−i but si(h) �= ai.

In other words, a plan is sure-thing compliant if whenever the player plays ai in all
possible continuations next period, he also plays ai this period. In the context of a single
player with stable preferences who acquires information each period, this would be a
consequence of the sure-thing principle of Savage.

A.2 Proof of Lemma 1

Our proof has three main steps. First, we will prove it for sure-thing compliant action
plans, without requiring the type space to have common prior or the full-support prop-
erty (property (i) in the statement of the lemma). We then extend this result to all action
plans, without requiring the properties on type space once again. Finally, we convert the
latter type space to a type space with common prior and full support assumptions with-
out altering the rationalizable actions, proving the lemma. The first step is the following
lemma; Weinstein and Yildiz (2013) proved this lemma for infinite-horizon games, and
the proof carries over to finitely repeated games with minor modifications. (The proof
can be found in the supplementary material.)

Lemma 3 (Weinstein and Yildiz 2013). For any sure-thing compliant action plan si, there
exists a game G̃ = (N�A�(G̃� T̃ � π̃(· | ·))) with a type τ

si
i such that S∞

i [τsii | G̃] � {si}. (The
type space does not necessarily have a common prior.)
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The next lemma builds on this result to generalize to all action plans.

Lemma 4. For any action plan si, there exists a game G̃ = (N�A�(G̃� T̃ � π̃(· | ·))) with a
type τ

si
i such that S∞

i [τsii | G̃] � {si}. (The type space does not necessarily have a common
prior.)

Proof. Fix some a∗
−i ∈A−i, and define a function v−i : A−i → [0�1] by

v−i(a−i) =
{

1 if a−i = a∗
−i

0 otherwise.

For every âi ∈Ai, define a function v
âi
i : Ai → [0�1] by

v
âi
i (ai)=

{
1 if ai = âi
0 otherwise.

Finally, consider the class of stage-game payoff functions g
âi
i : A → [0�1] for player i,

where

g
âi
i (ai� a−i)= λv

âi
i (ai)+ (1 − λ)v−i(a−i) (A.1)

for some λ ∈ (0�1/(2t̄+1)). Here, a∗
−i is a known action profile the other players can take

to reward player i, while âi is an action that player i can take to increase his payoff. In the
type space we construct, type τ

si
i knows his payoffs are of the form defined in (A.1) but

does not know the specific âi. As specified by (A.1), player i’s stage payoffs are additively
separable in his action and others’ actions. Our choice of λ is small enough so that in
all periods before the last, player i’s driving incentive is the desire to be rewarded by the
other players, while in the last period he has learned his own optimal action âi and acts
accordingly.

Next, for each ρ : H ×A−i →Ai, let Sρ−i be the set of action profiles sρ−i satisfying

s
ρ
−i(h

t� (ai� a−i)) = a∗
−i ⇐⇒ ai = ρ(ht�a−i)

for any t < t̄, any history ht , and any (ai� a−i) ∈ Ai. Also, let R be the set of functions ρ

satisfying

ρ(ht̄−1� a−i) = si(h
t̄−1)

for all a−i and all those ht̄−1 such that player i has played according to si throughout.
Finally, let Ŝ−i = ⋃

ρ∈R S
ρ
−i.

To sum up, when following a plan in S
ρ
−i, at any history (h� (ai� a−i)), player −i re-

wards i by playing a∗
−i if ai = ρ(h�a−i). The only restriction on ρ occurs at date t̄ − 1

and in the contingency that i has followed si up to t̄ − 1: he will be rewarded at t̄ if he
continues to follow si at t̄ − 1. The set R is symmetric in all other ways. In particular, if
player i assigns uniform probability on Ŝ−i, he considers it equally likely that each of his
moves are rewarded, except possibly at the final stage. Note that the actions in Ŝ−i are
all sure-thing compliant, because player j �= i reacts differently to the rewarded move of
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player i from all other moves. Thus, by Lemma 3, for each s−i ∈ Ŝ−i, there exists a game
Gs−i = (N�A�(Gs−i �T s−i �πs−i (· | ·))) with a type τ

s−i

−i such that S∞
−i[τs−i

−i | Gs−i ] � {s−i}.
Let ḡ−i be an arbitrary payoff function for the players other than i. Define the game

G̃ = (N�A�(G̃� T̃ � π̃(· | ·))) by

G̃ = {(gâii � ḡ−i) | âi ∈ Ai} ∪
⋃

s−i∈Ŝ−i

Gs−i

T̃i = {τsii } ∪
⋃

s−i∈Ŝ−i

T s−i

i ; T̃−i =
⋃

s−i∈Ŝ−i

T s−i

−i

(A.2)
π̃(· | τj) = πs−i (· | τj) (∀τj ∈ T s−i

j � j ∈N�s−i ∈ Ŝ−i)

π̃((gâi(τ
s−i
−i )� ḡ−i)� τ

s−i

−i | τsii ) = 1/|Ŝ−i| (∀s−i ∈ Ŝ−i)�

where we let

âi(τ
s−i

−i ) = si(z(si� s−i))
t̄

be the prescribed action at the history reached at the beginning of the last period under
the strategy profile (si� s−i). The critical feature of the definition is the belief of the newly
introduced type τ

si
i in (A.2). He assigns equal probabilities on types τs−i

−i and believes that
there is a perfect correlation between the types τ

s−i

−i and the way his own action affects

his payoff. If he follows si throughout ht̄ and observes the moves of the other player, he
learns what action âi(τ

s−i

−i ) is best for him, which happens to be the action si(z(si� s−i))
t̄

that he would have played at that history according to si. Note that each of the types
other than τ

si
i has a unique rationalizable action in reduced form. Hence, the updated

belief of τsii regarding the payoff functions and outcomes is uniquely determined at any
history, given that he believes the other players follow rationalizable strategies.

In the rest of the proof, we will show that si is uniquely rationalizable for τ
si
i in re-

duced form, i.e., S∞
i [τsii | G̃] � {si}. Some additional notation: For any history ht , write

P∗
t (h

t) for the probability that a∗
−i is played at date t conditional on h according to the

rationalizable belief of τsii . As noted above, by symmetry,

P∗
t (h

t) =

⎧⎪⎨
⎪⎩

1 if t = t̄ and i follows si throughout ht

0 if t = t̄ and i follows si up to t̄ − 1 but deviates at t̄ − 1 in ht

1/|A−i| otherwise.
(A.3)

Write Ui(s
′
i | h) for the expected payoff of i from playing s′i under the rationalizable belief

of type τ
si
i conditional on history h. Write also Ui(h

t) for the realized expected payoff of
τ
si
i up to date t at history ht .

We now show that Ui(si | ht) > Ui(s
′
i | ht) for every history ht and action plan s′i such

that i follows si throughout ht and s′i(h
t) �= si(h

t). As long as he follows si, every such
history ht is reached with positive probability under the rationalizable belief of τsii . This
therefore will show that the expected payoff from si is strictly higher than any s′i that is
not equivalent to si. Therefore, S∞

i [τsii | G̃] � {si}.
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First consider the case t = t̄. Conditional on ht , τsii assigns probability 1 on gsi(h
t). If

he follows si, playing si(h
t) at ht , then his own action contributes λ to his payoff; oth-

erwise, his own action contributes 0 to his payoff. Moreover, since he has followed si
throughout ht , he will be rewarded for sure by the other player at t̄, contributing 1 −λ to
his payoff regardless of his own move at ht . Hence,

Ui(si | ht) =Ui(h
t)+ 1

and

Ui(s
′
i | ht)= Ui(h

t)+ 1 − λ�

yielding

Ui(si | ht)−Ui(s
′
i | ht) = λ > 0�

Now consider the case t < t̄. His payoff from following si is

Ui(si | ht) = Ui(h
t)+ λ

t̄∑
t ′=t

E[vâi(t−i)
i (si(h

t ′)) | ht� si] + (1 − λ)

t̄∑
t ′=t

E[P∗
t ′(h

t ′) | ht� si]

≥ Ui(h
t)+ (1 − λ)

t̄ − t

|A−i| + 1�

To see the lower bound, note that as long as he follows si, he gets 1 at date t̄ (as in the

previous case) and at least (1 − λ)/|A−i| at each t ′ < t̄. (At any t ′ < t̄, vâi(t−i)
i ≥ 0 and

P∗
t ′ ≥ 1/|A−i| when he follows si.) Alternatively, his payoff from following s′i is

Ui(s
′
i | ht) = Ui(h

t)+ λ

t̄∑
t ′=t

E[vâi(t−i)
i (s′i(h

t ′)) | ht� s′i] + (1 − λ)

t̄∑
t ′=t

E[P∗
t ′(h

t ′) | ht� s′i]

≤ Ui(h
t)+ λ(t̄ − t + 1)+ (1 − λ)

t̄ − t + 1
|A−i| �

The upper bound comes from the fact that vâii ≤ 1 throughout and P∗
t ′ ≤ 1/|A−i| after a

deviation from si (by (A.3)). Combining the two inequalities, we obtain

Ui(si | ht)−Ui(s
′
i | ht) ≥ (1 − λ)

(
1 − 1

|A−i|
)

− λ(t̄ − t) > 0�

where the strict inequality follows from λ < 1/(2t̄ + 1) and |A−i| ≥ 2. �

Proof of Lemma 1. By Lemma 4, there exists a game G̃ = (N�A�(G̃� T̃ � π̃(· | ·))) with a
type τ̃i such that S∞

i [τ̃i | G̃] � {si}. This falls short of the conditions of Lemma 1 in that
(G̃� T̃ � π̃(· | ·)) does not necessarily admit a common prior and the prior could not have a
full support (condition (i)) even if it existed. Here we remedy this problem by converting
G̃ to a common-prior game Gs = (N�A�(Gsi �T si �πsi)) with the desired properties. First,
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for every λ ∈ (0�1), define Gλ = (N�A�(G̃� T̃ �πλ(· | ·))) by setting

πλ(g�τ−j | τj)= λ

|G̃ × T̃−j|
+ (1 − λ)π̃(g� τ−j | τj)

at each (g� τj� τ−j) ∈ G̃ × T̃ . Now as λ → 0, πλ(g�τ−j | τj) → π̃(g� τ−j | τj) everywhere.
Together with a continuity result for belief hierarchies by Mertens and Zamir (1985), this
implies that the belief hierarchy of type τ̃i in game Gλ converges to the belief hierarchy
of τ̃i in game G̃. Thus, by upper hemicontinuity of ICR (Dekel et al. 2007), there exists
λ̄ > 0 such that

S∞
i [τ̃i |Gλ̄] ⊆ S∞

i [τ̃i | G̃] � {si}�
Since S∞

i [τ̃i |Gλ̄] is nonempty, this implies that

S∞
i [τ̃i |Gλ̄] � {si}� (A.4)

Moreover, since G̃ × T̃ ×S is finite, there exists some finite k such that

S∞
i [τ̃i | Gλ̄] = Ski [τ̃i | Gλ̄]� (A.5)

Now, since πλ̄(g� τ−j | τj) > 0 everywhere, by the main result of Lipman (2003), there
exists a common-prior game Gsi = (N�A�(Gsi �T si �πsi)) such that the common prior
πsi is positive everywhere and there exists a type τ

si
i ∈ T si

i whose first k orders of beliefs

are identical to that of type τ̃i in game Gλ̄. Dekel et al. (2007) show that Sk is a function
of the first k orders of beliefs, yielding

Ski [τsi | Gs] = Ski [τ̃i | Gλ̄]� (A.6)

Combining (A.4), (A.5), and (A.6), we obtain

S∞
i [τsi | Gs] ⊆ Ski [τsi | Gs] = Ski [τ̃i | Gλ̄] � {si}�

Since S∞
i [τsi | Gs] �= ∅, this further implies that

S∞
i [τsi | Gs] � {si}�

as desired. �

A.3 Proof of Lemma 2

Using induction on k, we will show that Ski [τi | G′] = Ski [τi | Gc] for every k, τi ∈ T c
i , and

i ∈ N . This is true for k= 0 by definition. Toward an induction, assume that

Sk−1
−i [τ−i | G′] = Sk−1

−i [τ−i | Gc] (∀τ−i ∈ Tc
−i)� (A.7)

Take any τi ∈ T c
i and write B(τi | G) for the set of all beliefs β of type τi after

round k − 1 in game G for any G ∈ {G′�Gc}, where margG×T−i
β = π(· | τi) and
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β(s−i ∈ Sk−1
−i [τ−i | G]) = 1. First consider the case τi �= τc1. In that case, by definition,

π ′(· | τi) = πc(· | τi). Together with the inductive hypothesis (A.7), this implies that
B(τi | G′) = B(τi | Gc). Therefore, si ∈ Ski [τi | G′] if and only if si ∈ BRi(margG′×S−i

β)

for some β ∈ B(τi | G′) = B(τi | Gc), and this is the case if and only if si ∈ Ski [τi | Gc],
showing that Ski [τi | G′] = Ski [τi | Gc].

Now consider the case τi = τc1. Then

π′(· | τi) = pcδ((0�g∗
2)�τ

∗
2)

+ (1 −pc)πc(· | τi)�

where the probability pc ∈ (0�1) is defined in (2) and δx is the Dirac measure on x,
putting probability 1 on {x}. Hence, by the inductive hypothesis (A.7), β ∈ B(τi | G′) if
and only if

β = pcβ(· | τ∗
2)+ (1 −pc)β(· | T c

2 ) (A.8)

for some conditional beliefs β(· | τ∗
2) ∈ �({((0� g∗

2)� τ
∗
2)} × Sk−1

2 [τ∗
2 |G′]) and

β(· | T c
2 ) ∈ B(τi |Gc)�

Now take any si ∈ Ski [τi | G′]. Then si ∈ BRi(margG′×S−i
β) for some β ∈ B(τi | G′). By

(A.8), for any s′i,

pc · 0 + (1 −pc)Eβ(·|T c
2 )[ui(si� s−i | g)] = Eβ[ui(si� s−i | g)]

≥ Eβ[ui(s′i� s−i | g)]
= pc · 0 + (1 −pc)Eβ(·|T c

2 )[ui(s′i� s−i | g)]�

where β(· | T c
2 ) ∈ B(τi | Gc). (Here the inequality follows from si being a best response,

and the equalities follow from (A.8).) Since pc < 1, this further implies that

Eβ(·|T c
2 )[ui(si� s−i | g)] ≥ Eβ(·|T c

2 )[ui(s′i� s−i | g)]�

showing that si ∈ BRi(margG′×S−i
β(· | T c

2 )). Therefore, si ∈ Ski [τi |Gc].
Conversely, take any si ∈ Ski [τi | Gc]. By definition, si ∈ BRi(margG′×S−i

β(· | T c
2 )) for

some β(· | T c
2 ) ∈ B(τi | Gc). Pick any β(· | τ∗

2) ∈ �({((0� g∗
2)� τ

∗
2)} × Sk−1

2 [τ∗
2 | G′]) and de-

fine β ∈ B(τi | Gc) by (A.8). Now, for any s′i,

Eβ[ui(si� s−i | g)] = pc · 0 + (1 −pc)Eβ(·|T c
2 )[ui(si� s−i | g)]

≥ pc · 0 + (1 −pc)Eβ(·|T c
2 )[ui(s′i� s−i | g)]

= Eβ[ui(s′i� s−i | g)]�

where the inequality follows from si being a best response, and the equalities follow from
(A.8). That is, si ∈ BRi(margG′×S−i

β). Therefore, si ∈ Ski [τi | G′].
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A.4 Proof of Proposition 4

Here we outline the proof of the general proposition. Note first that Lemma 1 applies
to the general case as well: for each i ∈ N and ci ∈ Ci, there exists a exists a Bayesian
repeated game Gci = (N�A�(Gci �T ci �πci)) with πci positive everywhere and with a type
τ
ci
i ∈ T ci

i for which all ICR actions are equivalent to ci. Again all those types can be taken
to be unique and distinct from each other. Write Ti = {τ∗

i } ∪ Ci, and define mapping τ̃i
on Ti by

τ̃i(τi) =
{
τ∗
i if τi = τ∗

i

τ
ci
i otherwise,

and mapping γi from T̃i = τ̃i(Ti) to stage-game payoff functions by

γi(τi) =
{
g∗
i if τi = τ∗

i

0 otherwise.

Write also γ(τ) = (γ1(τ1)� � � � � γn(τn)) for τ ∈ T̃ = T̃1 × · · · × T̃n. We construct G′ =
(N�A�(G′�T ′�π ′)) by setting

G′ =
∏
i∈N

{g∗
i �0} ∪

⋃
i∈N�ci∈Ci

Gci

T ′
j = {τ∗

j } ∪
⋃

i∈N�ci∈Ci

T ci
j (∀j ∈N)

π ′(g� τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ε′ if (g� τ) = (g∗� τ∗)
1−ε′
1−ε π(τ

′) if τ = τ̃(τ′) and g = γ(τ) for some τ′ ∈ T \ {τ∗}
ε′−ε

(1−ε)(|C1|+···+|Cn|)π
ci(g� τ) if (g� τ) ∈ Gci × T ci for some ci ∈ Ci

0 otherwise.

Observe that G′ satisfies the properties in the proposition. For any rational type τ∗
j ,

π′(τ∗
j )= 1 − ε′

1 − ε
π(τ∗

j )�

and hence π ′(τ̃−j(τ−i) | τ∗
j ) = π(τ−i | τ∗

j ) for every τ−j ∈ T−j . For commitment types

τ
ci
i , payoffs vary only when the other types are in T ci

−i. Hence, as in Lemma 2,
S∞
i [τcii | G′] = ci.
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